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Abstract

The transition towards more renewable energy use and higher energy efficiency
requires a rethinking of urban energy supply. One of the major design decisions that
energy system modellers need to address is the suitability of urban areas for central or
decentralised power and heat generation. Another impact that current models have to
handle is assessing the impact of storage technologies on the overall energy system. In
order to handle these complexities, continuous development of energy system models with
different focal points is necessary.

This thesis presents a suite of mathematical optimisation models adapted to energy
systems. These models allow to explore the design space of energy infrastructure on an
urban scale. The heat and electricity models put emphasis on capacity expansion planning,
unit commitment, and design of minimum cost energy distribution networks. In addition to
exhaustive mathematical descriptions, two of the models are also published online under
open source licenses. Four case studies demonstrate the use of these models in real-world
scenarios. For two of the four presented case studies, all input data and processing steps
are also shared to allow the reproduction of results and facilitate continued research. The
case studies show that the combined planning of the whole energy system can uncover
still untapped potential synergies.

Zusammenfassung

Die verstärkte Nutzung von erneuerbaren Energien sowie die steigende Energieef-
fizienz machen ein Umdenken in der Planung städtischer Energieversorgung nötig. Welche
Stadtgebiete für zentrale oder aber dezentrale Strom- und Wärmeversorgung geeignet
sind, ist eine der großen Fragen, auf die Energiesystemmodelle Antworten finden kön-
nen. Ein weiterer Aspekt, der zunehmend an Bedeutung gewinnt, ist die Auswirkung von
Energiespeichern auf das gesamte Energiesystem. Um diese Komplexität beherrschen
zu können, ist eine kontinuierliche Entwicklung von Energiesystemmodellen mit unter-
schiedlichen Schwerpunkten erforderlich.

Diese Arbeit präsentiert eine Folge von mathematischen Optimierungsmodellen für
Energiesysteme. Diese Modelle erlauben es, den Raum möglicher Entwürfe für städtische
Energieinfrastruktur zu analysieren. Die Modelle minimieren die Gesamtkosten zur Ausbau-
und Einsatzplanung sowie für den Entwurf von Verteilnetzen für Strom und Wärme. Neben
kompletter mathematischer Dokumentationen sind zwei der Modelle auch online unter
Open Source Lizenzen veröffentlicht. Vier Fallstudien demonstrieren die Anwendung der
Modelle auf Städte und Stadtteile. Für zwei der Fallstudien sind zusätzlich alle Eingabe-
daten und Analyseschritte verfügbar gemacht, um die Nachvollziehbarkeit und Nutzung
der Ergebnisse für weitere Forschung zu erleichtern. Die Fallstudien zeigen, dass die
kombinierte Planung städtischer Energiesysteme bislang ungehobene Synergiepotenziale
erschließen kann.
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Chapter 1

Introduction

You can never plan the future by the past.

Edmund Burke (1729–1797)

Cities first emerged around the year 4000 BCE in Mesopotamia. The process of forming
cities, called urbanisation, was enabled by the development of agriculture during the Neolithic
revolution. It is still not a settled question whether agriculture has developed under the pressure
of growth of an already settled population, or whether the domestication of plants gradually
evolved from intensified use of wild crops [105] [110, ch. 2]. Either way, once food productivity
had increased, social specialisation and division of labour evolved as a natural consequence.
But the aggregation on population in dense space also created negative side effects like
epidemics, always limiting the maximum size a city could reach.

Among other factors, developments in urban growth were historically enabled through
technological advances. Sanitation and hygiene dramatically increased life expectancy [126,
pp. 9–11]. The industrial revolution allowed automating manufacturing and agriculture. In-
creased food production requiring less workers enabled us to feed a growing world population,
while freeing up labour from field work for other occupations. Division of labour lead to a
specialisation of professions in craft, industry, services, research and arts.

The growth of cities has always depended on the capability to support its population’s
basic needs. The required support is met by so-called infrastructure, a term whose meaning
is discussed in section 2.1.1. In brief, a city, when seen as an entity, requires its demands
for nutrition, goods, services and energy to be satisfied either from within the system or its
so-called support region, a conceptual area around the city. On the output side, it requires
waste disposal and transport services to export its production output [59]. In this thesis, the
focus is put on the energy sector for stationary uses.

Energy supply in cities comprises of meeting the demand for electricity and heat of house-
holds, commerce and industry. Until the late 1990s, electricity demand was primarily satisfied
by central power plants, while heat demand was met by local fuel combustion. The energy
transition that is currently taking place in Europe and around the world is characterised by a
shift towards renewable energy resources. Higher efficiency is beginning to link electricity and
heat sectors and questions the established structures of both systems. In parallel, electrification
is still an ongoing process in developing countries.

11
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Figure 1.1: World population in rural and urban areas from 1950 to 2050 [118]

Although a completely sustainable way of living cannot be accomplished solely with techni-
cal measures, changes in the technical energy infrastructure might play a key role in achieving
this goal [117, pp. 45–51]. Only a concerted approach in all domains [73, p. 114] has a chance
of shifting the energy supply towards sustainability [73, pp. 103–106] in the long run.

1.1 Motivation

The world’s urban population overtook rural population for the first time during the year 2007,
as shown in figure 1.1. Efforts targeted towards urban planning receive higher leverage. The
press release from the latest Urbanization Prospects [118] forecast for urban development
states that

[. . . ] a successful urban planning agenda will require that attention be given to
urban settlements of all sizes. If well managed, cities offer important opportunities
for economic development and for expanding access to basic services, including
health care and education, for large numbers of people. Providing public transporta-
tion, as well as housing, electricity, water and sanitation for a densely settled urban
population is typically cheaper and less environmentally damaging than providing
a similar level of services to a dispersed rural population. UNO, 2014 [119]

Thus, finding sustainable solutions to satisfy the basic needs of a growing urban population
allows to yield yet untapped potential synergies, as for example shown in a recent case study
for the Shanghai region [88]. Especially improvements in urban energy infrastructure might
help to improve the efficiency and sustainability of the whole system [5].

This thesis hopes to make a contribution towards exploring innovative ways for planning
urban energy infrastructure. It aims to take into account synergies by coupling the energy
sectors heating, cooling, and electricity.

1.2 State of the art

A wide range of scientific disciplines describe the development of cities. The broadest view on
the subject is arguably offered by the field of ecology, which emphasises modelling a city as a
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Figure 1.2: Systems diagram of a city and its support region as a flow network. Image: M. T.
Brown [13]

living organism, embedded in an environment which must support its metabolism, as visualised
in figure 1.2. This view is accompanied by a range of modelling approaches that draw from
the theory of natural ecosystems. One widely cited model is Puget Sound Regional Integrated
Synthesis Model (PRISM) [4]. It bundles an urban economy and a landscape ecology model.
It covers land use, water use, emission output, and infrastructure. Land use in this model is
based on demographic and economic submodules, which lead to resource consumption and
land development. The aim of such a framework is to characterise or simulate the observed
behaviour of a city at a large scale.

Naturally, the field urban planning has a more prescriptive approach to the topic of
urban development. A recent example of a simulation approach comes from Zhang et al. in
2011 [130], simulating future growth in Shanghai with cellular automata and Markov chains,
based on raster satellite land use data for the status quo. Development scenarios were derived
from calibrating Markov chains from expert interviews. Similar to ecological approaches, the
method is more simulative than optimising. Other approaches also include the perspective of
resource management to model material flows into and out of a city [3].

Engineering methodologies have been applied to a wide range of planning issues. A
notable historic example is the application of systems analysis by Forrester [27] to urban
planning, bringing quantitative methods of control theory to the planning table. His methods
were to be employed later by the study Limits to Growth [79] for the Club of Rome in 1972
using the model World31 [78].

A review paper by Mancarella [75] surveyed numerous publications on multi-energy system
(MES), in which “electricity, heat, cooling, fuels, transport, and so on optimally interact with
each other at various levels (for instance, within a district, or a city, or at a country level).” He

1The model nowadays can now be easily run in a browser, as in this faithful re-implementation: http://bit-
player.org/wp-content/extras/limits/

http://bit-player.org/wp-content/extras/limits/
http://bit-player.org/wp-content/extras/limits/
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Figure 1.3: Opposing directions from which to tackle the multi-energy system design problem

lists four perspectives that motivate this interaction: first, the spatial perspective stresses the
hierarchy of scales on which systems interact. These scales typically are: building, district,
city, region, country, continent, and global. Secondly, the multi-service perspective focuses on
system outputs that contribute to multiple contexts of energy use. The classical example here
is cogeneration of heat and electricity in combined heat and power (CHP) plants. Thirdly, the
multi-fuel perspective stresses system inputs that are combined by systems. The classical
example here are waste incineration plants. Likewise, biomass and fluctuating renewable
energy sources also emphasise a focus on multiple fuel use. Fourthly, the network perspective
focuses on the interconnections between components of a system, for example in order to size
a local district heating network [34]. The review concludes:

From the literature analysis on deterministic models it emerges how thermoeco-
nomics is most suitable for MES plant design and could be used for operational
optimisation as well, although energy-based economic models and classical dis-
counted cash flow techniques (NPV assessment, in particular) are much more
used for investment appraisal due to their simplicity.

Mancarella, 2014 [75, p.14]

With thermoeconomics, the author summarises methods that take into account the level
of quality of different forms of energy (e.g. heat: low, electricity: high) in their economic
assessment of energy (or rather exergy) streams. Additionally, he identifies (the frequent lack
of) internalising externalities as the biggest hurdle towards a multi-criteria focus of research.
Stochastic methods, while widely applied, are not yet understood well enough to have become
a standard practice with commonly accepted rules.

Figure 1.3 shows two diametrically different directions from which the problem to design
future MES can be approached. Each direction has its own strengths and weaknesses, as
eloquently described by von Meier in the book Electric Power Systems [123, chapter 9.3]. The
engineering approach lends itself to a mastership and refinement of existing technologies
and system structure. It relies on operational knowledge of the existing physical system; this
method empirically leads to working solutions that tend to perform very well within the (only
implicitly) considered design space. On the other hand, the methodological approach tends to
ignore technical details for the benefit of considering a broader design space. This can lead to
a proposal of less orthodox solutions, while the practical implementation of such a solution is
left open. This approach is therefore less geared towards practicality, but more to feasibility
studies in general.

The optimisation methods employed in this thesis clearly favour the methodological ap-
proach by neglecting the question of how to practically operate an interconnected MES. Instead,
the methods focus on identifying potentially attractive designs in a broad design space by
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considering the main trade-off relationships quantitatively. Some practical considerations for
electricity network planning are given by Kaufmann [57]. Concerning the methodological ap-
proach, section 2.3 provides an overview of existing models that follow the common reference
energy system (RES) representation.

1.3 Contribution

This thesis hopes to make the following three contributions to the field of energy system
modelling: the first one is a push towards improved maintainability of models by using version
control, well documented source code and a small, well-documented code base. Secondly, it
hopes to improve the standards in reproducibility of its results by publishing all source code
as open source and making some of the presented case study data sets available together with
the model. Thirdly, this thesis presents an example of co-optimisation using two independent
models by feeding one model’s results as input into the other model.

Maintainability

Two of the models described in this thesis, URBS [101] and DHMIN, had been in use for
several years to perform multiple studies conducted for the German power system [43], the
European power system [102, 103, 104], or the district heating networks of Frankfurt [74] and
Salzburg [12, 99]. Unfortunately, up to now, no complete mathematical description for DHMIN
or URBS had been published to allow for independent review of these models.

This thesis aims to remedy the situation by fully describing those two pre-existing models.
Additionally, three new models that were derived from those two models are presented,
described and published with their implementation. This way, the method is independently
documented from the software implementation, making it easier to re-use conceptual parts of
the models without having to resort to the source code. Both high level overviews and detailed
mathematical descriptions for each model are provided in chapter 3.

Reproducibility

Many energy system studies published today either omit publishing a full model description
or cannot disclose all used input data. The motivation for this can be two-fold: for once, a
lot of data is corporate property and is only disclosed to researchers under the condition
of confidentiality. In that case, being allowed to publish results of research conducted with
closed data serves at least the purpose of making available conclusions derived from otherwise
completely inaccessible datasets. This thesis is no exception to this rule: two of the four case
studies can only be paraphrased qualitatively or be discussed with modified input parameters.
In the other case, data could be published, but is not. Lack of motivation, fear of embarrassment,
or sense of competition are possible reasons for this lack of openness. Here, a chance for
allowing others to build on one’s work is lost.

This thesis encourages reuse of the effort made by publishing all models, input data for two
of the four presented case studies, as well as data processing scripts as open source. That
way, not only the mathematical descriptions can be scrutinised, but also their implementation
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in code. By relying on numerous open source software packages, the author has tried to make
every step in the whole modelling tool chain as concise, accessible, and readable as possible.

Co-optimisation

This study applies linear programming (LP) and mixed integer linear programming (MILP)
models to urban energy infrastructure. Sector-coupling, i.e. planning infrastructure for both
electricity and heat demand, is not a novelty, but this thesis hopes to increase clarity and
explicitness for planning of distribution networks at an urban scale. Two classes of models are
presented. The first, represented by URBS and urbs, are generic capacity expansion and unit
commitment models. They are the basis of more customised models that are employed by
colleagues, e.g. for unit commitment in power system studies. The second class are network
models. Their focus is pre-study quality sizing of network capacities, as shown in models
DHMIN and dhmin. Model rivus adds sizing of energy conversion processes and thus exhibits
some aspects of both model types. This trade-off is summarised graphically in figure 1.4.

In the presented case study in Haag in Oberbayern in section 4.4, the effect of local,
distributed battery storage technologies is investigated under different scenarios as part of
project EEBatt [116], division research on future visions.

The presented models are used to explore the parameter space of stylised economic and
technical parameters to find scenarios (i.e. parameter value combinations) in which substitution
effects among the different network and energy conversion topologies occur. They then, using
a co-optimisation approach, approximately quantify the effect of storage on optimal planning
decision using the model urbs.

Coined in Mancarella’s [75] four perspectives of MES, as discussed in the previous section,
rivus contributes to the network perspective on MES, while urbs helps to transform the results
into the time domain and interpret them in the multi-service perspective, taking local storage of
different energy carriers into account.
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1.4 Legend

The following chapter briefly outlines all used methods first. Next, the five optimisation models
are presented conceptually and mathematically. Then, four different case studies are discussed,
followed by a final conclusion and outlook.

Paragraphs with blue background are remarks that might be of interest for model users, but
may be skipped without loss of continuity.

Paragraphs with ivory background are examples that try to clarify a preceding definition by
giving a concrete example.

A full listing of symbols is given in appendix D and a list of all abbreviations in appendix E.





Chapter 2

Method

The urban researcher has limited impact
since, as related to the urban decision
making process, he comes late, leaves early,
and does not get involved in implementation.

Frederick William Heiss (1932–2014)

Having introduced the need for an optimal planning of urban energy infrastructure in a general
manner, this chapter now introduces all methods that are employed in the models and case
studies presented thereafter.

This chapter begins with a brief literature search on definitions of the term infrastructure.
As it turns out, the word is a rather recent invention having its roots – like operations research –
in the military sector. After this excursion, urban infrastructure networks are shortly presented.

The second part then contains a primer on mathematical optimisation. It briefly describes
the different problem classes from general optimisation problems over convex to linear pro-
gramming and mixed integer linear programming. Finally, the mathematical building blocks for
describing the model elements energy carriers, demand, supply, conversion, transmission, and
storage are presented individually.

A literature review on existing energy system models helps to locate the presented work in
the landscape of energy system modelling. Both widely used and newly developed models are
presented.

The section on algorithms outlines the optimisation algorithms of employed solvers, while
glossing over all details that actually make modern solvers fast. Of probably higher interest
are the detailed descriptions of custom algorithms for clustering load duration curves, and all
the geographic operations needed for preparing spatial input data.

The section about software presents the final tool chain, and the alternatives that were
considered during its evolution into the current form. Pointers for possible future improvements
are also given.

The chapter is concluded by a description of input data. This includes technical (capacity,
efficiency) and economic parameters (investment costs, annuity factor). Geographic data and
their particularities (e.g. coordinate projections) are described here as well.

19
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2.1 Urban infrastructure

2.1.1 On the term infrastructure

Starting with a library index search, infrastructure is mentioned in the fields of economics,
geosciences and spatial planning. This indicates the cross-sectional significance of the topic.
A search on the use of the term in books during the last century in the Google Ngrams
database [36] yields the graph shown in figure 2.1(a). Another search for keywords specific to
energy infrastructure yields the delightful figure 2.1(b). It can be seen that infrastructure is quite
a young term, coming into common use only during the 1960’s. The second graph documents
the occurence of the three keywords power grid, district heating, and gas pipeline in their
literature database. The curves show a sharp increase in frequency of all terms beginning in
the 1970’s. However, the decline of district heating since the 1980’s should not be confused
with a drop in interest [87] but could also indicate maturity of the technology.

The latest review publication on the term infrastructure is a paper by Buhr [16] from 2003,
which summarises definitions used by economists during the 20th century. He presents a
classification of infrastructure into three types: institutional, personal and material. Institutional
infrastructure comprises rules and procedures, mainly provided and enforced by the state. In
that sense, government and legislation provide a legal infrastructure to the public. Personal
infrastructure means human capital, i.e. people and their education and skills. Material infras-
tructure represents capital goods that provide services to the general public. These include
transportation, education, health facilities, provision of energy and water, facilities for sewage,
garbage disposal and air purification; building and housing stock, facilities for administrative
purposes and for the conservation of natural resources. The task of infrastructure as seen by
Buhr lies in “rendering possible the opening and development of the economic agent’s activi-
ties.” Economic agents are households, enterprises and the market. Infrastructure thus are
all those assets which enable economic activities of the participants in an economy.

In his thesis from 1997, Wolter [129] provides an extensive comparison of colloquial and
technical use of the term infrastructure through time. The term is considered to have its roots in
military language, where it stands for the fundament of an organisation. During the late 1950’s,
the term became generally adopted in both scientific and political discussion. From there, its
meaning extended fast to encompass transportation systems, energy supply, education
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Figure 2.1: Frequency of keywords in published books between 1900 and 2008 [36]
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Table 2.1: Examples of infrastructure in different domains. Abridged from [129]

Domain Examples

Administration Laws and regulations enabling use of the material infrastructure
Communication Postal service, telephone networks, internet, undersea cables, satellites
Education Libraries, schools, universities, research institutes
Energy Production, generation, transmission and storage
Financial Money system, financial institutions, stock market, contracts
Health Doctors, hospitals, pharmacies, emergency rescue services
Monitoring Meteorological monitoring networks; earth observation satellites, GPS
Security Police, armed forces, fire service, disaster preparation
Transportation Public transportation, roads, rails, waterways, tunnels, airports
Waste Garbage collection, recycling facilities, waste disposal
Water Water supply, sewage, irrigation, flood control, snow removal

sector, and communication networks. To categorise the different uses, he presents three
criteria: Infrastructure can be distinguished by its provider (private or public), by its properties
(technical, economic) or by the domain. Through cluster analysis, he derives four basic types
of infrastructure: Public base services, capital intensive core infrastructure, supplemental
infrastructure, and market-provided services. Having derived labels for infrastructure types, he
presents different approaches to directly define infrastructure. Table 2.1 provides examples
of infrastructure by domain. However, this approach of definition by exhaustive enumeration
is deemed to fail, as it unavoidably becomes obsolete. Wolter concludes that descriptive
properties of material infrastructure are hard to find due to the heterogeneous nature of
the domains it touches. Especially institutional and personal infrastructure are too broad to
have any chance of finding selective properties at all. The alternative, i.e. limiting the term
infrastructure only to material assets, falls short as well. Sometimes the definition publically
provided goods and services is used, but it is both too restrictive – as it excludes privately
provided services – and too broad at the same time – as not all publicly provided goods are
infrastructure. Wolter finally focuses on material infrastructure, but leaves the definition open
to include services in case they significantly contribute to public welfare.

For the purpose of this thesis, infrastructure is used as a placeholder term for all technical
equipment for conversion, storage, and distribution of energy within the boundaries of the
system under consideration. These range from below of the level of inter-regional transmission
networks (for electricity and natural gas) to boundaries of private property.

2.1.2 Overview on urban infrastructure networks

The most visible infrastructure network are undoubtedly streets and rails. The hidden champi-
ons, however, are underground networks. They provide the most basic services, i.e. water,
heat and energy. This section gives a very short primer on the four network types that are
investigated in the case studies.
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(a) Map of Moreno Valley [91] (b) Gas network simulation [47]

Figure 2.2: Gas network simulation software used on Moreno Valley, CA.

Gas

Use of natural gas took off with the beginning of the 19th century. Leuschner [67] gives a short
history of the German, Utoft and Thomsen [121] of the global history of its usage. First used
for public lighting of streets, hundreds of kilometres of gas networks were installed in major
cities. At that time, synthesised gas from coal gasification (also called coal gas) was primarily
used, rather than natural gas. Gasometer buildings, needed for buffering and maintaining a
stable pressure at the time, are visible testimonies from that era. By 1824, cooking with gas
was first offered. In 1850, the first water heaters for domestic use were presented. However,
their market success did not begin before the 20th century due to lack of convenience and
substantial safety issues (i.e. explosions). Space heating was the last service to be offered
to residential customers. Its use spread during the 20th century, when new materials and
advances in radiator design were made.

Today, gas networks are operated typically by utility companies, which oversee construction
and operation. Figure 2.2 shows an exemplary city map next to a digital model of its natural
gas distribution network. Pressure levels throughout the network can be calculated for the
given network topology and thus the consequences of changes in operation or construction
can be predicted.

Electricity

Electricity started off with the introduction of alternating current1 power lines and affordable
generators. A fairly recent meta-review on the (lack of) literature about the history of global
electrification was presented in 2002 by Morton [84].

Technically, the major properties of technical infrastructure are voltage levels. Higher
voltages allow to transmit a given power with lower electric current, which reduces thermal
losses. The capability of a technical component to either emit, transmit or consume a certain
electric power is summarised in its power rating or – as it referred to in this thesis – its capacity.
The concept of reactive power, a power flow that oscillates through the network with the grid

1The Empire of Lights by Jill Jones [56] gives an enlightening account on the format war between alternating
current and direct current, also called the “War of Currents”.

https://en.wikipedia.org/wiki/War_of_Currents
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frequency, but which principally cannot be extracted for mechanical work, is important in
operation planning. For simplicity, only active power flow is regarded in the models presented
in this thesis. However, there is rich literature, especially on unit commitment (UC) and optimal
power flow models. [19]

District heating

District heating is the concept of generating heat at a central location instead of the place
of consumption. In district heating, thermal energy is transported from a central generation
point to consumers. The transport medium is usually hot water, which is pumped through a
network of insulated pipes to the place of consumption. Some applications, for example to
supply high-rise buildings, also use steam as the energy carrier. At the place of consumption,
the energy carrier is cooled in a heat exchanger by the consumer. The cooled water is lead
back through a separate return network to close the cycle.

The pipes are made of metal or polyurethane (PU) pipes, insulated with polystrene foam
(“styrofoam”) or glass wool. Thermal expansion and stress are main causes for ageing.
Connecting to pipes can be done during operation thanks to drilling techniques that immediately
seal the hole tightly. Topology-wise, forming rings among heat sources (i.e. heating stations,
usually cogeneration power plants) helps increasing network availability and facilitate operation.
Pressure differences between network nodes drive mass flow and thus thermal power transport.
The thermal power Q̇ (J=s = W) of a pipe with mass flow ṁ (kg/s), specific heat capacity c
(J/(kg K)) of the medium and the temperature difference ∆T (K) between flow and return line
is given by the expression

Q̇ = c ṁ∆T . (2.1)

The most common working fluid, water, has a specific heat capacity c of roughly 4.2 kJ/(kg K).
The required volume flow V̇ then can be derived using the density of water  of about
1000 kg/m3 and the required mass flow ṁ using the relationship

V̇ =
ṁ


. (2.2)

The volume flow V̇ is related to the flow velocity v (m/s) and the pipe diameter D by the volume
of the conceptual cylinder volume that is formed by the pipe’s area cross-section and the
distance travelled by the water

V̇ =

„
D

2

«2

ıv . (2.3)

Typical values for v are up to 2 m/s to 3 m/s, depending on operation. Temperature difference
∆T also depends on operation but falls in the range 5 K to 20 K. Using the previous equations,
the following expression relates the pipe diameter D with a desired theoretical thermal power
flow Q̇:

D = 2

s
Q̇

ıc v ∆T
(2.4)

The resulting theoretical diameter for these value ranges and the medium water to transmit a
thermal power flow Q̇ of 10 MW is shown in table 2.2. It ranges from over one meter (for low
flow speeds and temperature spread) down to 22 cm.
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Table 2.2: Theoretical pipe diameter D (in meters) for the medium water transmitting a thermal
power Q̇ of 10 MW for different flow speeds v and temperature differences ∆T between flow
line and return line, based on equation (2.4)

Flow speed Temperature difference ∆T (K)

v (m/s) 5 10 15 20 25 30

0.5 1.10 0.78 0.64 0.55 0.49 0.45
1.0 0.78 0.55 0.45 0.39 0.35 0.32
1.5 0.64 0.45 0.37 0.32 0.28 0.26
2.0 0.55 0.39 0.32 0.28 0.25 0.22
2.5 0.49 0.35 0.28 0.25 0.22 0.20
3.0 0.45 0.32 0.26 0.22 0.20 0.18
3.5 0.42 0.29 0.24 0.21 0.19 0.17
4.0 0.39 0.28 0.22 0.19 0.17 0.16

District cooling

District cooling is the principle of district heating, reversed. In district heating, a consumer
retrieves thermal energy by cooling pre-heated water. In district cooling, the consumer heats
up delivered cold water which is returned to the generation point, where it is re-cooled.

The lower temperature difference between cold water and soil of about 10 K to 20 K has
two consequences. First, the pipes usually do not need as much insulation as district heating
(DH) pipes of comparable capacity, which is an advantage. Secondly, the required diameter
for an identical cooling power needs to be larger, as equation (2.1) suggests. Table 2.2 also
applies, while the achievable temperature differences are smaller than with district heating.

Historically, the motivation for introducing district cooling (DC) is different from DH. While
DH first aimed to increase urban air quality by omitting ubiquitous local combustion of fuels,
DC aims to reduce the urban heat island effect that is severed by many local air conditioning
units. Thus the urban micro climate is to be improved.
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2.2 Mathematical optimisation

Mathematical optimisation is a special type of optimisation. Most generally, optimisation means
selecting a best element from a set of alternatives. In case of mathematical optimisation, the
selection criterion is an arbitrary function, called objective function. The set of alternatives can
be a discrete or continuous, finite or infinite, one- or multi-dimensional set of choices, called
feasible region.

Mathematical optimisation comprises of two steps: mathematical modelling for defining
the optimisation problem and mathematical programming for finding a solution to a given
optimisation problem.

The following sections first give an overview on the basics of mathematical modelling,
which are used for formulating optimisation problems. In section 2.4.1, a sketch of algorithms
that are employed to solve these problems for optimal or suboptimal solutions are presented.

2.2.1 A short primer on mathematical modelling

Mathematical modelling describes the act of translating a conceptual problem into mathematical
objects, so that they can be tackled with standard algorithms.

As an example, consider a planner who has to dimension the capacity » of a power plant to
satisfy the electricity demand of a given region. His goal is to minimise the costs that have
to be paid for that capacity. The costs are a function of the installed capacity c(»). If the
electricity demand is given by a function d(t) over a planning period t ∈ T , the capacity of the
power plant must be large enough to satisfy that demand for any moment. In other words, the
planning decision can be expressed by the following mathematical statement:

min
»∈R

c(»)

s:t: » ≥ max
t∈T

d(t) (2.5)

In order to reason about general classes of optimisation problems, mathematicians have
defined so-called standard forms. The standard form of a general non-linear optimisation
problem is:

min
x∈X

f (x)

s:t: g(x) ≤ 0 (2.6)

h(x) = 0

The objective function f can readily be identified with the cost function c , while the decision
space is the range of possible capacities, i.e. real positive numbers (with some idealisation).
There is only one inequality constraint for the variable » and no equality constraints. Therefore,
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(2.5) in standard form becomes:

min
»∈R+

0

c(»)

s:t: max
t∈T

d(t)− » ≤ 0: (2.7)

Here, X ⊆ Rn is the space of possible solutions. f : Rn → R is the objective function to
be minimised. However, this standard form allows to represent a wide range of optimisation
problems because of the following transformations: Maximisation problems can be converted
to minimisation by negating the objective function. Function g : Rn → Rm represents m
inequality constraints, while function h : Rn → Rp represents p equality constraints. The set of
feasible solutions F is the subset of the solution domain X that satisfies all constraints. F is
also called constraint set :

F = {x ∈ X | g(x) ≤ 0 ∧ h(x) = 0} (2.8)

Using this constraint set definition, equation (2.6) can be equivalently expressed without an
explicit constraint:

min
x∈F

f (x). (2.9)

It must be noted that neither objective function nor the constraint need to be explicitly
defined. In this case, if one or both are only defined implicitly, no general algorithm for solving
the general optimisation problem (2.6) can be given. One must instead resort to heuristics.
Selecting a good approach is mainly facilitated by a thorough understanding of the problem
domain. This path is usually limited to a very small number of variables (dimX small) and
constraints. This drawback is disqualifying for the investigations performed in this thesis, as
they are concerned with the boundaries of planning decisions in a vast decision space. A
comparison of the different kinds of optimisation problems with advantages and disadvantages
from specific to generic is given in table 2.3.

Depending on the properties of either the objective function or the constraints, different
types of optimisation problems can be distinguished:

Convex optimisation

Convex optimisation deals with the special case of a convex objective function and a convex
constraint set. From an optimisation perspective, convex problems have a very desirable
property: if f has a local optimum in F , then it is also a global minimum. This property
enables the use of iterative and search algorithms that yield local minima, without having to
deal with the problem of proving that a local minimum is also globally optimal. For the standard
form optimisation problem (2.6) to be convex, domain X must be a convex set, the inequality
constraints g must be a vector of convex functions and any equality constraints h must be
affine. For a set, convexity means that the linear combination –x1 + (1− –)x2; – ∈ [0; 1] of any
two set members x1; x2 ∈ X must also be contained in this set. For a function to be convex,
any line segment connecting two points on its graph must lie on or above the graph of the
function.
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Table 2.3: Comparison of optimisation techniques. Based on [64, Table 3.2]

Technique Advantages Disadvantages

Linear
programming

– Scales well to big systems
– Standard solver software available
– Globally optimal solution attainable

– Very limited expressions available
– Complex interactions difficult or impossible

to represent

Integer
programming

– Can scale well to big systems
– Complex interactions representable
– Standard solver software available
– Quality of solutions can be assessed

– Bad worst-case complexity
– Global optimum often not attainable

Non-linear
programming

– Complex interactions fully representable
– High freedom of expression

– Scales horribly to big systems
– Quality of solutions impossible to assess

Heuristics – Full freedom of expression
– Can scale well to big systems

– Quality of solutions difficult to assess
– Algorithms must be tailored by hand

x?

−c
Ω

(a) LP

x?

Ω
−c

(b) IP

x?

Ω
−c

(c) MILP

Figure 2.3: Linear programming, integer programming, and mixed integer linear programming
in comparison. x? denotes the optimum, Ω the linear constraint set.

For the example problem to be convex, cost function c(») must be convex. The feasible set (R+
0 )

is already convex. So, setting the cost function to a convex function like c(») = 3»2 + 2»+ 1

would make (2.5) a convex optimisation problem.

Linear optimisation

Linear optimisation or linear programming (LP) is a prominent subtype of convex optimisation.
In addition to being convex, both f , g and h must be linear. The canonical form of a linear
program is given by

max
x∈X

cTx

s:t: Ax ≤ b (2.10)

and x ≥ 0.
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Although this form looks as if it limits all variables to being positive, any linear optimisation
problem can be converted to this form using the following three techniques:

As mentioned before, a minimisation problem of f can be converted to a maximisation
of the negation −f . In case of a linear function, minimising cTx is equivalent to maximising
the negative −cTx . Any equality constraint hTx = 0 can be expressed by two inequality
constraints hTx ≥ 0 and hTx ≤ 0, which can be added as additional lines to A and b. Any
unbounded variable xj in the vector x can be split into two components x+j , x−j and the equality
constraint xj = x+j −x

−
j , which can both be required to be non-negative by x+j ≥ 0 and x−j ≥ 0.

By converting the equality constraint to two inequality constraints, an unbounded variable is
thus converted into two positive variables and two inequalities. In practice, these conversions
do not have to be done by hand, but are implemented as pre-processing steps either within the
solver, or a modelling framework that forms an interface to the solver.

The planning problem above can be expressed as a linear optimisation problem, if the cost
function can (with sufficient accuracy) be approximated to be linear c · » with constant cost
parameter c . The inequality constraint » ≥ maxt d(t) can be expressed as a finite set of
elementary inequalities, if d(t) is sampled at sufficiently many time intervals dt . Alternatively,
one could already pre-process the demand curve and provide the maximum load directly as a
parameter: dmax = maxt d(t). With that, the planning problem could be expressed as

max
»
− c»·

s:t: » ≥ 0 (2.11)

− » ≤ −dmax,

or without pre-processing the demand curve:

max
»
− c · »

s:t: » ≥ 0 (2.12)

∀t ∈ T : − » ≤ dt .

Why would one want to limit one’s options in formulating an optimisation problem to only
linear expressions? Simply: as the general form is so specific, several algorithms to solve even
large LPs have been developed during the last decade. The historically most important one,
the simplex method, is outlined in section 2.5.3.

Integer programming

Integer programming (IP) is a special form of non-convex optimisation. Integers, often restricted
to binary digits {0; 1}, reflect discrete decisions that cannot be done continuously. Scheduling,
assignment and routing problems fall into this class. Formally, they can be represented by
equation (2.10) with the added constraint that all components xj of x must be integers. Here, so
called mixed integer linear programming (MILP) is of interest. In this problem class only some
components xj must be integers. This can be done by redefining the domain for x ∈ S. Without
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loss of generality, the first r entries of x have the integer constraint, yielding: S = (Zr × Rn−r ).
With this definition for S, the canonical representation for a MILP problem can be expressed by

max
x∈S

cTx

s:t: Ax ≤ b (2.13)

and x ≥ 0.

It is beyond the scope of this thesis to discuss the algorithms for this problem class in detail, as
extensive literature exists on the topic. A short discussion of how to approach LP and MILP
problems is given nevertheless in section 2.5.3.

If the cost function cannot be approximated by the linear function c · », but includes a fixed
cost term for any non-zero value of », the following approach – called fixed cost formulation in
operations research literature – can be used. First, a second variable ‰ ∈ {0; 1} is introduced.
It represents the binary decision, whether or not » is greater than zero.

The fixed costs c0 and the capacity dependent costs c1 parameter then form the cost
function cfix‰ + cvar». The logical connection between ‰ and » can be expressed by the
constraint » ≤ M‰ with a fixed parameter M that must be chosen bigger than any foreseeable
value for the demand. Otherwise, the whole problem would become infeasible. Converted to
canonical form (2.13), the problem can thus be stated as

max
»;‰
− c0‰ − c1»

s:t: » ≥ 0; ‰ ∈ {0; 1}
»−M‰ ≤ 0 (2.14)

− » ≤ dt ∀t ∈ T .

For this simple example, ‰ must of course always have value 1 if the demand contains any
non-zero value. Real-world applications of this technique must include at least two different
technologies and variable costs to create any interesting results. Then, the optimal capacities
(and usage) of each technology can depend heavily on the characteristics of the load profile dt .

2.2.2 Mathematical formulations of energy model components

This section presents conceptual and mathematical building blocks of mathematical optimisa-
tion models, which become part of the linear problem (2.10) or linear mixed integer problem
(2.13). The models presented in later chapters will be compositions of these blocks. For brevity
of exposition, the symbols used are not separately defined in this section. Please refer to
Appendix D for a full listing of all used symbols.

Space

The models presented in this thesis treat space discretely. Locations are represented as
vertices, connected either through undirected edges or directed arcs to form a graph.
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time
t0 t1 t2 t3 tN: : :

(a) Equally spaced, discrete instants

time
t0 t1 t2 t3

(b) Individually spaced, distinct durations

Figure 2.4: Model element: time

In model urbs, demand is located in vertices (called sites) that represent distinct locations.
These locations could be of various scales: buildings, neighbourhoods, districts, cities, regions,
countries. Only the labelling and scaling of input data determines the meaning of a vertex.

In models dhmin and rivus, demand is located in edges. These edges represent street
segments in a street network. Only by power flow through these edges can the demand be
satisfied. See section transmission below for more details.

Time

Similarly to space, time is only represented discretely. Two different forms are used in this
thesis, as depicted in figure 2.4. The first form in figure 2.4 introduces a set T with equally
spaced, discrete instants t0; t1 : : : tN . For easier definition of storage technology constraints,
the subset Tm (m for modelled time steps) with the elements t1 : : : tN is defined as well. The
initialisation time step t0 and the final time step tN are also used in the definition of initial and
terminal storage levels. If not noted separately, the time step duration (parameter ∆t) is one
hour, and the number of time steps N is equal to 8760 (one year). The reason for that choice
is quite pragmatic: first, it is precise enough to represent the major issues of scheduling, while
still allowing to solve a whole year in a single optimisation problem, in order to capture the
variance of seasonal effects. When modelling power markets, a resolution of 15 minutes is
better suited, as it is the time resolution for most energy markets and the current time basis for
power plant schedules.

The second form in figure 2.4(b) also introduces a set T of time steps. However, the
elements t0; t1 : : : tN no longer represent a sequence of consecutive instants. Instead, they
represent an unordered list of durations (in models quantified as a time step weight wt ). This
formalism is used by models dhmin and rivus to represent an appropriate amount of typical
operation conditions. This way, both short moments of peak load and long durations of typical
load can be represented with minimum model size.

Commodity

Commodities are goods, materials, and forms of energy. They must be representable by
extensive quantities, e.g. mass, energy content or volume. In this thesis, energy carriers
are represented by their energy content in kilowatt-hours (1 kWh = 3.6 MJ). Greenhouse gas
emissions, on the other hand, are represented by their CO2 mass equivalent in kilogram. They
are all elements c of a set of commodities C.

To distinguish between different kinds of commodities, several subsets of the commodity set
are created. All energy carriers that can be stored in sufficient quantity to allow for practically
unrestricted use form the set of stock commodities Cst (examples: coal, gas). Energy carriers
whose availability fluctuates over time are bundled in the set supply intermittent Csup (solar
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Figure 2.5: Derivation of a discretised electricity load curve for a day. (a) shows the original
load curve for a single day, (b) the sorted (in descending order) identical curve. (c) shows a
possible discretisation to three steps.

radiation, wind power). Then there are demand commodities Cdem (electricity, heat). Finally,
environmental commodities Cenv are by-products of energy conversion, whose generation can
be limited (examples: greenhouse gases, exhaust gases, solid waste).

Energy demand

Load curves Load curves are the direct form of representing the evolution of the demand
for a commodity over time. An exemplary load curve for a country during a single day is
depicted in figure 2.5(a). Load curves can be formalised as a time continuous function
d : R → R; t → dc(t), with dc(t) representing the required power flow for commodity c
at instant t. For the following mathematical models, a time-discrete representation is more
adequate: instead of instantaneous values, average power demands for a set of commodities
C are sampled at certain (usually, but not necessarily equidistantly spaced) time steps T to
form a parameter dct ; c ∈ C; t ∈ T . The time resolution used in this thesis is one hour, but
the presented models include a time step duration parameter ∆t (in hours). This formalism is
employed by models URBS and urbs.

Load duration curves By sorting the values of a given load curve in descending order,
the load duration curve is derived. An example of a country’s load duration curve is shown
in figure 2.5(b). While the information on when a certain demand occurs has vanished, the
information on how long a certain demand level occurs can be read directly from the curve.
This form is not used by any model in this thesis, but it is an intermediate step to derive the
next representation.

Discretised load duration curves By sampling the load duration curve at certain levels, the
time resolution of the original curve can be greatly reduced with only little loss of accuracy
– depending on the original form, of course. The exemplary result is shown in figure 2.5(c)
Each sample is now represented by its value (scale factor, parameter st ) and duration (weight,
parameter wt ). The number |T | of time steps can be chosen freely. This representation is used
by model dhmin.
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Figure 2.6: Discretisation of multiple load curves
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Figure 2.7: Model element: conversion processes

While this representation is quite easy to derive for a single demand commodity, it is more
challenging to derive the curve for multiple demand commodities. Intuitively, this problem
generalises to an n-dimensional clustering problem, where n is the number of demand com-
modities. For n = 2, a scatter plot for simultaneously sampled demands for electricity and heat
is shown in figure 2.6(a). To derive the discretised load curve for such a scatter plot, this thesis
draws from a bachelor thesis by Harmat [41]. It employs a customised K-means clustering
algorithm that derives typical load situations and how often they occur (parameter weight wt )
during the course of a year. It is customised, because the time steps with peak demand for
each commodity are preserved in the resulting discretised clusters. The levels for a discretised
load (or the position of the cluster centre in figure 2.6(b)) is stored in a scaling factor parameter
sct for each commodity c and time step t. This representation finally is used in model rivus for
scaling the peak demand. A longer description of this algorithm is presented in section 2.4.2.

Conversion processes

Single input single output (SISO) An energy conversion process p can be conceptualised
as a black box that converts an ingoing power flow ›in

pt to an outgoing power flow ›out
pt at a given

time t. Multiple conversion processes form a graph of commodities (nodes) and processes
(edges) that is shown in figure 2.7(a).

The conversion usually has losses, hence a conversion efficiency e must be introduced. It
links the two flows: ›out

pt = ›in
ptep. The ingoing (or outgoing) power flow can be limited using a
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process capacity variable »p that requires that ›out
pt ≤ »p. In short:

›out
pt = ›in

ptep (2.15)

›out
pt ≤ »p. (2.16)

More general formulations do not rely on a linear efficiency factor, but employ an efficiency
function ep : ›out

pt =»p 7→ R that depends on the process operating point, i.e. the fractional
capacity utilisation ›out

pt =»p. In general, this formulation is non-linear. For unit-committment
problems (»p is fixed), linear formulations that employ piece-wise linear functions can be used.
However, these techniques are beyond the scope of this thesis.

As an example, in the documentation of model TIMES (cf. section 2.3.1) [72, p. 227],
the parameter FLO_SUM is the conversion efficiency in constraint EQ_PTRANS, which models the
relationship between input and output commodity flows VAR_FLO.

Multiple input multiple output (MIMO) The previous formulation is limited to a single input
and output commodity. But chemical processes in general have multiple reactants and products,
as do energy conversion processes. For example, combined heat and power takes a fuel and
produces heat and electricity. Also, emissions or other quantities could be seen as inputs and
outputs of a process.

For their representation, an additional throughput variable fipt must be introduced. Its role
is to represent the state or operating point of the conversion process. It also becomes the
quantity that is limited by the process capacity »p. In the SISO case, one could simply choose
the input or output variable for that role. Instead of just one efficiency factor, a set of input and
output ratios r in

pc and rout
pc is needed. With that, the formulation becomes

›in
pct = fiptr

in
pc (2.17)

›out
pct = fiptr

out
pc (2.18)

fipt ≤ »p. (2.19)

Note also that the input and output power flows have an additional subscript for the commodity
to allow for addressing the possibly multiple in- and outputs. Figure 2.7(b) shows two exemplary
processes, one with two outputs – CHP – the other with two inputs – high-temperature
electrolysis. Again, in model TIMES, variable VAR_ACT captures the activity of a process similar
to the throughput variable. The capacity limit is implemented in equation EQ_CAPACT [72, p. 179],
whose right-hand side is much more involved than the simple »p here due to the possibility of
inter-temporal investment decisions (variable VAR_NCAP).

Transmission

The simplest possible model for energy transmission is that of a single input, single output
process of type f ∈ F with a constant transmission efficiency eaf between ingoing power
flow ıin

af t and outgoing power flow ıout
af t through a directed arc a ∈ A. That arc is the directed

connection from a vertex v1 to another vertex v2. Its corresponding counterpart in the reverse
direction is called a′ here. This approach leads to the following set of equations to model the
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Figure 2.8: Model element: energy transmission

power transmission of a bidirectional transmission technology f :

∀a ∈ A; f ∈ F; t ∈ T : ıout
af t = ıin

af teaf (2.20)

∀a ∈ A; f ∈ F; t ∈ T : ıin
af t ≤ »af (2.21)

∀a ∈ A; f ∈ F; t ∈ T : ıaf t ≥ 0 (2.22)

∀a ∈ A; f ∈ F : »af = »a′f (2.23)

These equations are visualised in figure 2.8(a). Variable »af is the capacity of the transmission
technology f ∈ F , which is responsible for transporting a certain, fixed commodity. Note
that multiple different technologies for the same commodity with different technological and
economic properties can be defined this way. One consequence of defining the transmission
capacity »af over the set of arcs, is that two different capacities for each direction could be
defined. Model urbs uses this approach of representing one undirected edge e as a pair of
directed arcs a and a′. Enforcing symmetry of the transmission capacities in both directions
with equation (2.23) allows only for bidirectional technologies, i.e. those which allow for
transmission in either direction. In special applications (like transmission techniques that use
height differences between vertices and thus have different transmission costs per direction),
this symmetry constraint could be left out to allow for technologies that allow for separate
independent investment in both directions.

Model rivus uses a different approach, which is depicted in figure 2.8(b). In this formulation,
the transmission capacity is no longer defined over the set of directed arcs A, but over the set
of undirected edges E. That way, only one capacity variable for each pair of connected vertices
is needed:

∀a ∈ A; t ∈ T : ıout
af t = ıin

af teaf (2.24)

∀a ∈ A; t ∈ T; a ∈ e : ıin
af t ≤ »ef (2.25)

In this case, edges and arcs are two independent sets. Consequently, a correspondence
mapping between the two must be given. Here, the (strictly incorrect, but intuitive) notation
a ∈ e is used to indicate that the arc a must connect the same two vertices as the edge e, or
more formally:

a ∈ e ⇔ [a = (v1; v2) ∨ a = (v2; v1)] ∧ e = {v1; v2} (2.26)

In model TIMES, the arc definition similar to equations (2.20) to (2.23) is employed. Equa-
tion EQ_IRE [72, p. 214] relates exported and imported commodity flows (variable VAR_IRE).
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Figure 2.9: Model element: storage

Storage

Storages can be most easily represented using a simple bathtub metaphor. Ingoing flow is
stored up to a maximum capacity. The storage content ›con

st at one time step t is calculated by
the difference of incoming and outgoing flows, added to the storage content in the previous
time step ›con

s(t−1). All quantities are scaled by optional efficiency factors ”. The models in this
thesis currently only implement incoming ”in and outgoing ”out efficiency. Technologies with
significant self-discharge require the term ”con.

∀s ∈ S; t ∈ T : ›con
st = ›con

s(t−1) · ”
con
s + ›in

st · ”in
s − ›out

st =”
out
s (2.27)

∀s ∈ S; t ∈ T : ›con
st ≤ »c

s (2.28)

∀s ∈ S; t ∈ T : ›in
st ; ›

out
st ≤ »p

s (2.29)

In model TIMES, variables VAR_SIN and VAR_SOUT represent the ingoing and outgoing
commodity flows into and from a storage technology. Equation EQ_SRGTSS [72, p. 230] plays a
similar role as the storage state equation (2.27).

Costs

All of the previous components have the notion of a capacity » and an activity that corresponds
to a directed flow of energy › or ı. By defining cost parameters that are associated with these
variables, many different technologies can be parametrised. Refer to the model descriptions
in chapter 3 for a discussion of the applicable economic parameters (denoted by letters c
and k). Before that, section 2.6.2 deals with methods to pre-process economic parameters
like equivalent annual cost (EAC) that is used to convert multi-annual investment decisions to
annual cost flows.
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2.3 Literature review on energy system models

This chapter lists all prior art in modelling, which the models presented in chapter 3 are
conceptually based on. A very detailed history of the evolution of energy system models is
given in a recent review paper by Bhattacharyya [10]. A perspective on the current challenges
for energy system modeling has been given by Pfenninger, Hawkes and Keirstead in 2014 [95].
They describe that the main challenges are four-fold:

– Resolving time and space
– Uncertainty and transparency
– Complexity and optimisation across scales
– Capturing the human dimension

Pfenninger et al., 2014 [95]

This section has three parts: first, “classical” reference energy system models, then network
flow models and urban energy system models, and finally selected examples of closed and
open source models.

2.3.1 Reference energy system

The reference energy system (RES) by Beller [7] is a network representation of “all the technical
activities required to supply various forms of energy to end-use activities.” It consists of a graph
theoretic abstraction over the energy flow that underlies the energy supply chain. This supply
chain is then reconstructed by energy carriers (vertices) and conversion processes (edges)
that form a graph flowing from resources (sources) to consumption (sinks). Almost all currently
employed energy system models can conceptually be mapped onto this ontology of network
elements.

Recent simplification happened from the domain of informatics, reducing the formal defi-
nition of RES, while allowing for even more flexible modelling [18]. The following models are
based on the RES formalism and use it to represent the systems they are optimising. They are
presented in chronological order of publication.

MARKAL

MARKet ALocation (MARKAL) [70] is a linear optimisation model for the energy system of one
or multiple regions. Its focus lies on intertemporal investment decisions over long discounted
time horizons. Its objective function is the net present value (NPV) of annualized total costs.
It features elastic demands, i.e. instead of having to supply a given demand, (aggregated)
consumers have a price elasticity that leads to a cost tradeoff between increasing supply and
reducing demand.

The model includes energy flow from primary resources over intermediate steps to final
energy and finally energy services that satisfy demands. Figure 2.10 shows the RES diagram
of these energy flows. The solution of a MARKAL simulation is an “intertemporal partial
equilibrium on energy markets” [70, p.12]. The standard variant is limited to partial equilibrium,
which means that no cross-sectoral interactions among energy consuming sectors may exist.
This limitation is lifted in model variant MARKAL-MICRO, for the price of being a non-linear
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Figure 2.10: Exemplary RES diagram of a MARKAL model. Reproduced from [108, p.6]

programming (NLP) problem. Variant MARKAL-MACRO [69, p.389] merges the standard
version with a macro-economic model for optimum inter-temporal economic growth.

While MARKAL allows insights into the aggregate behaviour of the energy sector as a
whole, it lacks detail into technical properties of the energy supply chain. These limitations
lead to the development of TIMES.

TIMES

The Integrated MARKAL-EFOM System (TIMES) [71] is an economic model generator for local,
national or multi-regional energy systems. It allows to estimate and optimise the development
of energy systems over long time periods.

It is formulated as a linear-programming maximisation problem of the NPVs, which provides
a technology rich basis for estimating the development of the energy system over a long-term
time horizon. It has been developed in the framework of the Energy Technology Systems
Analysis Programme (ETSAP) implementing agreement of the International Energy Agency
(IEA).

TIMES is defined as a bottom-up technology rich optimisation model generator. The
equilibrium is driven by the maximization (via linear programming) of the discounted present
value of total surplus, representing the sum of surplus of producers and consumers, which
acts as a proxy for welfare in each region of the model. The maximisation is subject to many
constraints, such as: supply bounds for the primary resources, technical constraints governing
the creation, operation, and abandonment of each technology, balance constraints for all
energy forms and emissions, timing of investment payments and other cash flows, and the
satisfaction of a set of demands for energy services in all sectors of the economy. Energy
and environmental policies can be represented and analysed with accuracy, due to the explicit
representation of technologies, fuels, energy related emissions and materials use, in all sectors
of economic activity.
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Using TIMES model generator, a TIMES-based European model was developed and
improved within various projects under the 6th and the 7th Framework Programme. In this
model, the energy systems of EU-27 countries, Iceland, Norway and Switzerland are modelled
separately in detail and then synthesized by allowing trade of energy commodities among the
countries.

MESSAGE

The Model for Energy Supply Strategy Alternatives and their General Environmental Impact
(MESSAGE) [82] is another widely used example of a RES model. Similar to MARKAL, it is
based on minimising discounted total costs to satisfy given demands for a set of commodities.
Special features include elasticities for demand and supply, discrete sizing of investment
decisions (if a mixed integer solver is used), and even non-linear objective functions. Its roots
go back to the 1970s, when the first version was released [2]. Version 2 followed in 1984 [81],
version 3 in 1995 [82]. Dozens of studies all over the world have used and extended the core
model with custom features like stochastic or micro- and macro-economic modules similar to
MARKAL. Model extension MAGICC has been developed to model greenhouse gas (GHG)
emissions and thus allowing comparison of the effectiveness of different mitigation schemes.

While the model implementation is not freely available, the model core has been extensively
documented [82]. A unique feature of the studies conducted at International Institute for
Applied Systems Analysis (IIASA) is their database of inputs and results available for review
and download as a web application [53].

Energy hubs

Energy hubs are the application of linear algebra to represent a general multiple input mul-
tiple output energy conversion process by matrix vector multiplication. The concept was
presented by Geidl in 2007 [31] and then further expanded to formalise a whole energy system
optimisation problem [30]. The core idea is based on the following equation:

pout = C · pin (2.30)

Here, pin, pout are power flow vectors (kW) and C is the coupling matrix, a generalised form
of the scalar efficiency factor ”, which is used for single input single output processes. This
method is mentioned here briefly, because it is very similar to the formulation that will be
used in model urbs later to represent MIMO processes. There, an additional state variable is
employed that conceptually resides in between inputs and outputs.

The method URBS

Richter [101] presented the original implementation of the method Urban Research Toolbox:
Energy Systems (URBS) in his doctoral thesis. The model employs a RES representation of the
energy system for electricity and heat in Augsburg, aggregated by technology type. As the main
focus was not on developing a reusable optimisation model, a full mathematical description of
the model is not given, and the code of the original implementation has not been published.
He lists models deeco [14, 15] and MESAP [124] as inspiration for the energy system model.
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URBS

Energy demand module

– Space heating
– Process heat
– Lighting
– Mechanical

Energy technology module

– Reference energy system
– Availability of technologies
– Optimal energy system
– Future development paths

Environment module

– Atmospheric dispersion
– Local energy resources
– Hydrosphere, Pedosphere
– Waste streams

Urban development module

– Economic structure
– Energy structure
– Residential and buildings
– Population and employment

Figure 2.11: Graphical overview on the original method URBS. Based on [101, Figure 2.1]

Figure 2.11 shows a reproduction of the original model overview. The original method URBS
not only includes an optimisation model for energy infrastructure, but also three simulation
models for predicting urban development, energy demand and environmental effects.

Refer to Sections 3.1 and 3.2 for two similar, but not completely identical models with similar
features. The author of this thesis became maintainer of URBS for investigating the costs for
realising the DESERTEC vision of coupling renewable electricity production among Europe
and North Africa, leading to a low-carbon electricity system for both regions. The result of this
study was published together with Matthias Huber as a working paper [50]. As this investigation
is definitely not on urban scale, it is not further discussed here, but might be interesting for
readers planning to conduct energy system optimisation at international scale. For another
application at building scale, please refer to a paper by Huber [52], in which the model was
used for optimisation of independent/cooperative electricity and heat generation for a group of
ten houses. URBS was also applied on the international level in various publications [103, 104],
most recently by Schaber [102] and Huber [51].

2.3.2 Network flow models

The theoretical “groundwork” has been well described by Groscurth, Bruckner and Kümmel in
1995 [40]. Models dhmin and especially rivus are formally very similar to the more general
formalism presented there. A more recent version of a similar framework has been presented
in 2012 by Holden et al. [45].

Bentley sisHYD [8] is an example of a commercial network analysis tool that is able perform
hydraulic calculation of a pressure pipe system with (in)compressible media, i.e. district
heating, district cooling, and gas networks. Starting from GIS or CAD data, a network model is
constructed, optionally supported by technical parameters supplied in form of spreadsheets.
Hydraulic calculation is static, thermal calculations can be performed dynamically. The result
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includes media flow rates, pressures at network nodes, temperatures and (thermal) losses
throughout the network.

Such models allow a very detailed simulation of the all state variables of a network. These
include flow rates, pressure levels, temperatures and losses. Their application is mainly in
operation of existing networks. They are used to play through the outcome of operational
decisions to improve flows for minimum losses. Also, different generation schedules can be
compared to different predicted (or measured) loads.

Concerning planning of district heating networks, the doctoral thesis by Blesl from 2002 [11]
presents a very detailed optimisation approach. Using a multi-period formulation of the
investment cost structure for installing district heating network in urban areas, he confirmed
that district heating remains an efficient option for areas of high demand density.

Not directly related to district heating or gas network is the excellent book Mathematical
Optimization of Water Networks [76]. It first outlines the basics of linear, mixed integer, and
mathematical optimisation in general; then practical modelling examples for water supply and
sewer networks are discussed in detail.

2.3.3 Urban energy system models

The latest review on these models is from 2012 by Keirstead et al. [58]. The review be-
gins by discussing how to define the term urban energy system. Relying on an article by
Ramaswami [98], one could define the system boundaries of a city by three criteria:

Geographic Local production within the city boundaries. This limits the extent of the analysis
to local plants only, excluding any upstream effects like the composition of imported
electricity.

Geographic-plus Local production plus traceable supply chains, like electricity generation
and big investment good flows. While it is an improvement in analysis quality, this
approach still does not track the life cycle of every component in any product, good or
process.

Consumption Energy consumption/emissions are allocated to the consuming household,
not the location of consumption. For example, international tourism is allocated to the
residence of the traveller, not the travel destination.

An optimisation model for district cooling systems has been presented in 2007 by Söder-
mann [115]. It is formally very similar to model dhmin presented in section 3.4.

Doctoral thesis by Voll from 2013 [122] uses an iterative evolutionary synthesis process,
combined with MILP to create a hybrid searching the design space for distributed energy supply
systems. Noteworthy features of this approach are that both optimal (time consuming) and
near optimal (less time consuming) structures can be synthesised.

The doctoral thesis by Heilek from 2015 [42] last investigated the coupling of power and
heat sector at urban scale. Its findings: especially power-to-heat technologies, coupled with
local heat storage or distribution are promising candidates for integrating large amounts of
intermittent renewable electricity.

Jennings, Fisk and Shah [55] have recently presented a model that is strongly focused
on the trade of between demand side and supply side investments for retrofitting residential
energy systems.
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2.3.4 Closed source models

Very prominent is HOMER Energy [46], which used to publish older releases of its software
as freeware, but discontinued that practice recently. As of writing, a discount for academic
licenses is given. The core of the model is described in a book chapter by Lambert from
2006 [66]. The model has a very gentle learning curve due to its discoverable graphical user
interface (GUI). However, the model lacks capabilities for capacity expansion planning. While
scheduling is done using a heuristic with foresight, capacities must be fixed for a simulation run.
Optimisation can only be performed by specifying a list of discrete considered capacities for
each process, followed by exhaustive search of each combination. This approach suffers from
combinatorial explosion in all but the easiest cases. If only one node is required, the complexity
is manageable this way. On very small scales, the discrete capacities are actually a benefit in
accuracy, as small unit sizes are often only available in a small selection of discrete steps.

2.3.5 Open source models

In recent years, more and more optimisation models for energy systems in general and
infrastructure planning in particular made the move to not only publish detailed technical
manuals, but their actual code.

Under the common initiative called openmod [90], several energy modellers have come
together to share their modelling efforts. Several models with accessible source code and –
partly – input data used for publications can be found. These are currently:

Balmorel is an optimisation model for electricity and heat sectors developed by Hans Ravn.
It allows both for intertemporal capacity expansion planning and short time unit comittment
planning [38]. Its model core is based on GAMS. A graphical user interface and data processing
accessories based on MS Office are available upon request.

Calliope [94] by Pfenninger [96] is maintained at Imperial College, London. It is a generic
and versatile optimisation framework for reference energy system-style energy systems with
variable spatial and temporal resolution. Input is to be provided in both machine and human
readable YAML file format. The framework allows for rapid development of custom tool chains
around a flexible model core. Technically, the model is based on Pyomo. Pandas DataFrames
are used as the result data format.

EMLab-Generation by Richtstein et al. [100] is developed at Delft University of Technology.
It uses an agent-based modelling approach. This allows the user to explore impacts of
suboptimal investment decision and inequalities between actors. Technically, it is based on
Java and uses R for data processing.

OSeMOSYS [49, 125] has been contributed to by several authors and is currently main-
tained at KTH Royal Institute of Technology. It is designed for optimal planning of energy
systems over decades to a century long horizon. Technically, it is based on GNU MathProg, a
mathematical description language similar to AMPL. The generated optimisation problems can
be solved by open source solver GNU Linear Programming Kit (GLPK), making it an attractive
choice for use in classrooms.

Oemof [62] – short for Open Energy System Modelling Framework – is a joint development
of Rainer Lemoine Institute in Berlin and Zentrum für nachhaltige Energiesysteme in Flensburg.
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It is a framework developed in Python, providing packages for modelling and optimising generic
energy systems.

Renpass (Renewable Energy Pathways Simulation System) is developed by Wiese [128]
and comprises an electricity unit commitment model for Europe. It consists of 21 regions and
finds minimum cost scheduling of power plants to satisfy loads. It is based on R and various
packages for data processing.

SciGRID [80] is an open source model of the Europan electricity transmission grid. It is
based on open data, which is pre-processed for modelling purposes to fix mapping errors or
missing data.

Temoa is an energy system optimisation toolbox developed by DeCarolis [21]. It uses a
formalism similar to MARKAL. It has the concept of a reference energy system with resources
as energy sources, transformation technologies as possible intermediate steps. Like MARKAL
and TIMES, it has the concept of two time scales (season, time-of-day) to simultaneously
allow inter-temporal investment planning, while not completely having to sacrifice the capability
to model energy storage technologies. Technically, it relies on the COmmon Optimization
Python Repository (Coopr)/Python Optimization Modeling Objects (Pyomo), just like the models
presented in this thesis.
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2.4 Algorithms

This section summarises all algorithms used in this thesis. For standard methods, only a
brief mention and a literature reference are given. For specially developed processes, full
descriptions with pseudo-code are given. The presented algorithms range from optimisation
(linear and mixed integer), to handling of time series data for deriving temporal and generalising
spatial data to simplify road networks.

2.4.1 Optimisation

While section 2.2 already gave a short overview on the theory behind mathematical optimisation,
this section points out the standard methods typically implemented by optimisation solver
programs. For more in-depth discussion and especially newer developments, the reader is
referred to the referenced literature.

Linear programming

The problem of solving linear programs has been tackled in the 1960s with the rising availability
of computing hardware. The most commonly used algorithm today is the simplex method
by Dantzig [20], which exploits linearity and convexity of the problem structure. Let’s recall
equation (2.10), the canonical LP:

max
x∈RN

cTx

s:t: Ax ≤ b
x ≥ 0.

We can observe that maximising the expression cTx is geometrically equivalent to “going”
in direction of vector c , until constraints become active or the problem is deemed unbounded.
The constraint set defined by the two sets inequalities Ax ≤ b and x ≥ 0 has the form of a
polytope in the vector space RN of possible solutions. A key observation now is that except for
degenerate cases, the optimal solution lies on one of the vertices of that polytope, a so-called
extreme point. The simplex algorithm exploits that property by traversing the vertices on the
boundary of the feasible region. While that procedure theoretically has exponential worst-case
runtime, most practical optimisation problem allow a nearly polynomial solution time. More
recent solvers also employ interior point methods [86] to cut short the way to the optimum by
finding shortcuts through the feasible region.

Mixed integer linear programming

In mixed integer programming, an integrality constraint is added to some entries of the variable
vector x to arrive at equation (2.13). Despite the dramatic reduction in size of the feasible region,
integer programming in general is much harder than an identically sized linear problem. A
common solution algorithm called cutting plane solves a sequence of relaxed linear programs.
Relaxed means that the integrality constraints are dropped. If the optimal solution of that
relaxed problem only contains integers, it is also the optimal solution to the original problem.
If not, additional constraints are added to the relaxed problem and that modified problem is
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Figure 2.12: Annual load duration curve discretised by 15 samples

then solved again, until no more violations of the integrality conditions occur. Other heuristics
create a conceptual tree by fixing the value of one integral variable at a time and comparing
the relaxed optima for various values. Depending on the constraint generation strategy, various
heuristics like brand-and-bound or branch-and-cut have emerged. The classic textbook by
Schrijver [106, part IV] gives a comprehensive overview on the classic methods, while a review
paper by Sherali and Driscoll from 2000 [109] and a thesis by Achterberg from 2009 [1, part II]
discuss more recent developments.

2.4.2 Load duration curve clustering

In section 2.2.2, reducing the resolution of energy demand timeseries was discussed. The
following paragraphs describe the use of clustering algorithms for reducing the number of
datapoints to represent the annual load duration curve(s) for one and multiple simultaneous
energy demands.

Single load duration curve

Discretising a single annual load duration curve can be described intuitively as shown in
figure 2.12. It shows that for a single load duration curve, its discretisation can be reduced to
finding a set of weights wt (or durations) and levels st (or scaling factors) for a given curve with
a higher original temporal resolution.

The simplest method for reducing the resolution of such a curve is a fixed width sampling.
This is analogous to the conversion of a time-continuous signal to a discrete-time sequence of
values. However, this naive sampling leads to suboptimal representation of the original load
curve.

More elaborate algorithms take into account the slope of the load duration curve and
increase the weight of samples at flat sections of the curve, while using smaller weights for
sample points at steep sections. The doctoral thesis of Kuhn [64, ch. 4.3.4] describes one such
algorithm for variable weight discretisation of a single load curve. It determines the weights
and thus the position of the sampling points in order to minimise the squared error between
original and discretised curve.
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1 select K observations randomly as initial cluster centroids
2 repeat
3 assign each observation to the closest centroid
4 recalculate the cluster positions based on the centroids of the assigned observations
5 until cluster centroids do not move anymore

Algorithm 2.1: Original K-Means algorithm

Multiple load duration curves

The generalisation of multiple simultaneous load curves on the other hand can be visualised
better as a clustering problem, as shown earlier in figure 2.6. The bachelor thesis of Harmat [41]
discusses five different cluster analysis algorithms and applies them to load curves: DiAna,
fusion algorithm, K-Means, DBSCAN and representative point selection.

To quantify how suitable each clustering algorithm is for load curve discretisation, four
indicators were calculated and compared: run time, peak load preservation, and energy
demand conservation. Run time simply measures the wall clock execution time of each
algorithm. Peak load preservation and energy demand conservation indicate how much these
two properties of the original load curves are preserved in the returned demand clusters.

For the purposes of this thesis, the K-Means approach showed the most desirable proper-
ties: simplicity, speed and perfect peak load preservation through a modification of the original
algorithm. Both the conventional K-Means algorithm and the modified version developed by
Harmat [41, sections 4, 6.2.4] are thus presented here.

Simultaneous demand values forD different commodities can be interpreted as a sequence
of D-dimensional vectors, one dimension per demand commodity. Here, two dimensions or
demand commodities (electricity and heat) are used. Therefore, a single observation xi ∈ R2

is formed from the simultaneous heat demands for electricity Pelec(i) and heat Pheat(i) at
instance i by the expression

xi =

"
Pelec(i)=Pmax

elec

Pheat(i)=P
max
heat

#
∀i = 1 : : : N, (2.31)

where the divisor is the maximum value for each individual time series, e.g. Pmax
elec = maxi Pelec(i).

The normalisation by the maximum value is used to give the relative differences between differ-
ent load situations more weight than the absolute differences. If no normalisation was used,
clustering would basically only differentiate the thermal loads, while electrical loads are more
similar due to their lower absolute value (at least in the investigated case study regions).

With these definitions in place, first the unmodified K-Means algorithm is shown in algo-
rithm 2.1. Given a possibly long list of observations Xi , the procedure returns a shorter list of
K cluster centroids Ck ; k ∈ 1 : : : K. The number of observations assigned to each centroid is
called the cluster weight Wk . Steps 3 and 4 iteratively recalculate the centroid position of a
cluster and then use its updated position to re-classify the observations, which is also called
LLoyd’s algorithm.

In the original form, the algorithm is bound to never represent the observations that
correspond peak loads as cluster centres, thereby neglecting the most critical instants for
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1 select K −D observations randomly as initial cluster centroids
2 assign the remaining D centroids to the maximum observation for each dimension
3 repeat
4 assign each observation to the closest centroid
5 recalculate the cluster positions based on the centroids of the assigned observations
6 the position of the centroids assigned in step 2 are not moved
7 until cluster centroids do not move anymore

Algorithm 2.2: Modified K-Means algorithm for load curve discretisation. Based on [41, listing 6.4]

capacity planning. In order to preserve the observations that correspond to the peak demands
for each commodity, Harmat developed a customised K-Means algorithm shown in algorithm 2.2
(modifications highlighted in blue). For each demand commodity, the peak load observation
is selected as one of the cluster centroids. During Lloyd’s algorithm, the position of these
centroids is kept constant, while the remaining ones are allowed to move. This results in a
similar output, but with the knowledge that some clusters will preserve the peak value of the
original load curve.

In the case studies shown in this thesis, D = 2 for electricity and heat demand, but the
procedure readily generalises to an arbitrary number of simultaneous load curves, as long as
the number of clusters K is chosen sufficiently larger than the dimensionality D.

The cluster centroids and weights then have the following meaning in the context of the
optimisation model rivus, where sct is the demand scaling factor for demand commodity c and
wt is the time step weight:

∀t ∈ T :
h
sc1t : : :scDt

iT
= Ct (2.32)

∀t ∈ T : wt = Wt (2.33)

2.4.3 Geographic operations

Physically, an urban area is characterised by its buildings and transport networks (streets, rails).
In this thesis, these elements also serve as a natural basis for locating energy demand and
the energy supply infrastructure. Geographic operations deal with geometric primitive shapes
in the form of collections of points, lines and polygons. The common term for these primitive
shapes is geometry. This section briefly describes the procedures used to perform the spatial
analyses presented in chapter 4.

In general, geographic operations happen on either raster or vector data. Raster data,
like a pixel image, contains equidistant data points on a rigid grid with fixed extents. Vector
data, like a vector image, consists of a collection of geometric primitives described by exact
coordinates. In this thesis, only vector data is used:

A point on the surface of the earth is generally represented by a tuple (longitude; latitude)

of geographic coordinates, given in degrees. Longitude is the angle east or west relative to the
Greenwich meridian line. Latitude is the angle north or south relative to the Equator. A line
then is an ordered list of at least two distinct points. If all the line segments comprising a line
do not intersect with each other, a line is called simple. A line is called closed, if its start and
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end point are identical. A polygon is then defined by the tuple (exterior, interiors): Exterior is a
closed line defining the polygon outline. Interiors is a list of closed lines defining holes inside
the area delimited by exterior. Generalisations of the line and polygon concept to multi-part
geometries are also used to simplify the definition of algorithms: a so-called multi-line is
collection of lines. A multi-polygon is a collection of non-overlapping polygons.

Without a formal definition, the following list of basic operations on geometry objects is
given. For a more comprehensive discussion, a textbook on geographic information system
(GIS) [68] is recommended.

Buffering a geometry enlarges it by a given length in all directions. A point becomes a circle;
a line becomes a (lengthy) polygon; a polygon simply grows outward, with holes in the
interior possibly vanishing. This property is used by the skeletonisation algorithm below
to generalise densely connected street segments.

Dissolving a geometry shrinks it by a given length in all directions. It is the inverse of the
buffer operation, though it cannot correctly reverse the operation if the buffering step has
blurred line segments or swallowed interior polygon holes.

Centroid of a polygon calculates the geometric centre of its area. In a physical analogy, it
returns the centre of mass of a homogeneous body that has the same shape as that
polygon. This operation is used to determine the centre point of building outlines before
determining its closest street segment.

Length of a line returns the sum of its line segment lengths. For geographic coordinates, these
lengths have to be calculated using the great-circle distance. For correctly projected
coordinates, the euclidean distance can be used with sufficient accuracy. For more
details on geographic coordinate systems, refer to section 2.6.4.

Area of a polygon calculates the size of the region enclosed by a polygon. For large polygons
(as in earth curvature cannot be neglected), this calculation must be executed using
geographic coordinates. Here, this operation is used to estimate the gross floor area
of building outlines. Depending on the type of coordinates, the same caveats as in the
length operation apply.

With these definitions in place, the following more complex spatial operations are intro-
duced: aggregation of demand from buildings (polygons) to their nearest street (lines); graph
skeletonisation to reduce the number of vertices and edges to describe a given street network.

Demand aggregation

For aggregating per-building data to a lower spatial resolution, multiple methods exist: a simple
raster with given x-y resolution could simply sum up or average statistics for all buildings per
raster cell. Or one could manually specify district polygons or use administrative borders
to derive them automatically. For the network models presented in this thesis, a method
that respects the topology of the urban environment more adequately is needed. Therefore,
per-building data is aggregated per street segment. For each building, the street segment
closest to its centroid is identified. The relevant figure 2.13 shows the result of this operation.
The implementation is published on GitHub [22] for reference, together with helper functions to
read and write shapefiles.
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1 function AGGREGATE(buildings (b ∈ B, area A, type k), street graph G = (V; E))
2 let K be the set of all building types
3 initialise edge area sum matrix Aek = 0 ∀e ∈ E; k ∈ K
4 for all b ∈ B do
5 set A and k to the area and type of b
6 calculate the centroid c ∈ R2 of b
7 set e to the edge closest to c
8 increase Aek by A
9 end for

10 return Aek
11 end function

Algorithm 2.3: Area aggregation

(a) Buildings and edges (b) Nearest lines

Figure 2.13: Steps of the near operation for finding closest edges

Models DHMIN and dhmin use this aggregation without the type attribute k (i.e. the set K
has a single element) to simply sum all demands of buildings to their closest edge e in a given
graph.

Model rivus depends on this aggregation, summing all building floor areas by building type.
These floor areas are then used to estimate peak energy demands for electricity and heat.
Refer to section 3.5.3 for how the aggregated demand is used as an input parameter.

Graph skeletonisation

Polygon skeletonisation usually refers to deriving the straight skeleton of a two- or three-
dimensional polygon. The more general term is medial axis, which is defined for any geometric
object as the set of all points that have more than one closest point on the objects boundary. It
is a common algorithm in computer vision that is used to construct offset curves and miter joints.
Here, the straight skeleton of a polygon derived from raw street lines is used to accomplish a
generalisation of the input network.

Algorithm 2.4 is a short description of the steps for finding the idealised street graph from
raw street lines. Figure 2.14 summarises the steps graphically. It is adapted from description
by Ladak [65]. First, the original street segments are buffered and merged to form one
huge, connected polygon with many holes. This polygon then is fed to qhull [6] using the
wrapper API Skeletron [83] to derive its straight skeleton. The wrapper automatically prunes
any line segments that touch the polygon boundary. Internally, a Voronoi diagram of the
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1 function SKELETONIZE(road lines, lbuf, ldis, lsim, lpsg)
2 buffer the list of roads lines by length lbuf

3 simplify the outline of the resulting road polygon by lsim

4 if number of polygon elements is greater than 1 then
5 only keep largest polygon element by length of outline
6 end if
7 dissolve the road polygon by length ldis

8 procedure SKELETRON.POLYGON_SKELETON_GRAPH(road polygon, lpsg)
9 sample the road polygon outline at distance lpsg

10 determine the voronoi graph of the resulting point cloud
11 intersect the resulting line network with the road polygon
12 truncate all dangling lines
13 end procedure
14 simplify the remaining road graph by lsim

15 return the road graph
16 end function

Algorithm 2.4: Skeletonisation of road networks, with sketch of the subprocedure by Skeletron [83]

polygon vertices (at fixed distances) is calculated. This results in a noticeable zigzaging of the
raw output, shown in figure 2.14(c). A final line simplification step then straightens the line,
resulting in a clean street graph. As side benefit from the initial buffer step, local resolution
is automatically reduced in very dense areas. Several parameters can be tuned to adapt the
result to one’s requirements. The main parameters and their default values are the buffer
distance lbuf = 60 m, dissolve length ldis = 30 m, Voronoi vertex distance lpsg = 150 m, line
simplification threshold lsim = 30 m. The implementation is published online [23] for reference.
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(a) Raw street data (b) Buffering

(c) Polygon skeletonisation (d) Simplification & street graph

Figure 2.14: Steps of the skeletonization process for deriving a street graph. Raw street
data (a) shows a fraction of exemplary input. Step buffering (b) merges adjacent lines and
connects nearby edges. Skeletonisation (c) reduces the polygon back to a (now connected)
simplified line network. Simplification (d) finally reduces zigzaging and introduces only vertices
at line crossings.
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2.5 Software

This section shortly discusses the software packages that were investigated during the course
of this thesis. The last subsection then presents the tool chain that is used for the models
presented in the following chapter. As the selection largely depended on suitable data formats,
section 2.5.2 is of importance, too. Depending on the actual optimisation problem, a good data
format can facilitate the collaboration of different software tools.

To start, figure 2.15 shows a stylised modelling tool chain that is used to answer a generic
research question that is assumed to be accessible by mathematical modelling. At each step,
various software packages are available; some popular choices are listed in the figure. The
initiative Computational Infrastructure for Operations Research (COIN-OR)2 is a good place to
start looking for a maintained list of other potentially useful tools.

2.5.1 Modelling languages

Optimisation problems can be stated in different ways. The most fuzzy, but usually first way is
to state the objective and constraints in natural language, for example:

Find the energy supply infrastructure network that satisfies a given set of energy demands for
minimal cost.

The next step lies in formalising this abstract statement into concrete mathematical objects.
Algebraic modelling languages allow using set theory to specify collections of objects, and
numeric values to describe known quantities (parameters) and unknown values (variables). In

2http://www.coin-or.org/projects/

Input

– Database
– Geographic
– Plaintext, CSV
– Spreadsheet

Data I/O

– Excel, VBA
– MATLAB
– Python, R
– Julia

Model

– GAMS
– MathProg
– Pyomo
– YALMIP

Solver

– CPLEX
– Gurobi
– GLPK
– XPRESS

Output

– Diagrams
– Maps
– Reports
– Tables

Research
question

Model
assumptions

Interpretation

Raw result data

Processed
result

Feedback

mental modelling

Figure 2.15: Modelling tool chain with stages and exemplary software packages

http://www.coin-or.org/projects/
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figure 2.15, this step is represented by the dashed line labelled mental modelling. An abridged
result of this step could look something like this:

min
›pt ;»p

X
p∈P

“
c inv
p »p + cvar

p

X
t∈T

›pt
”

s:t:
X
p∈P

›pt ≥ dt ∀t ∈ T

›pt ≤ »p ∀t ∈ T; p ∈ P

At this stage, the model can be translated into a machine-readable format using an algebraic
modelling language. This section presents the most common languages with a short estimate
of their strengths and weaknesses.

AMPL

A Mathematical Programming Language (AMPL) is probably the most common mathematical
modelling language. It offers domain-specific language for concise description of mathematical
optimisation problems. The language elements set, param, and var define sets (effectively
the problem size), parameters (fixed values), and variables (values to be found by the solver).
The statements minimize or maximize define a cost function, while s.t. (“so that”) are used
for constraints. Expressions support a looping syntax inspired by mathematical sum notation,
here demonstrated by a short example. Left is mathematical notation, right is AMPL syntax:

∀t ∈ T :
P
p∈P ›

out
pt ≥ dt

s.t. satisfy_demand{t in time}:

sum{p in plants} output[p, t] >= demand[t];

For solving a concrete optimisation problem, this description plus the input data (set element,
parameter values) are combined and compiled to an explicit problem statement that is handed
to the solver. Most of the following software packages implement a subset of AMPL language
features.

GAMS

In operations research, the language provided by software General Algebraic Modeling System
(GAMS) is commonly used. Its a syntax resembles AMPL closely, extended by a macro system
that allows for (limited) automation of model runs. Listing 2.1 shows the example of a full
optimisation model. The system bundles solver and IDE in a single application that allows fast
iteration during model development. The language offers macros to access data in text files,
spreadsheets and even databases. Its strengths are the easy installation, good documentation,
integration of modelling environment and solver access. The main weakness lies in the high
price for the IDE, and the fact that solvers licensed for GAMS can only be used through GAMS,
not independently.

MathProg

GNU MathProg is a special-purpose modelling language for mathematical modelling. It
implements a subset of the full AMPL specification and has similar syntax. Listing 2.2 shows an
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Listing 2.1: GAMS example model fuelstation.gms
1 Sets
2 t time / 1*8760 /
3 i type of production / pv, windon, windoff /
4 tfirst(t) first timestep
5 tlast(t) last timestep ;
6 tfirst(t) = yes$(ord(t) eq 1) ;
7 tlast(t) = yes$(ord(t) eq card(t)) ;
8

9 Parameters
10 cs cost of storage tank (kEUR per MWh) / 100 /
11 c(i) cost of plant (kEUR per MW) / pv 3000, windon 1500, windoff 2500 /
12 d(t) demand (MWh)
13 p(t,i) relative (normalized to 1) production of plants;
14 d(t) = uniform(0,1) ;
15 p(t,’pv’) = min(max(0,power(sin(ord(t)/24*3.14/2),4)+normal(.1,.1)),1);
16 p(t,’windon’) = min(max(0,uniform(0,1)),1);
17 p(t,’windoff’) = min(max(0,sqrt(sqrt(uniform(0,1)))),1);
18

19 Variables
20 x(i) size of production facilities (MW)
21 s size of accumulator (MWh)
22 st(t) evolution of accumulator SOC (MWh)
23 tp(t) total production of plants per timestep (MWh)
24 w(t) wasted energy (MWh)
25 z total cost (kEUR);
26

27 Positive Variables x, s, st, waste;
28

29 Equations
30 cost definition of objective function
31 pp(t) calculates tp (total production) from p and x
32 dd(t) assures that demand is always satisfied
33 storage(t) new_storage = storage + input - demand
34 ss(t) restrict storage content by its size
35 ss0(t) define initial storage content (half filled)
36 ssN(t) require final storage content (half filled);
37

38 cost.. z =e= sum(i, x(i)*c(i)) + cs*s;
39 pp(t).. tp(t) =e= sum(i, p(t,i)*x(i));
40 dd(t).. d(t) =l= tp(t) + st(t);
41 storage(t).. st(t+1) =e= st(t) + tp(t) - d(t) - w(t);
42 ss(t).. st(t) =l= s;
43 ss0(tlast).. st(tlast) =g= 0.5 * s;
44 ssN(tfirst).. st(tfirst) =e= 0.5 * s;
45

46 Model fuelstation / all / ;
47

48 Solve fuelstation using lp minimizing z ;
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Listing 2.2: MathProg example model (full model in listing B.1)
1 set time;
2 param demand{time} >= 0; # (kWh/h)
3 param supply{time} >= 0; # (kWh/h)
4 param electricity_price{time}; # (EUR/kWh)
5 param storage_cost; # (EUR/kWh)
6

7 var energy_balance{time}; # (kWh)
8 var storage_capacity >= 0; # (kWh)
9 var storage_level{time} >= 0; # (kWh)
10 var energy_purchase{time} >= 0; # (kWh)
11 var energy_sold{time} >= 0; # (kWh)
12 var costs;
13

14 minimize obj: costs;
15

16 s.t. def_costs:
17 costs =
18 storage_cost * storage_capacity +
19 sum{t in time} electricity_price[t] * energy_purchase[t] -
20 sum{t in time} electricity_price[t] * energy_sold[t];
21

22 s.t. def_balance{t in time}:
23 energy_balance[t] = supply[t] - demand[t] +
24 energy_purchase[t] - energy_sold[t];
25 s.t. def_storage_state{t in time: t>1}:
26 storage_level[t] = storage_level[t-1] + energy_balance[t];
27

28 s.t. def_storage_initial{t in time: t=1}:
29 storage_level[t] = 0.5 * storage_capacity;
30

31 s.t. res_storage_final{t in time: t=card(time)}:
32 storage_level[t] >= 0.5 * storage_capacity;
33

34 s.t. res_storage_capacity{t in time}:
35 storage_level[t] <= storage_capacity;

example of a linear energy system model for optimal energy storage sizing and operation. Data
is excluded for brevity. The full model including an example data set is listed in appendix B.
The MathProg language is bundled with the open source solver GLPK, which can be used
either to solve them or to convert them to other formats. A weakness of MathProg is lack of a
software ecosystem that would allow for easier input and result data handling than processing
bare text files.

YALMIP

YALMIP is a free modelling language written for MATLAB and actively developed. It allows to
formulate linear, general convex and even non-convex optimisation problems using MATLAB
syntax. Listing 2.3 shows a minimum example of a non-linear optimisation problem with
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Listing 2.3: YALMIP example model
1 x = sdpvar(2,1);
2 constr = [sum(x) <= 1, ...
3 x(1) == 0, ...
4 x(2) >= 0.5];
5 obj = x’*x + norm(x);
6 opt = sdpsettings(’verbose’,1,’solver’,’cplex’);
7 sol = optimize(constr,obj,options);
8 value(x)

two decision variables x1; x2 ∈ R and three linear constraints. If one is already working in
the MATLAB environment for data processing, YALMIP is an attractive option to extend the
capabilities towards mathematical modelling. For the goals of this thesis, the commercial
license for its host system (MATLAB) is its main disadvantage.

Pyomo

The Python package Pyomo provides all the tools to write mathematical models in a similar
fashion as in GAMS for the Python programming language. Listing A.1 in appendix A shows
the general structure of the optimisation models developed in this thesis. Objects like Set or
Constraint take the role of custom commands. The Python syntax leads to more verbose
code, but on the other hand allows tight control over the model creation process. Also, the
input/output code can be integrated more tightly. In the models presented here, Pyomo models
use DataFrames directly to initialise constraints without declaring separate parameter objects.

A clear weakness of Pyomo is its performance. Due to the large number of objects
(one for each scalar model element) that need to be initialised, both model initialisation,
model serialisation (using pickle) and result access take longer than for example accessing
a GDX file created by GAMS. This weakness perceivably lengthens the runtime for a Pyomo
implementation of model urbs. However, for a MILP problem like rivus the solver runtime
clearly dominates the pre- and post-processing time.

JuMP

Only published in 2015, package JuMP [25] for the Julia programming language [9] is a new
algebraic modelling language. It promises performance comparable to AMPL and a feature set
comparable to Pyomo. It already offers all of the basic features and supports several solvers,
both commercial and open source. One speciality of this library is a convenient application
programming interface (API) for specifying MIP callbacks (lazy constraints). If one is just
starting to investigate different options for a fast yet high-level language to formulate one’s
optimisation problem in, this package is definitely worth considering.

2.5.2 Data management

One often overlooked challenge in designing an optimisation tool chain is the friction in
development and execution time for data conversion. Whenever time is spent on writing custom
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scripts that parse CSV files and on sorting, splicing and pruning such files, that time could
alternatively be used once to identify an environment that automates such conversions. Or one
could spend time to swap one element in the chain and eliminate the need for data conversion
altogether.

While CSV files are the greatest common denominator in data management, the lack
of standardisation and dialects makes them a double-edged sword. Reading and writing
performance is mediocre due to their low data density, especially for numeric data; however,
compression can help with that disadvantage.

The Hierarchical Data Format (HDF) is a very attractive option to exchange large quantities
of homogeneous numeric data. This might also be the reason that MATLAB has changed the
backend for its MAT format to HDF.

For geographic data, shapefiles3 are the de-facto standard exchange format. For larger
datasets, geographic databases are the go-to solution despite the higher effort to setup . A
popular database is the PostgreSQL DBMS with the PostGIS extension.

For small, manually curated datasets, nothing beats the ease-of-use of standard spread-
sheet applications. Inline visualisation and conditional formatting make it easy to come close to
the functionality of a purpose-built UI without much effort. However, the two-dimensional nature
does not let them scale well to datasets with thousands of values. Those call for numeric
processing environments like MATLAB, R, or packages like NumPy or Pandas. A reading
recommendation for a good way to think about data processing is the split-apply-combine
strategy [127] that allows to concisely describe a large class of operations.

2.5.3 Solvers

The availability of general purpose solvers is one of the main motivations to use mathematical
modelling techniques to express one’s optimisation problems. These programs can digest “any”
problem that can be transformed into the standard form and return either a proven optimal
solution (in the case of LP), a solution with guaranteed maximum “distance” from a dynamic
lower bound for the theoretical optimum (in case of MILP), or a proof that the problem is either
infeasible or unbounded. In any case, this leaves all of the modeller’s time to improve one’s
understanding of the actual problem at hand.

Open source solvers

GLPK is the most well known open source solver for LP and MILP. However, due to lack of
development time, its performance is bound to be several orders of magnitude [sic] slower
than of commercial solvers. While this difference is practically negligible in small problems or
educational use, any large scale application suffers severely. For MILP, the heuristics used in
the branch & bound algorithm do not manage to find a single feasible solution after several
hours.

Other widely cited solvers (that were not used in this thesis though) are COIN-OR branch
and Cut (CBC) developed by the COIN-OR project, and Solving Constraint Integer Programs

3The name shapefile is misleading: it actually consists of multiple identically named files with the endings
dbf for the attribute table, shp for geometries, shx for a geometry index and possibly more (e.g. prj for CRS),
depending on the creating software
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Figure 2.16: Modelling tool chain with software used in this thesis

(SCIP) by Zuse Institute Berlin (ZIB). Especially SCIP is interesting as it is a contender for the
title of the fasted open source MILP solver.

Closed source solvers

IBM ILOG CPLEX Optimization Studio (CPLEX) is the industry standard solver package
for large scale optimisation problems. It features extensive preprocessing, automatically
eliminating or reducing redundant constraints, multiple heuristics that can be triggered by the
structure of the optimisation problem itself. CPLEX is not limited to LP/MILPs, but can be also
used for quadratic or non-linear problems.

XPRESS is a contender for the title of the fastest LP solver. In one case study involving
a large capacity expansion problem, it managed to find solutions within a GAMS stack when
CPLEX could no longer solve it. However, such a finding is only a single data point that cannot
be used to generalise the solver performance for any problem class.

Gurobi is another high-performance solver for LP, MILP and other problem classes. It
claims to be faster than CPLEX especially for mixed integer problems. It is used in this thesis
for solving the last case study.

2.5.4 Final tool chain

Having presented a multitude of options for setting up one’s optimisation tool chain, this section
presents the choice that this thesis relies on. The choice is summarised in figure 2.16 and
justified in the following. The chain is deceptively short: A spreadsheet is used for data
preparation with Pandas for processing; Pyomo is used for model creation; GLPK (or Gurobi)
optimises the generated problem.

Python is used as the base language of all operations. The main reason is for this choice
is that over a decade of wide adoption in many scientific disciplines have lead to a rich
ecosystem of freely available packages. The official Python package index4 lists over 65 000
packages. This means that to almost any topic, one can find one or even multiple pre-existing
implementations of standard algorithms. Package Pandas [77] is the reason that R did not
overrule the ecosystem advantage due to lack of a good data handling solution. The DataFrame
structure alone can cover almost all of the data processing tasks in very short, concise code
fragments.

Another reason for choosing Python is the IPython notebook. It allows for an interactive
explorative coding and data analysis, whose code and results can then easily shared5. There
are whole papers written in the IPython format, allowing for the analysis to be scrutinised on
the basis of working code, not a proxy description.

4https://pypi.python.org/pypi
5e.g. http://nbviewer.ipython.org/gist/ojdo/829dc61bcf0b98bc886f/monthly-means.ipynb

https://pypi.python.org/pypi
http://nbviewer.ipython.org/gist/ojdo/829dc61bcf0b98bc886f/monthly-means.ipynb
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Package Pandas is used for its label-based multi-dimensional data structures with a rich
portfolio of efficiently implemented high-level operations: slicing, sorting, grouping, filters,
aggregating, reshaping, resampling can all be done in a vectorised way, without having to
write loops. Some of many other packages to be mentioned are NumPy for fast, vectorised
operations like in MATLAB, the SciPy stack as a repository for tools like plotting, and Pyomo
already presented above in section 2.5.1. Geographic operations are based on package
Shapely [33].

Many iterations have been spent trying out other options: coupling GAMS with Excel lacks
power in data transformations, GAMS with MATLAB is very powerful, but not suitable for broad
usage. The first modelling package tried in Python was Pymprog6. It worked, but only supports
GLPK as a solver. Pyomo finally had support for multiple solvers and a cleaner API.

6http://pymprog.sourceforge.net/

http://pymprog.sourceforge.net/
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2.6 Data

This section outlines data formats and sources. They are used as parameters across the
optimisation models. It briefly discusses sources for technical and economic parameters for
urban energy infrastructure technologies, while section 2.4 put focus on processing time series
and geographic data.

2.6.1 Technical

A useful resource for thermal calculations on the building scale are norms. The ASHRAE
Handbook [93] for example provides many technical parameters about thermal behaviour
of buildings. This ranges from ventilation, refrigeration to heating and insulation. While a
full building hull calculation is beyond the scope of this thesis, typical values help to validate
empirical values found by other studies. Concerning basic parameters like conversion efficiency,
greenhouse gas emissions, and full load hours, text books like Oeding [89] provide a good first
overview.

2.6.2 Economic

Parameters Economic parameters are basically specific cost and revenue data. Costs that
serve the purpose of this thesis can be divided into investment costs, fixed costs, variable
costs, and fuel costs. Investment costs occur for the build-up of capacity. In general, they are a
non-linear function of the size of equipment. For the purpose of linear programming, either a
linear or affine (linear with offset) relationship between equipment size is assumed. While this
might seem like a strong simplification, they manage to represent the economics of scale with
sufficient accuracy. Fixed costs arise for the continued operation & maintenance (O&M) of built
or existing equipment. In contrast to variable costs, however, their amount does not depend on
the actual operation of the equipment, like staff, insurance, and taxes. Finally, variable costs
occur for operating the equipment. Any wear-and-tear to the equipment can be accounted
for here. Fuel costs are a property of the consumed commodity and depend on the location
(where on the globe, how easy to reach) and at which scale the consumption (single household
to industrial plant) happens.

Every energy conversion, energy storage, and energy transmission process has a different
set of costs. For some process types, most of these values can have value zero. Whether a
given real cost is represented as included in investment, fixed or variable cost is a matter of the
research question at hand, or – if small enough – even does not influence the optimal solution
at all.

Any conversion process that employs moving parts, for example an internal combustion engine,
has usually non-negligible variable costs for lubrication and fixed costs for maintenance of
moving parts. A photovoltaic plant usually has near-zero variable costs and only fixed costs for
regular maintenance and cleaning of panels.
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By analogy, electric battery storage experiences ageing (that could be modelled as a
variable cost term), whereas a pump hydro storage plant has a different size of variable costs
for wear-and-tear of pump and turbine parts.

Equivalent annual cost method The EAC method [61, p.182] is used to calculate the
annual costs of operating an investment good over its economic lifetime. Its value is calculated
by multiplying the NPV of an investment with the annuity factor ANF(n; i). This factor is a
function of the economic lifetime n (in years) and the capital interest rate i :

ANF(n; i) =
(1 + i)n · i

(1 + i)n − 1
(2.34)

Not surprisingly, this factor is exactly the inverse of the factor to be used to calculate the net
present value of a sequence of annual payments. The annuity factor appears as a parameter in
models URBS and urbs as a convenience function, to allow to enter different investment costs,
lifetimes and interest rates for different equipment, while keeping overnight investment costs in
the input spreadsheet. Note that the use of the annuity method assumes a similar or at least
comparable risk level of different investment options. If the risk levels of compared options
are considerably different, the values could be adjusted by factoring in risk as an additional
cost. For simplicity, models DHMIN, dhmin, and rivus do not include an annuity factor in their
formulation but assume that investment costs already have been suitable scaled to an annual
cost figure.

Which values for n and i are appropriate for a given case study or context is a matter of
ongoing discussion. The reader is referred to an article by Gronemann and Döring [39] or the
well-known Stern review [114], especially chapter 2. One remark: if the study is for a corporate
setting, the value for the interest rate i to be taken is the weighted average cost of capital
(WACC).

CAPEX In some case studies, the term capacity expenditure (CAPEX) is used. It is the
sum of annualised investment costs and the annual fixed costs, thereby summarising all the
capacity-dependent costs for a piece of equipment.

OPEX In some case studies, the term operational expenditure (OPEX) is used. Here, it is
synonymous for the sum of variable costs and fuel costs for a technology, thereby summarising
all the operation-dependent costs for a piece of equipment.

2.6.3 Time series

Models URBS and urbs take some of their input in form of time series. For the case studies
in this thesis, a time resolution of 1 hour is used. The two main types of time series are for
demand and supply.7

7The online version of urbs – thanks to a contributor – now also features time series for purchasing and selling
commodities from and to outside of the modelled system. This feature is not described in this thesis, but in the
online model documentation at urbs.readthedocs.org.

http://urbs.readthedocs.org/en/latest/buyselldoc.html
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Figure 2.17: Clusters of cholera cases in the London epidemic of 1854 [111]

Demand A thorough treatment of electric loads is the doctoral thesis by Hellwig [44] from
2003. It describes the development of parametrisable building load profiles for thermal energy
based on sigmoid function fit to the scatter plot of daily demand over average temperature.
Newer developments are summarised and extended in the doctoral thesis by Gobmaier from
2013 [35]. He presents a method for synthesising per-building electrical load profiles for a
given climate region.

Heat was covered in temporal resolution by Gadd [29] recently, and even more in depth in
the older thesis by Pálsson [97]. This thesis assumes that a heat demand curve summarises
all non-industrial uses for heat in a single demand curve. This includes foremost hot water
preparation and space heating. In other words: possible complications or synergies of different
temperature levels are ignored here.

Supply For his doctoral thesis, Janker [54] has created and documented the process of
converting multiple datasets published by NASA – mainly the modern-era retrospective analysis
for research and applications (MERRA) dataset – into globally available, high spatial high
temporal resolution datasets. The result are so-called capacity factors for wind power and
solar power, together with multiple supplementary parameters like temperature, wind speeds
and air pressure. Case study Haag uses solar and wind capacity factors derived from that
thesis as raw data for use with model urbs. Capacity factors encode what fraction of a given
installed equipment’s nominal power is output under the simulated environmental conditions.
All non-linearities, delays or overshoots are thus already included in the derivation of that
parameter.

2.6.4 Geographic information

A short historical note on the difference between cartography and spatial analysis of data
shall motivate why geographic data is presented here on its own: During a cholera outbreak
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Listing 2.4: A street segment encoded using OpenStreetMap XML
1 <?xml version="1.0" encoding="UTF-8"?>
2 <osm version="0.6" generator="Overpass API">
3 <node id="11216747" lat="48.1673468" lon="11.4249068"/>
4 <node id="11218477" lat="48.1752601" lon="11.4104194"/>
5 <node id="11218478" lat="48.1775925" lon="11.4061901"/>
6 <way id="99341613">
7 <nd ref="11216747"/>
8 <nd ref="11218477"/>
9 <nd ref="11218478"/>
10 <tag k="highway" v="primary_link"/>
11 </way>
12 </osm>

in London in 1854, physician John Snow employed a quantitative representation of already
collected data to find the source of the outbreak. Using a dot map (Figure 2.17), he correctly
identified a water pump as the source of infection. This happened at a time when the cause for
cholera had still not been identified. This example shows that a simple change of representation
can greatly alter the deductions one can draw from a given set of data.

Technically, geographic data can be categorised in two types: raster and vector data.
Raster data includes image data and any dataset whose values are specified on a regular
spatial grid. Vector data consists of collections of geometric primitives. These primitives are
mainly points, lines and polygons. In this thesis, only vector data is used.

Data source for this thesis is mainly OpenStreetMap (OSM) [91], with small exceptions that
require slanted aerial imagery, as provided by Google Maps [37]. A small excerpt of the raw
extensible markup language (XML) data that OSM uses is shown in listing 2.4. Shown are
the two main simple primitives node to declare point coordinates and way to link several nodes.
Meaning is given to ways using an arbitrary way segment with a (principally unlimited) number
of tags, whose usage is subject to a steady evolution. Not shown is the third main element,
relation, which allows to express more complex concepts that encompass multiple nodes,
ways or other relations to form semantic trees of meaning.

The main data format for storing spatial data in this thesis are shapefiles. These consist of
a collection of identically named files with different endings: file.shp contains the geometries
(points, lines or polygons) in a binary, but openly specified [26] format. file.shx is a binary
index file that points to the starting positions of individual geometries in the first file. The third
file.dbf is a tabular that can contain numeric and textual attributes for each geometry. As this
original standard does not contain information on the coordinate reference system (CRS) used
for specifying the coordinates, various standards emerged for adding this piece of information:
file.prj or file.qpj (or both) may contain a plaintext string that identifies the used CRS by
stating its EPSG code.

Spatial heat demand analysis was performed in the doctoral thesis by Böhme [17]. It is
a comprehensive example of what can be achieved data-wise on an urban scale to estimate
energy demands with enough time, dedication and data. A widely cited example is the study of
Howard et al. [48], estimating spatial electricity and heat demand distribution in New York City.



Chapter 3

Models

Essentially, all models are wrong, but some
are useful.

George E. P. Box (1919–2013)

This chapter describes the models that are used in this thesis. They employ the model
formulations presented in section 2.2.2, where the building blocks of LP/MILP models are
outlined individually. Together they form a family of related energy system optimisation models.
They share a common codebase and can work closely together. First, the motivation and design
goal for each model is shortly presented, followed by a complete mathematical description.
Algorithms for data preprocessing are presented per case study in chapter 4. Models with
uppercase names (URBS, DHMIN) are prior art and were only re-implemented during this
thesis. The lowercase names (urbs, dhmin, rivus) are own developments with additional
features and a shared code structure, as discussed in appendix A.

Table 3.1: Model comparison of URBS, urbs, DHMIN, dhmin, and rivus by aspect. Ratings
range from neglected (empty) over low suitability ( ) to high suitability ( ). ? means:
rivus in principle could support these features fully, but for sake of simplicity they are not
implemented at present.

Model URBS urbs DHMIN dhmin rivus
Aspect (SISO) (MIMO) (season.)

Time
Space
Transmission
Processes
Storage

Capacity expansion
—with exist. capacity ?

Unit commitment
Redundancy ?

Fixed invest costs

63
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Table 3.1 gives an overview on the coverage of different aspects for each of the five
models. URBS (SISO) and urbs (MIMO) focus on processes, i.e. units of energy conversion.
In contrast, DHMIN, dhmin (seasonal) and rivus put more stress on the spatial aspect of
energy systems. This is motivated by the fact that heat as the crucial interlinking commodity
is intrinsically hard to transport efficiently over large distances. However, this high spatial
resolution leads to intrinsic weaknesses in the temporal resolution in these network models.
Therefore, they are not capable of representing challenges and benefits of temporal variations
in energy demand and supply.

The second half of the table deals with certain subtasks in energy modelling. All models are
capable of capacity expansion planning. The two district heating models DHMIN and dhmin
have the intrinsic restriction of being written for a single energy carrier, and thus can only plan
capacities for its transmission. If existing (i.e. installed) capacities must be respected, rivus
falls flat for now, as no parameters for their inclusion are implemented at the moment. Unit
committment, at least without elaborate technical restrictions, is one of the design tasks of
the urbs model family, including conversion, transmission and storage in arbitrary resolution.
DHMIN does not have time at all, but dhmin and rivus allow at least for basic operations
planning (base load, peak load,. . . ) in representative operating points. Through this feature,
dhmin allows for planning network capacities in case of heat generation outages. Although
rivus does not have this feature presently, transferring the equations would allow for redundant
planning.
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3.1 URBS (SISO processes)

This section presents a linear energy system optimisation model. It only features energy
conversion processes with a single input and a single output (SISO). In the context of this
thesis, it serves as a development baseline to motivate the further development which lead to
the following model urbs (MIMO processes) that is described in the subsequent section 3.2.

3.1.1 Origin

In section 2.3.1, the method URBS from the thesis by Richter back in 2004 [101] has already
been mentioned. This model is very similar, but not identical to the energy technology module
that he described in his thesis. It supported multiple input and output processes, but was
hard-coded in the number of transportable commodities. One important feature of the original,
which is lacking from both URBS and urbs, is the notion of proprtional processes. These are
conversion technologies that must satisfy an arbitrary, but constant fraction of a demand time
series. This property is crucial to accurately represent local, but distributed technologies like
heat boilers or CHP units.1 The model was implemented in C++, but no implementation details
were given.

3.1.2 Conceptual overview

URBS is a mathematical optimisation model for designing and operating a distributed energy
system. It minimises total cost “ for providing energy in form of required demand commodities.
Demand is provided as input in form of several (fixed) timeseries. URBS introduces multiple
locations, called sites, as well as a new model component to allow for transport of commodities
between sites, called transmission. Again, the solution of the optimisation program shows the
cost-optimal use of resources , investment in capacities » and scheduling of conversion units
› and transmission ı for the available technologies to satisfy a given energy demand, while
not violating a limit for greenhouse gas emissions:

1Actually, proportional processes have been implemented in the meantime in model urbs in branch haag15 for
properly handling case study Haag i. OB. Refer to section 4.4 for a description of these changes.
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Figure 3.1: Exemplary RES diagram of one site in an URBS model

https://github.com/tum-ens/urbs/commits/haag15
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“? = min
;»;›;ı

“ (3.1)

The use of resources  = (vct) is possible for source commodities at different sites for
pre-determined costs, possibly limited by a maximum hourly or annual supply cap. Capacities
» = (»vp; »

c
vs ; »

p
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transmission lines (f ) are located in sites (v ) or between them (a). For each time step, values
for state variables in sites › = (›in

vpt ; ›
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vst) and between sites ı = (ıin

af t ; ı
out
af t) are optimised.

This does not happen iteratively, but globally with perfect foresight to yield the best conceivable
operation strategy (and size) for each considered technology.

Figure 3.1 shows the model structure within one such site. It represents an instance of
a RES, a graph representation of energy supply chains. Note that the commodities and the
connected conversion processes and storage technologies not necessarily correspond to
existing infrastructure. They merely represent a technology in form of their main technical
(efficiency) and economic (costs) properties. Whether and how much a given technology is
then actually installed at a given site, is highly dependent on the availability of supply, the type
and shape of demand and how cheap or expensive the transmission of commmodities can
happen from neighbouring sites.

3.1.3 Example model result

Figures 3.2 and 3.3 show an exemplary result of a small model run with 3 countries called North,
Mid, and South. Optimisation covers a period of five summer days in the Northern hemisphere.
Figure 3.2 shows the base scenario, in which Mid meets its demand by burning mainly gas
and lignite, while South and North can mainly rely on renewable sources. Figure 3.3 shows
a different scenario, in which a strict 95 % CO2 emission reduction constraint is introduced.
Additionally, availability of hydro and biomass in North is reduced to 50 % and 25 %. While
there is no energy transmission in the base scenario, Mid relies heavily on power transmission
from South in the second scenario.

Several model features are on display in this simple example. Violet areas show use of
storage at various sizes. Site Mid for example relies on much bigger storage capacities to
cover its load in the cooperative scenario. Site South converts from a self-sufficient solar
electricity production to a huge exporter, using large storage capacities to deliver base load
export electricity. Site North, already having huge natural storage capacities, has least trouble
to cover its load from fluctuating renewable sources, at least during the five days shown.

3.1.4 Mathematical description

In the following, all model sets, parameters, variables, the objective and all constraints are
introduced and briefly discussed.

Sets

All sets are summarised in table 3.2. The ordered set of time steps T = {t0; : : : ; tN} contains
a sequence of successive points in time, sampled at identical time intervals. The subset of
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Table 3.2: URBS model sets

Set Subsets Description

t ∈ T Tm, t0, tN Time steps, modelled time steps, initial/final time step
v ∈ V — Sites
a ∈ A Ap

v , As
v Arcs, incoming/outgoing arcs in site v

c ∈ C Cst, Csup, . . . Commodities, commodity type subsets
p ∈ P P in

vc , P out
vc Processes, consuming/producing commodity c

s ∈ S Svc Storage, storing commodity c
f ∈ F F exp

vc , F imp
vc Transmission, exporting/importing transmission

modelled time steps Tm = {t1; : : : ; tN}, which omits the initial time step t0, is introduced for
shorter definition of the storage state equation.

The set of sites v ∈ V is a list of distinct locations, possibly regions or countries. Concep-
tually, they represent nodes in a graph of locations, connected by edges that are defined by
possible directed transmission lines (or arcs) a ∈ A ⊆ V 2 between them. For each site v , the
sets Ap

v and As
v contain all incoming (predecessor ) and outgoing (successor ) arcs.

The set of commodities c ∈ C is a list of resources available as supply, demand, or
other goods that can be converted into other commodities. Each commodity is also member
of exactly one of the four subsets Cst, Csup, Cdem and Cenv, given by its commodity type.
Each of the commodity types has constraints (and thus parameters) only applicable to them.
Each site v can have different subset of Cv available in it. For example, the set of stock
commodities available in site v can be found by calculating Cv ∩ Cst. Stock commodities are
buyable at any time for a given price. Supply can be limited per time step or for a whole
year. Examples are coal, gas, uranium or biomass. Supply intermittent (supim) are fluctuating
resources like solar radiation and wind energy, which are available according to a time series
of values, which could be derived from weather data. Demand commodities have a time series
for the requirement associated and must be provided by output from other process or from
storage. Environmental commodities are represented by the hard-coded commodity CO2 and
represents the amount (in tons) of greenhouse gas emissions from processes. Its total amount
can be limited by parameters to investigate the effect of emission reduction goals on the optimal
system configuration.

Processes p ∈ P represent energy conversion from one input commodity to an output
commodity. For each combination (v; c) of site v and commodity c , the sets P in

vc (and P out
vc )

contain all processes that take commodity c as input (or output) at site v .

Storage processes s ∈ S can store one commodity at one time step and release it (with
losses) at a later time step. For each combination (v; c) of site v and commodity c , the set Svc
comprises the available storage technologies.

Transmission lines f ∈ F (think powerflow) are defined between ordered pairs of sites
(vin; vout) ∈ V 2 and are able to transport a certain commodity. For each combination (v; c) of
site v and commodity c , the sets F imp

vc and F exp
vc contain the transmission processes that allow

to import or export the given commodity.
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(a) North: hydropower and biomass
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(b) Mid: gas, lignite and solar

-10,000

-5,000

0

5,000

10,000

15,000

P
ow

er
 (M

W
)

scenario_base: Elec in South

Solar Wind Storage

4001 4025 4049 4073 4097
Time in year (h)

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000

E
ne

rg
y 

(M
W

h)

(c) South: solar only, storage for night

Figure 3.2: Base scenario, local generation satisfies load
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(a) North: wind and less hydro and biomass (due to constraint)
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(b) Mid: solar and import from South
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(c) South: solar and storage for export to Mid

Figure 3.3: Cooperative scenario, reduced CO2 limit leads to transmission
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Table 3.3: URBS technical model parameters

Name Unit Description

G t maximum allowed CO2 emissions
w h time step weight

dvct kWh/h demand per time step
svct 1 intermittent supply capacity factor
l̄vc kWh/h maximum stock supply per time step
Lvc kWh maximum total stock supply

evp 1 process conversion efficiency
gvp t/kWh process CO2 emissions per input
Kvp, Kvp, Kvp kW process capacity (lower bound, installed, upper bound)

Ivs 1 initial and final storage content (relative)
e in
vs , e

out
vs 1 storage efficiency (during charge, discharge)

Kc
vs , K

c
vs , K

c
vs kWh storage content (lower bound, installed, upper bound)

Kp
vs , K

p
vs , K

p
vs kW storage power (lower bound, installed, upper bound)

eaf 1 transmission efficiency
Kaf , Kaf , Kaf kW transmission capacity (lower bound, installed, upper bound)

Parameters

Parameters are all pre-defined numerical values in the optimisation problem, i.e. their values
determine – by parametrising the following constraint equations – the location of the desired
optimum. There are two types of parameters: technical and economic.

Technical parameters Table 3.3 lists all technical parameters. They start with the green-
house gas emission limit G, which is available only as a global constant. That means, only a
single emission goal can be set for the whole distributed system2. The time step weight w is
used to scale the variable costs, that occur during the simulation time frame (typically some
days or weeks) to a full year.

Economic parameters Table 3.4 summarises all economic model parameters. Not sur-
prisingly, they are all costs of different system components. They are grouped by system
components, i.e. commodities, processes, storage and transmission. For commodities, only
fuel costs are considered. For processes, investment, fixed and variable costs are discerned.
Similarly, storage and transmission are handled. For storage, a separate set of costs param-
eters for storage capacity (in MWh) and storage power (in MW) are given. If one of these
two cost types is dominant for a certain technology, the other can be set to (near) zero, while
limiting the corresponding capacity upper bound to a safe (positive) value. Investment costs
are to be discounted to annual payments; the suggested method for this is multiplying the
overnight costs with an annuity factor as described in section 2.6.2.

2If required, per-site goals could be implemented easily by limiting greenhouse gas emissions
P

t;p
‚vpt per

site. Note that this features is implemented in urbs
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Table 3.4: URBS economic model parameters

Name Unit Description

k fuel
vc e/MWh stock commodity fuel costs

k inv
vp e/(MW a) annualised process capacity investment
kfix
vp e/(MW a) process capacity fixed costs
kvar
vp e/MWh process variable costs

kp,inv
vs e/(MW a) annualised storage power investment
kp,fix
vs e/(MW a) annual storage power fixed costs
kp,var
vs e/MWh storage power variable costs
kc,inv
vs e/(MWh a) annualised storage size investment
kc,fix
vs e/(MWh a) annual storage size fixed costs
kc,var
vs e/MWh storage usage variable costs

k inv
af e/(MW a) annualised transmission capacity investment
kfix
af e/(MW a) annual transmission capacity fixed costs
kvar
af e/MWh transmission usage variable costs

Variables

All model variables are listed in table 3.5. The system costs “ is the quantity to be minimised.
It is the sum of investment costs “inv for errecting new capacities for energy conversion,
transmission or storage. Next are fixed costs “fix for maintaining both existing and new
capacities, independent from operation. Then there are operation dependent costs “var for all
non-fuel costs that occur for operation. Finally there is the fuel cost term “fuel for procurement
of energy in form of stock commodities.

The variable for representing stock commodity procurement is vct . Together with the
intermittent supply, they are the only source of energy to any model.

Next are process variables. Each process has a pair of input ›in
vpt and output ›out

vpt power
flows. Its greenhouse gas emissions are captured in variable ‚vpt . The output power flow is
limited by the total process capacity »vp. The newly constructed process capacity is stored in
»̂vp for calculating the associated investment costs.

Storage processes have a similar set of variables. First is a pair of input ›in
vst and output

›out
vst power flows into and out of the storage. The current storage content is represented by

variable ›con
vst . Capacity-wise, the model makes a distinction between storage content »c

vs and
storage power »p

vs . Both variables have their associated newly built counterpart »̂c
vs and »̂p

vs .
Transmission processes again have a pair of ingoing ıin

af t and outgoing ıout
af t power flows

for each directed arc a, transmission technology f and time step t. Transmission capacity is
stored in variable »af , newly built capacity in »̂af .

Equations

Cost function The objective is to minimise the value of cost variable “. This section gives the
definition of its four parts investment costs, fixed costs, variables costs and fuel costs. Note
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Table 3.5: URBS model variables

Name Unit Description

“ e Total system cost (Inv, Fix, Var, Fuel)

vct MWh/h stock commodity source term

›in
vpt , ›

out
vpt MWh/h process power flow (input, output)

‚vpt t/h process greenhouse gas emissions
»vp, »̂vp MW process capacity (total, new)

›in
vst , ›

out
vst MWh/h storage power flow (in=charge, out=discharge)

›con
vst MWh storage energy content
»c
vs , »̂

c
vs MWh storage content (total, new)

»p
vs , »̂

p
vs MW storage power (total, new)

ıin
af t , ı

out
af t MWh/h transmission power flow (input, output)

»af , »̂af MW transmission capacity (total, new)

the absence of environmental costs, as environmental concerns are modelled here as an
optional limit on total greenhouse gas emissions (parameter G).

The investment costs “inv sum the already annualised investment costs for processes,
storage (both storage power and storage size) and transmission for all newly constructed
(»̂) capacities. Similarly, fixed costs “fix are calculated, but they are incurred for the total (»)
capacities per process, storage and connection.

Variable costs “var can occur for all process activities. They are multiplied with the time step
weight parameter w to scale them up to a duration of one year, independent of the simulation
duration |Tm| · 1 h. Process costs occur per unit of output ›out

vpt . Transmission costs are due
per unit of inflowing power ıin

af . Storage costs can occur both for maintaining a certain storage
content kc,var

vs as well as for charging and discharging kp,var
vs the storage, depending on the

modelled technology. Fuel costs finally sum the source power flow vct for purchased stock
commodities. Like variable costs, they are scaled up to a duration of one year with the weight
parameter w .

“ = “inv + “fix + “var + “fuel (3.2)

“inv =
X
v∈V
p∈P

»̂vpk
inv
vp +

X
v∈V
s∈S

“
»̂c
vsk

c,inv
vs + »̂p

vsk
p,inv
vs

”
+
X
a∈A
f ∈F

»̂af k
inv
af (3.3)

“fix =
X
v∈V
p∈P

»vpk
fix
vp +

X
v∈V
s∈S

“
»c
vsk

c,fix
vs + »p

vsk
p,fix
vs

”
+
X
a∈A
f ∈F

»af k
fix
af (3.4)
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“var = w
X
t∈Tm

0BB@X
v∈V
p∈P

›out
vptk

var
vp +

X
a∈a
f ∈F

ıin
af k

var
af +

X
v∈V
s∈S

h
›con
vstk

c,var
vs +

“
›in
vst + ›out

vst

”
kp,var
vs

i1CCA (3.5)

“fuel = w
X
t∈Tm

X
v∈V

X
c∈Cst

vctk
fuel
vc (3.6)

Constraints The border of the feasible solution space is formed by the following sequence
of equations and inequalities. Each numbered equation describes a list of constraints, defined
for each element of the set(s) it is defined over.

To shorten the definition of several constraints, the following helper function CB (commodity
balance) is introduced. It is defined for each time step t, location v and commodity c . Its
value is equal to the net balance of all generated (positive) and consumed (negative) energy
content for that time step, location and commodity. If its value is positive, energy in form of this
commodity is generated, while a negative value indicates the net consumption of a commodity.
A positive balance is required if c is a demand commodity and the demand parameter dvct is
non-zero, as stated in equation (3.8). A negative balance may occur if c is a stock commodity
and supplied by the source term vct in equation (3.9). The commodity balance CB(v; c; t) is
defined as:

CB(v; c; t) =
X
p∈P out

vc

›out
vpt −

X
p∈P in

vc

›in
vpt +

X
s∈Svc

“
›out
vst − ›in

vst

”
+
X
a∈Ap

v

f ∈F imp
vc

ıout
af t −

X
a∈As

v

f ∈F exp
vc

ıin
af t (3.7)

Demand satisfaction is the main commodity constraint. It requires that the commodity
balance is positive, i.e. that there are processes that generate it in sufficient quantities.

∀v ∈ V; c ∈ Cdem; t ∈ T : dvct ≤ CB(v; c; t) (3.8)

Stock restrictions limit the amount of a stock commodity that can be introduced (“bought”) into
the model per time step or per whole simulation run. The first equation identifies the amount of
introduced energy as the source term vct . The second line then enforces the hourly limit l̄vc ,
the third line the annual limit on stock commodity use Lvc :

∀v ∈ V; c ∈ Cst; t ∈ T : vct = −CB(v; c; t) (3.9)

∀v ∈ V; c ∈ Cst; t ∈ T : vct ≤ l̄vc (3.10)

∀v ∈ V; c ∈ Cst : w
X
t∈T

vct ≤ Lvc (3.11)

Process capacity calculates the total capacity of a process by the sum of already installed
capacity (parameter) and newly built capacity (variable). Figure 3.4 shows this relationship,
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0
process capacity (MW)

Kvp
»vp

Kvp

Kvp »̂vp

Figure 3.4: Process capacity constraints: parameters are the installed capacity Kvp and the
lower/upper bounds Kvp/Kvp; variables new capacity »̂vp and total capacity »vp must assume
values, so that the total capacity lies within the range defined by the bounds.

together with the capacity limits enforced by equation (3.15). Note that the installed capacity
may be lower than the lower bound, which could be used to model fixed (planned) capacity
expansion targets, whose costs should occur within the model:

∀v ∈ V; p ∈ P : »vp = Kvp + »̂vp (3.12)

Process output connects input and output of each process with the process efficiency parame-
ter evp, which is to be set to the ratio of process output power flow to input power flow.

∀v ∈ V; p ∈ P; t ∈ T : ›out
vpt = ›in

vptevp (3.13)

Intermittent supply defines the input of a volatile process by the time series value of its input
commodity svct multiplied by the total installed process capacity »vp. This implies that the
production scales linearly in the installed capacity. In consequence, any non-linearities in
the process’ behaviour (e.g. a wind turbine characteristic) must already be factored in when
preparing the time series svct :

∀v ∈ V; c ∈ Csup; p ∈ P in
c ; t ∈ T : ›in

vpt = »vpsvct (3.14)

Process capacity limit enforces that the resulting total process capacity lies between the
specified bounds, while process output limit limits the process output per time step to the
installed capacity:

∀v ∈ V; p ∈ P : Kvp ≤ »vp ≤ Kvp (3.15)

∀v ∈ V; p ∈ P; t ∈ T : ›out
vpt ≤ »vp (3.16)

Greenhouse gas emissions determines the amount of emissions ‚vpt using the process
emission parameter gvp, depending on the process activity ›in

vpt :

∀v ∈ V; p ∈ P; t ∈ T : ‚vpt = wgvp›
in
vpt (3.17)

The greenhouse gas emission equation concludes the process equations.
Storage state is the main storage constraint. It calculates the current storage energy

content (for batteries: the state of charge (SOC)) as the previous state plus ingoing minus
outgoing energy. Both during storing and retrieving energy, energy losses can be modelled
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by two separate efficiencies for ingoing e in
vs and outgoing eout

vs power flow. Note that ingoing
efficiency is a multiplier, while outgoing is a divisor in the formula:

∀t ∈ Tm; ∀v ∈ V;∀s ∈ S : ›con
vst = ›con

vs(t−1) + ›in
vst · e in

vs − ›out
vst=e

out
vs (3.18)

The two storage capacity equations calculate the total capacities for storage content (»c
vs )

and storage power (»p
vs ) as the sum of already installed capacity (parameter) and newly built

capacity (variable):

∀v ∈ V; s ∈ S : »c
vs = Kc

vs + »̂c
vs (3.19)

∀v ∈ V; s ∈ S : »p
vs = Kp

vs + »̂p
vs (3.20)

Storage capacity limits are two constraints that restrict the two storage capacity variables to lie
within the specified lower and upper bounds:

∀v ∈ V; s ∈ S : Kc
vs ≤ »c

vs ≤ Kc
vs (3.21)

∀v ∈ V; s ∈ S : Kp
vs ≤ »p

vs ≤ Kp
vs (3.22)

Storage content limit limits the storage content by the corresponding capacity variable. The
same applies to storage input and output, and its capacity variable:

∀v ∈ V; s ∈ S; t ∈ T : ›con
vst ≤ »c

vs (3.23)

∀v ∈ V; s ∈ S; t ∈ T : ›in
vst ; ›

out
vst ≤ »p

vs (3.24)

Initial and final storage state define and restrict the storage state at the beginning and end of
the simulation time span to a quantity relative to the total capacity:

∀v ∈ V; s ∈ S : ›con
vst0 = »c

vsIvs (3.25)

∀v ∈ V; s ∈ S : ›con
vstN
≥ »c

vsIvs (3.26)

This formulation for the initial and final storage state constraint is less general than requesting
the storage to be at least as full in the end tN as in the beginning t0 by stating ›vst0 ≤ ›vstN .
However, this loss of generality greatly decreases the required computation time, especially
for large problem sizes. If there is no prior knowledge about seasonality (and thus a sensible
initial storage state), Is = 0:5 has been used with good success. If more than about 103 time
steps are simulated, the influence of this parameter on the overall solution is negligible, while
the computational performance benefit grows significantly.

Transmission output is the main defining transmission equation, which states that the
output of a transmission process is equal to its input, reduced by the efficiency:

∀a ∈ A; f ∈ F; t ∈ T : ıout
af t = eaf ı

in
af t (3.27)

Transmission capacity defines the total transmission capacity » as the sum of already existing
capacity K plus newly installed capacity »̂, for which investment costs have to be paid:

∀a ∈ A; f ∈ F : »af = Kaf + »̂af (3.28)
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Transmission input by capacity limits the incoming power flow by the transmission line capacity:

∀a ∈ A; f ∈ F; t ∈ T : ıin
af t ≤ »af (3.29)

Transmission capacity limits the transmission line capacity by the lower and upper bounds:

∀a ∈ A; f ∈ F : Kaf ≤ »af ≤ Kaf (3.30)

Transmission symmetry enforces that capacities in the two (directed) transmission lines a, a′

of one (undirected) edge in the graph have identical capacities. If needed, this constraint could
be conditioned on a binary attribute is-symmetric to disable it for one-way transmission lines,
e.g. gravitational pipelines.

∀a ∈ A; f ∈ F : »af = »a′f (3.31)

The constraints are concluded by the final equation emissions, limiting the sum of all
greenhouse gas emissions to the specified maximum:

G ≥
X
v∈V

X
p∈P

X
t∈T

‚vpt (3.32)

Equations (3.2) to (3.32) together define the linear program, whose optimal solution has the
desired minimum costs “?.
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3.2 urbs (MIMO processes)

3.2.1 Motivation for development

The model URBS presented in section 3.1 was limited to a single input and a single output
commodity per process. The secondary output of the CO2 was implemented using the special
parameter gvp and equation (3.17). While these restrictions were not a limiting factor in studies
that focus on a single energy carrier for end use, they do not allow for representing systems
with relevant processes that consume or produce more than one modelled commodity.

As outlined earlier, coupled generation of multiple output commodities, especially elec-
tricity and heat in cogeneration processes becoming more and more relevant. Extending the
previously defined SISO process formulation would either require the definition of additional
coupling constraints for a set of multiple processes, or recreating the formulation for conversion
processes from the ground up. This consideration lead to the development of this model.

3.2.2 Design goal

urbs is a generalisation of the preceding URBS model. The main new feature here are
processes with an arbitrary number of input/output commodities per process. This feature
allows to drop the special handling of emissions as a hard-coded process attribute. Instead,
CO2 emissions are just an additional process output. This change is graphically shown in
figure 3.5. Mathematically, this change requires the introduction of an additional state variable
for the process state, called throughput fivpt . This additional variable per process then allows to
define multiple inputs ›in

vcpt and multiple outputs ›out
vcpt , which are connected to the throughput

variable. The relative amounts of how much of each commodity a process generates or
consumes is defined by a set of constant input and output ratios. They are the generalisation
of the efficiency factor evp in URBS.

Figure 3.6 shows an exemplary RES diagram with two multiple input multiple output
processes: CHP and Boiler. One can also see that greenhouse gas emissions can be included
directly into the list of process outputs, instead of having to resort to a hard-coded variable
like before. This opens up a whole family of possible model features with no or only very little
implementation changes.

3.2.3 Example model result

Figures 3.8 and 3.9 shows an exemplary result of a model run on a case study with four imagi-
nary islands with varying availability of renewable electricity generation potentials. Figure 3.7
shows their relative location. Figure 3.8 shows the resulting electricity production on one of the

urbs

Input

– Energy demand time series
– Energy supply time series (RES)
– Technology portfolio
– Cost and technical parameters

Output

– Optimal capacities for conversion, trans-
mission & storage

– Optimal operation time series
– Total costs & CO2 emissions

Figure 3.5: Input/output flow chart of model urbs
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Supply Gas Wind Elec Heat CO2 Demand

CHP

WT

Boiler

Bat Tank

Figure 3.6: Exemplary RES diagram of one site in an urbs model

Vled Haven Jepid IslandQlyph Archipelago

Stryworf KeySto

Figure 3.7: Example model site locations, with storage position

four islands in case of a base scenario with investment and variable costs similar to today’s
situation in European countries. The plots show four representative weeks from each of the
seasons. Figure 3.9 shows the changed result with a strict limit on CO2 emissions. Qlyph
Archipelago, with its storage capacities (not shown), becomes the main backbone for the main
island’s power supply.

3.2.4 Mathematical description

This section contains the mathematical formulation of optimisation model urbs. Its objective
is to minimise total costs “ to satisfy a given energy demand dvct for a set of commodities,
used in this thesis for – but not limited to – electricity and heat. Like URBS, the optimisation
includes use of resources , investment in capacities » and scheduling of conversion units ›
and transmission ı for the available technologies:

“? = min
;»;›;ı

“ (3.33)

Sets

Table 3.6 summarises all model sets. Time is represented by an ordered set of time steps
T = {t0; : : : ; tN} that contain a sequence of equally spaced instances. The initial time step
t0 is dropped for the definition of the subset modelled time steps Tm = {t1; : : : ; tN}. This set
facilitates the definition of the storage state equation (3.57).

Space is represented by a set of vertices v ∈ V . They represent distinct locations from
individual buildings, regions, countries or continents. They are nodes on an imagined graph
of locations, connected by edges. These (undirected) edges are represented by a pair of
(directed) arcs a ∈ A ⊆ V 2. For each vertex v , the sets Ap

v and As
v contain the incoming

(predecessor in graph theory) and outgoing (successor ) arcs.
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Table 3.6: urbs model sets

Set Subsets Description

t ∈ T Tm, t0, tN Time steps, modelled time steps, initial/final time step
v ∈ V — Sites
a ∈ A Ap

v , As
v Arcs, incoming/outgoing arcs in site v

c ∈ C Cst, Csup, Cenv, Cdem Commodities, commodity type subsets
p ∈ P C in

vp, Cout
vp Processes and their input/output commodities

s ∈ S Svc Storage, storing commodity c
f ∈ F F exp

vc , F imp
vc Transmission, exporting/importing transmission

Commodities c ∈ C are all resources relevant to the modelled energy system. These
include all energy carriers as fuels, intermediate substances as well as end products. Emissions
in form of green house gases can be included as a commodity as well. Each commodity is
member of exactly one of the four mutually exclusive subsets Cst for stock, Csup for intermittent
supply, Cenv for environmental, and Cdem for demand commodities. This membership triggers
the creation of different constraints. Those conditions are given both in the mathematical
definition and the textual description of the affected constraints.

Processes p ∈ P represent technical conversion of a set of input commodities with one or
more elements to another set of output commodities. The sets C in

vp and Cout
vp list all commodities

that are consumed (in) or generated (out) by process p in vertex v to facilitate the definition of
several constraints.

Storage processes s ∈ S represent technical facilities to store and later retrieve a commod-
ity. The subset Svc lists all storages that store a given commodity c at vertex v .

Transmission processes f ∈ F represent technical means to transfer a commodity from
one vertex to another along an arc a. The sets F exp

vc and F imp
vc list all transmission processes

that allow to export (or import) commodity c from (or to) site v .

Parameters

Like in model URBS, parameters are all pre-defined numerical values in the optimisation
problem. They are grouped in two types: technical and economic parameters.

Technical parameters Table 3.7 summarises the technical model parameters. The first two
parameters concern time. The scaling factor w is used to scale variable costs up to annual
costs. That way, the cost function value “ always corresponds to annual costs, independent of
the number of time steps. The time step duration parameter ∆t, together with the number of
time steps |Tm| determines the value for w by the expression

w =
8760 h

|Tm| ·∆t
. (3.34)

The main technical parameter is the demand dvct time series. It is defined for each demand
commodity c ∈ Cdem. Its value is the mean power flow required for that commodity at instance
t ∈ T for the time interval of length ∆t. The canonical unit for all power quantities here is
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Figure 3.8: Example plot, base scenario; occasional gas usage as backup for wind power
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Figure 3.9: CO2 limit scenario; almost no gas usage; storage in Qlyph Archipelago used as
backup
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kW, MW, or GW (depending on the scale). For energy quantities (e.g. storage content), the
corresponding unit kWh, MWh, or GWh is to be used.

All units can be changed by the model user without any code changes. However, urbs does
not support unit conversions within the model. That means that all parameters (i.e. costs and
capacities) must be scaled with respect to those units. So, if one wants to use every quantity in
J, ktoe or btu, convert all parameters of all processes, storage and transmission processes to
the same unit.

The supply time series svct provides the normalised production for each intermittent
commodity c ∈ Csup. Each process with an intermittent input derives its activity directly from
the evolution of that curve. That means, the process activity is directly derived from that input
by equations (3.47) and (3.49), leading to the following relationship between the intermittent
supply time series svct and the process activity fivpt :

∀v ∈ V; p ∈ P; c ∈ Csup; t ∈ T : fivpt = (»vpsvct) =r
in
pc . (3.35)

In other words: intermittent supply commodities directly determine the throughput fivpt or
activity of processes that consume those commodities. Therefore, a single process cannot
simultaneously consume multiple intermittent supply commodities without immediately leading
to a infeasible problem statement: both commodities’ time series would demand different
process activities for the same time step. If such a feature is required, equation (3.49) must be
changed to an inequality instead.

The next parameters are limits on the use or creation of certain commodities. The param-
eters lvc and Lvc limit how much of a stock commodity c ∈ Cst may be used per time step
and per year. If the simulation duration is less than a year, the scaling factor w is used for
upscaling. The parametersmvc andMvc on the other hand limit how much of an environmental
commodity c ∈ Cenv may be produced per time step and per year. Again, the scaling factor
w is used for scaling the annual limit to the simulation duration. The special limit parameter
LCO2 for greenhouse gas commodity CO2 can be used to limit the annual generation of that
commodity over all sites V . Its main use is to find the cost-optimal carbon abatement energy
system for a given region by not having to specify emission targets for single locations v ∈ V
through the Mvc limit parameter.

The next five parameters concern processes. Existing capacities of installed processes are
encoded in parameter Kvp, while minimum required and maximum allowed capacities can be
set using the lower and upper bound parameters Kvp and Kvp. These bounds can be set to 0

or∞, respectively, to deactivate them. The input and output ratios r in
pc and rout

pc are the next two
process parameters and the key difference to the previous models URBS, which only features
a single efficiency parameter per process. Here, they establish a fixed ratio between input (or
output) of a process and its throughput, which can be conceptualised as the process’ activity,
relative to its total installed capacity.

Input and output ratios create an additional degree of freedom to the semantics of modelling
a conversion process. By multiplying both input and output ratios of a process by a common
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factor, the relationships between inputs and outputs remain unchanged, while the value of
the throughput variable increases or decreases. This means, the meaning of the throughput
variable can be chosen as either to correspond to an output quantity or alternatively the main
consumed input. As a consequence, the capacity limits and investment costs must be adjusted
to refer to the same quantity.

A common example is the modelling of a power plant by means of an energy conversion
process with a conversion efficiency of fuel to output of 35 %. Either, one could choose r in

pc = 1

and rout
pc = 0:35. Then, the throughput variable and the capacity variable have the same scaling

(and thus meaning) as the thermal power of the power plant. Cost parameters for investment
costs must therefore be suitably adjusted. If one chooses the values r in

pc = 2:86 ≈ 1
:35 and

rout
pc = 1, the meaning of the throughput variable is changed to the electricity output, and

variable and investment costs therefore refer to the electrical output capacity, as is common in
energy economy.

Next are storage parameters. The initial energy content of a storage technology s ∈ S at
location v ∈ V is given, relative to its total storage capacity »vs , by the parameter Ivs . This is
specified in equation (3.64). It is also the required minimum energy content at the final time as
required by equation (3.65). Just like processes, both bounds and installed capacities can be
specified per technology and location for both storage capacity (superscript ◦c) and storage
power (superscript ◦p), leading to a total of six parameters. Storage losses are modelled
during storing and retrieving energy by the efficiency parameters e in

vs and eout
vs . Both capture the

proportion of energy that is retained (storing) or returned (retrieval) in relation to the storage
content.

The final technical parameters concern energy transmission. For each connection between
two locations a = (v1; v2) and transmission technology f ∈ F , a transmission efficiency eaf
must be defined. By convention, it is identical for both directed arcs a and a′ = (v2; v1). This
convention also applies to the three capacity parameters for lower/upper Kaf /Kaf bound and
installed capacity Kaf .

Economic parameters Table 3.8 summarises the economic model parameters. Every
capacity increase causes investment costs, every capacity causes fixed costs, and any activity
(i.e. energy flow) causes variable costs. How strongly something induces costs (if at all), is a
matter of parametrisation according to the modelled system, technologies and commodities.

Stock commodity use can be taxed by charging for its introduction into the model using the
fuel cost parameter k fuel

vc . They can be location dependent, allowing for equal (world market,
no significant transport costs involved) or different (no world market, significant transport costs
involved) prices for certain goods at different places.

Energy conversion processes, just like storage and energy transmission, may exhibit three
types of costs, which apply differently to different technologies. Investment costs k inv

vp are the
annualised investment costs associated with an increase of capacity of that process at that
location »̂vp. That means: existing capacity Kvp does not cause investment costs. Fixed costs
kfix
vp on the other hand apply to the total capacity »vp of a process. Variable costs are similar to

fuel costs kvar
vp in that they are dependent on the process activity fivpt , but different in that they
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Table 3.7: urbs technical model parameters

Name Unit Description

w 1 Scaling factor for variable costs to annual duration
∆t h Time step duration; default: 1 h

dvct kW Demand for commodity c at time t in site v
svct kW Intermittent supply capacity factor
lvc kW Maximum stock supply limit per time step
Lvc kWh Maximum annual stock supply limit
mvc kg/h Maximum environmental output per time step
Mvc kg Maximum annual environmental output
LCO2 kg Maximum global annual CO2 emission limit

Kvp, Kvp, Kvp kW process capacity (lower bound, installed, upper bound)
r in
pc , rout

pc 1 process input/output ratio

Ivs 1 initial and final storage content (relative)
e in
vs , e

out
vs 1 storage efficiency (during charge, discharge)

Kc
vs , K

c
vs , K

c
vs kWh storage content (lower bound, installed, upper bound)

Kp
vs , K

p
vs , K

p
vs kW storage power (lower bound, installed, upper bound)

eaf 1 transmission efficiency
Kaf , Kaf , Kaf kW transmission capacity (lower bound, installed, upper bound)

represent any activity-dependent costs like wear-and-tear of equipment, thermal loads or any
other effect that degrades the technology at hand, the more it is used.

Storage technologies share all these parameters, but have distinct sets for both storage
capacity (superscript ◦c) and storage power (superscript ◦p). This allows for a wide range
of technologies to be modelled comprehensively, at the cost of having to introduce many
parameters with value 0 for any given technology. The storage power investment costs kp,inv

vs

are to be paid to increase both the maximum possible storing and retrieval powers at location
v ∈ V for storage technology s ∈ S.3 Storage size investment costs kc,inv

vs are to be paid for
expansion of the storage size »̂c

vs . Fixed costs are to be paid for the total capacity, both existing
and newly built. Variable costs for storage power kp,var

vs are activity-dependent costs for storing
or retrieving energy.

Investment costs: Pumped hydro storage are a prime example for a technology with indepen-
dent investment costs for capacity (the water reservoirs) and power (pumps and generators).
Batteries, on the other hand, usually have coupled power and capacity. To model them in urbs,
either the storage size or storage power cost parameter should be set (close) to zero, depend-
ing on which capacity will usually be the limiting (i.e. cost-driving) quantity. For stationary
lithium batteries, for example, cells usually have a much higher power potential than is used. In
that case, storage power investment costs can be set to a near-zero value, while the storage
size investment costs should reflect the full storage system investment costs.

3If needed, even separate cost parameters and variables for ingoing and outgoing power flow capacities could
be defined.
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Table 3.8: urbs economic model parameters

Name Unit Description

k fuel
vc e/kWh stock commodity fuel costs

k inv
vp e/(kW a) annualised process capacity investment
kfix
vp e/(kW a) process capacity fixed costs
kvar
vp e/kWh process variable costs

kp,inv
vs e/(kW a) annualised storage power investment
kp,fix
vs e/(kW a) annual storage power fixed costs
kp,var
vs e/kWh storage power variable costs
kc,inv
vs e/(kWh a) annualised storage size investment
kc,fix
vs e/(kWh a) annual storage size fixed costs
kc,var
vs e/kWh storage usage variable costs

k inv
af e/(kW a) annualised transmission capacity investment
kfix
af e/(kW a) annual transmission capacity fixed costs
kvar
af e/kWh transmission usage variable costs

Variable costs: Most storage processes will not have costs associated with their storage
content kc,var

vs , so this parameter can be set to 0 for most storage technologies. A spinning wheel,
however, might have significant wear and tear associated with maintaining its rotation, causing
significant costs for maintaining a certain energy content ›con

vst . This technology therefore could
well receive more realistic operations schedules by setting this parameter to a non-zero value.

Variables

Table 3.9 summarises all variables of model urbs. It should not surprise that there is only
a small change from table 3.5 (model URBS). The table is grouped roughly by type: costs,
commodity, process, storage and transmission.

The first row contains the cost variable “, which is the value of the objective function.
Actually, the cost variable is the sum of four separate cost variables: Investment costs are
summed in “inv, fixed costs in “fix, variable costs in “var and fuel costs in “fuel.

The next row deals with commodities, which are represented by the single variable vct . It
represents the purchase of energy in form of stock commodities. Together with the intermittent
supply parameter svct , they both constitute all sources of energy in the model. The variable is
also used to calculate the fuel costs in equation (3.40).

Process variables represent power flows and capacities. The power flow through a process,
or its activity level, is represented by throughput variable fivpt . It measures the weighted sum
of all input commodity flows ›in

vpct , as defined in equation (3.47). Conversely, the outputs of a
process ›out

vcpt are derived from the process throughput using equation (3.48). The throughput
is limited by the total capacity »vp of that process. It can be increased from the existing capacity
(parameter Kvp) by installing new capacity »̂vp. The total capacity is the sum of existing and
newly installed capacity, as defined in equation (3.46).
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Table 3.9: urbs model variables

Name Unit Description

“ e Total system cost, by type (Inv, Fix, Var, Fuel)

vct kW stock commodity source term

›in
vcpt , ›

out
vcpt kW process input/output commodity flow

fivpt kW process throughput
»vp, »̂vp kW process capacity (total, new)

›in
vst , ›

out
vst kW storage power flow (in=charge, out=discharge)

›con
vst kWh storage energy content
»c
vs , »̂

c
vs kWh storage content capacity (total, new)

»p
vs , »̂

p
vs kW storage power capacity (total, new)

ıin
af t , ı

out
af t kWh/h transmission power flow (input, output)

»af , »̂af kW transmission capacity (total, new)

Storage variables also fall into the two categories of flows and capacities. The main variable
is the storage energy content ›con

vst . It is increased by ingoing power flow ›in
vst and reduced by

outgoing power flow ›out
vst . The storage content is limited by the storage content capacity »c

vs .
Both ingoing and outgoing power flow are limited by the storage power capacity »p

vs . Storage
does not include a self-discharge feature, but both ingoing and outgoing power flow are subject
to an efficiency parameter as described in the previous section, or specified in equation (3.57).

Transmission variables also consist of flow and capacity variables. This means that sym-
metric bidirectional infrastructure (like most pressure pipe networks or power networks) is
represented by two (identical) transmission capacities for both directional arcs a and a′ between
a given pair of neighboured vertices.

Equations

Equations are grouped into the objective function, called cost function here, and the longer list
of constraints.

Cost function Like in model URBS, the objective is to minimise the value of cost variable “.
This section gives the definition of its four parts investment costs, fixed costs, variables costs
and fuel costs. Like in the previous model, environmental constraints are modelled as an
optional limit on environmental commodities (parameters mvc , Mvc ) and total greenhouse gas
emissions (parameter LCO2).

Investment costs “inv are incurred for all capacities that are newly built (»̂) for conversion
processes, storage size/power, and energy transmission. Fixed costs “fix have to be paid for
the total capacities (») of all technologies.

Variable costs “var are calculated per modelled time step t ∈ Tm. For energy conversion,
costs are calculated based on the process throughput fivpt . For energy energy transmission,
the ingoing power flow ıin

af t determines the costs. Storage technologies can have costs both
for maintaining a certain storage level kc,var

vs as well as charging/discharging costs kp,var
vs . All

variable costs are multiplied by the time step length ∆t and the time step weight w to scale
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them up to one year, independent of the simulation duration. Fuel costs “fuel finally price the
purchased stock commodity power flow vct .

“ = “inv + “fix + “var + “fuel (3.36)

“inv =
X
v∈V
p∈P

»̂vpk
inv
p +

X
v∈V
s∈S

“
»̂c
vsk

c,inv
vs + »̂p

vsk
p,inv
vs

”
+
X
a∈A
f ∈F

»̂af k
inv
af (3.37)

“fix =
X
v∈V
p∈P

»vpk
fix
vp +

X
v∈V
s∈S

“
»c
vsk

c,fix
vs + »p

vsk
p,fix
vs

”
+
X
a∈A
f ∈F

»af k
fix
af (3.38)

“var = w
X
t∈Tm

0BB@X
v∈V
p∈P

fivptk
var
vp∆t +

X
a∈a
f ∈F

ıin
af tk

var
af ∆t+

X
v∈V
s∈S

h
›con
vstk

c,var
vs +

“
›in
vst + ›out

vst

”
kp,var
vs ∆t

i1CCA (3.39)

“fuel = w
X
t∈Tm

X
v∈V

X
c∈Cstock

vctk
fuel
vc ∆t (3.40)

Constraints To facilitate the formulation of commodity constraints, the following term is
introduced. CB(v; c; t) represents the commodity balance of commodity c in vertex v at time
step t. Consumption, export and storage input are counted positive, while creation, import and
storage output are counted negative:

CB(v; c; t) =
X

p|c∈C in
vp

›in
vcpt −

X
p|c∈Cout

vp

›out
vcpt +

X
s∈Svc

“
›in
vst − ›out

vst

”
+
X
a∈As

v

f ∈F exp
vc

ıin
af t −

X
a∈Ap

v

f ∈F imp
vc

ıout
af t

Vertex equation is the main constraint that has to be satisfied for every commodity in the
reduced set Cv = C \ (Cenv ∪ Csup). For non-demand commodities, the summand dvct is
omitted, while for non-stock commodities, the term vct is skipped or set to zero. The inequality
requires, that any consumption (CB > 0) must be supplied by a corresponding source term
(vct > 0), or that any demand (dvct > 0) must be met either by conversion from other
commodities, storage or import (CB < 0). The formulation as an inequality allows surplus of
a demand commodity without penalty, i.e. it assumes that waste energy can be dumped for
negligible costs.

∀v ∈ V; c ∈ Cv; t ∈ T : vct − CB(v; c; t)− dvct ≥ 0 (3.41)

Commodity constraints concern stock and environmental commodities separately. The
first constraint limits the amount of stock commodity use per time step. The second constraint
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limits the total stock commodity use over the whole time range. The fraction of both right-hand
side parameters Lvc=lvc is indicative of how much of the annual possible supply could be used
during a single time step.

∀v ∈ V; c ∈ Cst; t ∈ T : vct ≤ lvc (3.42)

∀v ∈ V; c ∈ Cst : w
X
t∈T

∆t vct ≤ Lvc (3.43)

The environmental constraints work the same way, first per time step, second for a whole year.
The commodity balance function is used to capture the creation (CB < 0) of all environmental
commodities c ∈ Cenv:

∀v ∈ V; c ∈ Cenv; t ∈ T : −CB(v; c; t) ≤ mvc (3.44)

∀v ∈ V; c ∈ Cenv : −w
X
t∈T

∆t CB(v; c; t) ≤ Mvc (3.45)

Process constraints govern their capacities and the operation restricted by these capacities.
The first constraint defines the total installed capacity as the sum of existing capacity plus
newly installed capacity:

∀v ∈ V; p ∈ P : »vp = Kvp + »̂vp (3.46)

Process input/output definitions link the throughput variable to the input and output streams
via the input and output ratios:

∀v ∈ V; p ∈ P; t ∈ T : ›in
vpct = fivptr

in
pc (3.47)

∀v ∈ V; p ∈ P; t ∈ T : ›out
vpct = fivptr

out
pc (3.48)

If a process has intermittent input commodities, their availability is determined (fixed) by the
capacity factor time series svct :

∀v ∈ V; p ∈ P; c ∈ Csup; t ∈ T : ›in
vpct = »vpsvct (3.49)

The process throughput by capacity constraint states that the process throughput is limited by
the total installed process capacity:

∀v ∈ V; p ∈ P; t ∈ T : fivpt ≤ »vp (3.50)

Finally, process capacity restricts the total installed capacity to the range given by lower and
upper bounds:

∀v ∈ V; p ∈ P : Kvp ≤ »vp ≤ Kvp (3.51)

Transmission has five constraints: the first constraint defines the total transmission capacity
by the sum of already existing and newly installed capacity:

∀a ∈ A; f ∈ F : »af = Kaf + »̂af (3.52)
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Transmission output calculates the output power of a transmission by multiplying its input by
the transmission efficiency eaf :

∀a ∈ A; f ∈ F; t ∈ T : ıout
af t = ıin

af teaf (3.53)

Transmission input by capacity limits the ingoing power flow to a transmission by its total
capacity:

∀a ∈ A; f ∈ F; t ∈ T : ıin
af t ≤ »af (3.54)

Transmission capacity restricts the total transmission capacity to lie within the range spanned
by the lower and upper bound parameters for that technology and location:

∀a ∈ A; f ∈ F : Kaf ≤ »af ≤ Kaf (3.55)

Transmission symmetry requires that the total transmission capacity for a transmission a =

(v1; v2) is identical to its reversed counterpart a′ = (v2; v1). This design choice is explained
further in paragraph Transmission in section 2.2.2.

∀a ∈ A; f ∈ F : »af = »a′f (3.56)

Storage state is the main storage constraint. It calculates the current state of charge/filling
as the previous state plus ingoing minus outgoing energy. Storing/retrieval efficiencies (e in

vs /e
out
vs )

are included as well:

∀v ∈ V; s ∈ S; t ∈ Tm : ›con
vst = ›con

vs(t−1) + ›in
vst · e in

vs − ›out
vst=e

out
vs (3.57)

The two storage capacity rules define the total capacities for storage content (»c
vs ) and storage

power (»p
vs ) as the sum of already installed capacity (parameter) and newly built capacity

(variable):

∀v ∈ V; s ∈ S : »c
vs = Kc

vs + »̂c
vs (3.58)

∀v ∈ V; s ∈ S : »p
vs = Kp

vs + »̂p
vs (3.59)

Storage capacity limits restrict the two storage capacity variables to lie within the specified
lower and upper bounds:

∀v ∈ V; s ∈ S : Kc
vs ≤ »c

vs ≤ Kc
vs (3.60)

∀v ∈ V; s ∈ S : Kp
vs ≤ »p

vs ≤ Kp
vs (3.61)

Storage content limit the storage content by the corresponding capacity variable. The same
applies to storage input and output, and its capacity variable:

∀v ∈ V; s ∈ S; t ∈ T : ›con
vst ≤ »c

vs (3.62)

∀v ∈ V; s ∈ S; t ∈ T : ›in
vst ; ›

out
vst ≤ »p

vs (3.63)
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Initial and final storage state define and restrict the storage state at the beginning and end of
the simulation time span ot a quantity relative to the total capacity:

∀v ∈ V; s ∈ S : ›con
vst0 = »c

vsIvs (3.64)

∀v ∈ V; s ∈ S : ›con
vstN
≥ »c

vsIvs (3.65)

Like noted in the presentation of the previous model, this formulation is less general than
requesting the storage to be at least as full in the end tN as in the beginning t0. However,
this loss of generality greatly decreases the required computation time. If there is no prior
knowledge about seasonality (and thus a sensible initial storage state), Is = 0:5 has been
used with good success. If more than about 103 time steps are simulated, the influence of this
parameter on the overall solution is negligible.

Emissions A special hard-coded rule is added to allow for setting a maximum global upper
bound on the output of the environmental commodity CO2. Different from the settings in
parameter Mvc , which applies for individual sites v , the solver can be forced to decide on
where to save emissions:

w
X
t∈Tm

X
v∈V

CB(v;CO2; t) ≤ LCO2 (3.66)

Equations (3.36) to (3.66) together define the linear program urbs, whose optimal solution
has the desired minimum costs “?.
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3.3 DHMIN

This section presents a mixed-integer optimisation program for finding the cost-optimal structure
and size of a single-commodity flow network for a given graph, originally published in IEEE
Transactions on Smart Grid in 2014 [24]. The decision whether to build or not to build a pipeline
on a given edge is modelled as a binary variable, while the costs for construction scale linearly
with the thermal input power into the pipe. While it would be more realistic to consider a finite
set of discrete pipe diameters, the resulting problem becomes prohibitively difficult to solve for
modest problem sizes.

Unlike urbs and rivus, the DHMIN model family does not require the resulting network to
satisfy any energy demand at all. It is rather the task of the solver to find regions of profitable
streets in the graph that have sufficiently high energy demand to pay off the investment costs
for their connection to energy sources. In the formulation presented here, the model does not
include connection costs for individual customers.

3.3.1 Origin

The model is a slightly modified, but completely re-implemented version of the (unpublished)
optimisation model DHoptimal that was created for and used in several projects with city
municipalities for designing cost-optimal district heating networks. However, just like the
original URBS method, it was never fully documented. The key change from DHoptimal to
DHMIN is the removal of a discrete variable for the capacity of a pipe. In DHoptimal, a fixed
set of pipe capacities, derived from the DN diameter specifications for pipe diameters, are
allowed. DHMIN on the other hand allows for continuous pipe capacities. This difference is
visualised in figure 3.10. Left shows a discrete cost function that has a small finite number of
cost values. If the capacity of one pipe diameter is exceeded, the next bigger capacity must be
installed instead. On the right the linear continuous approximation is shown instead. While it
is true that certain desired capacities are suboptimal within the framework of fixed DN pipe
diameters, the variability in operation can spoil the benefit of the more precise cost function.
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Figure 3.10: Comparison of discrete and continuous pipe capacity costs
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DHMIN

Input

– Heat demand (peak, annual)
– Street network graph
– Heat generation points
– Cost and technical parameters

Output

– Cost-optimal network
– Power flow through pipes
– Heating plant usage
– Costs and revenues

Figure 3.11: Input/output flow chart of model DHMIN

3.3.2 Design goal

The model approaches the planning task for a district heating network from the perspective of
a city utility company. It focuses on answering the question: what is the cost-optimal extent
of a district heating network? The model therefore has to balance costs for generating and
distributing thermal energy, given a set of plant locations that can deliver heat of a given cost.
It can then derive the regions in a city that are most economic places for new district heating
pipes. The input/output schema of this model is summarised in figure 3.11.

3.3.3 Mathematical description

Historically, this model’s use of the word edge is different from the remaining thesis: here, they
refer to an ordered pair of vertices. In the remaining document, such a pair is referred to as an
arc.

The model’s optimal solution minimises the total costs “ of generating and distributing heat
through a district heating network, reduced by revenues for supplied heat energy. The key
result is the most economic size and topology of the heat distribution network, represented by
the value of power flow variable ıin

i j , ei j ∈ E in case of minimum costs:

ı?ij = argmin
ıin
i j

“

Sets

In this model, a district or city is represented as a graph of vertices and edges. This graph
can be derived from the street network, as it covers most potential sites for burying a pipe
network. Let V be the set of vertices vi , corresponding to street intersections or endpoints.
Set E of edges then comprises ordered tuples of vertices ei j = (vi ; vj) with i 6= j . Here, E is
constructed to be symmetric, that means either both or none of the pair ei j and ej i are elements
of E. For readability, the subscript ◦i is used to denote any parameter or variable that is defined
over vertices vi ∈ V , while ◦i j is used to denote a quantity defined over edges ei j ∈ E.

The set V0 ⊆ V defines so-called source vertices, which represent locations of possible
heat sources. Usually, there is only a small number (≤ 10) of source vertices. The example
graph in Figure 3.12 shows a visual representation of a small graph. Each line between two
vertices represents a pair of symmetric edges.
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Figure 3.12: Example street graph with 8 vertices, 14 edges, and 2 source vertices v1, v8

The set of neighbors Ni for a vertex vi is defined by the indices of all vertices that are
connected to it by an edge: Ni = { k | eki ∈ E }. In the example graph in Figure 3.12, the
neighbor set of vertex v4 is equal to N4 = {2; 5; 6}.

Parameters

Parameters are the numerical inputs of the optimisation problem. They are summarised in
table 3.10. The upper part contains global parameters; the lower part summarises edge and
vertex parameters.

Vertices Vertices have a maximum capacity Qmax
i , the thermal output power given in kW.

For all non-source vertices, i.e. almost all vertices, this parameter is set to 0.

Edges Edges have the three main attributes li j , di j and Di j for length (m), peak demand
(kW) and annual demand (kWh/a). Peak demand determines the required pipe size, while
annual demand determines revenue for supplying heat. Parameter ›i j is a binary indicator that
denotes existing (›i j = 1) pipelines. Parameter Cmax

i j indicates the maximum thermal power
capacity (kW) in an edge, which can be derived from the maximum available pipe diameter.
Attribute values for the symmetric edge pairs ei j and ej i are identical.

Global The letter c and a subscript denote economic parameters. These are investment
costs for building the pipe network cfix and cvar, maintenance com, costs of providing cheat heat,
and revenue for delivering crev heat to consumers. While cfix contains the size-independent
costs (mainly earth works), cvar contains costs that are dependent on the thermal capacity
(diameter) of the pipe.

Technical parameters concern thermal losses in the pipe network wfix and wvar and the full
load hours Tflh (operation time) of the source vertices. The value of Tflh can be derived from
the average value of the quotient Di j=di j in the investigated area and is mainly determined
by the local climate and user behaviour. The dimensionless parameters b and q quantify the
effects due to the aggregation of demand on street level. Parameter b is the concurrence
effect, caused by the probabilistic demand for heat per consumer; it reduces the required peak
demand for the heat supply network in comparison to the sum of peak demands. Parameter q
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Table 3.10: DHMIN Model Parameters

Name Unit Description

cfix e/m Fixed investment costs
cvar e/(m kW) Variable investment costs
com e/(m a) Operation & maintenance costs
cheat e/kWh Heat generation costs
crev e/kWh Revenue for delivered heat
wfix kW/m Fixed thermal losses
wvar kW/(kW m) Variable thermal losses
Tflh h/a Full load hours of source vertices
b 1 Concurrence effect
q 1 Connect quota
u 1/a Annuity factor for investment costs

li j m Edge length
di j kW Edge peak demand
Di j kWh/a Edge annual demand
gi j — Existence of a pipe (1=yes, 0=no)
Cmax
i j kW Maximum pipe capacity
Qmax

i kW Source vertex capacity

Table 3.11: DHMIN Model Variables

Name Unit Description

“ e Total system cost (Inv, O&M, Rev, Heat)
‰i j kW Binary decision variable: 1 = use pipe
ıin
i j kW Thermal power flow from vi into edge ei j
ıout
i j kW Thermal power flow out of edge ei j into vj
i kW Heat generation power in source vertex vi

is the connect quota, reflecting the fact that not all buildings in a given street will be connected
by district heating. Consequently, b reduces investment costs for heat infrastructure by lowering
peak demand, while q reduces the revenue for heat by lowering annual demand.

Variables

The main optimisation happens by finding values for the binary decision variable ‰i j . If its value
is one, a pipe in edge ei j is built/used and there must be a power flow ıin

i j in the direction i → j

into the pipe. At the same time ‰i j = 1 implies that the demand di j of this edge has to be
satisfied. The power flow variable at the other end of the pipe is called ıout

i j and is reduced by
thermal losses and heat demand of consumers along the edge.

The non-negative variable i represents thermal power output from source vertices.
Table 3.11 summarises all model variables. The following line shows their allowed value

ranges:

z ∈ R ‰i j ∈ {0; 1} ıin
i j ; ı

out
i j ; i ∈ R+

0
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Equations

Cost function Total cost “ is the sum of costs for investment (annualised), operation &
maintenance (O&M), cost of heat generation minus revenue for delivered heat, for the period
of one year. To shorten the definition of this equation, the following derived parameters
are introduced, whose definitions are given below: kfix

i j (e/a) and kvar
i j (e/(kW a)) cover the

infrastructure costs (investment, O&M). kheat
i j (e/kW) represents heat generation costs, while

rheat
i j (e/a) represents revenue for sold heat.

“ =
X
ei j∈E

h“
kfix
i j − rheat

i j

”
‰i j + kvar

i j ıin
i j

i
+
X
vi∈V0

kheat
i i (3.67)

The terms for investment, O&M cost kfix
i j and kvar

i j , together with variables ‰i j and ıin
i j , form

a piece-wise linear function. Fixed costs include power-independent investment costs (mainly
earthworks) and O&M costs. Variable costs depend on the size (thermal capacity) of the built
pipes. Investment costs arise only for pipes that do not exist (gi j = 0), while O&M have to be
paid also for existing pipes, as long as they are used (‰i j = 1). These considerations lead to
the following definitions for kfix

i j and kvar
i j . Parameter u is the annuity factor for the investment

cost terms:

∀ei j ∈ E : kfix
i j = cfix li j u (1− gi j) + com li j (3.68)

∀ei j ∈ E : kvar
i j = cvar li j u (1− gi j) (3.69)

In order to visualise the behavior of the cost function for the isolated decision of building a
single pipe in edge ei j , Figure 3.13 shows the length-normalised cost term for investment
cost, O&M, plotted as a function of the decision variable ‰i j and the incoming power flow ıin

i j ,
extracted from the cost function (3.67):

(kfix
i j ‰i j + kvar

i j ıin
i j )=li j

= (u cfix + com) ‰i j + ¸ cvar ı
in
i j

Important is the unsteady jump from zero to u cfix + com for any non-zero value of ıin
i j . The link

between the binary decision variable ‰i j and ıin
i j is enforced through the restriction inequality

pipe capacity (3.77).
Heat revenue rheat

i j is the second parameter in the cost equation. For each edge, it equals
the annual heat demand Di j in that edge, multiplied with the consumer price crev and scaled by
the connect quota factor q:

∀ei j ∈ E : rheat
i j = crevDi j q (3.70)

Heat generation costs kheat
i j occur in source nodes. The peak output power ıi is multiplied

by the annual full-load hours Tflh to estimate the annual thermal energy output. Multiplication
with the specific heat generation costs cheat in e/kWh yields the heat generation costs. Division
by b is required to remove the down-scaling of the cumulated peak power due to concurrence
effects:

∀vi ∈ V : kheat
i =

Tflh cheat

b
(3.71)
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Figure 3.13: Investment and O&M costs for a single edge ei j over ıin
i j

ıin
i j

ıout
i j

yi j ‰i j(1− xi j)ıin
i j

xi j ı
in
i j

Figure 3.14: Sankey diagram of equation demand satisfaction (3.73)

Note that kheat
i here is identical for all source nodes vi ∈ V0. However, by using plant-dependent

run times T flh
i and heat generation costs cheat

i , this can be generalised to heat sources with
different generation costs and run times.

Constraints Energy conservation is the main vertex equation formulated as an inequality
that allows for energy to vanish. This waste energy is punished economically and thus will not
occur in the optimal configuration ı?ij . The sum of all outgoing power ıin

im to neighbour vertices
vm; m ∈ Ni must be met either by incoming power ıout

mi or by power ıi from the source, which
only can be non-zero if vi is a source vertex because of equation (3.78):

∀vi ∈ V :
X
m∈Ni

“
ıin
im − ıout

mi

”
≤ i (3.72)

This inequality is thus a slack-relaxed version of the law of energy conservation. For all non
source vertices, the difference between outgoing and incoming power must be smaller than or
equal to zero. In source vertices, a positive difference may remain, when it is met by an equal
amount of input power i into the network. This constraint also ensures that power flow can be
tracked back to a source vertex.

Demand satisfaction is the main edge equation linking the pipe building decision to a
reduction of the power flow out of the pipe by the peak demand di j . It also includes a power-
and length-dependent loss term parametrised by parameters wfix and wvar:

∀ei j ∈ E : ‰i j ı
in
i j − ıout

i j = yi j xi j (3.73)
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Here, the auxiliary parameters xi j and yi j are giben by the following expressions:

∀ei j ∈ E : xi j = 1− li j wvar (3.74)

∀ei j ∈ E : yi j = di j b q + li j wfix (3.75)

Figure 3.14 illustrates equation (3.73) graphically. It works like a two-state switch: if ‰i j = 1, i.e.
a pipe in edge ei j is used, the heat demand in that same edge must be satisfied, thus requiring
a positive incoming power flow. On the other hand, ‰i j = 0 together with equation (3.77) implies
that ıin

i j = 0, forcing incoming and outgoing power flow to zero.
Unidirectionality ensures that only one direction for construction, power flow and revenue

is allowed per edge:

∀ei j ∈ E : ‰i j + ‰j i ≤ 1 (3.76)

Pipe capacity allows power flow only if a pipe i j is built. This inequality links the binary
decision variable ‰i j to the investment cost term kinv. Edge parameter Cmax

i j is the maximum
thermal power that can be transported through a pipe. It is determined by the pipe diameter
that can be built (or, if gi j = 1, that exists) on that edge:

∀ei j ∈ E : ıin
i j ≤ ‰i j Cmax

i j (3.77)

Source vertices limits heat output Qi in a vertex to Qmax
i , representing the maximum

capacity available in that vertex. Non-source vertices have Qmax
i set to zero:

∀vi ∈ V : i ≤ Qmax
i (3.78)

Equations (3.67) to (3.78) together define a linear mixed-integer program, whose optimal
solution is the desired ı?ij .
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3.4 dhmin (seasonal)

3.4.1 Motivation for model development

While the model DHMIN is very usable for large-scale network design, it lacks one key aspect
that is very important for its operation: redundancy. The optimised networks are only capable
of satisfying the peak demand, if all used heat source vertices are fully available. This important
condition, however, is often violated due to planned and unplanned outages of heat production
facilities. These outages then require that heat must be supplied from a more distant source.
Pipes along that alternative route often require additional capacity. what is the optimal network
design, while considering these alternative power routes?

3.4.2 Main design idea

The key idea of model dhmin is to introduce the concept of time in form of multiple time steps,
just like in urbs. But instead of using tens or hundreds of time steps, only a small amount of
representative instances are considered. These instances still represent moments of peak
load, but instead of having all source nodes operational, some of them are assumed to be
unavailable. Alternatively (or additionally), time steps can be used to include a discretised
annual load curve as discussed in section 2.2.2.

Mathematically, this change leads to the introduction of the time step set T . The power flow
variable thus becomes time-dependent. A new variable for the pipe capacity is then needed
for calculating the pipe investment costs. A new binary parameter availability is introduced for
each source vertex and time step. A value of 1 means that the corresponding source vertex is
operational, while 0 stands for an outage (planned or unplanned). Figure 3.15 summarises the
resulting input/output graph of the new model, with changes highlighted in bold (cf. figure 3.11
for comparison).

3.4.3 Example result

Before considering the full mathematical definition in detail, this section gives a behavioural
description of the additional questions the new constraints allow to investigate. This is done by
a small, artificial optimisation problem.

Figure 3.16 shows setup and result of the optimisation problem for a network with 13
vertices and 16 edges, defined on a grid with integer coordinates in the range from (1,1) to
(9,9). The energy demand ( ) is concentrated in two edges (5,7) to (4,9) and (6,3) to (7,2)
and can be satisfied by three source vertices ( ) located at coordinates (2,2), (2,7) and (9,9).

dhmin
(seasonal)

Input

– Heat demand (peak)
– Annual load duration curve
– Street network graph
– Heat sources
– Outage definitions

Output

– Cost-optimal network
– Power flow through pipes
– Outage power flow
– Heating plant usage
– Costs and revenues

Figure 3.15: Input/output flow chart of model dhmin (seasonal). Differences to DHMIN in bold.
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Outage (2,2) Outage (2,7) Outage (9,9)

Peak load Off-peak (1040 h)Pipe capacities

(a) Identical heat generation costs at all source vertices: only sources (2,2) and (2,7) are used.

Outage (2,2) Outage (2,7) Outage (9,9)

Peak load Off-peak (1040 h)Pipe capacities

(b) Source vertex (9,9) half generation costs, capacities of other sources reduced to less than total peak
demand: source (9,9) becomes main supplier, other sources only used for outage replacement.

Figure 3.16: Example result with redundancy against any single source vertex outage. The first
row shows pipe capacities ( ) and two least cost flow configurations ( ) for peak load ( )
and off-peak load with all three source locations ( ) operational. Each second row shows
power flow configurations for peak load with one of the sources unavailable.
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Costs and revenues are set so that a full demand satisfaction is the most economic solution.
In order to ensure the reliability of any solution, three outage time steps are introduced, each
one making one of the three source vertices unavailable. The capacity of each of the source
vertices is sufficient to satisfy all loads, so without outages, only one of the sources would need
to be connected to each load. However, in this example three outage time steps are introduced
so that each of the three sources is not available for exactly one instance. Additionally, one
off-peak time step models the duration of the heating period, while one peak load time step
with all sources available shows the least cost heat generation configuration.

In the scenario depicted in figure 3.16(a), each of the source vertices has sufficient capacity
to satisfy all loads on its own. Additionally, all three source vertices have identical heat
generation costs. The optimal solution in this scenario only uses the two source vertices (2,2)
and (2,7), but does not use source (9,9) at all, so no pipe capacity is connected to that vertex.
With both used source vertices available, the shortest path from source to demand is used
exclusively to reduce the transport losses. In the two outage time steps (2,2) and (2,7), the
unaffected source vertex takes over the full supply task. Only for that purpose, the additional
pipe capacity in edge (4,4) to (3,6) has been installed.

The lower half, figure 3.16(b), shows the result for a second scenario: in this scenario, the
capacities of vertices (2,2) and (2,7) are reduced, so that one of the vertices can no longer
satisfy all peak demand. Additionally the heat generation costs of vertex (9,9) are reduced
by 50 %. These changes result in source vertex (9,9) becoming the backbone of the whole
network and supplying heat most of the time, except in case of its outage time step Outage
(9,9). Pipe capacities are maximum from vertex (9,9) to the demand edge at (6,3). Interestingly,
in outage time step (2,7), the most economical power flow includes heat generation from vertex
(2,2), probably to reduce additional heat losses on the long distance from vertex (9,9).

3.4.4 Mathematical description

The presented model minimises the total costs “ of generating and distributing heat through a
district heating network. The key result is the size and topology of the network, represented by
the value of network capacity ı (vector of all individual arc capacities ıi j ) in the optimal case:

ı? = argmin
ı

“

Sets

Like in the previous model, a district or city is represented as a graph of vertices and arcs. In
most applications, this graph is usually derived from the street network. It should be derived in
such a way to include all considerable locations for network pipes. The spatial resolution can
be made as fine as required, but should rarely exceed the level of building blocks, i.e. a single
street segment between two intersections.

This model, unlike the previous DHMIN, agrees in terminology with the rest of the thesis, by
using the word arc ai j to refer to a directed connection between two vertices vi and vj .
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Let V be the set of vertices vi , corresponding to connecting or terminating points of the
graph. Set A of arcs then comprises ordered tuples of vertices ai j = (vi ; vj) with i 6= j . A
is symmetric, that means either both or none of the pair ai j and aj i are elements of A. For
readability, the subscript ◦i is used to denote any parameter or variable that is defined over
vertices vi ∈ V , while ◦i j is used to denote a quantity defined over arcs ai j ∈ A.

The set V0 ⊆ V defines so-called source vertices, which represent locations of possible
heat sources. Usually, there is only a small number (≤ 10) of source vertices.

The neighbour sets Ni of a vertex vi are defined by the indices of all vertices that are
connected to it by an arc: Ni = { k | aki ∈ A }.

Time is represented by a set T of discrete time steps t, which represent a small number of
representative operational situations. This model is mathematically equivalent to the previous
DHMIN if used with only a single time step, whose scaling parameter st is set to value 1 and
whose time step weight is set to the length of the heating period wt = Tflh. Please refer to the
following paragraphs for a discussion of these two parameters.4 The minimum viable number
of time steps is two: one for peak demand with a duration of one to several hours, a second
for the average annual load with a duration of the remaining year. A more comprehensive
choice are three to four time steps: the third can refer to the all-year base load, while the fourth
can be used to represent a common intermediate load level. Additional time steps need to
be introduced if redundancy requirements are to be stated. Refer to the discussion of the
parameter availability below for more details.

Parameters

The numerical given facts for this model are grouped by their defining domains. First are
vertex parameters, then arc parameters, then constant or global parameters, and finally
time-dependent parameters.

Vertices Vertices have a single parameter: their maximum power capacity Qmax
i . It is the

thermal output power given in kW for that location. All non-source vertices have this parameter
set to 0.

Arcs Arcs have the three main attributes: their length li j (m), the thermal peak demand di j
(kW) of their adjacent buildings and gi j (binary), which states whether a pipe already exists in
this arc.

As secondary parameter, Cmax
i j indicates the maximum thermal power capacity (kW) in an

arc, which can be derived from the maximum available pipe diameter. For arcs with existing
pipes (gi j = 1), this value should be set according to the diameter of that existing pipe. As
both arcs ai j and aj i refer to the same street segment, parameter values for both members are
always identical.

Global Global parameters are technical and economic parameters that refer to the district
heating system as a whole.

4Please note that Tflh is not used in model dhmin; it refers to the parameter from model DHMIN.
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Economic parameters are all costs and revenues. The investment costs are split into a
fixed part cfix and a variable part cvar. The fixed part, given in e/m, captures all costs that are
not dependent on the capacity of the pipe to be built, mainly earth works. The variable part,
given in e/(kW m), refers to the capacity-dependent cost component of building a pipe. Both
values must be tailored to the study area to compensate for differences in cost structure and
availability of different pipe sizes. The same is true for the O&M cost parameter com in e/m. In
contrast to the fixed investment cost term, it is also to be paid for existing pipes. The cost for
generating heat cheat is assumed to not depend on the source vertex.5

The letter c and a subscript denote economic parameters. These are investment costs
for building the pipe network cfix and cvar, maintenance com, costs of providing cheat heat, and
revenue for delivering crev heat to consumers. While cfix contains the size-independent costs
(mainly earth works), cvar contains costs that are dependent on the thermal capacity (diameter)
of the pipe.

Time-dependent Parameters st and wt represent scaling factor (dimensionless) and weight
or duration (h) of a time step t. A value of st = 1 refers to peak demand, while smaller values
correspond to moments of partial load. Together, these two parameters encode a discretised
annual load curve.

Redundancy requirements can be stated in the model by setting the binary availability
parameter yi t to value 0 in certain time steps for 1; 2; : : : source vertices. If one time step
for each foreseen failure configuration is introduced, a full n − 1; n − 2; : : : failure safety
(against heat source outages) can be enforced in the produced solution. Clarification: in the
conventional time steps discussed above in paragraph time step set, the value yi t = 1 is to be
set for all source vertices vi ∈ V0.

Variables

The main optimisation task is to find values for the binary decision variable ‰i j . If its value is
one, a pipe is built in the street segment corresponding to the arc ai j . For each time step, the
actual use of a given pipe is decided by setting the binary pipe usage decision variable  i jt . If
its value is one, the pipe in arc ai j is used in direction from vertex vi to vertex vj . Consequently,
there must be a power flow ıin

i jt into the pipe. Simultaneously, a value ‰i j = 1 requires that the
demand di j of this arc has to be satisfied at all times. The power flow variable at the other end
of the pipe is called ıout

i jt . Its value is determined by the ingoing power flow minus losses and
demand.

The non-negative variable i t represents thermal power output from a source vertex vi ∈ V0
at time t in kW. It is limited in value by the source vertex capacity parameter Qmax

i and possibly
by the availability parameter yi t . Table 3.13 summarises all model variables. The following line
shows their domains, on which they are defined:

“ ∈ R ‰i j ;  i jt ∈ {0; 1} ıi j ; ı
in
i jt ; ı

out
i jt ; i t ∈ R+

0 .

5If the costs are different for different source vertices, this parameter must be made location dependent in
equation (3.83).
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Table 3.12: dhmin (seasonal) model parameters

Name Unit Description

cfix e/m Fixed investment costs
cvar e/(m kW) Variable investment costs
com e/(m a) Operation & maintenance costs
cheat e/kWh Heat generation costs
crev e/kWh Revenue for delivered heat
w fix kW/m Fixed thermal losses
w var kW/(kW m) Variable thermal losses
b % Concurrence effect
q % Connect quota
u 1/a Annuity factor for investment costs

li j m Arc length
di j kW Arc peak demand
gi j — Existence of a pipe (1=yes, 0=no)
Cmax
i j kW Maximum pipe capacity
Qmax

i kW Source vertex capacity

st 1 scaling factor
wt h weight/duration
yit — availability (1=yes, 0=no)

Table 3.13: dhmin (seasonal) model variables

Name Unit Description

“ e Total system cost (Inv, O&M, Rev, Heat)
‰i j — Binary decision variable: 1 = build pipe
 i jt — Binary decision variable: 1 = use pipe
ıi j kW Thermal power flow capacity into arc ai j
ıin
i jt kW Thermal power flow from vi into arc ai j
ıout
i jt kW Thermal power flow out of arc ai j into vj
it kW Heat generation power in source vertex vi

Equations

Equations fall into two categories: the first is the cost function, whose value is to be minimised.
The second are constraints, that codify all the previously discussed rules in mathematical form.
By that, they define the region of feasible solutions, under which the solver selects a (close to)
cost optimal solution.

Cost function The value total cost “ is the sum of costs for supplying heat, minus revenue
for that heat. Costs occur for building the network (annualised investment), maintenance costs
and heat generation costs. The following derived parameters are introduced to shorten the
definition of the cost function, whose definition is given below: kfix

i j (e/a) and kvar
i j (e/(kW a))

cover network costs (investment, O&M). kheat
i j (e/kWh) represents heat generation costs, while
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Figure 3.17: Investment and O&M costs for a single arc ai j over pipe capacity ıi j

rheat
i j (e/h) represents revenue for delivered heat. With these, the cost function is equal to

“ =
X
ai j∈A

“
kfix
i j ‰i j + kvar

i j ıi j
”

+
X
vi∈V
t∈T

kheat
i wti t −

X
ai j∈A
t∈T

rheat
i j stwt‰i j . (3.79)

The first summand forms a piece-wise linear function that is depicted in figure 3.17. Like in
model DHMIN, there is an unsteady jump from zero to the fixed cost ucfix + com for any positive
value of ıi j for any non-existing (gi j = 0) pipe. The link between the binary decision variable
‰i j and the continuous pipe capacity variable ıi j is enforced through equations (3.85), (3.91)
and (3.89) below.

These are the definitions for the four derived parameters used in the cost equation above.
The division by value 2, common to all three arc parameters, compensates for the double-
representation of one street segment {vi ; vj} as a pair two directed arcs ai j , aj i . More about
this issue can be found at the explanation of the symmetry constraints (3.92) and (3.93) below.
The heating cost parameter kheat

i is divided by the concurrence effect parameter b, to remove
the load reduction effect that is introduced in equation (3.87). In other words, the power flow
that needs to be satisfied from a source vertex is lower by b than the energy flow that needs to
be delivered. The division by b removes that difference in terms of costs.

∀ai j ∈ A : kfix
i j = [cfix li j u (1− gi j) + com li j ] =2 (3.80)

∀ai j ∈ A : kvar
i j = [cvar li j u (1− gi j)] =2 (3.81)

∀vi ∈ V : kheat
i = cheat=b (3.82)

∀ai j ∈ A : rheat
i j = crev di j q=2 (3.83)

Constraints The constraints formalise all physical laws and technical rules that need to be
satisfied by a feasible solution. The first constraint concerns energy conservation:

∀vi ∈ V; t ∈ T :
X
n∈Ni

“
ıin
int − ıout

nit

”
≤ i t (3.84)

This inequality is thus a relaxed version of the law of energy conservation. Relaxed, because
it allows for power to vanish at any vertex. As power does not come for free, any solution
returned by the solver will satisfy this constraint to equality. For all non source vertices (i.e.
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ıin
i jt

ıout
i jt

yi jt  i jt(1− xi j)ıin
i jt

xi j ı
in
i jt

Figure 3.18: Sankey diagram of equation demand satisfaction (3.85)

i t = 0), the difference between outgoing and incoming power must be smaller than or equal
to zero. In source vertices, a positive difference may remain when it is met by an equal amount
of input power i t into the network at that vertex.

Demand satisfaction is the main arc constraint. It creates the logical connection between
the discrete pipe usage decision  i jt and the demand satisfaction. Like the cost equation, it
relies on two derived parameters xi j and yi jt . This constraint is also graphically explained in
figure 3.18.

∀ai j ∈ A; t ∈ T : xi j ı
in
i jt − ıout

i jt = yi jt  i jt (3.85)

Parameter xi j refers to losses w var that are proportional to the amount of power flow into the
arc ai j . Parameter yi jt refers to fixed thermal losses w fix that only depend on the pipe length,
not on the power flow, and the time-dependent demand di j · st , that is further reduced by the
concurrence effect b and the connect quota parameter q. In notation:

∀ai j ∈ A : xi j = 1− li j w var (3.86)

∀ai j ∈ A; t ∈ T : yi jt = b q di j st + li j w
fix (3.87)

Pipe capacity is a technical constraint that limits the power flow through a pipe by the built
capacity. This is accomplished by first limiting the ingoing power flow into a pipe ıin

i jt by the built
pipe capacity ıi j . The second constraint is required to set the pipe usage decision variable
 i jt . Its value is forced to 1 if a flow in direction from vi to vj at time step t is required. The
reason for this seemingly artificial constraint is explained in the following constraint.

∀ai j ∈ A; t ∈ T : ıin
i jt ≤ ıi j (3.88)

∀ai j ∈ A; t ∈ T : ıin
i jt ≤  i jt Cmax

i j (3.89)

Unidirectionality of the power flow ıin
i jt is required, as otherwise the solver would happily use

a pipe’s capacity in both directions simultaneously, which would not be physically possible.
Therefore, the pipe usage decision variable  i jt may only have the value 1 in one direction at
any given time step t. This way, the direction of flow may change between time steps, but any
given pipe may only be used in one direction at a given time.

∀ai j ∈ A; t ∈ T :  i jt +  j i t ≤ 1 (3.90)
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Build capacity limits the pipe capacity variables to the maximum available diameter, whose
capacity in kW is represented by parameter Cmax

i j . At the same time, this constraint sets the
value of the building decision variable ‰i j , if a non-zero pipe capacity pi i j is needed.

∀ai j ∈ A : ıi j ≤ ‰i j Cmax
i j (3.91)

Symmetry of building decision are two constraints that enforce that the mathematically inde-
pendent arcs ai j and aj i must have identical variable values for their pipe capacity ıi j and
building decision ‰i j . This way, a pipe can then be used in both directions at different time
steps.

∀ai j ∈ A : ‰i j = ‰j i (3.92)

∀ai j ∈ A : ıi j = ıj i (3.93)

Use if built is the last piece in the puzzle to link the building decision ‰i j to the pipe usage
decision  i jt . Up to this point, nothing in the formulation requires that the heat demand of
a customer is satisfied at all times. This constraint enforces exactly that, by requiring that
the sum of  i jt +  j i t is greater or equal to 1, if a pipe is built along that arc. Otherwise, the
condition should not be enforced. This is done by calculating the expression (‰i j + ‰j i )=2. It is
equal to 1 if ‰i j = 1, as equation (3.92) requires ‰i j = ‰j i . Otherwise, its value is equal to 0. In
other words: if an arc is has a pipe, its demand must always be satisfied by a power flow from
any of its two sides.

∀ai j ∈ A; t ∈ T :  i jt +  j i t ≥ (‰i j + ‰j i )=2 (3.94)

Source vertices is the last constrait. It limits the source vertex power flow i t by its maximum
allowed capacity Qmax

i . The availability parameter yi t usually has value 1, except for special
time steps in which the source vertex vi is made unavailable by setting yi t = 0:

∀vi ∈ V; t ∈ T : i t ≤ yi t Qmax
i (3.95)

Equations (3.79) to (3.95) together define th linear mixed-integer program dhmin, whose
optimal solution is the desired vector of pipe capacities ı?.
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3.5 rivus

3.5.1 Motivation for model development

When using DHMIN for optimal district heating planning in Frankfurt, the good scaling behaviour
for big problems with up to 104 vertices/edges became apparent. The linearised fixed cost
formulation of the investment costs for network capacities are able to represent the real-world
planning question at hand: What is – in principal – the optimal balance between network
expansion and network concentration?

The remaining research question now is: how would an optimal district heating network
look in a fully optimal network planning spanning all energy carriers? Figure 3.19 summarises
the key model aspects. The focus lies – like in the previous model dhmin – on the spatial
distribution of energy demand, but augmented with the possibility to discern between long
duration base loads and short duration peak loads.

3.5.2 The main idea

rivus finds the cost-minimal distribution network to satisfy a set of demands for energy carriers.
Here, these energy carriers are electricity and heat, but could for example include cooling, if
feasibility of district cooling should be investigated. Like in model DHMIN, these demands are
given as peak loads and discretised load duration curves. These peak loads are deduced
from (estimated) building gross floor areas and then aggregated to street segments (edges)
that form a network through nodes (vertices). Energy enters this network at pre-determined
source vertices. In this thesis, these are given by the location of close electricity substations
(electricity source vertex) and pipelines or gas terminals (natural gas source vertex). Source
vertices could include geothermal extraction points, biomass or waste availability. Figure 3.20
graphically summarises this idea. Two source vertices, one for electricity (yellow diamond),
one for gas (brown) and a distribution of peak demands (left column), are given. The maps in
the right column are the optimisation results: location and size of conversion processes, as
well as size and topology of all distribution networks. Depending on the available technology
options, different networks and/or conversion processes are preferred.

Power can be converted from one carrier (called commodity ) through conversion processes,
simply called processes in the following. A process consumes an arbitrary number of input
commodities in fixed proportions (given by parameter input ratio) of input commodities and
produces an arbitrary number of output commodities in fixed proportions (given by parameter
output ratio). Some commodities – here: electricity, heat and natural gas – are deemed
transportable and thus may form a network of flows.

rivus

Input

– Energy demand (several time steps)
– Street network graph
– Technology portfolio
– Cost and technical parameters
– Commodity source points

Output

– Optimal infrastructure
– Technology capacities
– Total costs
– Commodity usage
– CO2 emissions

Figure 3.19: Input/output flow chart of model rivus
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Figure 3.20: Street network of peak demands (left) and transport capacities (right) for com-
modities electricity, heat and natural gas (yellow, red, and brown). Two black arrows from the
right mark the two source vertices.

Unlike in model dhmin, this model must satisfy all given demands. The result is a cost-
minimal energy distribution network and set of installed process capacities, either centralised
or distributed.

3.5.3 Mathematical description

This section defines all collections of model entities (sets), pre-determined numerical values
(parameters) and the possible model decisions (variables), the rules to obey (constraints) and
which quantity to minimise (the cost function).

Sets

Table 3.14 lists all model sets. Like in model dhmin, the street network is represented through
a graph of vertices v ∈ V and undirected edges e ∈ E. For each edge {v1; v2} ∈ E, the pair
(v1; v2) and (v2; v1) form the set of directed arcs a ∈ A of the graph.

The first model entity are commodities C. They mainly represent energy carriers, but are
more general: they are any inputs and outputs of energy conversion processes, like fuels
(natural gas), forms of energy (electricity, heat) or chemicals (CO2). To differentiate between
those types, commodity type subsets are introduced. In contrast to model urbs, these type
assignments are not mutually exclusive, but are assigned based on certain parameter values.
Demand commodities Cd ⊆ C are those for which a non-zero peak demand occurs anywhere.
Source commodities Cs ⊆ C are those which have a source vertex. Transportable commodities
Ct ⊆ C are defined by having a positive maximum transport capacity. In the presented case
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Table 3.14: rivus model sets

Set Subsets Description

c ∈ C Cd, Cs, Ct, Ce Commodities, (demand, source, transportable, limited) subsets
p ∈ P H Processes, Hubs
v ∈ V — Vertices
e ∈ E — Edge, unordered pair of vertices
a ∈ A Ap

v , As
v Arcs, incoming/outgoing arcs in vertex v

t ∈ T Time steps, modelled time steps, initial/final time step

studies, electricity and heat are demand commodities, while electricity and natural gas are
source commodities. All three commodities are transportable. Environmental commodities
finally are those that have a maximum possible net generation set to a finite value. In the
presented case study, CO2 has this property set.

Then there is the set of processes P . It represents all means of converting energy of
one form (commodity) to another. For each process, there are two sets of input and output
commodities C in

p and Cout
p . For example, a gas-fired district heating plant could have the input

commodity set C in
p = {Gas} and output commodity set Cout

p = {Electricity;Heat;CO2}.
Hub processes H ⊆ P are defined on edges and represent small-scale energy conversion

processes. These include all technologies that are installed within buildings, like boilers or
small-scale CHP units. Mathematically, they are the subset of processes which satisfy the
following four conditions:

1. Capacity-independent investment costs are zero: k inv,fix
p = 0

2. Minimum capacity is zero: Kp = 0

3. Only one input commodity: |C in
p | = 1

4. Input ratio for that input commodity is one: r in
pc = 1

Consequently, hubs still have two associated sets of input and output commodities C in
h and

Cout
h , but there is no need to have an input ratio parameter r in

hc (its value must be 1 due to
conditions 3. and 4.), which is why it will be omitted in the following. The reason for the first
two conditions is to allow hubs to be fully linear, whereas the fixed investment costs for central
processes require binary variables.6 Conditions three and four are not required to keep the
formulations of hubs linear, but are rather a design decision to not allow too complex processes
to be built both in vertices and edges.

A small set of time steps T is used to represent several time periods. By design, less than
a dozen time steps are used to represent a full year by representative moments characterised
by distinct demand situations. These at least include moments peak load and base load.

Parameters

Table 3.15 lists all technical model parameters. The main parameter of the whole model is the
demand dec . It represents the peak demand (kW) for commodity c in edge e. It is derived per

6To improve the scaling behaviour of rivus for large problems, one could limit processes to a subset Vp of
possible locations, either per process or for all processes. For the case studies presented in this thesis, this step
was not necessary.
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edge e by adding all building peak demands dbc along that edge:

dec =
X
b∈Be

dbc (3.96)

Here, Be is the set of buildings closest to edge e. To represent the actual demand in each time
step t, these peak demands are multiplied with a commodity-dependent scaling factor sct . This
product decsct forms the right side of the edge constraint (3.101). Refer to section 4.4.1 for the
procedure used to calculate dbc , as it is independent from the model. Apart from the scaling
factor sct , there is a second time-dependent quantity, the time step weight wt . It refers to the
length of that time step. By convention, the sum over all time steps is equal to a common (i.e.
non-leap) year:

P
t∈T wt = 8760. These weights are used for scaling the variable costs for

each time step to the appropriate portion of the year, as all costs (investment, fixed, variable)
are scaled to a year.

Next are the technical parameters that govern the properties of the distribution networks.
The edge length le is the real (i.e. not line-of-sight) length of edge e in metres. It is used to
scale both the costs and the losses of a pipe/cable. Speaking of losses, they are governed
by parameters w fix

c (capacity-independent) and w var
c (capacity-dependent). Note that there is

no set of transmission processes like in model urbs. In other words, it is assumed that only
a single technology is used per commodity.7 The capacity limit Kc (kW) is a per-edge upper
bound for the transmission lines. Practically, it represents the biggest feasible pipe or cable
diametre that could be used in a given study area. The parameter Kvc (kW) is the source
vertex capacity limit. It describes how much power may be pulled from the source at vertex v
of commodity c , while paying only variable costs

Processes and hubs share the same data input and thus share similar parameters. Both
have an upper bound for their allowed capacity Kp, Kh. Processes may also have a lower
bound for their capacity Kp, which is enforced wherever the building decision variable ffivp
has value 1. Hubs may not have this feature to stay fully linear. Both processes and hubs
have the output ratio parameters rout

pc , rout
hc , which are defined for all commodities in the

respective commodity output sets Cout
p , Cout

h . Processes also have input ratios r in
pc for their

input commodities C in
p . Hubs do not require these two because of their defining restrictions (cf.

previous section Sets).
Table 3.16 summarises the economic parameters. Economic are the last group of pa-

rameters. They are defined for the transmission (and use) of commodities kc , conversion in
hubs kh and processes kp. They are categorised in investment, fixed and variable costs. The
investment costs are represented by the two values k inv,fix and k inv,var for capacity-independent
and capacity-dependent cost components. The fixed investment cost component is modelled
using a binary decision variables ‰ec for transmission and ffivp for processes. Like in the other
models, fixed costs kfix represent all operation-independent, but (roughly) capacity-dependent
costs like maintenance. Variable costs for commodities kvar

c represent their fuel price, so to
speak. They can be obtained for that price at all source vertices in unlimited quantity, only
limited in power by the vertex capacity. Variable costs for processes kvar

p and hubs kvar
h finally

represent all non-fuel operation-dependent costs like wear and tear.
7For large case studies, network levels like different gas pressures, could be represented by using one

commodity per pressure level and conversion processes for substations. Introducing transmission technologies like
set F in urbs could implemented alternatively.
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Table 3.15: rivus technical model parameters

Name Unit Description

wt h Time step weight
sct — Peak demand scaling factor

dec kW Peak power demand
le m Edge length
w fix
c kW/m Fixed transport losses

w var
c kW/(kW m) Variable transport losses

Kc kW Upper bound transport capacity
Kvc kW Upper bound source vertex capacity

Kp, Kp kW Lower and upper bound process capacity
r in
pc , rout

pc — Process input/output ratio

Kch kW Upper bound hub capacity
rout
hc — Hub output ratio

Table 3.16: rivus economic model parameters

k inv,fix
c e/m Capacity-independent transport investment costs
k inv,var
c e/(kW m) Capacity-dependent transport investment costs
kfix
c e/(kW m) Capacity-dependent transport maintenance costs
kvar
c e/kWh Commodity “fuel” costs

k inv
h e/kW Hub capacity investment costs
kfix
h e/kW Hub capacity fixed costs
kvar
h e/kWh Hub usage variable costs

k inv,fix
p e Capacity-independent process investment costs
k inv,var
p e/kW Capacity-dependent process investment costs
kfix
p e/kW Capacity-dependent process fixed costs
kvar
p e/kWh Process usage variable costs

Variables

Table 3.17 summarises all model variables. They are grouped by the sets they are defined
over. Vertices are locations to source vertices and processes. In edges, demand, transmission
and hubs are located. The last group are four cost variables.

Vertices The source stream variable vct (kW) represents the flow of a commodity c ∈ Cs

from a source vertex v at time t. It is expected that the number of source vertices per
commodity is small compared to the number of all vertices |V |.

Arcs & Edges The key difference to model urbs are the properties of the transmission
processes along edges. The supply variable ffect (kW) is the amount of power that is drawn
from the power flow through that edge to supply the local demand/hubs. This available power
flow is represented by the arc incoming flow variable ıin

act (kW). What remains of the flow at
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the end of the arc is contained in the outgoing flow variable ıout
act (kW). To limit the use of an arc

to only one direction per time step, the binary decision variable  act is needed. The capacity
for power flow in an edge is represented by variable »ec (kW). The binary building decision of
a transmission cable/pipeline for a commodity in an edge is called ‰ec .

Hubs The capacity »eh (kW) of a hub process h in an edge e determines its cost and limits
its maximum activity. The activity or throughput ›eht (kW) of a hub process h in an edge e at a
given time t determines the output via the output ratio parameter rout

hc as mentioned before.

Processes Similarly, the capacity »vp (kW) of a process p in a vertex v determines its cost
and limits its maximum activity. For the capacity-independent investment costs, the binary
variable ffivp represents the building decision of that process p in vertex v . The activity of the
process is represented by the throughput variable fivpt (kW). Via the input and output ratio
parameters, the variables for input ›in

vpct and output ›out
vpct are linked with that throughput, cf.

equations (3.115) and (3.116).

Costs All system costs are represented by variable “. Costs by type are “inv, “fix, “var.
Investment costs occur for capacities of hubs and processes, as well as for transport capacities
in edges. Fixed costs are operation-independent but capacity-dependent, like maintenance.
Variable costs are due for activity of hubs and processes, and for supply of commodities
with source vertices. For simplicity, this model does not include annuity factors in the model
equations. Instead, the cost parameters k inv are assumed to be already annualised.

Equations

Cost function The objective function of the optimisation problem is to reduce the total costs
“ for satisfying the given energy demand. The costs consist of three parts:

Investment costs “inv are to be paid for all capacities in the model. Process capacities »vp
may have a fixed investment cost part that is triggered by the building decision variable ffivp. Hub
capacities »eh are similar but without the possibility for a fixed cost part. Energy transmission
technologies are priced by length le of the edge along which they are installed. Like processes,
they have a variable investment cost part proportional to their transmission capacity »ec
and a fixed investment triggered by their building decision variable ‰ec . Fixed costs “fix are
proportional to the capacities for processes, hub processes and transmission.

Variable costs “var occur for the activity of hub processes, central processes and the
procurement of commodities at source vertices. In the previous models, this term was separate
in fuel costs. The hub process activity is measured by input ›eht . Central conversion processes
are modelled by their throughput fivpt . Source vertices can provide supply of a commodity
through source term vct . These costs are weighted by time step weight wt and summed to
an annual value.

“ = “inv + “fix + “var (3.97)
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Table 3.17: rivus model variables

Name Unit Range Description

vct kW R+
0 Commodity source power flow

ıin
act kW R+

0 Commodity flow into arc
ıout
act kW R+

0 Commodity flow out of arc
 act — Z1 1 if arc is used at t, 0 else
ffect kW R+

0 Supply in edge at time
»ec kW R+

0 Power flow capacity
‰ec — Z1 1 if edge is used anytime, 0 else

»eh kW R+
0 Hub process capacity

›eht kW R+
0 Hub process activity

»vp kW R+
0 Process throughput capacity

ffivp — Z1 1 if process has non-zero capacity, 0 else
fivpt kW R+

0 Process power throughput
›in
vpct kW R+

0 Process power input flow
›out
vpct kW R+

0 Process power output flow

“ e R Total system costs
“inv e R Investment costs
“fix e R Fixed costs (e.g. maintenance)
“var e R Variable costs (activity dependent)

“inv =
X
v∈V
p∈P

“
»vpk

inv,var
p + ffivpk

inv,fix
p

”
+
X
e∈E
h∈H

»ehk
inv
h

+
X
e∈E
c∈Ct

le
“
»eck

inv,var
c + ‰eck

inv,fix
c

”
(3.98)

“fix =
X
v∈V
p∈P

»vpk
fix
p +

X
e∈E
h∈H

»ehk
fix
h +

X
e∈E
c∈Ct

le»eck
fix
c (3.99)

“var =
X
t∈T

wt

2664X
e∈E
h∈H

›ehtk
var
h +

X
v∈V
p∈P

fivptk
var
p +

X
v∈V0
c∈Cs

vctk
var
c

3775 (3.100)

Edges/arcs The the first group of constraints describe the behaviour of the flows through the
graph. Equation peak satisfaction is the the equation that assures that the instantaneous de-
mand decsct is always satisfied. The first summand ffect is the supply of commodity c provided
by an ingoing power flow from either direction, as defined in the following constraint (3.102).
The two sums add to or take from that supply either by output or input from hubs. Note that the
output ratio rout

hc is multiplied only to the output side, because hubs must have an input ratio of
one:

∀e ∈ E; c ∈ Cd; t ∈ T : ffect +
X

h|c∈Cout
h

›ehtr
out
hc −

X
h|c∈C in

h

›eht ≥ decsct (3.101)
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Equation edge is linking energy flows ı through arcs with the supply term ff in edges. While
the flow is directional and potentially different per time step and commodity, the supply term
is not directed. The supply is determined by the difference between incoming and outgoing
power flow into one of the two consisting arcs a and a′. As only one of  act and  a′ct may
have a non-zero value per time step, power flow is also either in direction a or a′, but never
simultaneous in both directions. The formulation as an inequality instead of an equality is
believed to be more friendly to the solver, but no thorough tests were performed. In optimality,
the constraint is always active, i.e. equality is assured.

∀e ∈ E; c ∈ Ct; t ∈ T : ffect ≤ (1− w var
ec le)(ıin

act + ıin
a′ct) (3.102)

− (ıout
act + ıout

a′ct)

− ( act +  a′ct)w
fix
ec le

Arc flow by capacity limits the power flow per arc to the edge capacity variable. The notation
a ∈ e, though not strictly correct, means that arc a and edge e must connect the same vertices.
Equation (2.26) gives a more formal definition of that intuition:

∀a ∈ A; c ∈ Ct; t ∈ T; a ∈ e : ıin
act ≤ »ec (3.103)

Arc flow unidirectionality assures that only one direction is used per time step, using the
additional arc usage decision variable  act :

∀a ∈ A; c ∈ Ct; t ∈ T : ıin
act ≤  actKc (3.104)

∀a ∈ A; c ∈ Ct; t ∈ T :  act +  a′ct ≤ 1 (3.105)

Edge capacity finally ensures that the built capacity »ec in an edge does not exceed the
capacity limit Kc allowed for that commodity. As a side effect, the building decision variable
‰ec is forced to have the value 1 in case the edge capacity is non-zero, leading to the fixed
investment costs k inv,fix

c occurring in the cost function.

∀e ∈ E; c ∈ Ct : »ec ≤ ‰ecKc (3.106)

Hubs Local energy conversion happens in hub processes. They are governed by three
constraints. Hub supply describes the relationship between the supply term ffect and the
consumption of hub processes:

∀e ∈ E; c ∈ C; t ∈ T :
X

h|c∈C in
h

›eht −
X

h|c∈Cout
h

›ehtr
out
h ≤ ffect (3.107)

Hub output by capacity limits the activity of hub processes ›eht by their corresponding capacity
variable:

∀e ∈ E; h ∈ H; t ∈ T : ›eht ≤ »eh (3.108)

Hub capacity finally limits the hub process capacity variable by the prescribed maximum
capacity limit:

∀e ∈ E; h ∈ H : »eh ≤ Kh (3.109)



3.5. rivus 115

Vertex The following constraint handles energy conservation in vertices, balancing process
input/output, transport input/output and possibly a source term vct in case of source vertices.
While the first constraint states the energy balance equation, the second constraint then limits
this source term value by the limit of the vertex Kvc . The energy balance is actually formulated
as an inequality for performance reasons. The fact that vct causes non-zero costs in the cost
function automatically forces equality for any optimal solution:

∀v ∈ V; c ∈ C; t ∈ T : vct ≥
X
a∈As

v

ıin
act −

X
a∈Ap

v

ıout
act (3.110)

+
X

p|c∈C in
p

›in
vpct −

X
p|c∈Cout

p

›out
vpct

∀v ∈ V; c ∈ C; t ∈ T : vct ≤ Kvc (3.111)

Commodity The single constraint here is specific to the environmental commodity subset.
Equation commodity maximum limits the net generation of environmental commodities c ∈ Ce

to the value set by parameter Lc . The first line sums the net generation of a commodity in
processes, the second line in hub processes. The time step weight wt scales the mass/power
flow values to an annual value:

∀c ∈ Ce :
X
t∈T

wt

0B@X
v∈V

“X
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X
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out
h −
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h

›eht
”1CA ≤ Lc (3.112)

Processes Central energy conversion processes are defined through three time-dependent
variables: their commodity input flow ›in

vcpt , the commodity output flow ›out
vcpt and, defined as

the weighted sum of all input, the process throughput fivpt . Equation process throughput by
capacity limits the throughput to the process capacity:

∀v ∈ V; p ∈ P; t ∈ T : fivpt ≤ »vp (3.113)

Capacity borders ensure that, if a process is built somewhere (ffivp = 1), its capacity is within
the range between Kp and Kp. Otherwise (ffivp = 0) the process capacity must be zero.

∀v ∈ V; p ∈ P : ffivpKp ≤ »vp ≤ ffivpKp (3.114)

Input and output equations relate the throughput to the input and output of commodities trough
the input/output ratio parameters:

∀v ∈ V; p ∈ P; t ∈ T; c ∈ C in
p : ›in

vcpt = fivptr
in
cp (3.115)

∀v ∈ V; p ∈ P; t ∈ T; c ∈ Cout
p : ›out

vcpt = fivptr
out
cp (3.116)

Equations (3.97) to (3.116) together form the optimisation model rivus, whose optimal
solution yields the minimum cost “? and the corresponding infrastructure network capacities
and operation pattern.
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3.5.4 Possible model extensions

Basic principle For increased simplicity, all parameters only have the minimum amount of
domain sets. For example, all cost parameters only depend on the commodity c and process
p, but not on location e. Any additional dependency, like a vertex-dependent peak demand
scaling factor svct can be readily added, if only one can provide sensible data that exhibits
significant differences.

Process locations Processes may be located in any vertex in the presented form. For
the case study in this thesis, this complexity is not prohibitive and allows to discover “phase
changes” from central to local heat generation more easily. For more large scale model
applications, a constraining vertex subset of Vp per process (or one set for all processes) could
be easily added, for which the capacity expansion variable  vp may assume a non-zero value
(or is defined at all). That way, the model should scale to higher number of vertices – |V | > 103

– on desktop hardware.

Redundancy By including availability parameters for various model components like in model
dhmin, outages of processes, sources or (critical) transmission edges could be modelled.
This would allow for cross-sectoral infrastructure planning with proven redundancy against the
specified outage types.



Chapter 4

Case studies

The purpose of mathematical programming
is insight, not numbers.

Arthur M. Geoffrion (in 1976)

This chapter describes a series of case studies that were executed over the course of several
years, using the models described in the previous chapter. Figure 4.1 shows their locations
on a map within the outline of Germany. Each location and study highlights a different aspect
of modelling energy systems, starting from a single-commodity (district heating) network and
then moving towards multiple commodities. Due to the use of optimisation models, all studies
have in common the (assumed) existence of a planning agent. A planning agent implies that all
actions and decisions of the model are coordinated in a way to accomplish a globally optimal
outcome, even if individual parties would suffer disadvantages compared to today’s situation.
How and whether the behaviour of such an entity can be realised, either through regulatory
or deregulatory measures, is beyond the scope of this thesis. In contrast, these case studies
serve the purpose of gauging whether under idealised conditions, such planning could uncover
substantial benefits to justify more detailed (and complicated) investigations. This page lists a
short summary of all case studies, followed by a detailed discussion of each case study in the
following sections.

In Frankfurt, district heating network expansion planning was conducted using model
DHMIN. In this study, the model was first applied on a large dataset. A key feature of this
study was the measured gas consumption data. The consumption data allowed to calibrate the
baseline estimation for the city’s total heat demand. Based on this calibrated demand, several
future demand scenarios were derived. Through collaboration with RWTH Aachen, network
planning for all three sectors gas, electricity and district heating were performed in parallel.
The study allowed the city utilities to independently verify the viability of their in-house network
planning for the next decades.

In Munich, first the western region (Pasing, Westkreuz) was investigated with model DHMIN,
as a reference plan had been published by SWM for that area. This study had the goal to
test how close an optimisation model, only equipped with a roughly estimated heat demand
distribution, could match the published reference in terms of network topology and coverage.

The next study then investigated the economic potential of using district cooling in the
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Haag i. OB
Munich

Frankfurt

Figure 4.1: Location of case studies in Germany

city centre of Munich using model dhmin. This model allowed to construct the cost-minimal
network topology, while being fail-safe against the outage of any single cooling location, thus
being (n-1)-redundant. Another remarkable property of this study is that by simply changing
technical and cost parameters, a different energy carrier could be modelled.

This insight is then generalised by the development of model rivus, which is able to plan
an arbitrary number of energy carrier networks simultaneously. The last presented case study
in Haag in Oberbayern (Haag i. OB) finally shows the application of two models in combination
to optimise both planning and operation of an energy system. Haag i. OB is the location for
the project EEBatt’s field test of Energy Neighbor, a 200 kWh battery storage container. To
assess the viability of storage technologies like batteries in foreseeable future infrastructures,
two models are used in combination. Model rivus is used similarly to the study in Frankfurt,
but with much broader scenarios to create a portfolio of very different infrastructure types;
different from the Frankfurt case study, all three sector networks are planned simultaneously.
For each scenario, the utility of storage technologies can be assessed and compared. This is
accomplished by coupling two models: first, rivus is used to plan the capacities for transmission
and energy conversion processes in the study region with a spatial resolution. Then, model
urbs uses these capacities as fixed parameters and operates optimally sized storage at a
lower spatial resolution. The outcome is then summarised to gain insight on the different ways
storage could play a role in a future energy system.
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4.1 District heating network (Frankfurt)

From January 2012 to October 2013, Frankfurt based network company Netzdienste Rhein-
Main (NRM) ordered the Institute of Power Systems and Power Economics (RWTH Aachen)
and the Chair of Energy Economy and Application Technology (Technical University of Munich)
to perform a target system study (German: Zielnetzplanung) for Frankfurt’s gas, electricity
and district heating networks. RWTH investigated gas and electricity, while TUM’s task was
concerned with district heating. As the three sectors (gas, heat, electricity) are becoming more
and more connected, interactions among the sectors needed to be considered as well. Obvious
examples are combined heat and power plants (central) and cogeneration units (distributed)
that generate both heat and power, mainly from natural gas. The main results described here
were also published by Schönsteiner et al. [107].

The district network planning was conducted using model DHMIN. In the case of electricity
and gas network, every customer must be connected to both grids if requested. In the case
of district heating networks, the supplier may decide whether to develop a given district or
not. Therefore, the district heating network offers the highest flexibility (and uncertainty) in the
future planning of the network structure. The key insight that allowed model DHMIN to be used
on a full city was the roughly affine relationship between thermal pipe capacity (in kW) and
the specific investment costs for its installation (in e/m). Before, each possible pipe diameter
had been modelled with a separate discrete decision step, which multiplies not only problem
size, but also cuts the solver from the possibility to exploit the well-known structure encoded
in the energy conservation constraints to derive viable minimum pipe sizes. By introducing a
continuous pipe capacity variable, the number of decision variables comes down to one per
edge, greatly reducing problem size and computation time (cf. section 3.3).

4.1.1 Input data

In a first step, the official cadastral map of Frankfurt was used to map partly measured, partly
estimated district heating, gas and electricity consumption data (referenced by address points)
to physical buildings. This data assured that all planning decisions were derived from the best
available knowledge about the demand side.

Secondly, the official street register was processed and converted to a street graph. This
conversion was in part executed by using the street skeletonisation algorithm described
in section 2.4.3. However, in the historic city centre, the automatic processing lead to an
undesirable honeycomb effect. That means, that the street graph edges resembled rather a
hexagonal grid than the actual street lines. The objecting region was then manually cleaned,
so that the street graph closely followed the street pattern. This process lead to a final street
graph with 9471 vertices and 13 805 edges.

As a third step, the building demands were aggregated to the nearest street graph edge to
reduce the spatial resolution from over 100 000 buildings to the spatial resolution of the street
graph. The resulting street graph had a complete length of 1591 km and a raw summed heat
peak demand of over 4 GW. With an approximate heating period of about 1800 h per year this
equals 7.2 TWh of annual heat demand. This amount and distribution form the main input to
the following scenario development.
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(a) Complete city (with plants) (b) Historic centre (focus region)

Figure 4.2: Target district heating network in Frankfurt for scenario CON in the year 2025

4.1.2 Scenario development

For the two years 2025 and 2050, three different demand scenarios each were investigated.
The first scenario was based on a business-as-usual extrapolation of today’s (partly measured)
demand distribution, called conventional or CON for short. In it, foreseen growth trends for the
building stock were extrapolated linearly. The two other scenarios, called ECO+ and ECO++,
made more and more progressive assumptions on energy related actions of the general public:
these include the adoption of distributed heat generation from small cogeneration plants or
domestic units, use of electric heat pumps, increased thermal insulation of buildings, and finally
an uptake of electric vehicles.

Each of these demand reductions was quantified, in part based on existing studies, in part
by conducting own analyses. This work was conducted by colleagues Karl Schönsteiner and
Markus Wagner at the Institute for Energy Economy and Application Technology, and thus is
not described here further. The following discussion instead focusses on district heating and
especially aspects of model development.

4.1.3 Results

Figure 4.2 shows resulting optimal target networks for the scenario CON, together with the
location of existing and planned district heating plants for the target year 2025. In total,
9 heating plants are located within the study region. Three plants are located near the city
centre, two plants at the airport. The remaining four plants are spread over the other districts
suitable for district heating. The location and size of the major pipelines resembles today’s
structure. All heat generation plants are used to their full capacity, i.e. the heat generation
capacity is the limiting factor for the heating network size, not the lack of development area.
The plant locations are connected via a backbone network with higher capacity than necessary
for a simple supply of a plant’s nearest demands. Instead, this backbone has two benefits:
first, it serves as a capacity reserve, allowing other plants further away to satisfy off-peak load.
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Figure 4.3: Relative cost error for individual pipe segments, compared to closest discrete
available pipe diameter. Plot shows individual error for each pipe segment, sorted ascending
by error value. While individual segments have considerable error (±10 % or more), the overall
error cancels out almost perfectly (1 %).

Secondly, it allows for using more efficient plants in base load operation, while less efficient
plants can be used only in times of high load.

The sensitivity of the target network against the foreseen changes is small. In all investi-
gated scenarios, the same major network structure remained cost-optimal. Only the extent of
the minor distribution lines changed slightly. For lower demand densities in scenarios ECO+
and ECO++ in the year 2025, a slightly larger area around the city centre has to be developed
in order to fully utilise the heat generation plants. The only exception to this observation is
scenario ECO++ in 2050. There, the projected heat demand density is reduced so far that not
enough viable development area is left to use up all producible heat.

This case study also gave the opportunity to quantify the error that was introduced by
linearising the actually discrete cost function. Figure 4.3 shows the result of an error analysis
performed on the level of individual pipe segments that were to be built due to one of the
optimisation results.

The main insights gained from this project are two-fold: first, the linear investment cost
function of model DHMIN is precise enough to mimic the planning behaviour of human expert
planners, when equipped with the same demand data as a basis. The second insight is that
lack of sector coupling limited the conclusions that could be drawn from the individual models.
For example, the district heating planning was done purely from a cost-revenue perspective for
that single energy carrier, with pre-defined locations of heat generators. While this hypothesis
(fixed heat generation locations) is quite valid for existing heating networks or in short- to
mid-term projections, a long term planning should be able to determine favourable size and
locations of energy conversion processes. However, this requires that all relevant energy
carriers (electricity, heat, natural gas) are included in a single model.

This desire to model all energy carriers with a single model in high spatial resolution was the
motivation for model rivus, whose application is shown later in case study Haag in section 4.4.
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4.2 District heating network (Munich west)

While the previous case study showed the suitability of the model for large input data sets, it
could not be used to strictly validate the planning decisions made by the optimisation model
due to lack of an independent reference plan. This case study, originally published as a paper
in 2014 [24], has the benefit of such an independent reference. Additionally, this study only
relies on publicly available information for preparing its input data.

Munich has a huge district heating network with a total length of about 800 km. The
network delivers about 4 TWh of thermal energy per year according to the city’s municipal utility
company Stadtwerke München (SWM) [113]. Due to a large area with high building density,
development of district heating is expected to remain profitable for decades to come. Therefore,
expansion projects for the district heating network in the outer districts have been and are
being planned and realised.

SWM had published an extension plan for their district heating network in the west of
Munich [112]. Figure 4.4 shows the location of the extension region within Munich, highlighted
in red. Unfortunately, the original plan is no longer available online. However, figure 4.5(a)
shows a reproduction of the original extension plan. The three marked source vertices are
(A) the connection to the remaining district heating network, (B) the CHP plant of public baths
and (C) an unlabelled heat source. That last heat source is used for scenario WEST. With this
reference in place, the question to be answered in this case study is: can a simple optimisation
model like DHMIN reproduce the same or at least similar decisions as the published plan,
when equipped with an only crudely estimated heat demand?

Figure 4.4: Area of investigation for case study Munich west within Munich. Data: OSM [91]
.
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4.2.1 Data preparation

Heat demand

The main determinant for the optimisation model is the density of heat demand. This section
describes the process for estimating this density from publically available data only. The
spatial basis is a database export from the OSM project. Within the study area, it contains
a total of 9662 building outlines. Building use is assigned from larger landuse polygons, if
no per-building classification is already present. The resulting building typology (with over
20 types) is then reduced to six use types (residential, commercial, retail, industrial, school,
hospital) with significant total building area. Figure 4.5(b) shows the distribution of buildings
and their type.

While the building outline is a rough approximation for the gross floor area, the height of a
building is obviously needed as well to estimate the total area to be heated. These buildings
heights were visually assessed in manually drawn areas, shown in figure 4.5(c). During this
step, obviously wrong landuse information of some buildings were corrected. Table 4.1 shows
the resulting counts, cumulated area and area-specific heat demand per building type. The
heat demands were derived from average demand statistics for private households [28] and
the commercial sector [60]. Given the high uncertainty in estimating the building areas, these
values are sufficiently accurate.

The building heights are not yet mapped with sufficient coverage in OSM. Therefore, the
number of floors per building nb was visually assessed from aerial images that can be accessed
on Google Maps [37]. This attribute was not assigned individually to each building, but by
identifying regions of approximately homogeneous building types. These regions were then
traced manually and assigned a representative building height. The resulting division is shown
in figure 4.5(c).

If the total heated area Ab of a building would now be calculated by multiplying the area
of the building outline Apoly

b with the number of floors, the resulting area would in general
overestimate the real area because it includes exterior walls, interior walls, and unheated
rooms. Therefore, a correction factor zb is introduced to correct for that bias. Its definition is
drawn from an article about remote sensing for estimating heat demand [32]. Its value depends
on the number of floors of that building:

zb =

8>><>>:
0:75 nb ∈ {1; 2; 3}
0:80 nb ∈ {4; 5; 6}
0:85 nb ∈ {7; 8; 9; 10}

(4.1)

Thus, the total heated area Ab for a building b is given by the expression

Ab = A
poly
b nbzb. (4.2)

The resulting heat demand density distribution is shown in figure 4.5(d).

Street network

The street network is the geographic basis for the planning decisions. The underlying graph
was also extracted from the OSM database export. The raw way segments were first filtered



124 4. Case studies

Street
DH pipe

Source vertex

AB
C

(a) Reference plan. Data: SWM [112]

(b) Building outlines with usage type. Data: OSM [91]

(c) No. of building levels. Data: Google Maps [37]

(d) Heat demand density, estimated

Figure 4.5: Input data for case study in Munich West



4.2. District heating network (Munich west) 125

Table 4.1: Building Types and Heat Demand Parameters

Building type Count Area hk Hk

103 m2 W/m2 kWh/(m2 a)

Residential 9263 6502 80 140
Commercial 211 661 80 100
Retail 59 308 100 100
Industrial 79 370 80 80
School 17 70 80 100
Hospital 8 58 100 200

by the value of the attribute highway and restricted to the values motorway, trunk, primary,
secondary, tertiary, residential, or one of the corresponding types with the suffix _link.

The filtered street segments were then processed by the skeletonisation algorithm de-
scribed in section 2.4.3. In this study, the buffer distance was set to 20 m, and the simplifcation
tolerance to 15 m. The resulting graph consists of 1112 vertices and 1630·2 edges.1

Finally, the estimated per-building heat demand is aggregated to the skeletonised street
graph by nearest distance. The set Ni j refers to the buildings b which are closest to that edge:

Ni j = {b ∈ B | b is closest to ei j}

The per-building areas Ab are then weighted with the corresponding specific heat demand
parameters from table 4.1 for peak hkb and for annual Hkb demand are aggregated to per-edge
demand values. kb here refers to the building type k of a certain building b.

di j =
X
b∈Ni j

Abhkb (4.3)

Di j =
X
b∈Ni j

AbHkb (4.4)

The total annual heat demand in the case study area amounts to 1129 GWh of thermal
energy. It is distributed over the street graph with a total length of 183 km. As roughly indicated
in figure 4.5(d), this distribution is not uniform, but decreasing exponentially. Over 21 km of
street segments have no associated heat demand.

4.2.2 Scenarios

Table 4.2 sets the technical and economic parameters used for both of the two investigated
scenarios BASE and WEST. Investment cost parameters were estimated from experience: fixed
investment costs of 1000e/m and variable investment costs of 0.05e/(m kW) are estimated
to be rather high, in order to err on the side of a more conservative planning result. The
annuity factor u is derived from an interest rate of 6 % and a depreciation duration of 40 years,
a typical conservative estimate for the commercial lifetime of DH pipes. Heat generation costs
of 3.5 ct/kWh and a revenue of 7.5 ct/kWh are representative price assumptions.

1The factor two is caused by using directed edges in model DHMIN.
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Table 4.2: Parameter values for the case study in Munich west

Name Unit Value

cfix e/m 1000
cvar e/(m kW) 0.05
com e/(m a) 10
cheat e/kWh 0.035
crev e/kWh 0.075
u 1/a 0.067
wfix W/m 20
wvar W/(kW m) 0.0002
Tflh h/a 1800
b 1 0.7
q 1 0.7

In scenario BASE, only source vertices A and B from figure 4.5(a) are available. Vertex A
represents the connection to the city centre and has a maximum capacity of 600 MW, vertex B
is a public bath’s heating plant with a capacity of 9 MW and vertex C has a capacity of 0 MW

In scenario WEST, the third source vertex C is changed to 250 MW to demonstrate the
effect of a large local heat plant in the West of Munich.

4.2.3 Results

Table 4.3 summarises the main results for both investigated scenario BASE. 601.2 GWh of heat
are supplied, which equals about 76 % of the connectible heat demand. In scenario WEST,
this value increases to 661 GWh or to about 84 % of the connectible heat demand.

The street graph has a total length of 183 km. In scenario BASE, the total network size is
85 km or 46 % of the total length. However, it must be remembered that over 12 % of the total
street graph length have no associated heat demand. In scenario WEST, the total network size
increases to 95 km or 52 % of the street graph length. Not surprisingly, this expansion of the
network size concentrates in the western part of the the study area, since this is where the
new source vertex is located.

Figure 4.6 shows the network structure for both scenarios graphically. In scenario BASE, a
tree network with root in source vertex A connects to the demand clusters in the central north
of the study area, before branching out to connect the high-rise buildings in the north-west (cf.
figure 4.5(c)).

The thermal network losses increase from 7 % to over 10 %. This increase is caused by
the higher share of pipes with small diameters (capacities) in scenario WEST; with the chosen
values for the loss parameters wfix and wvar, the shorter average transport distance is not able
to compensate the – on average – smaller distance from heat source to demand.

A visual comparison of the cost-optimal pipe network in scenario base shown in figure 4.6(a)
to the published reference planning in figure 4.5(a) shows: the major topology of the optimised
network, i.e. the locations pipes with capacities of 10 MW and higher, resembles the reference
plan very well, with the exception of Neuaubing in the south-west of the study area. However,
this difference can be lead back to the lack of coverage in the building dataset and the difficulty
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Table 4.3: Summarised optimisation results

Scenario

Name Unit BASE WEST

Total pipe length km 85.2 95.4
Relative thermal loss % 7.0 10.1
Supplied heat GWh 601.2 660.8

Annual invest cost Me 8.0 8.3
Operation & maint. Me 1.8 1.9
Heat generation cost Me 22.5 25.5
Heat revenue Me –45.1 –49.6

Cost balance (z) Me –12.7 –13.9

of correctly estimating heat demand for the commercial and industrial sites in that area. Areas
with good coverage in the building dataset match quite well.

To investigate the impact of the connection quota parameter q on the BASE scenario results,
a sensitivity analysis was conducted. For ten values of q ∈ {0:1; 0:2 : : : 1:0} the network
optimisation was performed and the total supplied heat tabulated against this parameter. The
resulting graph is shown in figure 4.7. It can be seen that the relationship is nearly linear, with
next to no economic district heating for a connection quota of q = 0:1. The diagonal line shows
the connectible heat demand for each connection quota value, the horizontal line the total heat
demand.

4.2.4 Discussion

In the previous case study in Frankfurt, model DHMIN was provided with (confidential, but)
accurate data on the heat demand situation in a city. In this case study, the heat demand
was crudely estimated solely on public data. Nevertheless, like before, the heating network
returned by the solver closely matched a reference. In other words, a simple MILP model can
be used to generate a first approximation for a given planning task with surprising accuracy.
Despite the underlying optimisation problem being NP-hard, state-of-the-art solvers handle the
sparse problem instance quite well and generate reasonable layouts within minutes even for
thousands of discrete decision variables. It can be concluded that model DHMIN is useful to
identify (or rule out) regions for possible network expansion plans.
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(a) Scenario BASE

(b) Scenario WEST

Figure 4.6: Optimal district heating network topologies ıi j in Munich west
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Figure 4.7: Total supplied heat ( ) for different connect quotas. The diagonal line ( ) shows
the connectible portion of the total heat demand ( ).
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4.3 District cooling network (Munich centre)

This case study has been conducted in collaboration with Patrick Krystallas from SWM,
Munich’s municipal utility and published as an article in EuroHeat & Power [63]. Here, the
additional features of model dhmin (compared to DHMIN) allow to investigate redundancy
requirements for the availability of cooling stations. Economic analysis is also improved, as
the trade off between peak load satisfaction and annual demand revenue is more precisely
represented. The redundancy requirement allows for planning a district cooling network that
can satisfy almost all cooling demands even when any single cooling station is non-operational
at a given instant.

It must be pointed out that a model developed for district heating is now used for planning
a district cooling network, just by adjusting its parametrisation for costs, revenues and losses.

As this study was conducted with partially sensitive data, all data presented in this chapter is
modified. This measure is to protect sensitive information, while keeping the central conclusions
intact.

4.3.1 Input data

The point of this study is contrary from the previous one on district heating, not only in
temperature. Instead of publicly accessible building data, planning assumptions were used as
input to the model. The underlying spatial representation was digitised from a hand-drawing of
coarse locations of large cooling demands. The supply side is represented by a list of existing
(Stachus) and planned (e.g. Isar) cooling plants. Internal production costs for cold water,
together with expected retail prices for cooling energy were used as cost parameters.

The study area is located between the following points of interest (POIs): Central station in
the west, University (LMU) in the north, river Isar in the east, and Sendlinger Tor in the south.
The total assumed cooling demand is estimated about 100 MW and the maximum capacity of
all cooling stations around 125 MW.

The locations of cooling plants (blue and green points) and cooling loads (red lines) are
displayed in figure 4.8. There are seven potential cooling stations considered in total. The
loads are peak cooling demands of potential customers (measured in MW), aggregated to
low spatial resolution. These consumers are mainly commercial entities, as space cooling
is not yet common in the residential sector. These peak loads are expected to occur only
during the hottest days of the year, analogous to the peak electricity or peak heating demand
during winter. As with all central infrastructure, the network capacities must be planned in
order to satisfy peak load. Note that none of the cooling loads must be satisfied. Instead, the
optimisation identifies profitable consumers for the given cost and revenue assumptions.

The white and red lines form the arcs A of the graph of possible pipe routing options, while
all intersections and cooling stations form the vertex set V . Lengths are calculated as direct
point to point distances. This level of detail is sufficient, as the main source of insecurity lies in
the parametrisation of the pipe investment costs and the generation costs for cooling energy.
These are calculated by the sum of running OPEX and depreciated CAPEX using the annuity
factor from equation (2.34).
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Figure 4.8: Locations of possible cooling stations ( ) and cooling demands ( ) in case
study area ( , labels in kW) Munich centre. Background map: OSM [92]

Concerning the costs of cooling energy: three of the seven considered cooling stations have
watercourse access: the existing plant at Stachus with a capacity of 5 MW and a hypothetical
cooling plant near river Isar with 60 MW of maximum cooling power (modelled as two sources
with half the capacity each) have lower production costs. The running watercourse can either
be used for direct cooling, especially during winter, or as a heat sink for more efficient re-
cooling. The other four cooling stations are assumed to use air for cooling the working fluid of
the cooling stations. The sites were pre-selected considering technical (space) and practical
(noise) constraints.

Operational and investment costs are chosen according to experience with the existing
cooling network around the existing cooling station at Stachus. Due to the central location,
fixed investment costs for pipe networks are unsurprisingly expected to be much higher than
outside the city centre (as assumed in the previous case study in Munich west).

Technical parameters are assumed as follows: the connect quota q is set equal to 1, or
100 %. That means, any single demand location must either be satisfied completely, or not
at all. Concerning the concurrence effect parameter b, it is set to a value of 0.9, higher than
typical in district heating. This is due to the bigger size of a single costumer and the higher
temporal correlation of peak cooling demands. The maximum possible pipe capacity Cmax

i j

is set high enough to not interfere with the planning decision. No existing pipe network is
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Table 4.4: Time steps in case study Munich centre

Name Scaling Length Comment
st wt (h)

Peak 1.0 1 Peak demand, full availability
High 0.8 1000 High demand, full availability
Half 0.5 1200 Half of peak demand, full availability
Outage (×7) 1.0 1 Peak demand, ait = 0 for one source

Table 4.5: Summary of optimisation results in case study Munich centre

Indicator Value

Total pipe length 12.5 km
Supplied cooling peak load 100 MW
Supplied cooling energy 140 GWh
Relative thermal network losses <1 %

assumed, i.e. gi j = 0 for all arcs.
Time steps are summarised in table 4.4. Time step peak has a full scaling factor st = 1 and

thus ensures that all considered loads can be satisfied simultaneously. Its low duration wt = 1

ensures that this moment does not contribute to the running costs. This is the task of the two
time steps high and half. They have lower scaling factors of 0.8 and 0.5, but durations of over
1000 h each. Together, they sum to a cooling full-load duration

P
t∈T stwt of approximately

1400 h. The scaling factor and weight of the partial load time steps has a purpose: in each
time step, a different configuration of operational sources can be chosen. The last time step
outage actually represents seven more time steps. For each of them, one of the seven source’s
availability parameter ai t is set to zero, so that the other sources must be able to satisfy all
connected demands. These time steps are what forces the model to create a network structure
that has a (n − 1)-redundancy with respect to the cooling stations. This requires that there are
enough cooling station capacities available; otherwise, the model would become infeasible.

4.3.2 Results

Table 4.5 summarises key indicators of the optimisation result. With the present cost as-
sumptions, it is profitable to satisfy all of the given cooling loads of 100 MW or 140 GWh. The
total pipe length of 12.5 km does only include the distribution network, not connections to end
consumers that would have to be planned individually.

Figure 4.9 shows the optimal locations of district heating pipes and their capacity. Again,
all demand locations are connected to a tree-like distribution network. The pipe capacities
are sized sufficiently large so that all cooling loads can be met, even in case a single cooling
station is not available. The main backbone of the network are the two cooling stations in
the east of the study area. Their operation costs are slightly cheaper due to the availability
of a watercourse. The most northern cooling station with a capacity of 35 MW is connected
with a pipe capacity of 30.5 MW. It is only used as a fallback option if one of the two eastern
cooling stations has an outage. This result shows that the capacity-independent investment
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Figure 4.9: Optimal district cooling pipe capacities ( , labels in kW) in Munich centre:
Cheapest cooling source at Isar (east) forms backbone of minimum spanning tree to all loads.
Background map: OSM [92]

costs for pipe construction are the dominant factor when compared to the capacity-dependent
cost component. The network structure also indicates that thermal losses are not much of a
problem at the distances faced in this case study. This fact will become even more obvious in
the next paragraphs, which compare the thermal power flow through this pipe network at two
different instances.

Figures 4.10 and 4.11 show the actual power flow in two of the ten modelled time steps.
The first image shows the operation of cooling stations when all plants are available: the main
cooling power (60 MW of 90.1 MW) is provided by the eastern Isar stations. In case the reader
is wondering why a total cooling supply of just over 90 MW is sufficient to satisfy 100 MW of
cooling peak load: the concurrency effect (parameter b in model dhmin) is assumed to reduce
the peak load “seen” by the network by 10 % to just 90 MW.

In figure 4.10, the northern cooling station is not used at all due to its higher costs for
re-cooling, even though thermal losses would be lower due to the proximity of the adjacent
load of 30 MW. Only when one of the two Isar cooling stations is not available, as shown in
figure 4.11, the northern cooling station is activated.

It goes without saying that this case study cannot replace a hydraulic simulation or a
detailed operational planning of cooling station equipment. However, this model is suitable
for identifying (or, in this case, confirming) a cost-optimal network structure with respect to
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Figure 4.10: Optimal district cooling power flow in time step All sources working ( , labels
in kW): cheapest sources at Isar (east) and Stachus (west) fully used. Background map: OSM
[92]

revenue, while satisfying both basic technical and advanced reliability requirements.

4.3.3 Discussion

All in all, this case study shows two main results: first, development of district cooling in
Munich’s centre is profitable, especially in regions with high cooling demands from commercial
buildings. Secondly, the model shows that a combination of different re-cooling options (both
water and conventional air cooling) is needed in order to have both cost-efficient and reliable
cooling supply throughout the supply area.
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Figure 4.11: Optimal district cooling power flow in time step Outage of an Isar source ( ,
labels in kW): fallback capacity at university (north) used. Background map: OSM [92]
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4.4 Multi-commodity network (Haag)

Haag in Oberbayern (Haag i. OB) is a market town in Upper Bavaria about 50 km east of
Munich and has about 6000 inhabitants. It was chosen for this case study because of EEBatt
[116], an interdisciplinary research project at TUM concerned with energy storage. The field
test Energy Neighbor of its prototype stationary battery storage system is being conducted in
Moosham, a small village located north-west of Haag. This case study is to investigate how a
widespread use of such batteries could influence the planning and operation in possible future
energy systems. For this type of investigation, the idealisations inherent to optimisation models
are beneficial, as they allow to establish an outer bound of feasibility for the combination of the
investigated technologies.

This case study combines the two models rivus and urbs on the same study area. Fig-
ure 4.12 shows how both models are coupled. First, model rivus is used to determine different
infrastructure topologies for a variety of scenarios. The optimisation result yields capacities for
energy conversion processes and transmission capacities. Then, urbs uses these capacities
as parameters in aggregated form. Using hourly load data, and time series for intermittent re-
newable energy sources, it is then investigated under which economic and technical conditions
energy storage changes the use of the given capacities. In scenarios in which storage use
changes the use of transmission capacities significantly, this information is then propagated
back as a change in peak load that must be satisfied by the distribution network. Finally, rivus
is used with that reduced peak load to quantify the possible cost saving and compare it to the
additional investment on the side of storage technologies. Depending on the cost assumptions,
one can either estimate lower or upper bounds on when storage would be beneficial.

This case study puts emphasis on the principle of coupling two optimisation models together
and (solving) the complications that arise from such an endeavour. The parameter values used
in these scenarios however are mostly only indicative values, so any results should not be
interpreted as if they would allow factual conclusions about desirable design choices for the
actual energy system of Haag. To allow such recommendations, much more work has to be
put into properly calibrating all parameter values and technology choices.

urbs

– Focus: high temporal resolution
– Cost-optimal sizing and use

of processes
– Processes for energy conversion
– Processes for energy storage
– Demand as hourly time series

rivus

– Focus: high spatial resolution
– Cost-optimal sizing of capacities
– Capacities for conversion processes

(local/central)
– Capacities for transmission lines
– Demand as peak and annual load

Capacities used

Capacities to be installed

Figure 4.12: Model coupling of rivus (network sizing) and urbs (storage scheduling)
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The use of two models with combined high temporal and high spatial resolution implies that
also input data – mainly electricity and heat demand – must be prepared in both high temporal
and high spatial resolution.

Using buildings as the finest spatial granularity easily exceeds the resolution of rivus in
the spatial dimension, as it is designed to operate on street segments, i.e. the edges e ∈ E
of the street graph. Therefore, using statistical estimates of the per-building consumption are
considered sufficiently accurate to synthesise electricity and heat demand at street resolution.

To generate demand time series for using in urbs, building load curves by usage types
are required with a resolution of about one hour. The best way to synthesise these load
curves would have been to implement a simple thermal building model and running it with local
climate data. Instead, combined load curves for buildings were required, as isolated heating
or electricity load curves are not sufficient to capture the temporal correlation between both
demands. Therefore, certain lengths had to be gone in order to find a repository of suitable
load curves and identify a set of time series that could be representative for Haag i. OB. For
the lower spatial resolution, the study area has been manually divided into 12 clusters, whose
definition is given later in section 4.4.3. First, generating the spatial demand pattern for Haag
i. OB is discussed.

4.4.1 Data preparation for rivus

Like in previous case studies, the OpenStreetMap database [91] serves as the foundation
for estimating the spatial energy demand distribution in the study area. Figure 4.13 shows
the location and sizes of all mapped buildings in Haag i. OB as of January 5th, 2015. The
outward villages Diezmanning and Moosham are shown in the map inserts. The total number of
mapped buildings in the study area amounts to 1738. The two diamonds show the (assumed)
locations of sources for electricity and natural gas. For electricity (yellow), the nearest point
to the next mapped substation is marked, while for natural gas (brown) the nearest mapped
pipeline determines the source position.

Street graph

Like in the case study 4.2, the original street network as shown in figure 4.13 is first reduced in
detail to an abstract street graph, using the skeletonisation procedure described in 2.4.3. The
parameters used here were determined empirically and are 30 m for the buffer distance lbuf,
15 m for the dissolve length ldis and 30 m for the simplification threshold lsim.2 The resulting
street graph can be seen later in part in figures 4.15, 4.17, and completely in 4.18. It contains
153 vertices and 203 edges with a total lengths of approximately 36.2 km. With this graph in
place, the next step is to estimate the spatial energy demand distribution.

Demand density

The peak power demand dec per commodity c and per edge e is determined as follows. The
most important determinant of the peak demand is certainly the gross floor area of adjacent
buildings. For a rough overview, an aggregate value of building areas per cluster is given in

2The full procedure is documented in file data/haag15/streets_to_edge.py in repository rivus.
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Figure 4.13: Map of mapped buildings in Haag i. OB. The two map inserts are located in the
north west of the main part and connected by the green/blue triangle symbols.
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Figure 4.14: Aggregated building areas per cluster and OSM building type in Haag i. OB

figure 4.14. The clusters are manually defined districts whose definition is shown in figure 4.18
and will be used later as the spatial resolution in model urbs. As can be seen from the building
area statistics, residential and industrial areas clearly dominate in terms of quantity. Each
individual building’s gross floor area Ab is multiplied by a specific heat demand hkc , depending
on the building type and the demand commodity. Table 4.6(a) lists the specific values that were
assumed here. Here, they are stylized values that roughly correspond to the characteristics
of the building type. So for example, residential has a two to one ratio between thermal and
electrical peak demand, while industrial has almost equal peak demand for both thermal and
electrical energy. That said, the error on individual buildings will still be in the order of 10 % to
100 % for residential [17] or even higher for the individual industrial sites. It is beyond of the
scope of this case study to improve upon the estimated demand data, but only use roughly
indicative values. The gist from case study Munich west in section 4.2 was that it is not about
absolute precision, but getting the scale and proportions of demand distribution roughly right in
order to make reasonable planning decisions.

Although rivus does not put much emphasis on temporal resolution, a small amount of
time steps with durations (weights) and scaling factors must be provided nevertheless. Using
the method of discretising multiple load duration curves, as discussed in section 2.4.2, the
time series of site Zentrum is reduced to five clusters that represent the most representative
operation points for the network. They are summarised in table 4.6(b). Peak electricity and
peak heat represent the (probably overestimated) durations of peak demand for the respective
commodity. The three time steps cold, dark and summer reflect very typical load situations
in a very stylised way. They capture the frequency patterns of how often which combination
of loads roughly occur together. The table is not designed to represent actual load situations,
but rather to correctly reflect the total power/energy ratios that occur over the course of a year.
Therefore the scaling factors should not be confused with typical operation points of generation
units, which might deviate from those values.
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Table 4.6: Parameters for estimating spatial electricity and heat demand of Haag i. OB. hkc is
the specific peak demand per building type. Temporal duration wt and magnitude sct scale the
peak demands.

(a) Specific peak demands hkc

Building type Elec Heat

k hkc (kW/m2)

commercial 0.060 0.080
farm 0.060 0.080
garage 0.000 0.000
hospital 0.110 0.110
hotel 0.110 0.110
house 0.060 0.100
industrial 0.095 0.110
office 0.060 0.080
other 0.040 0.040
public 0.060 0.080
residential 0.050 0.110
restaurant 0.090 0.080
retail 0.090 0.080
school 0.060 0.080

(b) Peak scaling factor sct , duration wt

Time step Weight Scaling sct

t wt Elec Heat

Cold 3055 0.41 0.42
Dark 1339 0.63 0.10
Summer 3708 0.32 0.07
Peak electricity 508 1.00 0.42
Peak heat 150 0.46 1.00

In total, those weights and scaling factors preserve both peak load and annual demand.
The peak load is preserved thanks to the maximum scaling factor equal to one per commodity
for each commodity. The annual demand is preserved by the values of the time step weights
wt , which in sum are equal to the original load curve.

When the specific peak demands are assigned to all buildings in the study area and then
grouped to their nearest edge in the simplified street graph, the cumulated peak load for
electricity and heat as shown in figures 4.15 and 4.16 follows. (Diezmanning, the small village
between Haag and Moosham cannot be seen in these figures, though.) The total summed
peak demand amounts to 26.7 MW for electricity and 47.6 MW for heat.

4.4.2 Results model rivus

Figure 4.17(a) contains the optimal distribution network and conversion locations for a con-
servative scenario labelled TODAY, in which no electric heating and no heat pumps may be
installed. The resulting topology resembles current infrastructure design patterns, in that
electricity demand is mainly satisfied by a central electricity grid, while heat demand is satisfied
by fossil fuels.

In contrast, figure 4.17(b) shows the infrastructure that results from allowing both heat
pumps and electric heating. One can notice that in this scenario, domestic heat pumps the
sole provider of thermal energy. At total capacity of almost 16 MW is installed to satisfy all
heat demand. An artefact of the high ratio between gas and electricity price of 0.01e/kWh to
0.3e/kWh, together with an attractive low variable investment cost part of 60e/kW (on top
of a base price of 30 000e per unit) leads to the construction of a 5 MW (thermal) gas power
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(a) Electricity peak demand per edge (kW)

(b) Heat peak demand per edge (kW)

Figure 4.15: Map of peak demands (kW) for electricity and heat in Haag i. OB. Own estimation



4.4. Multi-commodity network (Haag) 141

Figure 4.16: Map of peak demands (kW) for electricity and heat in Moosham

plant for base load operation. It continuously outputs 1.3 MW to 1.8 MW electricity in all five
time steps.

When heat pumps are excluded from the technology portfolio, as done in scenario NO

HEAT PUMP, the result can be observed in figure 4.17(c). Still, electric heating, even if assumed
to have much higher investment costs than seen today, is the cheaper option.

Once observed, the reason for this result becomes obvious: saving the investment costs
for a second layer or third layer of distribution network is huge. Therefore, the observed results
stay stable for a wide variety of cost assumptions (both commodity prices and investment cost
changes). Electricity is used as the main energy carrier for transmission, electricity and heat
supply for a wide range of cost parameters. The result is particularly stable if heat pumps are
available, even though their coefficient of performance (COP) is assumed to be very low (< 2).

Some caveats when interpreting this result: It completely assumes that electricity “is
available” in sufficient quantity and quality (as in acceptable GHG emission). This might
or might not be a realistic scenario in the future. Either way, these results are not directly
applicable to real-world planning tasks, as they assume an omnipotent, all-knowing actor.
They neglect personal preferences of consumers and any special requirements or existing
infrastructure. District heating for example, if available already on site, still is an efficient use
of power plant waste heat. Gas heating, if used with efficient equipment, still is on par with a
much more expensive heat pump, that only marginally improves upon emissions, but for much
higher costs. However, at the same rate that electricity becomes less GHG-intense, all power
to heat technologies become more attractive.

In brief, this result could motivate a more detailed rethinking of which kinds of energy
infrastructure are to be installed in future developments of neighbourhoods and districts.
Perhaps, a single (fortified for future demand increase) electric network might be sufficient for
future developments.

4.4.3 Data preparation for urbs

The focus of urbs is on temporal resolution, not spatial resolution. In order to transfer the
capacities planned by rivus, they must be aggregated. Therefore, the installed capacities, as
well as energy demand, must be reduced to a small number of sites. In this case study, the
aggregation target is manually defined by assigning regions of more strongly connected edges
to in total 12 so-called clusters. These clusters are shown in figure 4.18. If such an analysis
were to be repeated multiple times, similar clusters could have also been derived automatically,
either using a traditional cluster analysis or a minimum-cut graph-theoretic approach. The
following paragraphs now describe how energy demand load curves, intermittent supply time
series and installed capacities are assigned to those clusters.
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(a) Scenario TODAY: Full electric grid, satisfying electricity demand; no electric heating is allowed. To satisfy heat
demand, a full gas network is built, used both for local heating gas used for local heating and short range district
heating.

(b) Scenario FUTURE: Heat pumps are allowed. Consequence: no gas network or district heating network are
built. Instead, a stronger electric grid with local heat pumps are used to satisfy all demand. Gas is only used at the
source.

(c) Scenario NO HEAT PUMP: identical to FUTURE, except that less efficient conventional electric heating is used.
Gas is not used except at the source.

Figure 4.17: Transmission and conversion capacities in Haag for three scenarios
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Figure 4.18: Map of 12 manually defined clusters for Haag i. OB. Vertices at edge borders form
the boundaries between clusters.
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Haag i OB
Olympia Airport

Groton New London AP

La Grande Muni AP

Figure 4.19: Three best matching TMY3 station locations (labelled dots) among all 1020
weather stations (unlabelled dots). The latitude of Haag i. OB (DE) is denoted by the dashed
parallel line.

Load curves

In Germany, the so-called Standardlastprofile are an established set load curves for various
that could in principle used for electricity demand. Eight types for commercial loads (called
G0 to G7), three types for agricultural loads (L0 to L2) and one type for residential loads
are available. Unfortunately, for the purpose of this thesis, a simultaneous matching pair of
electricity and heat load curves are needed. One way to proceed could have been to synthesise
a thermal load curve using a simplified thermal simulation of a building. However, this was
deemed to be beyond the scope of this thesis. Instead, another source for representative load
profiles for electricity and heat demand was found:

The American Department of Energy (DOE) has published a huge dataset with load profiles
[120] for 17 building types (16 commercial, 1 residential), synthesised for all the 1020 locations
of the weather stations providing the time series for the TMY3 [85] dataset. Figure 4.19 shows
these locations as dots on the map, as well as the latitude of Haag i OB as a dashed line for
reference. The idea now is to identify location(s), whose meteorological profile is most similar
to that of Haag i OB. The winner is location Olympia Airport, capital of Washington state, with
United States Air Force (USAF) station number 727920.

Figure 4.20 shows an excerpt of the selected load curves for 12 of the 17 available
building types. Table 4.7 shows which building area types (identical to those in peak demand
table 4.6(a)) from the Haag dataset is assigned to which DOE load profile type. This mapping
is called Dk , where k ∈ K is an element of the building type set K. K contains all OSM types,
while Dk returns the corresponding DOE type. For example, for k = “retail”, Dk returns the
corresponding DOE type “supermarket”. Only 7 of the 17 available types are actually used. The
biggest issue with this whole process lies in the fact that typical buildings in Europe and USA
are built from different materials and tend to have different appliances that are used differently.
But as the focus of this study is not about using real, measured (and thus confidential) load time
series, but rather indicative loads that exhibit the general trends of a building in a comparable
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Table 4.7: Matching of OSM building types to DOE load types

OSM type k → DOE type Dk

commercial medium office
farm warehouse
garage —
hospital hospital
hotel small hotel
industrial large office
other —
public medium office
residential residential
retail supermarket
warehouse warehouse

climate, this problem seems acceptable at this point. To summarise: to retrieve a single
DOE load curve value for a given building type k , commodity c at time step t, the notation
LC(Dk ; c; t) is used in the following.

The next step is to combine and scale these load curves for multiple building types so that
they correspond in size to the annual loads derived for model rivus. Mathematically speaking,
this process aims to prepare data for the demand parameter dvct for the commodities electricity
and heat, with the following sets:

V = {Alpenstrasse; : : : ;Zentrum} (4.5)

Cd = {Elec;Heat} (4.6)

T = {1; : : : ; 8760}. (4.7)

To calculate a single value of the demand time series dvct , first some more parameters must
be introduced: the area of all buildings within a cluster v of a certain (OSM) building type k is
referred to as Avk . The specific areal peak demand of that building type for a commodity is
called hkc (W/m2) and listed in table 4.6(a).

∀v ∈ V; c ∈ C; t ∈ T : dvct =
X
k∈K

AvkhkcLC(Dk ; c; t) (4.8)

Fluctuating renewable energy sources

In order to not only see the processes that were planned by rivus satisfying the demands
they were sized to satisfy, urbs is allowed to invest in renewable energy sources, notably
photovoltaics and wind parks. Photovoltaics are allowed in all clusters, while wind parks
may only be constructed in the outer clusters Pipeline, Rainbachstrasse, Suedwesten and
Umspannwerk. The used time series are shown figure 4.21, provided for the location from
a global dataset of capacity factor time series [54], as described in section 2.6.3. For Haag,
the solar time series has (conservative) annual full load hours of 750 h, while the wind time
series has progressive 2700 h and thus overestimates the wind potential available to a town
in Bavaria. The maximum allowed capacities for photovoltaic plants and wind turbine are
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Figure 4.20: Exemplary normalised load curves for TMY3 station Olympia Airport from Jul 28
to Aug 5, plotted in the range 0 to 1 for 12 of the 17 DOE building types

shown in 4.8. The values for photovoltaics are rough estimates from a visual inspection of the
different clusters. The values for wind turbines are set to (arguably) high 2 MW to 5 MW at the
outwards clusters of Haag; it is not expected that Haag will deploy that much wind power. The
assumption is still made to maximise the possible benefit that a storage system could yield, by
increasing the allowed amount of fluctuating electricity generation.

Process & transmission capacities

The installed capacities of conversion processes and transmission between clusters must been
aggregated from the street graph to the cluster level. For conversion processes, the sum of
all capacities on edges/vertices within that cluster are aggregated. Due to the definition of
the clusters being based on edges, there is ambiguity towards the assignment of capacities
constructed on those vertices. A deterministic assignment can be made based on the number
of edges that start/terminate at that vertex per cluster. If this criterion does not yield a winner,
an arbitrary (but deterministic) choice is made.
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Figure 4.21: Capacity factor time series of intermittent renewable energy sources (normalised
to installed capacity). Plot shows daily average (line) and minimum/maximum (area) values,
while the raw data has hourly resolution.

Table 4.8: Maximum allowed fluctuating renewable capacities (kW) for Haag i. OB

Cluster Photovoltaics Wind turbine

Alpenstrasse 300 0
Diezmanning 50 0
Einzelhandel 200 0
Moosham 100 5000
Nord 200 0
Pipeline 300 5000
Rainbachstrasse 400 2000
Reiterstrasse 200 0
Schletter 100 0
Suedwesten 200 3500
Umspannwerk 100 5000
Zentrum 800 0

For the transmission capacities, the sum of all edge capacities that cross the boundary
between neighbouring clusters3 Because it contains the lowest capacities for electricity trans-
mission, scenario TODAY is used as the basis for both scenarios whose results are presented
in the next section.

With these assumptions in place4, model urbs is run on the aggregated input data set.
This discussion only covers two of the finally six scenarios5 that were kept in the final scenario
selection.

3The full analysis script is available as an IPython notebook rivus-cluster-aggregation.ipynb with
inline documentation on https://gist.github.com/ojdo.

4The input parameters are documented in file ojdo/urbs/haag15.xlsx of branch haag15.
5The full scenario definitions are documented as code in file ojdo/urbs/rivhg15.py of branch haag15.

http://nbviewer.ipython.org/gist/ojdo/8b1edfd22be95f4fa251/rivus-cluster-aggregation.ipynb
https://gist.github.com/ojdo
https://github.com/ojdo/urbs/blob/haag15/haag15.xlsx?raw=true
https://github.com/ojdo/urbs/blob/haag15/rivhg15.py
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Figure 4.22: Installed battery storage capacity by cluster in scenario CHEAP BATTERY

4.4.4 Results model urbs

Table 4.9 shows the tabulated energy generation and consumption for the scenarios BASE and
BATTERY CHEAP. Both tables are grouped by cluster (columns) and process (rows), together
with energy transmission among and storage within clusters. The red part of the diagram deals
with heat, the yellow part of the diagram with electricity. Due to the low investment cost for
renewable energies, the maximum allowed capacities for both photovoltaic and wind energy
are exhausted, leading to a significant share of fluctuating available energy production. This
becomes important when assessing the use of storage. Common to both tables, the first three
rows show the annual summed consumption for those commodities. Consumption appears
for demand of electricity and heat. Electricity has a second consumer, heat pumps. The next
block then describes the summed creation of both demands from conversion processes. For
heat, the main generators are district heating plants, followed by heat pump plants.

In both scenarios, the district heating plants installed near the centre of Haag (cf. fig-
ure 4.17(a)) generate most heat. In the other clusters, heat pumps are the main process for
heat generation. Cluster Zentrum also contains the generation for four of its five neighbouring
clusters.

In scenario BASE, the large amount of fluctuating renewable electricity leads to noticeable
amount of unused electricity generation, as the case study model does not include the possibility
to sell excess energy back to an external market.6

An illustrative excerpt of the original form of the results is given in appendix C. It shows
the hourly composition of energy conversion, transmission and storage is shown for all twelve
clusters, both electricity and heat during a single week, or 196 time steps. The full optimisation
duration is a full year, or 8760 time steps.

Figure 4.22 shows the installed battery storage capacity by cluster in scenario CHEAP

BATTERY, in which investment costs for battery storage is reduced by 95 % compared to the
base scenario assumption of 1500e/kWh (annualised with n = 15 a, i = 5 %).

6Another model user has contributed this feature in the meantime, now documented under the name Buy-Sell.
It allows to define price time series for buying or selling commodities.

http://urbs.readthedocs.org/en/latest/buyselldoc.html
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Table 4.9: urbs result energy sums, scenarios (a) BASE and (b) BATTERY CHEAP

(a) BASE
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Figure 4.23: Comparison of cumulated installed capacities with and without peak reduction

4.4.5 Closing the loop

The use of battery capacities installed in scenario CHEAP BATTERY are now compared to
the load in the respective cluster. By calculating the average usage of power retrieved from
battery storage relative to the simultaneous electric load7, an upper bound for the peak demand
reduction can be derived. In the analysed scenario, storage leads to an average reduction of
the load in the range from 5 % to 10 % per cluster. A cursory investigation of the time series
yields that this reduction happens mainly in times of high demand, but not always. If one
optimistically assumes that the average reduction equals an identical figure in terms of peak
demand reduction, the original peak demand estimated for model rivus can be reduced, the
optimisation be relaunched and a possible reduction in network expansion costs be quantified.

With those values, the per-edge peak demand is reduced according to the containing
cluster. In the investigated scenario, the battery storage use manages to reduce the system
cost of the system planned by rivus by 3.0 %. This happens by reducing the cumulated
installed pipe capacity by 14.3 MW (3.2 %), as shown in figure 4.23.

4.4.6 Sensitivity analysis: battery investment costs

To give more context how sensitive the installation of battery storage capacity is to changes
of investment costs, an additional investigation is performed. To better reflect the (lack of)
potential flexibility of distributed heat generation, the additional feature proportional processes
are implemented as a case study specific model modification in model urbs. The following
section first outlines the change and its implementation, then the results of the sensitivity
analysis are presented.

Proportional processes

This section describes a case-study specific modification that was performed on model urbs
after the co-optimisation study described above. The change is related to the local processes

7The exact analysis and result is documented in the IPython notebook urbs peak demand
reduction.ipynb on https://gist.github.com/ojdo.

nbviewer.ipython.org/gist/ojdo/fc8ce7210c189d6d5fa8/urbs%20peak%20demand%20reduction.ipynb
nbviewer.ipython.org/gist/ojdo/fc8ce7210c189d6d5fa8/urbs%20peak%20demand%20reduction.ipynb
https://gist.github.com/ojdo
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Figure 4.24: Installed battery storage capacity by investment costs for 5 % to 100 % of base
case investment costs.

coined hub processes in the context of model rivus. Hub processes represent small, distributed
energy conversion units like domestic room heating or domestic heat pumps. The unmodified
model urbs cannot discern big, central units whose operation can be controlled from small,
distributed processes whose operation cannot be planned by a central entity (at least for the
moment). Instead, these units are assumed to always meet “their” fraction of the aggregated
demand curve of the cluster (vertex) they are located in.

For the three processes Elec heating domestic, Heat pump domestic, Gas heating domes-
tic their main output, i.e. commodity Heat is deemed directly following the respective load in
each cluster proportionally. These processes are summarised in the set Pprop. However, which
fraction of the load is met by the process can be freely chosen by the solver and is captured
by the additional continuous variable ‹vcp ∈ [0; 1]. This rule is equivalent to the following
additional constraint, which is added to function create_model8:

∀t ∈ Tm; v ∈ V; c ∈ Cdem; p ∈ Pprop : ›out
vcpt = dvct‹vcp (4.9)

With this new constraint in place, the operation of any installed domestic heat generation
units is fully determined by the associated demand time series, similar to how the operation
of processes with intermittent input commodities is determined by their capacity factor time
series.

Result

Figure 4.24 shows the cumulated installed battery capacities over the relative change in
battery investment costs. The bar at value 5 % correspond to the previous BATTERY CHEAP

scenario. One can notice that the total installed capacity is reduced from over 20 000 kWh to
just under 6000 kWh. This is caused by the reduced flexibility of the system, triggered by the
less flexible decentralised proportional processes. As expected, higher investment costs lead
to a monotonous decrease in installed storage capacity. At 75 % of the base case costs, no
more capacity is installed. Before that, the remaining installation more and more concentrates
in the isolated cluster Moosham and, below 20 %, Suedwesten.

8The full implementation is available in branch haag15, commit 0257631 in repository ojdo/urbs on GitHub.

https://github.com/ojdo/urbs/commit/0257631280621f511041a9077cd30b0a27ac580f
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Concerning the storage usage, the change to proportional processes has significant
implications. The remaining storage capacity is only used as backup, leading to very low
number (< 10) of annual charging cycles. However, this finding is highly depending on the less
firm assumptions of this case study (fluctuations in weather time series, amount and type of
renewable generation), and thus warrants more investigation for an independent case study
with fewer free parameters.

4.4.7 Discussion

In this case study, an optimisation case study for Haag i. OB has been presented. A hybrid
approach demonstrating the combined use of two models has been demonstrated. First, energy
conversion and transmission technologies were sized using model rivus with high spatial
resolution. Then, using these results as input for model urbs, energy storage technologies
were sized and scheduled with high temporal resolution.

The most limiting factor for the conclusions to be drawn for the actual case study region is
the large amount of assumptions that needed to be taken in order to generate only the demand
data. If that data would be known, the remaining sensitivities (mainly concerning technology
costs and efficiencies) could be handled. Additionally, the presented scenarios are selected to
demonstrate the maximum effect that certain scenario assumptions could make.

That said, one result remains robust against all investigated changes: if green-field planning
is allowed and the availability of (off-site) electricity is sufficient, the additional effort of creating
a second or third “layer” of infrastructure merely for room heating seems not to be favourable
from a planner’s perspective. Even if natural gas is made cheaper, it just increases the amount
local electricity generation. In other words: the status quo of routinely installing gas lines and
electricity networks is more a result of the retail prices for electricity compared to gas rather
than an economic optimum.



Chapter 5

Conclusion

The conclusions of most good operations
research studies are obvious.

Robert E. Machol (1917–1998)

This thesis has presented in total five related optimisation models for planning future and
operating current energy systems for minimum costs. Four case studies have demonstrated
that these models can be used for various planning tasks and identify stable solutions in the
design space of potential future energy systems.

5.1 Summary

The central insight is that conceptually simple optimisation models can be pushed very far, with
the benefit of being able to analyse interconnected systems with many small decisions, which –
by themselves – are modelled with the absolute minimum complexity. By not taking a single
optimisation result of such a model at face value, but by abstracting the results over a range
of inputs (scenarios) and drawing conclusions over result properties that remain stable (or
unstable) over those ranges, more reliable conclusions can be drawn concerning the properties
of the design space at large.

The first two case studies in Frankfurt and the west of Munich have shown that central
heat generation can be cost-efficient when planned individually without considering the other
energy carrier networks. Furthermore, they demonstrate that simple MILP models based on
estimated heat demands are sufficient to draft network plans that resemble those created by
expert planners. The author conjectures that such optimisation models could play an important
role in the pre-planning phase of the planning process for urban infrastructure development.

The result of the final study in Haag allows one tentative conclusion: once renewable
electricity becomes available in large quantities, electric heat generation through heat pumps
could render all other energy distribution networks superfluous. While the economics look
different in today’s existing building stock and with today’s electricity mix, a greenfield planning
scenario with CO2-lean electricity mix is hard to convince to plan more than one energy
distribution network. Under such a regime, only very cheap electricity storage technologies
could prevail against the ubiquitous option of “storing” electricity in form of thermal energy.
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Again, this result is only valid under the anticipated move away from fossil fuels in electricity
generation and where no gas network is pre-existing.

5.2 Limitations

Naturally, conclusions drawn from highly simplified models do not come without caveats.
Foremost, commodities are modelled as opaque energy carriers without technical properties:
no voltage or current for the electricity grid, no temperature or fluid dynamics for district heating
pipes, no pressure drops and flow speeds for gas networks are modelled. Adding energy carrier
specific equations to these models could greatly increase applicability (and complexity) of the
resulting models. The focus of this thesis was to create openly available, well documented and
generic energy models, so that these tasks could be carried out on a stable foundation.1

Another limitation for the planning decisions drawn by the presented models concerns the
omission of inter-temporal optimisation for investment decisions. In this thesis, only optimal
snapshots for target system configurations are shown. Sampling points for identifying ideal
technology investment pathways to reach those targets are left open.

5.3 Outlook

The two published models urbs and rivus, as well as the documented modelling workflow and
data analysis scripts hope to make a contribution to the energy system modelling community.
The author hopes that these models will find their place in the growing ecosystem of open
source optimisation models. The development of other open source energy optimisation models
in organisations like openmod will play an important role in increasing the reproducibility and
maintainability. By making it easier for following researchers to independently verify current
modellers’ findings, the standards for future research can improve in the long run.

1Linearised DC load flow equations for power networks [19] are currently being implemented as an optional
feature for transmission technologies in urbs (issue #41).

https://github.com/tum-ens/urbs/issues/41


Appendix A

Common model structure

This appendix presents the underlying structure that is shared by the three models dhmin,
urbs, and rivus. This structure consists of the directory layout, common file names, code
structure, input data format and function names in the model code.

A.1 File structure

This is the minimum file structure shared by all models. The word modelname is replaced by the
actual model name. Model urbs uses the minimum form of this template with only three files.
It consists of an input data spreadsheet, the model itself and a run script:

1 urbs/

2 example.xlsx

3 urbs.py

4 runexample.py

The two models dhmin and rivus consist of more files. They store their geographic input
in a subdirectory data/location with two files vertex.shp, edge.shp1. rivus also has the
additional building.shp, which is used for aggregating the energy demand from building to
edge. The tabular data file data.xlsx is consequently moved to the same location, resulting in
the following structure:

1 dhmin/

2 data/mucwest/

3 data.xlsx

4 edge.shp

5 vertex.shp

6 dhmin.py

7 runmucwest.py

1 rivus/

2 data/haag/

3 building.shp

4 data.xlsx

5 edge.shp

6 vertex.shp

7 rivus.py

8 runhaag.py

1Actually, the shape files consist of multiple physical files each. See section 2.6 for more information.
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Table A.1: Attribute-value system example

Domain 1 . . . Domain M attribute 1 . . . attribute N

South Stock 25 70
South . . . Env — . . . 999
South Demand 256 33
Mid Stock 30 65
Mid . . . Env — . . . 888
Mid Demand 1024 12
North Stock 30 65
North . . . Env — . . . 44
North Demand 512 18

A.2 Data format

All tabular data in the spreadsheet data.xlsx is represented in all models as multiple sheets.
Each sheet has the same form, called attribute-value system. Its general structure is demon-
strated in table A.1.

M domain columns form unique combinations of tuples, e.g. (South,. . . , Stock), that
address unique rows or objects, for which then up to N attribute values may be defined.
Depending on the tool chain, attribute values must either be numeric or can have arbitrary
types (strings, blobs). By convention, the domain columns start with an uppercase character,
while the attribute columns start with a lowercase character. The background colours are used
for easier visual identification, but have no function and thus can be changed at will..

This tabular form is used because it is closely related to normalised forms of database
tables, making it easier to switch the storage format from spreadsheet files to a database
system, should the necessity arise. Additionally it can be represented and manipulated easily
in most spreadsheet applications. Even attribute tables of shapefiles (stored in the file ending
.dbf) can be made to conform to this format, by identifying some of the column names as
domain columns.

In order to better scale to larger data sizes, switching to HDF as a storage backend could
be a favourable move. First, it features compression, fast read and write performance even
for gigabyte-sized datasets. Second, the format enjoys good support across most scientific
computing environments. For example, Matlab’s own .mat format switched to using HDF5 for
its storage backend for performance and compatibility reasons. Refer to section 2.5.2, more
alternatives are discussed.

A.3 Model

All three models file share the code structure shown in listing A.1. A function read_input (or
read_excel) reads all input data from a given input filename, whose structure conforms to the
data format described in the previous section. This function always returns one or multiple
pandas DataFrame objects. These input data structures then can be either passed unmodified
to the following create_model function, or modified to create scenarios.
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This leads to the following minimal life cycle for the optimisation problem object prob, here
exemplified for model urbs:

1 import urbs

2 data = urbs.read_input(’example.xlsx’)

3 model = urbs.create_model(data)

4 prob = model.create()

5 result = optim.solve(prob)

6 pro.load(result)

7

8 costs = urbs.get_entity(prob, ’costs’)

9 cap_pro = urbs.get_entity(prob, ’cap_pro’)

The last two lines demonstrate how to retrieve optimisation results as a DataFrame. In order
to simplify this work, most models also implement additional get_* functions like get_constants

for costs and capacities, and get_timeseries for time-dependent variables.
For retrieving multiple entities with identical domains, helper function get_entities is pro-

vided. It takes a list of set, parameter, variable or constraint names and returns a consolidated
DataFrame. In order to discover all valid entity (i.e., set, parameter, variable, objective, con-
straint) names for a model, helper function list_entities is provided. It returns a list of names,
domains and docstrings for the given entity type.

For archiving and restoring a problem instance before or after solving, the serialisation and
deserialisation functions save and load are provided. They rely on Pickle, the standard Python
protocol for object serialisation. To reduce file size, the files are transparently compressed
and decompressed using the GZip library. Note that this feature is not optimised for speed. A
model-specific data storing technique, possibly relying on HDF to save only relevant variable
values, could reduce optimisation runtime considerably. However, as using Pyomo itself also is
not optimal for highest performance, no effort was spent here to optimise this particular feature.

A.4 Run script

While the previous model structure is rather stable and only to be changed for model developers,
this section describes the common structure of a user run script, that catches the particulars
of a specific case study. First it defines the input file name, scenarios (here implemented as
functions, but other options are possible as well) and the desired result post-processing steps.
An exemplary run script for model urbs is presented in listing A.2.
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Listing A.1: Common structure of model files dhmin.py, urbs.py, rivus.py
1 import coopr.pyomo as pyomo
2

3 def read_input(filename):
4 ’’’ reads input file and possible pre-process steps ’’’
5 # e.g. calculation of a derived attribute value
6 data[’commodity’][’annuity-factor’] = annuity_factor(...)
7 return data
8

9 def create_model(data, **options):
10 ’’’ creates a pyomo optimisation problem instance ’’’
11 model = pyomo.ConcreteModel()
12 model.time = pyomo.Set(initialize=data[’timesteps’].index)
13 model.com = pyomo.Set(initialize=data[’commodity’][0].index)
14 model.weight = pyomo.Param(model.time, initialize=data[’weights’].values)
15

16 model.x = pyomo.Var(model.time, within=pyomo.Reals)
17 model.obj = pyomo.Objective(model.time, model.com, rule=def_objective_rule)
18 # [more declarations]
19 return model
20

21 def def_objective_rule(m, t):
22 ’’’ example objective function ’’’
23 return m.obj = sum(m.weight[t] * m.x[t] for t in m.time)
24

25 def res_some_constraint_rule(m, t, c):
26 ’’’ example constraint rule ’’’
27 # dataframes can be used in constraints directly, without
28 # declaring them as Pyomo parameters
29 return (m.x[t, c] <= data[’upper_limit’].loc[t, c])
30

31 # [more constraint rule functions]
32

33 # technical helper functions (identical for all models)
34 def list_entities(problem, entity_type)
35 def get_entity(problem, name)
36 def get_entities(problem, names)
37 def save()
38 def load()
39

40 # canonical helper functions (custom for each model)
41 def plot()
42 def report()
43 def get_constants()
44 def get_timeseries()
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Listing A.2: Exemplary run script runexample.py
1 import urbs
2 from coopr.base import SolverFactory
3

4 def scenario_base(data):
5 ’’’ base scenario: don’t change input ’’’
6 return data
7

8 def scenario_cheap_solar(data):
9 ’’’ cheap solar: pv investment -50% ’’’
10 data[’process’].ix[’pv’, ’inv-cost’] *= .5
11 return data
12

13

14 def run_scenario(filename, scenario, timesteps):
15 ’’’ perform optimisation for given scenario ’’’
16

17 # prepare input data
18 data = urbs.read_input(filename)
19 data = scenario(data)
20

21 # create problem, run solver, read output
22 model = urbs.create_model(data, timesteps)
23 prob = model.create()
24 optim = SolverFactory(’glpk’)
25 result = optim.solve(prob, tee=’True’)
26 prob.load(result)
27

28 # reporting and plotting
29 sce = scenario.__name__

30 urbs.report(prob, ’{}-{}.xlsx’.format(’report’, sce))
31 for ext in [’png’, ’pdf’]:
32 urbs.plot(prob, ’{}-{}.{}’.format(’plot’, sce, ext))
33 urbs.save(prob, ’{}-{}.pgz’.format(’problem’, sce))
34

35 return prob
36

37 for __name__ == ’__main__’:
38 filename = ’example.xlsx’
39 timesteps = range(0,8760)
40

41 scenarios = [scenario_base, scenario_cheap_solar]
42

43 for scenario in scenarios:
44 prob = run_scenario(filename, scenario)





Appendix B

MathProg storage sizing model

This chapter presents the full text of the abridged listing 2.2 in the presentation of modelling
languages in section 2.5.1. It has been used as an introductory model on teaching basics of
linear programming and energy system model in two lectures.

The model determines optimal size and operation of a generic energy storage technology
(think: battery). The model assumes a given electricity demand curve, as well as an optional
fluctuating supply (think: photovoltaics) of electricity. Additional power can be bought any time
for a time-varying, yet pre-defined electricity price. The formulation implicitly assumes perfect
foresight on the side of the battery owner. Solutions thus are always best-case feasibility
boundaries which – depending on the insecurity of the price forecast – can either be reached
almost or not even close.

The full code, including artificial demand, supply and price data for a single day in hourly
resolution is given in listing B.1 on the following pages.
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Listing B.1: MathProg example model for storage sizing soforsg.mod

1 # SOforSG: Storage Optimization for Smart Grids

2 # Last updated: 14 November 2013

3 # Author: johannes.dorfner@tum.de

4 #

5 # This model optimizes size (storage_capacity) and operation (storage_level[t])

6 # of a hypothetical lossless storage technology for electric energy. A given

7 # electricity demand[t] must be satisfied from a) a cost-free (renewable) energy

8 # supply[t] with intermittent characteristic or from b) electricity_purchase[t],

9 # i.e. buying of electricity from the grid for a time-dependent

electricity_price[t].

10

11 # SETS & PARAMETERS

12 set time;

13 param demand{time} >= 0; # (kWh/h)

14 param supply{time} >= 0; # (kWh/h)

15 param electricity_price{time}; # (EUR/kWh)

16 param storage_cost; # (EUR/kWh)

17 param selling_price_ratio; # (1) for sold energy, relative to electricity_price

18

19 # VARIABLES

20 var energy_balance{time}; # (kWh)

21 var storage_capacity >= 0; # (kWh)

22 var storage_level{time} >= 0; # (kWh)

23 var energy_purchase{time} >= 0; # (kWh)

24 var energy_sold{time} >= 0; # (kWh)

25 var costs;

26

27 # OBJECTIVE

28 minimize obj: costs;

29

30 # CONSTRAINTS

31 # total costs = investment for storage + purchased electricity

32 s.t. def_costs:

33 costs =

34 storage_cost * storage_capacity +

35 sum{t in time} electricity_price[t] * energy_purchase[t] -

36 sum{t in time} electricity_price[t] * energy_sold[t] *
selling_price_ratio;

37

38 # balance = supply - demand + purchase - sold

39 s.t. def_balance{t in time}:

40 energy_balance[t] = supply[t] - demand[t] +

41 energy_purchase[t] - energy_sold[t];

42

43 # new storage level = old storage level + balance

44 s.t. def_storage_state{t in time: t>1}:

45 storage_level[t] = storage_level[t-1] + energy_balance[t];

46

47 # storage is filled 50% at beginning
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48 s.t. def_storage_initial{t in time: t=1}:

49 storage_level[t] = 0.5 * storage_capacity;

50

51 # storage must be filled at least 50% in the end

52 s.t. res_storage_final{t in time: t=card(time)}:

53 storage_level[t] >= 0.5 * storage_capacity;

54

55 # storage may be filled at most to storage capacity

56 s.t. res_storage_capacity{t in time}:

57 storage_level[t] <= storage_capacity;

58

59 # limit sold energy to prevent unbounded model

60 s.t. res_energy_sold{t in time}:

61 energy_sold[t] <= 999;

62

63 # SOLVE

64 solve;

65

66 # OUTPUT

67 printf "RESULT\n\n";

68 printf "Costs: %+5.1f EUR\n", costs;

69 printf " ( %+5.1f EUR for %g kWh storage at %g EUR/kWh, \n",

storage_cost*storage_capacity, storage_capacity, storage_cost;

70 printf " %+5.1f EUR for purchasing %g kWh,\n", sum{t in time}

electricity_price[t] * energy_purchase[t], sum{t in time}

energy_purchase[t];

71 printf " %+5.1f EUR from selling %g kWh)\n\n", - sum{t in time}

selling_price_ratio * electricity_price[t] * energy_sold[t], sum{t in time}

energy_sold[t];

72 printf "%2s:\t%6s\t%6s\t%5s | %5s\t%5s\t%5s\n",

73 "t", "demand", "supply", "price", "Level", "Purch", "Sold";

74 printf "------------------------------+----------------------\n";

75 printf{t in time}: "%2i:\t%6g\t%6g\t%5g | %5g\t%5g\t%5g\n",

76 t, demand[t], supply[t], electricity_price[t], storage_level[t],

77 energy_purchase[t], energy_sold[t];

78 printf "------------------------------+----------------------\n";

79 printf "%s:\t%6g\t%6g\t%5s | %5s\t%5g\t%5g\n", "Sum",

80 sum{t in time} demand[t], sum{t in time} supply[t], "---", "---",

81 sum{t in time} energy_purchase[t], sum{t in time} energy_sold[t];

82 printf "%s:\t%6s\t%6s\t%5.1f | %5.1f\t%5s\t%5s\n", "Avg",

83 "---", "---", sum{t in time} electricity_price[t]/card(time),

84 sum{t in time} storage_level[t]/card(time), "---", "---";

85 printf "%s:\t%6i\t%6i\t%5i | %5i\t%5i\t%5i\n", "Min",

86 min{t in time} demand[t], min{t in time} supply[t],

87 min{t in time} electricity_price[t], min{t in time} storage_level[t],

88 min{t in time} energy_purchase[t], min{t in time} energy_sold[t];

89 printf "%s:\t%6i\t%6i\t%5i | %5i\t%5i\t%5i\n", "Max",

90 max{t in time} demand[t], max{t in time} supply[t],

91 max{t in time} electricity_price[t], max{t in time} storage_level[t],

92 max{t in time} energy_purchase[t], max{t in time} energy_sold[t];
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93 printf "\n\n";

94

95 # DATA

96 data;

97

98 param storage_cost := 3; # storage capacity cost (EUR/kWh)

99 param selling_price_ratio := 0.5; # ratio of electricity price (1) for sold

energy

100

101 param: time: supply demand electricity_price :=

102 1 0 0 0

103 2 0 1 2

104 3 0 1 2

105 4 0 1 2

106 5 0 1 2

107 6 0 1 2

108 7 1 2 1 # supply begins

109 8 3 5 2

110 9 6 2 2

111 10 5 1 1

112 11 8 1 1

113 12 9 5 2

114 13 9 0 1

115 14 6 0 1

116 15 8 0 1

117 16 7 0 1

118 17 6 6 5 # demand peak, price peak begins

119 18 3 9 5

120 19 2 6 5 # price peak ends

121 20 1 3 1 # supply ends

122 21 0 4 1

123 22 0 4 1

124 23 0 1 1

125 24 0 0 1;

126 end;



Appendix C

Time series plots for Haag i. OB

This appendix shows the result of model urbs for one (of 52) modelled weeks for two of
the scenarios that were investigation in case study Haag i OB. The complete case study is
described in section 4.4. The shown week ranges from time step 1000 to 1168 and shows the
energy balances for both demand commodities electricity and heat. Both balances are shown
for all the twelve clusters (districts) within Haag.

C.1 Scenario BASE

C.1.1 Electricity
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C.1.2 Heat
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C.2 Scenario BATTERY CHEAP

C.2.1 Electricity
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C.2.2 Heat
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Appendix D

Symbols

Convention: greek letters (», ı, “) represent variables. Roman uppercase letters (A, C)
represent sets, their elements are denoted by the corresponding lowercase letters (a, c).
Parameters are roman letters with subscripts (Kvp, gi j ); the subscripts are always set element
lettres; lower and upper bound paramters are typeset with an underline (K) or and overline (G).

a ∈ A arc (directed) from vertex vi to vj , set of arcs
A

p
v arriving arcs into vertex v (predecessor )
As
v leaving arcs from vertex v (successor )

A building area (parameter)

b ∈ Be building, set of buildings along edge e
b concurrence effect (parameter)

c ∈ C commodity (mainly energy carrier), set of commodities
Cdem demand commodity (required, like heat)
Cenv environmental commodity (created, like CO2)
Cst stock commodity (storable, like coal)
Csup intermittent commodity (supply, like wind)
C in
vp input commodities of process p
Cout
vp output commodities of process p

c cost parameters (in models DHMIN and dhmin)

d demand time series (parameter)
∆t time step length (parameter)

e ∈ E edge (undirected) between vi and vj , set of edges
e efficiency (parameter)
e in input efficiency of storage (parameter)
eout output efficiency of storage (parameter)
› energy/power flow (variable)
›in energy input for conversion and storage
›out energy output of conversion and storage

f ∈ F transmission process, set of transmission processes
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F
exp
vc set of exporting transmission processes

F
imp
vc set of importing transmission processes

gi j pipe existence (1=yes, 0=no) (parameter)
G greenhouse gas emissions, upper limit (parameter)
‚ greenhouse gas emissions (variable)

h ∈ H hub process, set of hub processes

i ; j running indices, mostly for vertices
I initial and final storage content (parameter)

K capacity, already installed (parameter)
K capacity, lower bound (parameter)
K capacity, upper bound (parameter)
k costs (parameter)
kfix fixed costs (parameter)
k fuel fuel costs (parameter)
k inv investment costs (parameter)
k inv,fix capacity-independent investment costs (parameter)
k inv,var capacity-dependent investment costs (parameter)
kvar variable costs (parameter)
kc,◦ capacity-dependent costs (parameter)
kp,◦ power-dependent costs (parameter)
» capacity, total (variable)
»̂ capacity, new (variable)

l length (parameter)

m; n running indices
nb number of building floors (parameter)

p ∈ P process (energy conversion), set of processes
P in
c set of processes consuming commodity c
P out
c set of processes producing commodity c

ı power flow, transmission (variable)
 pipe usage decision (variable)

q connection quota (parameter)
Qmax source vertex capacity (parameter)

rheat revenue for heat (parameter)
r in input ratio (parameter)
rout output ratio (parameter)
R real numbers (set)
R+
0 non-negative real numbers (set)

 source vertex flow (variable)

s ∈ S storage (technology), set of storage processes
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svct intermittent supply capacity factor (parameter)
sct peak demand scaling factor (parameter)

t ∈ T time step, set of timesteps {t0; t1 : : : tN}
Tm set of modelled time steps T \ {t0}
t0 initialisation time step
tN final time step

Tflh full load hours (parameter)
fi throughput, through MIMO process (variable)

u annuity factor (parameter)

v ∈ V vertex, set of vertices

w fix fixed thermal losses (parameter)
w var variable thermal losses (parameter)
w time step weight (parameter)

y availability (parameter)

‰ pipe building decision (variable)

zb building area correction factor (parameter)
Z1 binary digit {0; 1}
“ total costs, objective function value (variable)
“fix total annual fixed (operation & maintenance) costs (variable)
“fuel total annual fuel costs (variable)
“inv total annual investment costs (variable)
“var total annual variable costs (variable)





Appendix E

Acronyms

AMPL A Mathematical Programming Language 41, 52
API Application programming interface 48, 55

BCE Before the Common Era 11

CAD Computer aided design 39
CAPEX Capacity expenditure 60, 129
CBC COIN-OR branch and Cut 56
CHP Combined heat and power 13, 33, 65, 109, 122
COIN-OR Computational Infrastructure for Operations Research 51, 56
Coopr COmmon Optimization Python Repository 42
COP Coefficient of performance 141
CPLEX IBM ILOG CPLEX Optimization Studio 57
CRS Coordinate reference system 56, 62
CSV Comma separated values 55, 56

DBMS Database management system 56
DC District cooling 24
DH District heating 24, 125
dhmin District heating minimisation (seasonal) (optimisation model) 31, 39, 40, 60, 98, 106,

129, 132
DHMIN District heating minimisation (optimisation model) 15, 60, 101, 119, 121, 122, 129
DOE Department of Energy 144, 145

EAC Equivalent annual cost 35, 60
EPSG European Petroleum Survey Group 62
ETSAP Energy Technology Systems Analysis Programme 37
EU European Union 37

GAMS General Algebraic Modeling System 52, 55
GDX GAMS data exchange file 55
GHG Greenhouse gas 38, 141
GIS Geographic information system 39, 47
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GLPK GNU Linear Programming Kit 41, 56
GPS Global positioning system 20
GUI Graphical user interface 40, 41

HDF Hierarchical Data Format 56, 156, 157

IEA International Energy Agency 37
IIASA International Institute for Applied Systems Analysis 38
IP Integer programming 27, 28

LP Linear programming 16, 27, 28, 29, 43, 56, 57

MARKAL MARKet ALocation 36, 37, 38, 42
MERRA Modern-era retrospective analysis for research and applications 61
MES Multi-energy system 13, 14, 16
MESSAGE Model for Energy Supply Strategy Alternatives and their General Environmental

Impact 38
MILP Mixed integer linear programming 16, 27, 28, 29, 40, 55, 56, 57, 127, 153
MIMO Multiple input multiple output 33, 38, 77, 185
MIP Mixed integer programming 55

NLP Non-linear programming 36
NPV Net present value 36, 37, 60

O&M Operation & maintenance 59, 94, 95, 101, 103
OPEX Operational expenditure 60, 129
OSM OpenStreetMap 62, 122, 123, 138, 145

Pandas Python Data Analysis Library 41
POI Point of interest 129
PRISM Puget Sound Regional Integrated Synthesis Model 12
PU Polyurethane 23
Pyomo Python Optimization Modeling Objects 41, 42, 55

RES Reference energy system 14, 36, 38, 41, 42, 65, 66, 77
rivus Network optimisation model (optimisation model) 31, 34, 39, 46, 60, 121, 135, 138, 141,

145, 154

SCIP Solving Constraint Integer Programs 56
SISO Single input single output 32, 38, 65, 77
SOC State of charge 74
SWM Stadtwerke München 117, 122, 129

TIMES The Integrated MARKAL-EFOM System 37
TMY Typical meterological year 144, 145

UC Unit commitment 22
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urbs Distributed energy system (optimisation model) 34, 38, 60, 77, 82, 135, 141, 145, 148,
150, 154

URBS Urban Research Toolbox: Energy Systems 15, 38, 39, 60, 65, 82
USAF United States Air Force 144

WACC Weighted average cost of capital 60

XML Extensible markup language 62

YAML Yet Another Markup Language 41

ZIB Zuse Institute Berlin 56
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