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Abstract—Multiple antennas increase significantly the capacity
of wireless links under the assumption of perfect channel state
information (CSI). In practice, however, in time division duplex
(TDD) or frequency division duplex (FDD) systems, the available
CSI is obtained with training and/or limited feedback and hence,
is not perfect. In this work, we derive tight capacity bounds for
the uplink and downlink of TDD/FDD systems with multiple
antennas at the base station and a single-antenna user. We also
present a performance comparison between the two systems
based on the achievable rates and discuss further issues for a
relevant comparison.

I. INTRODUCTION

Consider a user in an isolated cell, i.e. with no intracell and
intercell interference. Let us further assume a base station (BS)
equipped with M antennas and the user with a single antenna,
i.e. we have a multiple-input single-output (MISO) downlink
and single-input multiple-output (SIMO) uplink. In the SIMO
uplink, the BS can estimate the uplink channel with the aid of a
training sequence consisting of TUL pilots [1]. Hence, in a TDD
or FDD uplink the base station can perform maximum ratio
combining based on the channel estimate, incurring however
in a performance degradation due to the mismatch between
the true channel and the channel estimate.

Furthermore, after some calibration in a TDD system, the
uplink channel estimate can be employed for the transmit
beamforming in the downlink. By performing coherent beam-
forming in the downlink based on the uplink channel estimate,
we experience a mismatch with the actual downlink channel
due to estimation errors, similarly as in the uplink. Besides
this issue, the mismatch between the beamforming and the
downlink channel is further increased in the TDD downlink
due to the time-varying nature of the channel.

On the other hand, in a FDD system the transmit CSI for the
MISO downlink becomes available at the base station through
limited feedback of B bits [2] in a three-steps process. The
downlink channel is first estimated at the user by means of
TDL M -dimensional pilot vectors during a downlink training
phase. Afterwards, the channel direction information (CDI) of
the channel estimate is quantized with B bits and finally, the B
uncoded bits corresponding to the quantized CDI estimate are
fed back in the uplink from the user to the BS. With a faded-
and noise-prone uplink, the B relayed bits could be received
erroneously at the BS. This could lead to further increasing
the mismatch in the downlink between the true channel and
the available transmit CSI at the BS. The mismatch could be
additionally increased due to the delay incurred in the feedback
process. Thus, the transmit CSI available at the BS in the
downlink is subject to estimation and quantization errors, and
could be outdated and affected by erroneous feedback. Since
the capacity with imperfect CSI as previously described for

both systems is unknown in general, in this work we derive
lower and upper bounds on the ergodic capacity with Gaussian
signalling for both links in a TDD and FDD system with a
single user. In addition, we present a performance comparison
between the two systems based on the achievable rates and
discuss further issues for a relevant comparison.

II. SYSTEM MODEL

In both systems, each uplink/downlink time slot consists
of T channel uses, where at each channel use one symbol
is transmitted. The duration in seconds of one time slot is
denoted by ts. In addition, the uplink and downlink channels
are assumed to be constant for one time slot, i.e., block fading.
All transmit signals are i.i.d. zero-mean with unit-variance
and the entries of all channel vectors are assumed to be i.i.d.
complex Gaussian random variables with zero-mean and unit-
variance. The available power is PUL and PDL for the uplink
and downlink, respectively.

For the FDD system we consider a paired spectrum, where
the uplink channel hF,UL ∈ CM and the downlink channel
hF,DL ∈ CM are uncorrelated and considered to be flat over the
respective uplink and downlink frequency band. In addition,
we assume that the bandwidth of the downlink and uplink to
be equal, namely W Hz, as depicted in Fig. 1.
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Figure 1. Consecutive Time Slots in an FDD and TDD System

With the same set of assumptions in a TDD system, each
link in a TDD system employs simultaneously two frequency
resource blocks, while the uplink and downlink transmissions
take place over alternating time slots. The TDD uplink chan-
nels in both resource blocks are uncorrelated and denoted as
hT,UL,1,hT,UL,2 ∈ CM . Similarly hT,DL,1,hT,DL,2 ∈ CM denote the
downlink channels. Although the available bandwidth for the
TDD uplink/downlink is twice as large (2W ) compared to its
counterpart in the FDD system, the transmission in each link of
a TDD system takes place only half of the time ( ts

2 ) and thus,
has the same degrees of freedom as the FDD system, i.e., Wts.
Moreover, since the available power is PUL and PDL, the power
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on each resource blocks in the TDD uplink and downlink is
PUL
2 and PDL

2 . Hence, the TDD uplink/downlink SNR on each
resource block is 3 dB smaller than the uplink/downlink SNR
in the corresponding FDD system.

In order to observe the impact of the outdated CSI in the
downlink, we model the time-varying nature of the channel
by considering temporally correlated block fading between
successive time slots by employing a first order Markov model
as in [2], i.e., for instance the FDD and TDD downlink channel
at time slot n are given by

hF,DL[n] =
√
α hF,DL[n− 1] +

√
1− α g[n− 1], (1)

hT,DL,i[n] =
√
α hT,UL,i[n− 1] +

√
1− α gi[n− 1], (2)

where the elements of g[n−1], gi[n−1] ∈ CM for i = 1, 2
are i.i.d. zero-mean unit-variance complex Gaussian random
variables and are uncorrelated with hF,DL[n−1] and hT,UL,i[n−1]
for i = 1, 2, respectively. Moreover,

√
α is the correlation

coefficient, with 0 ≤ α < 1. The time variations in the FDD
uplink channel hF,UL[n] can also be modelled similarly to (1).

The first TUL channel uses in the FDD and TDD uplink
time slot are employed for uplink channel training. In the next
TF,UL,D (for FDD) and TT,UL,D (for TDD) channel uses, the user
transmits data to the BS. In the TDD system, TT,UL,D = T−TUL.
However, in the FDD system the final TF channel uses in the
uplink time slot are reserved for the uncoded feedback of the
CSI from the user to the BS, such that TF,UL,D = T − TUL − TF.

Similarly as in the uplink, the first TDL channel uses in the
FDD downlink time slot are employed for downlink channel
training. In the remaining TF,DL,D = T−TDL channel uses of the
downlink time slot, data is transmitted from the BS to the user.
However, in the TDD downlink there is no need for estimating
the channel vector and hence, only data is sent from the BS
to the user in the downlink time slot as depicted in Fig. 1.

As a figure of merit we consider the ergodic capacity based
on the imperfect CSI, which implies that coding of the data is
performed over multiple time slots of the time-varying channel
in each link with α < 1.

III. UPLINK CAPACITY BOUNDS

With TUL pilots in the FDD uplink, the BS can obtain at
time slot n−1 an MMSE channel estimate ĥF,UL[n−1] ∈ CM

whose entries are i.i.d. zero-mean complex Gaussian random
variables with variance 1−σ2

eUL
(ρUL), where [1]

σ2
e (ρUL) =

1
1 + ρULTUL

. (3)

where ρUL = PUL
σ2

n
with σ2

n as the variance of the AWGN and

hF,UL[n− 1] = ĥF,UL[n− 1] + eF,UL[n− 1], (4)
with eF,UL as the estimation error. Based on the estimate, the
BS performs beamforming with wF,UL[n−1]= ĥF,UL[n−1]

‖ĥF,UL[n−1]‖2
and

the received signal yF,UL ∈CTF,UL,D at the BS at time slot n−1
yF,UL[n−1] =

√
PUL ‖ĥF,UL[n−1]‖2 sF,UL[n−1]+v′F,UL[n−1], (5)

with v′F,UL[n−1]=
√
PULwH

UL[n−1]eF,UL[n−1]sF,UL[n−1]+vF,UL[n−1],
with sF,UL[n−1]∈CTF,UL,D and vF,UL[n−1]∈CTF,UL,D are the uplink
transmit symbols and the zero-mean AWGN with variance σ2

n .
The FDD uplink capacity CF,UL can be lower bounded based

on the lower bound given in [3], which follows by assuming

i.i.d. Gaussian signalling and that the estimation error behaves
as worst case noise

CF,UL≥ TF,UL,D

T
EĥF,UL

[
log2

(
1+

ρUL‖ĥF,UL‖22
ρUL σ2

e (ρUL)+1

)]
= C1

(
ρUL, TF,UL,D

)
.

The equality results from [4, (8.40)] and the identity En(z)=
zn−1Γinc(1−n,z), where Γinc is the incomplete gamma function
and En is the generalized exponential integral such that

C1
(
ρUL, TF,UL,D

)
=

TF,UL,D

T
log2(e)e

1
λ(ρUL)

M∑
k=1

Ek

(
1

λ(ρUL)

)
, (6)

with
λ (ρUL) =

ρUL(1− σ2
e (ρUL))

1 + ρULσ2
e (ρUL)

. (7)

The FDD uplink capacity can be upper bounded as

CF,UL≤ 1
T
I
(
sF,UL[n−1];yF,UL[n−1] | ĥF,UL[n−1],wH

F,UL[n−1]eF,UL[n−1]
)

≤ C2
(
ρUL, TF,UL,D

)
,

where the first inequality results by assuming the receiver
knows wH

F,UL[n− 1]eF,UL[n− 1] besides the channel estimate.
The second step follows by noting that in this case Gaussian
signalling is optimum and by applying Jensen’s inequality with

C2
(
ρUL, TF,UL,D

)
=

TF,UL,D

T
log2

(
1+ρUL((M−1)(1−σ2

e(ρUL))+1)
)

(8)

The TDD uplink is equivalent to the FDD uplink, with the
difference that the available power on each resource block is
PUL
2 instead of PUL. Hence, the TDD uplink capacity is lower

and upper bounded by C1
(ρUL

2 , TT,UL,D

)
and C2

(ρUL
2 , TT,UL,D

)
, by

employing the FDD uplink capacity bounds from (6) and (8).

IV. FDD DOWNLINK CHANNEL

In the FDD downlink, the user obtains an MMSE channel
estimate ĥF,DL[n−1] ∈ CM with the aid of TDL M -dimensional
pilot vectors which are sent from the BS during the downlink
training phase at time slot n− 1. The entries of ĥF,DL are i.i.d.
zero-mean complex Gaussian random variables with variance
1− σ2

e (ρDL) with ρDL = PDL
Mσ2

n
. We assume TDL ≥ M .

The channel direction information of the downlink channel
ĥF,DL[n−1] at time slot n−1 is then quantized with B bits
employing the random vector quantization (RVQ) scheme
[6]. The user feeds back the index corresponding to the the
beamforming vector wFB[n] (to be used at time slot n due to
the feedback delay of one time slot) that maximizes

wFB[n] = argmax
ci

|cH
i ĥF,DL[n− 1]|2, (9)

where ci, i = 1, . . . , 2B are the i.i.d isotropically distributed
unit-norm vectors in the RVQ codebook.

The downlink received signal at the user at time slot n is

CTF,DL,D � yF,DL[n] =
√
PDLwH

F,DL[n]hF,DL[n]sF,DL[n]+vF,DL[n], (10)

where sF,DL[n],vF,DL[n] ∈ CTF,DL,D are the transmit symbols and
the zero-mean AWGN with variance σ2

n . The FDD downlink
transmission takes place with the beamforming vector wF,DL[n]
which is equal to wFB[n] if there were no feedback errors in
the uplink at time slot n−1, which occurs with probability
1− pε, with pε as the feedback error probability.

After error-free feedback, the equivalent downlink channel
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hDL,cf[n] = wH
FB[n]hF,DL[n] at time slot n is given by

hDL,cf[n]=
√
α
wH

FB[n]ĥF,DL[n−1]
‖ĥF,DL[n−1]‖2

‖ĥF,DL[n−1]‖2+√
α eDL+

√
1−α g,

which follows from (1) and (4) and with the substitutions eDL =
wH

FB[n]eF,DL[n−1] and g=wH
FB[n]g[n−1], which are independent

complex Gaussian with zero mean and variance σ2
e (ρDL) and

1, respectively. From the previous expression,

|hDL,cf[n]|2 = αν ‖ĥF,DL[n− 1]‖22 + (1− α) |g|2 + α |eDL|2
+ 2

√
α(1− α) Re

{
wH

FB[n]ĥF,DL[n− 1] g∗+g e∗DL

}
+ 2α Re

{
wH

FB[n]ĥF,DL[n− 1] e∗DL

}
. (11)

with ν =
∣∣∣wH

FB[n]ĥF,DL[n− 1]
∣∣∣2/‖ĥF,DL[n− 1]‖22. (12)

Due to the fact that ‖ĥF,DL‖22 is chi-squared distributed
E
[|hDL,cf[n]|2] = α (M E [ν]− 1)

(
1− σ2

e (ρDL)
)
+ 1, (13)

since g and eDL are independent and from [5] we obtain

μν = E [ν] = 1−2BBeta

(
2B ,

M
M − 1

)
≈ 1−2−

B
M−1 . (14)

The variance of ν is given by σ2
ν = E

[
ν2

]− E2 [ν], where

E
[
ν2

]
= 1−2·2BBeta

(
2B ,

M
M−1

)
+2BBeta

(
2B ,

M+1
M−1

)
.

A. Feedback Error Probability

The B bits are fed back uncoded without any error detection
in the uplink to the BS with TF = B

2 QPSK symbols. Since no
optimized labelling scheme of the feedback bits is used as in
[2], one feedback symbol leads to a total feedback loss which
occurs with probability pε. Assuming there was a feedback
error in the uplink at time slot n−1, and with the BS unaware of
the error, the received beamforming vector wF,DL[n] is random
with respect to hF,DL[n], and therefore, the effective channel
denoted in this case by hDL,ef[n] = wH

F,DL[n]hF,DL[n] is a zero-
mean unit-variance complex Gaussian random variable.

Similar as for the payload phase, the BS can perform receive
beamformng based on the uplink channel estimate for the
feedback detection. The SNR during the feedback phase at

time slot n−1 is approximated with γF[n−1]= PUL‖ĥF,UL[n−1]‖22
σ2

n +PULσ2
e (ρUL)

,
such that the average feedback error probability is given as

pε=E
[
1−(1−pb (γF[n−1]))B

]
≈1−(1−E[pb (γF[n−1])])B, (15)

where the expectation is taken over the channel estimate
ĥF,UL[n − 1] and pb is the bit error probability with QPSK
and maximum ratio combining given by [8, (7.20)].

V. DOWNLINK CAPACITY BOUNDS

We now focus on bounds on the ergodic capacity CF,DL for
the FDD downlink with limited feedback beamforming. An
upper bound to FDD downlink capacity is given by

CF,DL ≤
TF,DL,D

T
pε EhDL,ef

[
log2

(
1 +

PDL

σ2
n
|hDL,ef[n]|2

)]

+
TF,DL,D

T
(1− pε) EhDL,cf

[
log2

(
1 +

PDL

σ2
n
|hDL,cf[n]|2

)]

≤
TF,DL,D

T

(
pε log2(e) e

σ2
n

PDL E1

(
σ2

n

PDL

)

+ (1−pε)log2

(
1+

PDL

σ2
n

(
α(ME [ν]−1)

(
1−σ2

e(ρDL)
)
+1

)))
, (16)

where the first step follows by assuming a genie informs the
user of the effective downlink channel, i.e., either hDL,cf[n] or
hDL,ef[n], such that Gaussian signalling is optimum. The first
term in the final expression results similarly as (6) and the
second one from Jensen’s inequality and (13).

Denote CF,DL = 1
T IF,DL with the mutual information IF,DL =

I (sF,DL[n];yF,DL[n]). Let the binary random variable θ indicate
a feedback error event: θ[n−1]=1 in case of a feedback error
at time slot n−1 and θ[n−1]=0 otherwise. Using the short-
hand notation I(A;B|C)= I (A;B | C) we can derive a lower
bound to I (sF,DL[n];yF,DL[n]) in the FDD downlink

IF,DL=I(sF,DL[n];yF,DL[n])+I(sF,DL[n],hDL[n];yF,DL[n])−I(sF,DL[n],hDL[n];yF,DL[n])
(a)=I(hDL[n];yF,DL[n])+I(sF,DL[n];yF,DL[n]|hDL[n])−I(hDL[n];yF,DL[n]|sF,DL[n])
(b)≥ I(sF,DL[n];yF,DL[n]|hDL[n])−I(hDL[n];yF,DL[n]|sF,DL[n])

−I(sF,DL[n],θ[n−1];yF,DL[n]|hDL[n])+I(sF,DL[n],θ[n−1];yF,DL[n]|hDL[n])

−I(hDL[n],θ[n−1];yF,DL[n]|sF,DL[n])+I(hDL[n],θ[n−1];yF,DL[n]|sF,DL[n])
(c)= I(θ[n−1];yF,DL[n]|hDL[n])+I(sF,DL[n];yF,DL[n]|hDL[n],θ[n−1])

−I(θ[n−1];yF,DL[n]|sF,DL[n])−I(hDL[n];yF,DL[n]|sF,DL[n],θ[n−1])
(d)≥ I(sF,DL[n];yF,DL[n]|hDL[n],θ[n−1])−I(hDL[n];yF,DL[n]|sF,DL[n],θ[n−1])

−I(θ[n−1];yF,DL[n]|sF,DL[n])
(e)= I(sF,DL[n];yF,DL[n]|hDL[n],θ[n−1])−I(hDL[n];yF,DL[n]|sF,DL[n],θ[n−1])

−h (θ[n−1] | sF,DL[n])+h (θ[n−1] | sF,DL[n],yF,DL[n])
(f)≥ I(sF,DL[n];yF,DL[n]|hDL[n],θ[n−1])−I(hDL[n];yF,DL[n]|sF,DL[n],θ[n−1])

−hb(pε), (17)

where hDL[n] = wH
F,DL[n]hF,DL[n] is the effective downlink

channel which as mentioned before is either equal to hDL,cf[n]
after correct feedback or to hDL,ef[n] after erroneous feedback.
Step (a) follows from applying the two definitions of the chain
rule I(A,B;C) = I(B;C) + I(A;C|B) = I(A;C) + I(B;C|A) on
the two identical terms. Inequality (b) results from the non-
negativity of the mutual information. Step (c) arises similar
to (a) from the chain rule on both pairs of identical terms,
while step (d) follows from the non-negativity of the mutual
information. Step (e) results from the definiton of the mutual
information and step (f) arises from the non-negativity of the
entropy and from h (θ[n−1] | sF,DL[n]) ≥ h (θ[n−1]) which is
the binary entropy function hb(pε) with probability pe for the
error event θ[n− 1] = 1.

The first two terms in (17) can be computed from

I(sF,DL[n];yF,DL[n]|hDL[n],θ[n−1]) = (1−pε)I(sF,DL[n];yF,DL[n]|hDL,cf[n])

+pε I(sF,DL[n];yF,DL[n]|hDL,ef[n]) (18)

I(hDL[n];yF,DL[n]|sF,DL[n],θ[n−1]) = (1−pε)I(hDL,cf[n];yF,DL[n]|sF,DL[n])

+pε I(hDL,ef[n];yF,DL[n]|sF,DL[n]). (19)

The first term in (18) represents the mutual information
given the effective channel after correct feedback. This mutual
information can be lower bounded as

I(sF,DL[n];yF,DL[n]|hDL,cf[n])
(a)≥ TF,DL,D E

[
log2

(
1 +

PDL|hDL,cf[n]|2
σ2

n

)]
(b)≥ TF,DL,D Eν,‖ĥF,DL‖22

[
log2

(
1+

PDLαν ‖ĥF,DL[n−1]‖22
σ2

n

)]
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(c)≥TF,DL,D

(
1− σν

2μν

)
E‖ĥF,DL‖22

[
log2

(
1+

PDLαμν ‖ĥF,DL‖22
σ2

n

)]
(20)

(d)= TF,DL,D

(
1− σν

2μν

)
log2(e) e

1/χ
M∑
k=1

Ek(1/χ), (21)

where (a) results from assuming Gaussian signalling. The
inequality in step (b) results from the fact, which was verified
numerically, that x = |hDL,cf[n]|2 given in (11) stochastically
dominates [7] the random variable y = αν ‖ĥF,DL[n − 1]‖22.
For step (c), we employ the fact that ν, defined in (12),
and ‖ĥF,DL[n − 1]‖22 are independent and we make use of a
lower bound on concave functions given in [9, (15)] where
the standard deviation dν ≤ σν . Finally, the last result (21)
follows similar to the derivation of (6) with

χ =
PDLαμν(1− σ2

e (ρDL))
σ2

n
. (22)

The second term in (18) represents the mutual information
given the effective channel hDL,ef[n] after erroneous feedback.
This mutual information is given by [4, (8.40)]

I(sF,DL[n];yF,DL[n]|hDL,ef[n])=TF,DL,D log2(e)e
σ2

n
PDL E1(σ2

n/PDL). (23)

The second term in (17) can be viewed as a penalty for
not really knowing the effective downlink channel hDL[n].
The first term in (19) can be upper bounded as follows
I(hDL,cf[n];yF,DL[n]|sF,DL[n])

≤ log2(e)e
σ2

n
PDLE[|hDL,cf[n]|2]

TF,DL,D∑
k=1

Ek

(
σ2

n

PDLE [|hDL,cf[n]|2]
)
, (24)

which results by assuming hDL,cf[n] to be Gaussian distributed
which maximizes the entropy given the variance of the effec-
tive channel, which is upper bounded by E

[|hDL,cf[n]|2] given
in (13). In (24), we have also employed [4, (8.40)].

By employing [4, (8.40)] we can also compute in closed
form the second term in (19)

I(hDL,ef[n];yF,DL[n]|sF,DL[n])=log2(e)e
σ2

n /PDL

TF,DL,D∑
k=1

Ek

(
σ2

n

PDL

)
, (25)

since sF,DL[n] is Gaussian distributed with unit variance.
A lower bound to the FDD downlink capacity under limited

feedback beamforming and Gaussian signalling is given by
plugging (21) and (23) in (18), and (24) and (25) in (19), and
afterwards substituting the resulting expressions for (18) and
(19) in (17) and finally with CF,DL = 1

T IF,DL, we obtain

CF,DL ≥ (1− pε) log2(e)
T

(
TF,DL,D

(
1− σν

2μν

)
e1/χ

M∑
k=1

Ek (1/χ)

− e
σ2

n
PDLE[|hDL,cf[n]|2]

TF,DL,D∑
k=1

Ek

(
σ2

n

PDLE [|hDL,cf[n]|2]
))

− hb(pε)
T

+
pε
T

log2(e) e
σ2

n
PDL

(
TF,DL,D E1

(
σ2

n

PDL

)
−
TF,DL,D∑
k=1

Ek

(
σ2

n

PDL

))
. (26)

An upper bound on the downlink capacity CT,DL in a TDD
system can be derived similarly to the upper bound for
the FDD case given in (16), by ignoring the effects of the
quantization errors, feedback errors, by recalling that there is

no training phase and that the available power on each resource
block is PDL

2 instead of PDL:

CT,DL≤ log2

(
1 +

PDL

2σ2
n

(
α(M−1)

(
1− σ2

e

(ρDL

2

))
+1

))
. (27)

Following partially the derivation of the lower bound on the
FDD downlink capacity, CT,DL can be lower bounded as

CT,DL ≥log2(e) e
2σ2

n

αPDL(1−σ2
e( ρDL

2 ))
M∑
k=1

Ek

(
2σ2

n

αPDL

(
1−σ2

e
(ρDL

2

))
)

− 1
T

log2(e) e
2σ2

n /PDL

T∑
k=1

Ek(2σ2
n/PDL). (28)

VI. PERFORMANCE ANALYSIS

In this section we provide some simulation results in order
to assess the capacity bounds. Let us consider the following
scenario: T = 200, M = 8, B = 30, TUL = TDL = 10 and
α = 0.99941. In addition, we assume PUL = PDL

M , i.e., the
user has 1

M -th the available power of the base station, thus
introducing a scaling of the available uplink power with the
number of antennas. Hence, with TUL = TDL the estimation
error in the uplink and downlink of a given system are equal,
for instance in an FDD system σ2

e (ρUL) = σ2
e (ρDL). With

the described scenario, we depict in Fig. 2, the uplink and
downlink capacity bounds for both systems as a function of
the SNR parameterized by the FDD uplink and downlink SNR.
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Figure 2. Capacity vs. SNR

The actual capacity with imperfect CSI for each of the links
lies in the shaded region enclosed by the lower and upper
bounds. As a reference we have included the capacity with
perfect CSI which is the same for the uplink and downlink in a
given system. An upper bound on the FDD downlink capacity
without transmit CSI is also depicted. Recall that the TDD
uplink/downlink SNR is 3 dB smaller than in the equivalent
FDD uplink/downlink.

For low SNRs, the FDD downlink capacity with the BS
being unaware of feedback errors can be smaller than the
capacity when there is no transmit CSI. For a low downlink

1Assuming
√
α = J0(2πtsfcs/c), α results from considering a time slot

duration ts = 1 ms, a carrier frequency fc = 2 GHz and a user’s velocity
along the line from the BS to the user of s = 3 km/h.
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SNR, the SNR in the corresponding uplink is assumed to
be 1

M -th the downlink SNR and hence, the occurrence of
feedback errors in the uplink is not negligible. The FDD down-
link capacity is mainly dominated by the capacity achieved
after erroneous feedback and therefore, for such scenarios the
performance in the FDD downlink is practically equivalent
to that of random beamforming with a single user or to
having only one transmit antenna. Since we assume the base
station and the user to be unaware of the feedback errors,
after erroneous feedback the BS sends only one stream with
a random beamforming vector instead of transmitting M
independent streams with equally shared power which is the
optimum strategy when the base station has no transmit CSI.

However, if the BS were aware of a feedback error, it
could employ, for instance, the preceding beamforming vector
fed back in the previous time slot, if the precedent feedback
message was received error-free2. The capacity bounds for this
case are depicted in Fig. 2 with the additional legend (Aware).
For moderate to high SNRs, there is practically no gain, since
the feedback error probability for such SNRs is negligible.
Nonetheless, even if the BS is aware of the feedback errors for
very low SNRs, it cannot simply adopt the optimum transmit
strategy for the no transmit CSI case, since the user would need
to informed that the BS transmits M streams instead of only
one stream. Another straightforward approach to counter the
feedback errors for a given low downlink SNR is to increase
the uplink SNR, which in our case would imply that the uplink
SNR no longer scales as 1

M -th the downlink SNR.
We now compare in Fig. 2 the TDD downlink with the

FDD downlink when the BS is unaware of feedback errors.
For up to an FDD downlink SNR of 9 dB, a TDD system
achieves a higher capacity even though the TDD downlink
SNR is 3 dB smaller. This is mainly due to the errors in
transmission of the B = 30 feedback bits (15 QPSK symbols)
in the FDD uplink. With smaller feedback error probabilities,
i.e. with FDD downlink SNRs larger than 10 dB, which imply
FDD uplink SNRs larger than 4 dB, the performance of the
FDD downlink is for sure better than the TDD downlink.

Observe the slightly increasing absolute loss in capacity of
the FDD uplink/downlink and TDD uplink with respect to the
perfect CSI case, which results from the training and/or feed-
back overhead. We emphasize, nonetheless, that the assumed
training and feedback length are not optimum at all SNRs.Due
to the overhead, the slope of the FDD uplink/downlink and
TDD uplink bounds are not strickly the same as that of the
capacity with perfect CSI for high SNRs. However, assuming
a fixed TDL ≥ M for the FDD downlink, so that as T → ∞
then TF,DL,D

T → 1 and with PUL
σ2

n
→ ∞ and PDL

σ2
n

→ ∞ such that
we can ignore the feedback and estimation errors at high SNR,
the FDD downlink capacity can be approximated using (20)

CF,DL ≈
(
1− σν

2μν

)
E
[
log2

(
1 +

PDLαμν ‖hDL‖22
σ2

n

)]
(29)

since the channel is estimated practically perfectly and fed
back error-free. Considering 1 − σν

2μν
≈ 1, comparing (29)

2The BS could assume there was a feedback error, if the current beamform-
ing vector is not highly correlated (depending on the mobility scenario and
the codebook size) with previously correctly received beamforming vectors.

with the corresponding expression for the perfect CSI case,
we observe that the outdating and the quantization lead to an
SNR degradation of αμν ≤ 1.The SNR degradation suggests
that in order that an FDD downlink, given the same resources
(assuming the overhead, estimation errors and feedback errors
are negligible) can match the performance of a TDD downlink
with outdating (c.f. (27)), we would require

α
(
1− 2−

B
M−1

)
=

α
2
, (30)

where we used (14) and since the available power in the TDD
downlink is half of that in the FDD downlink. For a given
number of antennas M , an FDD downlink requires at least

B = (M − 1) feedback bits, (31)

in order to match the equivalent TDD downlink, neglecting
the effect of the overhead, estimation and feedback errors.

We now take a look at the FDD capacity bounds as a
function of the number of feedback bits B. For Fig. 3,
we consider the following scenario T = 500, M = 8,
TUL = TDL = 10 and α = 0.9994. The downlink SNR is
10 log10

PDL
σ2

n
= 10 dB and consequently 10 log10

PUL
σ2

n
≈ 4 dB.
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Figure 3. Capacity vs. Number of Feedback Bits B

Here we can observe the tradeoff between the quantization
error (number of feedback bits) and the feedback error proba-
bility in the downlink. The maximum for both FDD downlink
capacity bounds is achieved with around 22-26 bits and hence,
we posit that this is also optimum for the actual FDD downlink
capacity. In addition, as the number of feedback bits increase,
the reduction in the quantization error, i.e. μν → 1, cannot
compensate the increase in the errors in the transmission of
the feedback message which consequently leads to a decrease
of the downlink capacity. Note also how the achievable uplink
rate decreases with increasing feedback overhead.

The result given by (31), suggests that with M = 8 antennas
we need to set B = 7 in order that the FDD downlink can
match the TDD downlink. In Fig. 3, however, the lower bound
for the FDD downlink with B = 7 lies slightly below the
achievable rate in the TDD downlink. This is due to the fact
that in this case the factor in front of the FDD lower bound
is not exactly one: 1 − σν

2μν
≈ 0.9265. The simulation result

indicates that at least B = 10 are required for the FDD lower
bound to be larger than or equal than the TDD lower bound.
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Let us now depict the capacity bounds for the FDD and
TDD downlink as a function of the number of antennas. The
paremeter setting in Fig. 4 is as follows: T = 200, B = 30,
TUL = TDL = 20 and α = 0.9994. The FDD downlink SNR
is 10 log10

PDL
σ2

n
= 13 dB which implies the TDD downlink to

be 10 dB. The performance with perfect CSI is also shown
as reference. The TDD downlink capacity bounds increase
logarithmically with M as a consequence of the antenna
gain achieved with maximum ratio transmission based on the
estimated channel. However, this is not completely possible
in the FDD downlink due to the quantization errors. First, we
point out that the effect of the feedback errors is negligible3

for M ≥ 3. With the assumed fixed B for all M , the absolute
antenna gain, i.e. M E [ν] ≈ M(1 − 2−

B
M−1 ) increases

monotonically with M , such that the capacity also increases,
albeit slowly, with M but not logarithmically as in the TDD
case. Due to this reason, under the given setting a TDD
downlink surely outperforms an FDD downlink for M ≥ 14.
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Figure 4. Capacity vs. Number of Antennas M

VII. SUMMARY AND DISCUSSION

We have provided tight bounds for the single-user capacity
in both links of FDD and TDD systems with imperfect CSI.
Given a set of resources (time, frequency and transmit power)
available for a two-way communication systems, an FDD
system is able to perform better than a TDD system: an
FDD uplink outperforms always a TDD uplink and the FDD
downlink, assuming the number of feedback bits are properly
chosen, could also outperform the corresponding TDD down-
link. However, a comparison between the two systems is not
as simple and straightforward as it may seem. For instance, the
energy consumption in an FDD system is twice as large as in
a TDD system, since the links in a TDD system operate only
half the time. Although this might not be a major inconvience
at the base station, this could imply a larger battery at the user
terminal in an FDD systems as compared to a TDD system.
If we limit the energy consumption instead of the available
power, then the downlink SNR in both systems is the same
and the TDD downlink would outperform the FDD downlink.

3With M = 3 the feedback error probability is only pε ≈ 7%. Although
the uplink SNR decreases with increasing M since we assume PUL = PDL

M
,

the receive antenna gain increases with M in such a way that the feedback
error probability actually decreases with M , i.e. pε ≤ 7% for M ≥ 3.

In addition, there are practical losses and implementation
issues which could be taken into account. An FDD transceiver
requires duplexers, which can incurr in transmit losses of 2-
3 dB, and thus reduce the 3 dB SNR advantage of the FDD
system over the TDD system. Nonetheless, a TDD system
requires a switch to change between transmission and recep-
tion which can have losses of about 0.5-1 dB. Furthermore, a
TDD system requires calibration at the BS which may insert
additional losses. Hence, after considering all these aspects,
we could still have a net SNR advantage of an FDD system
compared to a TDD system.

In contrast to an FDD system, in a TDD system there is
also the need of a time guard interval which mainly depends
on the proximity of neighboring base stations. Depending on
the network layout and cell sizes, this guard interval might
represent a relevant overhead.

Another important aspect is the flexibility of a TDD system
over an FDD system to handle asymmetric traffic between the
uplink and downlink more easily. The duration of the uplink
slot and the downlink slot can be modified adaptively in order
to match the ratio of uplink/downlink traffic. This flexibility
may however pose some problems in a multi-cell scenario.
In case neighboring cells have a different UL/DL time slot
partition (as a consequece of a different traffic asymmetry) or
are not synchronized, a base station might be receiving at the
same time when a neighboring base station is transmitting.
The resulting interference can be stronger than the intercell
interference resulting from the transmission of a user in a
neighboring cell, since there might be a line of sight between
the two base stations. One possibility to avoid this interference
is through synchronization, which would, nonetheless, restrict
all cells to have the same UL/DL traffic allocation. This would
obviously hinder the beforementioned flexibility of a TDD
system over an FDD system to dynamically allocate traffic
in the uplink and downlink of each cell.

Based on the proposed arguments, a detailed comparison
could also include the component losses, calibration, energy
consumption and synchronization, but is out of the scope
of this work. The actual decision which system is preferred
depends on several factors and not just on one figure of merit.
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