High-Performance Hardware for Machine Learning

NIPS Tutorial 12/7/2015

Prof. William Dally Stanford University NVIDIA Corporation

Hardware and Data enable DNNs

The Need for Speed

Larger data sets and models lead to better accuracy but also increase computation time. Therefore progress in deep neural networks is limited by how fast the networks can be computed.

Likewise the application of convnets to low latency inference problems, such as pedestrian detection in self driving car video imagery, is limited by how fast a small set of images, possibly a single image, can be classified.

> More data \rightarrow Bigger Models \rightarrow More Need for Compute But Moore's law is no longer providing more compute...

Lavin & Gray, Fast Algorithms for Convolutional Neural Networks, 2015

Outline

- The Problem
- Baseline
- Parallelization
- GPUs
- Reduced Precision
- Compression
- Better Algorithms
- Hardware for DNNs
- Summary

Outline

• The Problem

- Baseline
- Parallelization
- GPUs
- Reduced Precision
- Compression
- Better Algorithms
- Hardware for DNNs
- Summary

Acceleration

- Run a network faster (Performance, inf/s)
- Run a network more efficiently
 - Energy (inf/J)
 - Cost (inf/s\$)
- Inference
 - Just running the network forward
- Training
 - Running the network forward
 - Back-propagation of gradient
 - Update of parameters

What Network? DNNs, CNNs, and RNNs

DNN, key operation is dense M x V

DNN, key operation is dense M x V

Repeat for each layer

W_{ii} X bi ai Output activations Input activations weight matrix

DNN, key operation is dense M x V

Backpropagation just does this backward

W_{ii} Х b ai Output gradient weight matrix Input gradient

Training, and Latency Insensitive Networks can be Batched – operation is M x M – gives re-use of weights

For real time you can't batch And there is sparsity in both weights and activations key operations is spM x spV

Backpropagation just does this backward

W_{ii} b a Output gradient weight matrix nput gradient

CNNs – For Image Inputs, Convolutional stages act as trained feature detectors

CNNs require Convolution in addition to M x V

CNNs require Convolution in addition to M x V

RNNs

Some Other Operations

Infrastructure

Summary of the Problem

- Run DNNs, CNNs, and RNNs
 - For training and inference
 - Can batch if not latency sensitive
- Optimize
 - Speed inf/s
 - Efficiency inf/J, inf/s\$
- Key operations are
 - $-M \times V$
 - M x M if batched
 - May be sparse (spM x spV)
 - Convolution
- Also
 - Pooling, non-linear operator (ReLU), weight update

Outline

The Problem

- Baseline
- Parallelization
- GPUs
- Reduced Precision
- Compression
- Better Algorithms
- Hardware for DNNs
- Summary

Baseline Performance Xeon E5-2698 – Single Core

AlexNet – inference, batched 30 f/s 3.2 f/J Most ops on AVX (SIMD) units

Moore's law made CPUs 300x faster than in 1990 But its over...

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore

C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011

Outline

- The Problem
- Baseline
- Parallelization
- GPUs
- Reduced Precision
- Compression
- Better Algorithms
- Hardware for DNNs
- Summary

To go faster, use more processors

Lots of parallelism in a DNN

Lots of parallelism in a DNN

- Inputs
- Points of a feature map
- Filters
- Elements within a filter

- Multiplies within layer are independent
- Sums are reductions
- Only layers are dependent
- No data dependent operations
 => can be statically scheduled

Data Parallel – Run multiple inputs in parallel

Data Parallel – Run multiple inputs in parallel

- Doesn't affect latency for one input
- Requires P-fold larger batch size
- For training requires coordinated weight update

Parameter Update

Large Scale Distributed Deep Networks, Jeff Dean et al., 2013

Model Parallel Split up the Model – i.e. the network

Model-Parallel Convolution

Model-Parallel Convolution – by output region (x,y)

Model-Parallel Convolution – By output map j (filter)

Model Parallel Fully-Connected Layer (M x V)

Model Parallel Fully-Connected Layer (M x V)

Hyper-Parameter Parallel Try many alternative networks in parallel
CPU Parallelism – Core i7 – 1 core vs 6 cores

NVIDIA, "Whitepaper: GPU-based deep learning inference: A performance and power analysis."

Data and Model Parallel Performance

Dean et al. Large Scale Distributed Deep Networks, NIPS 2012

Summary of Parallelism

- Lots of parallelism in DNNs
 - 16M independent multiplies in one FC layer
 - Limited by overhead to exploit a fraction of this
- Data parallel
 - Run multiple training examples in parallel
 - Limited by batch size
- Model parallel
 - Split model over multiple processors
 - By layer
 - Conv layers by map region
 - Fully connected layers by output activation
- Easy to get 16-64 GPUs training one model in parallel

Outline

- The Problem
- Baseline
- Parallelization

• GPUs

- Reduced Precision
- Compression
- Better Algorithms
- Hardware for DNNs
- Summary

To go fast, use multiple processors

To go fast, use multiple processors

To be efficient and fast, use GPUs

To go fast, use multiple processors

To be efficient and fast, use GPUs

To be efficient and go really fast, use multiple GPUs

Titan X

- 3072 CUDA cores @ 1 GHz
- 6 Teraflops FP32
- 12GB of GDDR5 @ 336 GB/sec
- 250W TDP
- 24GFLOPS/W
- 28nm process

Tegra X1

- 256 CUDA cores @ ~1 GHz
- 1 Teraflop FP16
- 4GB of LPDDR4 @ 25.6 GB/s
- 15 W TDP (1W idle, <10W typical)
- 100GFLOPS/W(FP16)
- 20nm process

Xeon E5-2698 CPU v.s. TitanX GPU

NVIDIA, "Whitepaper: GPU-based deep learning inference: A performance and power analysis."

Tegra X1 vs Core i7

NVIDIA, "Whitepaper: GPU-based deep learning inference: A performance and power analysis."

Parallel GPUs

Ren Wu et al., Deep Image: Scaling up Image Recognition, arXiv 2015

Parallel GPUs on Deep Speech 2

Baidu, Deep Speech 2: End-to-End Speech Recognition in English and Mandarin, 2015

Summary of GPUs

- Titan X ~6x faster, 4x more efficient than Xeon E5
- TX1 11.5x more efficient than Core i7
- On inference
- Larger gains on training
- Data parallelism scales easily to 16GPUs
- With some effort, linear speedup to 128GPUs

Outline

- The Problem
- Baseline
- Parallelization
- GPUs
- Reduced Precision
- Compression
- Better Algorithms
- Hardware for DNNs
- Summary

Reducing precision

Reduces storage

Reduces energy

Improves performance

Has little effect on accuracy – to a point

DNN, key operation is dense M x V

DNN, key operation is dense M x V

How much accuracy do we need in the computations:

$$b_i = f\left(\sum_j w_{ij} a_i\right)$$

$$w_{ij} = w_{ij} + \alpha a_i g_j$$

Number Representation

Cost of Operations

Energy numbers are from Mark Horowitz "Computing's Energy Problem (and what we can do about it)", ISSCC 2014 Area numbers are from synthesized result using Design Compiler under TSMC 45nm tech node. FP units used DesignWare Library.

The Importance of Staying Local

Mixed Precision

Mixed Precision

Mixed Precision

Batch normalization important to 'center' dynamic range

Weight Update

Weight Update

No learning!

Stochastic Rounding

Reduced Precision for Inference

Reduced Precision For Training

Figure 2. MNIST dataset using CNNs: Training error (a) and the test error (b) for training using fixed-point number representation and rounding mode set to either "Round to nearest" or "Stochastic rounding". The word length for fixed-point numbers WL is kept fixed at 16 bits and results are shown for different fractional (integer) lengths for weights and weight updates: 12(4), and 14(2) bits. Layer outputs use $\langle 6, 10 \rangle$ format in all cases. Results using float are also shown for comparison.

S. Gupta et.al "Deep Learning with Limited Numerical Precision" ICML 15

Summary of Reduced Precision

- Can save memory capacity, memory bandwidth, memory power, and arithmetic power by using smaller numbers
- FP16 works with little effort
 - 2x gain in memory, 4x in multiply power
- With care, one can use
 - 8b for convolutions
 - 4b for fully-connected layers
- Batch normalization important to 'center' ranges
- Stochastic rounding important to retain small increments

Outline

- The Problem
- Baseline
- Parallelization
- GPUs
- Reduced Precision
- Compression
- Better Algorithms
- Hardware for DNNs
- Summary

Reducing Size of Network Reduces Work and Storage

Prune Unneeded Connections

Pruning

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015

Retrain to Recover Accuracy

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015
Pruning of AlexNet

Pruning of VGG-16

Pruning Neural Talk and LSTM

Pruning Neural Talk and LSTM

- **Original**: a basketball player in a white uniform is playing with a ball
- **Pruned 90%**: a basketball player in a white uniform is playing with a basketball

- **Original** : a brown dog is running through a grassy field
- **Pruned 90%**: a brown dog is running through a grassy area
- **Original** : a man is riding a surfboard on a wave
- **Pruned 90%**: a man in a wetsuit is riding a wave on a beach
- Original : a soccer player in red is running in the field
- Pruned <u>95%</u>: a man in a red shirt and black and white black shirt is running through a field

Speedup of Pruning on CPU/GPU

Figure 9: Compared with the original network, pruned network layer achieved $3 \times$ speedup on CPU, $3.5 \times$ on GPU and $4.2 \times$ on mobile GPU on average. Batch size = 1 targeting real time processing. Performance number normalized to CPU.

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

History of Pruning

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal Brain Damage. In *Advances in Neural Information Processing Systems*, pages 598–605. Morgan Kaufmann, 1990.

Babak Hassibi, David G Stork, et al. Second order derivatives for network pruning: Optimal brain surgeon. *Advances in neural information processing systems*, pages 164–164, 1993.

See Poster:

Tue Dec 8th 07:00 - 11:59 PM @ 210 C #12 Learning both Weights and Connections for Efficient Neural Network

Song Han \cdot Jeff Pool \cdot John Tran \cdot Bill Dally

Reduce Storage for Each Remaining Weight

Trained Quantization (Weight Sharing)

Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding, arXiv 2015

Weight Sharing via K-Means

Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding, arXiv 2015

Trained Quantization

Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding, arXiv 2015

Bits per Weight

Pruning + Trained Quantization

See Workshop Poster:

Thur Dec 10 3:00 - 7:00 PM Deep Learning Symposium @ 210 A, B Level 2 Deep Compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding

Song Han · Huizi Mao· Bill Dally

Paper

Demo: Pocket AlexNet

Summary of Compression

Table 1: The compression pipeline can save $35 \times$ to $49 \times$ parameter storage with no loss of accuracy.

Network	Top-1 Error	Top-5 Error	Parameters	Compress Rate
LeNet-300-100 Ref	1.64%	-	1070 KB	
LeNet-300-100 Compressed	1.58%	-	27 KB	40 imes
LeNet-5 Ref	0.80%	-	1720 KB	
LeNet-5 Compressed	0.74%	-	44 KB	39 imes
AlexNet Ref	42.78%	19.73%	240 MB	
AlexNet Compressed	42.78%	19.70%	6.9 MB	35 imes
VGG-16 Ref	31.50%	11.32%	552 MB	
VGG-16 Compressed	31.17%	10.91%	11.3 MB	49 imes

Compress neural networks without affecting accuracy by:

- 1. Pruning the unimportant connections =>
- 2. Quantizing the network and enforce weight sharing =>
- 3. Apply Huffman encoding

30x – 50x Compression Means

- Complex DNNs can be put in mobile applications (<100MB total)
 1GB network (250M weights) becomes 20-30MB
- Memory bandwidth reduced by 30-50x
 - Particuarly for FC layers in real-time applications with no reuse
- Memory working set fits in on-chip SRAM
 - 5pJ/word access vs 640pJ/word

Outline

- The Problem
- Baseline
- Parallelization
- GPUs
- Reduced Precision
- Compression
- Better Algorithms
- Hardware for DNNs
- Summary

Before accelerating, make sure you have the fastest algorithm

FFT for Convolution

Mathieu, Henaff, & LeCunn, Fast Training of Convolutional Networks through FFTs, CVPR, 2014

FFT for Convolution

FFTs are amortized over K input maps and J output maps Conventional convolution is KJM^2N^2 ops for MxM kernel and NxN maps FFT is $4KJN^2 + C(K+J)(2N^2\log N)$

Faster – even for M=3 – with moderate sized K, J.

Mathieu, Henaff, & LeCunn, Fast Training of Convolutional Networks through FFTs, 2013

Mathieu, Henaff, & LeCunn, Fast Training of Convolutional Networks through FFTs, 2013

Winograd Convolution

$$Y_{i,k,\widetilde{x},\widetilde{y}} = \sum_{c=1}^{C} D_{i,c,\widetilde{x},\widetilde{y}} * G_{k,c}$$
$$= \sum_{c=1}^{C} A^{T} \left[U_{k,c} \odot V_{c,i,\widetilde{x},\widetilde{y}} \right] A$$
$$= A^{T} \left[\sum_{c=1}^{C} U_{k,c} \odot V_{c,i,\widetilde{x},\widetilde{y}} \right] A$$

Winograd. *Arithmetic complexity of computations*, volume 33. Siam, 1980 Lavin & Gray, Fast Algorithms for Convolutional Neural Networks, 2015

Summary of Algorithms

- FFT or Winograd convolution
 - ~2x faster for 3x3 convolutions
 - ~25x faster for 11x11 convolutions
- Special purpose hardware running brute-force convolution looses its advantage vs. GPU running FFT convolutions
- FFT convolution cost is independent of convolution size

Outline

- The Problem
- Baseline
- Parallelization
- GPUs
- Reduced Precision
- Compression
- Better Algorithms
- Hardware for DNNs
- Summary

To be maximally efficient use special-purpose hardware

Unless you are memory limited

Diannao (Electric Brain)

- Diannao improved CNN computation efficiency by using dedicated functional units and memory buffers optimized for the CNN workload.
- Multiplier + adder tree + shifter + non-linear lookup orchestrated by instructions
- Weights in off-chip DRAM
- 452 GOP/s, 3.02 mm² and 485 mW

Chen et al. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning, ASPLOS 2014

Diannao and Friends

DaDiannao (Bigger Computer) uses multi-chip and EDRAM to fit larger models. Each chip is 68mm² fitting 12 Million parameters, consumes 16W

ShiDiannao (Vision Computer) It can fits small model (up-to 64K parameters) on-chip. It maps the computation on 2D PE array. The chip is 4.86 mm² and consumes 320 mW ,

Convolution Engine

- Convolution Engine (CE), is specialized for the convolution-like data-flow that is common in image processing.
- CE achieves energy efficiency by capturing data reuse patterns, eliminating data transfer overheads, and enabling a large number of operations per memory access.
- With restricted the domain in image and video processing, flexible convolution engine improves improves energy and area efficiency by 8-15x over a SIMD engine.

Wajahat Qadeer et.al, Convolution Engine: Balancing Efficiency & Flexibility in Specialized Computing

NeuFlow

- An SoC designed to accelerate neural networks and other complex vision algorithms based on large numbers of convolutions and matrix-to-matrix operations.
- 160 GOPS, 570 mW, 12.5 mm^2 @ IBM SOI 45nm

P. Pham et.al, NeuFlow: Dataflow Vision Processing System-on-a-Chip

Efficient Inference Engine

	Power	(%)	Area	(%)
	(mW)	(70)	(μm^2)	(70)
Total	9.157		638,024	
memory	5.416	(59.15%)	594,786	(93.22%)
clock network	1.874	(20.46%)	866	(0.14%)
register	1.026	(11.20%)	9,465	(1.48%)
combinational	0.841	(9.18%)	8,946	(1.40%)
filler cell			23,961	(3.76%)
Act_queue	0.112	(1.23%)	758	(0.12%)
PtrRead	1.807	(19.73%)	121,849	(19.10%)
SpmatRead	4.955	(54.11%)	469,412	(73.57%)
ArithmUnit	1.162	(12.68%)	3,110	(0.49%)
ActRW	1.122	(12.25%)	18,934	(2.97%)
filler cell			23,961	(3.76%)

Speedup

Energy Efficiency

Scalability and load balancing

FPGAs

- A field-configurable ASIC
- Fixed-function units have good efficiency
 - Arithmetic units (int and FP)
 - RAMs
 - ARM cores
- Logic built from LUTs has poor efficiency
 - 30-100x worse ops/J than an ASIC

Microsoft Experience

ImageNet-1K Classification Performance

Platform	Library/OS	ImageNet 1K Inference Throughput	Peak TFLOPs	Effective TFLOPs	Estimated Peak Power with Server	Estimated GOPs/J (assuming peak power)
16-core, 2-socket Xeon E5-2450, 2.1GHz	Caffe + Intel MKL Ubuntu 14.04.1*	53 images/s	0.27T	0.074T (27%)	~225W	~0.3
Arria 10 GX1150	Windows Server 2012	369 images/s ¹	1.366T	0.51T (38%)	~265W	~1.9
NervanaSys-32 on NVIDIA Titan X	NervanaSys-32 on Ubuntu 14.0.4	4129 images/s ²	6.1T	5.75T (94%)	~475W	~12.1

Includes server power; however, CPUs available to other jobs in the datacenter

33

¹Dense layer time estimated ²https://github.com/soumith/convnet-benchmarks

Ovtcharov et al., Toward Accelerating Deep Learning at Scale Using Specialized Logic, Hot Chips 2015

Comparison of FPGAs

	[1]	[2]	[3]	[4]
Year	2010	2014	2015	2015
Platform	Virtex5 SX240t	Zynq XC7Z045	Virtex7 VX485t	Zynq XC7Z045
Clock(MHz)	120	150	100	150
Bandwidth (GB/s)	_	4.2	12.8	4.2
Quantization Strategy	48-bit fixed	16-bit fixed	32-bit float	16-bit fixed
Power (W)	14	8	18.61	9.63
Problem Complexity (GOP)	0.52	0.552	1.33	30.76
Performance (GOP/s)	16	23.18	61.62	187.80 (CONV) 136.97 (Overall)
Resource Efficiency (GOP/s/Slices)	4.30×10^{-4}	_	8.12×10^{-4}	3.58×10^{-3} (CONV) 2.61×10^{-3} (Overall)
Power Efficiency (GOP/s/W)	1.14	2.90	3.31	19.50 (CONV) 14.22 (Overall)

[1] S.Chakradhar, et.al, "A dynamically configurable coprocessor for convolutional neural networks," in ACM SIGARCH Computer Architecture News,

[2] V. Gokhale, et.al, "A 240 g-ops/s mobile coprocessor for deep neural networks," in Computer Vision and Pattern Recognition Workshops (CVPRW),

[3] C. Zhang et.al, "Optimizing fpga-based accelerator design for deep convolutional neural networks," in FPGA 2015

[4] J. Qiu et.al, "Going Deeper with Embedded FPGA Platform for Convolutional Neural Network", to appear in FPGA 2016
Hardware Comparison

Platform	Titan X	Tegra K1	A-Eye [14]	DaDianNao[11]	EIE (ours)
Year	2015	2014	2015	2014	2015
Platform Type	GPU	mGPU	FPGA	ASIC	ASIC
Technology	28nm	28nm	-	28nm	45nm
Clock (MHz)	1075	852	150	606	800
Memory type	DRAM+	DRAM+	DRAM	eDRAM+	SRAM
	SRAM	SRAM		SRAM	
Max DNN model size	<3G	<500M	<500M	11.3M	84M
Quantization Stategy	32-bit float	32-bit float	16-bit fixed	16-bit fixed	4 -bit \rightarrow 16-bit fixed
Area (mm^2)	-	-	-	67.7	40.8
Peak Throughput (GOP/s)	3225	365	188	5580	102
Throughput for $M \times V$ (GOP/s)	138.1	5.8	1.2	205	94.6
Power(W)	250	8.0	9.63	15.97	0.59
Power Efficiency (GOP/s/W)	12.9	45.6	19.5	349.4	172.9
Power Efficiency for M×V (GOP/s/W)	0.55	0.73	0.12	12.8	160.3

Summary of Special Purpose Hardware

- Diannao 16 16b multiply-accumulators with buffers optimized for DNNs
 All data stored in off-chip DRAM
- ShiDiannao for conv layers up to 64K parameters on chip
- DaDiannao for FC layers up to 12M parameters in on-chip EDRAM
- Convolution Engine fast convolutions (brute-force algorithm)
- EIE hardware for compressed networks
 - Trained quantization and pruning
 - No data movement scalable to 256PEs

Bottom Line

- Arithmetic perf/W of special purpose hardware is ~2x a GPU (FP16)
- Perf/W on memory limited layers (FC, not batch) is no better than GPU
- Big win from special-purpose hardware is
 - When entire network fits on chip
 - Decompressing highly-compressed networks
- FPGAs are just inefficient ASICs
 - Good arithmetic and on-chip memory
 - 30-100x less efficient elsewhere

Outline

- The Problem
- Baseline
- Parallelization
- GPUs
- Reduced Precision
- Compression
- Better Algorithms
- Hardware for DNNs
- Summary

Hardware and Data enable DNNs

In 1990, CPUs had one 100 SpecINT Core

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore

C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011

Today they have 6-8 30,000SpecINT cores (~200,000x) But Moore's Law is over...

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore

C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011

GPUs give an additional 5-10x (2,000,000x)

Data Parallelism Can get another 128x (256,000,000x) More with Model and Hyper-Parameter Parallelism

Baidu, Deep Speech 2: End-to-End Speech Recognition in English and Mandarin, 2015

Special-Purpose Hardware Can Give another 100x (25,000,000,000x) Mostly from localizing memory

Accelerate the best algorithms Prune the network Compress the network FFT convolutions

So what should you do?

- For training use clusters of 8-16GPUs
 - Best perf, perf/W, perf/\$, and memory bandwidth
 - Easy parallelism
- For inference in the data center use single GPUs
 - Tesla M4 and M40
- For inference in mobile devices (Automotive, IoT)
 - Use a TX1 (11.5x perf/W of CPU)
- For the absolute best performance and efficiency use an ASIC
 - But make sure the model fits (memory limited ASICs no better than GPU)
 - And that your algorithm isn't going to change

Thank You

net