
High-Performance Hardware for Machine Learning

NIPS Tutorial
12/7/2015

Prof. William Dally
Stanford University
NVIDIA Corporation

Hardware and Data enable DNNs

The Need for Speed

Larger data sets and models lead to better accuracy but also increase
computation time. Therefore progress in deep neural networks is limited by
how fast the networks can be computed.

Likewise the application of convnets to low latency inference problems,
such as pedestrian detection in self driving car video imagery, is limited by
how fast a small set of images, possibly a single image, can be classified.

Lavin & Gray, Fast Algorithms for Convolutional Neural Networks, 2015

More data è Bigger Models èMore Need for Compute
But Moore’s law is no longer providing more compute…

Outline
• The Problem
• Baseline
• Parallelization
• GPUs
• Reduced Precision
• Compression
• Better Algorithms
• Hardware for DNNs
• Summary

Outline
• The Problem
• Baseline
• Parallelization
• GPUs
• Reduced Precision
• Compression
• Better Algorithms
• Hardware for DNNs
• Summary

Acceleration
• Run a network faster (Performance, inf/s)
• Run a network more efficiently

– Energy (inf/J)
– Cost (inf/s$)

• Inference
– Just running the network forward

• Training
– Running the network forward
– Back-propagation of gradient
– Update of parameters

What Network? DNNs, CNNs, and RNNs

DNN, key operation is dense M x V

Wij aj

weight matrix

Input activations

bi

O
utput activations

= x

DNN, key operation is dense M x V

Wij aj

weight matrix

Input activations

bi

O
utput activations

= x

Repeat for each layer

DNN, key operation is dense M x V

Wij aj

weight matrix

O
utput gradient

bi

Input gradient

= x

Backpropagation just does
this backward

Training, and Latency Insensitive Networks can be
Batched – operation is M x M – gives re-use of weights

Wij ajk

weight matrix

Input activations

bik

O
utput activations

= x

For real time you can’t batch
And there is sparsity in both weights and activations

key operations is spM x spV

Wij aj

weight matrix

O
utput gradient

bi

Input gradient

= x

Backpropagation just does
this backward

CNNs – For Image Inputs, Convolutional stages act as
trained feature detectors

AijAij

CNNs require Convolution
in addition to M x V

Axyk

Input maps
Axyk

Kernels
Multiple 3D
Kuvkj

AijAijBxyk

x

Output maps
Bxyj

AijAij

CNNs require Convolution
in addition to M x V

Axyk

Input maps
Axyk

Kernels
Multiple 3D
Kuvkj

AijAijBxyj

x

Output maps
Bxyj

6D Loop
For each output map j

For each input map k
For each pixel x,y

For each kernel element u,v
Bxyj += A(x-u)(y-v)k x Kuvkj

RNNs

Some Other Operations

Pooling ReLU
(or other non-linear function)

Weight Update

wij += αajgi

Infrastructure

Decompress DNN

Eagle grabbing a
fish from water

Eagle.jpg

Summary of the Problem
• Run DNNs, CNNs, and RNNs

– For training and inference
– Can batch if not latency sensitive

• Optimize
– Speed inf/s
– Efficiency inf/J, inf/s$

• Key operations are
– M x V

• M x M if batched
• May be sparse (spM x spV)

– Convolution
• Also

– Pooling, non-linear operator (ReLU), weight update

Outline
• The Problem
• Baseline
• Parallelization
• GPUs
• Reduced Precision
• Compression
• Better Algorithms
• Hardware for DNNs
• Summary

Baseline Performance Xeon E5-2698 – Single Core

AlexNet – inference, batched

30 f/s

3.2 f/J

Most ops on AVX (SIMD) units

Moore’s law made CPUs 300x faster than in 1990
But its over…

C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011

Outline
• The Problem
• Baseline
• Parallelization
• GPUs
• Reduced Precision
• Compression
• Better Algorithms
• Hardware for DNNs
• Summary

To go faster, use more processors

Lots of parallelism in a DNN

Lots of parallelism in a DNN

• Inputs
• Points of a feature map
• Filters
• Elements within a filter

• Multiplies within layer are independent
• Sums are reductions
• Only layers are dependent
• No data dependent operations

=> can be statically scheduled

Data Parallel – Run multiple inputs in parallel

Data Parallel – Run multiple inputs in parallel

• Doesn’t affect latency for one input
• Requires P-fold larger batch size
• For training requires coordinated weight update

Parameter Update

Large Scale Distributed Deep Networks, Jeff Dean et al., 2013

Parameter Server

Model!
Workers

Data!
Shards

p’ = p + ∆p

∆p p’

One method to achieve scale is parallelization

Large scale distributed deep networks
J Dean et al (2012)

Model Parallel
Split up the Model – i.e. the network

Model-Parallel Convolution

AijAijAxyk

Input maps
Axyk

Kernels
Multiple 3D
Kuvkj

AijAijBxyj

x

Output maps
Bxyj

6D Loop
For each output map j

For each input map k
For each pixel x,y

For each kernel element u,v
Bxyj += A(x-u)(y-v)k x Kuvkj

Model-Parallel Convolution – by output region (x,y)

AijAijAxyk

Input maps
Axyk

Kernels
Multiple 3D
Kuvkj

Bxyj

x

Output maps
Bxyj

6D Loop
Forall region XY

For each output map j
For each input map k

For each pixel x,y in XY
For each kernel element u,v

Bxyj += A(x-u)(y-v)k x Kuvkj

Bxyj Bxyj

Bxyj Bxyj

Bxyj

Bxyj Bxyj

Bxyj Bxyj

Aij

Model-Parallel Convolution – By output map j (filter)

AijAijAxyk

Input maps
Axyk

Kernels
Multiple 3D
Kuvkj

AijAijBxyj

x

Output maps
Bxyj

6D Loop
Forall output map j

For each input map k
For each pixel x,y

For each kernel element u,v
Bxyj += A(x-u)(y-v)k x Kuvkj

Model Parallel Fully-Connected Layer (M x V)

Wij aj

weight matrix

Input activations

bi

O
utput activations

= x

Model Parallel Fully-Connected Layer (M x V)

Wij

aj

weight matrix

Input activations

bi

O
utput activations

= x
bi Wij

Hyper-Parameter Parallel
Try many alternative networks in parallel

CPU Parallelism – Core i7 – 1 core vs 6 cores

NVIDIA, “Whitepaper: GPU-based deep learning inference: A performance and power analysis.”

0

50

100

150

200

250

300

1	Core 6	Cores
f/
s

40

242

Data and Model Parallel Performance

portions of data to the same worker makes data access a non-issue. In contrast with Downpour
SGD, which requires relatively high frequency, high bandwidth parameter synchronization with the
parameter server, Sandblaster workers only fetch parameters at the beginning of each batch (when
they have been updated by the coordinator), and only send the gradients every few completed por-
tions (to protect against replica failures and restarts).

5 Experiments

We evaluated our optimization algorithms by applying them to training models for two different deep
learning problems: object recognition in still images and acoustic processing for speech recognition.

The speech recognition task was to classify the central region (or frame) in a short snippet of audio as
one of several thousand acoustic states. We used a deep network with five layers: four hidden layer
with sigmoidal activations and 2560 nodes each, and a softmax output layer with 8192 nodes. The
input representation was 11 consecutive overlapping 25 ms frames of speech, each represented by
40 log-energy values. The network was fully-connected layer-to-layer, for a total of approximately
42 million model parameters. We trained on a data set of 1.1 billion weakly labeled examples,
and evaluated on a hold out test set. See [27] for similar deep network configurations and training
procedures.

For visual object recognition we trained a larger neural network with locally-connected receptive
fields on the ImageNet data set of 16 million images, each of which we scaled to 100x100 pixels [28].
The network had three stages, each composed of filtering, pooling and local contrast normalization,
where each node in the filtering layer was connected to a 10x10 patch in the layer below. Our
infrastructure allows many nodes to connect to the same input patch, and we ran experiments varying
the number of identically connected nodes from 8 to 36. The output layer consisted of 21 thousand
one-vs-all logistic classifier nodes, one for each of the ImageNet object categories. See [29] for
similar deep network configurations and training procedures.

Model parallelism benchmarks: To explore the scaling behavior of DistBelief model parallelism
(Section 3), we measured the mean time to process a single mini-batch for simple SGD training as
a function of the number of partitions (machines) used in a single model instance. In Figure 3 we
quantify the impact of parallelizing across N machines by reporting the average training speed-up:
the ratio of the time taken using only a single machine to the time taken using N. Speedups for
inference steps in these models are similar and are not shown here.

The moderately sized speech model runs fastest on 8 machines, computing 2.2⇥ faster than using a
single machine. (Models were configured to use no more than 20 cores per machine.) Partitioning

1 16 32 64 128
0

5

10

15

Machines per model instance

Tr
ai

ni
ng

 s
pe

ed
−u

p

Speech: 42M parameters
Images: 80M parameters
Images: 330M parameters
Images: 1.7B parameters

Figure 3: Training speed-up for four different deep networks as a function of machines allocated
to a single DistBelief model instance. Models with more parameters benefit more from the use of
additional machines than do models with fewer parameters.

6

Dean et al. Large Scale Distributed Deep Networks, NIPS 2012

Summary of Parallelism
• Lots of parallelism in DNNs

– 16M independent multiplies in one FC layer
– Limited by overhead to exploit a fraction of this

• Data parallel
– Run multiple training examples in parallel
– Limited by batch size

• Model parallel
– Split model over multiple processors
– By layer
– Conv layers by map region
– Fully connected layers by output activation

• Easy to get 16-64 GPUs training one model in parallel

Outline
• The Problem
• Baseline
• Parallelization
• GPUs
• Reduced Precision
• Compression
• Better Algorithms
• Hardware for DNNs
• Summary

To go fast, use multiple processors

To go fast, use multiple processors

To be efficient and fast, use GPUs

To go fast, use multiple processors

To be efficient and fast, use GPUs

To be efficient and go really fast, use multiple GPUs

Titan X

• 3072 CUDA cores @ 1 GHz

• 6 Teraflops FP32

• 12GB of GDDR5 @ 336 GB/sec

• 250W TDP

• 24GFLOPS/W

• 28nm process

Tegra X1

• 256 CUDA cores @ ~1 GHz

• 1 Teraflop FP16

• 4GB of LPDDR4 @ 25.6 GB/s

• 15 W TDP (1W idle, <10W typical)

• 100GFLOPS/W (FP16)

• 20nm process

Xeon E5-2698 CPU v.s. TitanX GPU

NVIDIA, “Whitepaper: GPU-based deep learning inference: A performance and power analysis.”

6.8x 4.4x

5.3x
3.6x

Tegra X1 vs Core i7

NVIDIA, “Whitepaper: GPU-based deep learning inference: A performance and power analysis.”

0

50

100

150

200

250

300

Core i7 TX1

f/s

242
258

0
5

10
15
20
25
30
35
40
45
50

Core i7 TX1

f/J

3.9

45

11.5x

Parallel GPUs

Figure 3: Left: The scalability of different parallel approaches. The hybrid parallelism is

better when number of GPUs is less than 16. The scalability of data parallelism is better with
large numbers of GPU because the communication consuming is constant. Right: The

speedup of going through images. The larger the batch size is, the larger the speedup is.

Figure 4: Validation set accuracy for different numbers of GPUs.

4 Training Data

4 .1 Da ta Aug menta t io n

The phrase “the more you see, the more you know” is true for humans as well as neural
networks, especially for modern deep neural networks.

We are now capable of building very large deep neural networks up to hundreds of billions
parameters thanks to dedicated supercomputers such as Minwa. The available training data is
simply not sufficient to train a network of this size. Additionally, the examples collected are
often just in a form of ‘good’ data – or a rather small and heavily biased subset of the
possible space. It is desired to show the network with more data with broad coverage.

The authors of this paper believe that data augmentation is fundamentally important for
improving the performance of the networks. We would like the network to learn the
important features that are invariant for the object classes, rather than the artifact of the
training images. We have explored many different ways of doing augmentation, some of
which are discussed in this section.

It is clear that an object would not change its class if ambient lighting changes, or if the
observer is replaced by another. More specifically, this is to say that the neural network
model should be less sensitive to colors that are driven by the illuminants of the scene, or the

0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 32 64

Sp
ee

du
p

/ G
PU

 n
um

be
r

GPU number

slices=64, model-data parallel
slices=64, data parallel

0

10

20

30

40

50

16 32 64

Sp
ee

du
p

GPU number

batch size 256
batch size 512
batch size 1024

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.25 0.5 1 2 4 8 16 32 64 128 256

Ac
cu

ra
cy

Time (hours)

32 GPU
16 GPU
1 GPU

Accuracy 80%

32 GPU: 8.6 hours
1 GPU: 212 hours
Speedup: 24.7x

Ren Wu et al., Deep Image: Scaling up Image Recognition, arXiv 2015

Parallel GPUs on Deep Speech 2

binds one process to each GPU. These processes then exchange gradient matrices during the back-
propagation with by using all-reduce, which exchanges a matrix between multiple processes and
sums the result so that at the end, each process has a copy of the sum of all matrices from all pro-
cesses.

We find synchronous SGD useful because it is reproducible and deterministic. We have found
that the appearance of non-determinism in our system often signals a serious bug, and so having
reproducibility as a goal has greatly facilitates debugging. In contrast, asynchronous methods such
as asynchronous SGD with parameter servers as found in Dean et al. [17] typically do not provide
reproducibility and are therefore more difficult to debug. Synchronous SGD is simple to understand
and implement. It scales well as we add multiple nodes to the training process.

20 21 22 23 24 25 26 27

GPUs

211

212

213

214

215

216

217

218

219

Ti
m

e
(s

ec
on

ds
)

5-3 (2560)
9-7 (1760)

Figure 4: Scaling comparison of two networks—a 5 layer model with 3 recurrent layers containing 2560
hidden units in each layer and a 9 layer model with 7 recurrent layers containing 1760 hidden units in each
layer. The times shown are to train 1 epoch. The 5 layer model trains faster because it uses larger matrices and
is more computationally efficient.

Figure 4 shows that time taken to train one epoch halves as we double the number of GPUs that
we train on, thus achieving near-linear weak scaling. We keep the minibatch per GPU constant at
64 during this experiment, effectively doubling the minibatch as we double the number of GPUs.
Although we have the ability to scale to large minibatches, we typically use either 8 or 16 GPUs
during training with a minibatch of 512 or 1024, in order to converge to the best result.

Since all-reduce is critical to the scalability of our training, we wrote our own implementation of
the ring algorithm [46, 63] for higher performance and better stability. Our implementation avoids
extraneous copies between CPU and GPU, and is fundamental to our scalability. We configure
OpenMPI with the smcuda transport that can send and receive buffers residing in the memory of
two different GPUs by using GPUDirect. When two GPUs are in the same PCI root complex,
this avoids any unnecessary copies to CPU memory. This also takes advantage of tree-structured
interconnects by running multiple segments of the ring concurrently between neighboring devices.
We built our implementation using MPI send and receive, along with CUDA kernels for the element-
wise operations.

Table 7 compares the performance of our all-reduce implementation with that provided by OpenMPI
version 1.8.5. We report the time spent in all-reduce for a full training run that ran for one epoch
on our English dataset using a 5 layer, 3 recurrent layer architecture with 2560 hidden units for all
layers. In this table, we use a minibatch of 64 per GPU, expanding the algorithmic minibatch as we
scale to more GPUs. We see that our implementation is considerably faster than OpenMPI’s when
the communication is within a node (8 GPUs or less). As we increase the number of GPUs and
increase the amount of inter-node communication, the gap shrinks, although our implementation is
still 2-4X faster.

All of our training runs use either 8 or 16 GPUs, and in this regime, our all-reduce implementation
results in 2.5⇥ faster training for the full training run, compared to using OpenMPI directly. Opti-
mizing all-reduce has thus resulted in important productivity benefits for our experiments, and has
made our simple synchronous SGD approach scalable.

13

Baidu, Deep Speech 2: End-to-End Speech Recognition in English and Mandarin, 2015

Summary of GPUs
• Titan X ~6x faster, 4x more efficient than Xeon E5
• TX1 11.5x more efficient than Core i7
• On inference
• Larger gains on training

• Data parallelism scales easily to 16GPUs
• With some effort, linear speedup to 128GPUs

Outline
• The Problem
• Baseline
• Parallelization
• GPUs
• Reduced Precision
• Compression
• Better Algorithms
• Hardware for DNNs
• Summary

Reducing precision

Reduces storage

Reduces energy

Improves performance

Has little effect on accuracy – to a point

DNN, key operation is dense M x V

Wij aj

weight matrix

Input activations

bi

O
utput activations

= x

DNN, key operation is dense M x V

Wij aj

weight matrix

Input activations

bi

O
utput activations

= x

𝑏"=𝑓 ∑ 𝑤"&& 𝑎"

How much accuracy do we need in the computations:

𝑏" = 𝑓)𝑤"&
&

𝑎"

𝑤"& = 𝑤"& + α𝑎"𝑔&

Number Representation

FP32

FP16

Int32

Int16

Int8

S E M
1 8 23

Range Accuracy

10-38 - 1038 .000006%

6x10-5 - 6x104 .05%

0 – 2x109 ½

0 – 6x104 ½

0 – 127 ½

S E M
1 5 10

M
31

S

S M

1

1 15

S M
1 7

Cost of Operations

Operation: Energy (pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Area (µm2)
36
67
137
1360
4184
282
3495
1640
7700
N/A
N/A

Energy numbers are from Mark Horowitz “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014
Area numbers are from synthesized result using Design Compiler under TSMC 45nm tech node. FP units used DesignWare Library.

The Importance of Staying Local
LPDDR DRAM

GB

On-Chip SRAM
MB

Local SRAM
KB

640pJ/word

50pJ/word

5pJ/word

Mixed Precision

wij

aj

x bi+

Mixed Precision

wij

aj

x bi+

Store weights as 4b using
Trained quantization,

decode to 16b

Store activations as 16b 16b x 16b multiply
round result to 16b

accumulate 24b or 32b
to avoid saturation

Mixed Precision

wij

aj

x bi+

Store weights as 4b using
Trained quantization,

decode to 16b

Store activations as 16b 16b x 16b multiply
round result to 16b

accumulate 24b or 32b
to avoid saturation

Batch normalization important to ‘center’ dynamic range

Weight Update

gj

aj

x
wij+x

α

Δwij

Weight Update

gj

aj

x
x

α

Learning rate may
be very small
(10-5 or less)

Δw rounded to
zero

No learning!

wij+Δwij

Stochastic Rounding

gj

aj

x
x

α

Learning rate may
be very small
(10-5 or less)

Δw very small
wij+Δwij SR Δw’ij

E(Δw’ij) = Δwij

Reduced Precision for Inference

0.0

1.0

2.0

3.0

4.0

0%

23%

45%

68%

90%

32b Float 32b Int 16b Int 8b Int

M
ul

 E
ne

rg
y

(p
J)

Ac
cu

ra
cy

Arithmetic Precision

Multiply Energy (pJ) Prediction Accuracy

Reduced Precision For Training
Deep Learning with Limited Numerical Precision

Figure 2. MNIST dataset using CNNs: Training error (a) and the test error (b) for training using fixed-point number
representation and rounding mode set to either “Round to nearest” or “Stochastic rounding”. The word length for fixed-
point numbers WL is kept fixed at 16 bits and results are shown for di↵erent fractional (integer) lengths for weights and
weight updates: 12(4), and 14(2) bits. Layer outputs use h6, 10i format in all cases. Results using float are also shown
for comparison.

for training a given network. Moreover, the use of the
same word length for all network variables carries with
it the added advantage of simplifying the hardware
implementation.

4.1. MNIST

4.1.1. Fully connected DNN

In the first set of experiments, we construct a fully
connected neural network with 2 hidden layers, each
containing 1000 units with ReLU activation function
and train this network to recognize the handwritten
digits from the MNIST dataset. This dataset comprises
of 60, 000 training images and 10, 000 test images –
each image is 28 x 28 pixels containing a digit from
0 to 9. The pixel values are normalized to lie in
the [0, 1] range. No other form of data pre-processing
or augmentation is performed. The weights in each
layer are initialized by sampling random values from
N (0, 0.01) while the bias vectors are initialized to
0. The network is trained using minibatch stochastic
gradient descent (SGD) with a minibatch size of 100
to minimize the cross entropy objective function. The
float baseline achieves a test error of 1.4%.

Next, we retrain the network using fixed-point com-
putations and set WL to 16 bits. Figure 1 shows the
results for the two rounding modes: Round-to-nearest
and Stochastic rounding. In both cases, allocating 14
bits to the fractional part4 produces no noticeable

4Using up 14 bits for the fractional part leaves only 2
bits (including the sign bit) for representing the integer
portion of the number. This does not seem to adversely
a↵ect the network performance.

degradation in either the convergence rate or the clas-
sification accuracy. A reduction in the precision below
14 bits begins to negatively impact the network’s
ability to learn when the round-to-nearest scheme is
adopted. This is primarily because at reduced frac-
tional precision, most of the parameter updates are
rounded down to zero. In contrast, the stochastic
rounding preserves the gradient information, atleast
statistically, and the network is able to learn with as
few as 8 bits of precision without any significant loss in
performance. Note, however, at a precision lower than
8 bits, even the stochastic rounding scheme is unable
to fully prevent the loss of gradient information.

4.1.2. CNN

Using the MNIST dataset, we also evaluate a CNN
with an architecture similar to LeNet-5 (LeCun et al.,
1998). It comprises of 2 convolutional layers with 5x5
filters and ReLU activation function. The first layer
has 8 feature maps while the second convolutional
layer produces 16 feature maps. Each convolutional
layer is followed by a pooling/subsampling layer. The
pooling layers implement the max pooling function
over non-overlapping pooling windows of size 2x2. The
output of the second pooling layer feeds into a fully
connected layer consisting of 128 ReLU neurons, which
is then connected into a 10-way softmax output layer.

For training this network, we adopt an exponentially
decreasing learning rate – scaling it by a factor of 0.95
after every epoch of training. The learning rate for
the first epoch is set to 0.1. Momentum (p = 0.9)
is used to speed up SGD convergence. The weight
decay parameter is set to 0.0005 for all layers. When

5

S. Gupta et.al “Deep Learning with Limited Numerical Precision” ICML 15

Summary of Reduced Precision
• Can save memory capacity, memory bandwidth, memory power, and

arithmetic power by using smaller numbers
• FP16 works with little effort

– 2x gain in memory, 4x in multiply power
• With care, one can use

– 8b for convolutions
– 4b for fully-connected layers

• Batch normalization – important to ‘center’ ranges
• Stochastic rounding – important to retain small increments

Outline
• The Problem
• Baseline
• Parallelization
• GPUs
• Reduced Precision
• Compression
• Better Algorithms
• Hardware for DNNs
• Summary

Reducing Size of Network Reduces Work and Storage

Prune Unneeded Connections

Pruning

pruning
neurons

pruning
synapses

after pruningbefore pruning

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015

Retrain to Recover Accuracy

Train Connectivity

Prune Connections

Train Weights

-4.5%
-4.0%
-3.5%
-3.0%
-2.5%
-2.0%
-1.5%
-1.0%
-0.5%
0.0%
0.5%

40% 50% 60% 70% 80% 90% 100%

Ac
cu

ra
cy

 L
os

s

Parametes Pruned Away

L2 regularization w/o retrain L1 regularization w/o retrain
L1 regularization w/ retrain L2 regularization w/ retrain
L2 regularization w/ iterative prune and retrain

PrunedHan et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015

Pruning of AlexNet

Pruning of VGG-16

Pruning Neural Talk and LSTM

Pruning Neural Talk and LSTM

Speedup of Pruning on CPU/GPU

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV
NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV
NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

History of Pruning

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal Brain Damage. In Advances in
Neural Information Processing Systems, pages 598–605. Morgan Kaufmann, 1990.

Babak Hassibi, David G Stork, et al. Second order derivatives for network pruning: Optimal
brain surgeon. Advances in neural information processing systems, pages 164–164, 1993.

See Poster:

Tue Dec 8th 07:00 - 11:59 PM @ 210 C #12
Learning both Weights and Connections for
Efficient Neural Network
Song Han · Jeff Pool · John Tran · Bill Dally

Reduce Storage for Each Remaining Weight

Trained Quantization
(Weight Sharing)

Train Connectivity

Prune Connections

Train Weights

Cluster the Weights

Generate Code Book

Quantize the Weights
with Code Book

Retrain Code Book

Pruning: less quantity
Quantization: less precision

100% Size 10% Size 3.7% Size

 same
accuracy

 same
accuracy

original
network

Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding, arXiv 2015

Weight Sharing via K-Means

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

3 0 1 1

1 1 0 3

0 3 1 0

3 1 2 2

-0.03 -0.01 0.03 0.02

-0.01 0.01 -0.02 0.12

-0.01 0.02 0.04 0.01

-0.07 -0.02 0.01 -0.02

0.04

0.02

0.04

-0.03

-0.03 0.12 0.02 -0.07

0.03 0.01

0.02 -0.01 0.01 0.04

 -0.01 -0.02 -0.01 0.01

cluster

 weights
(32 bit float) centroids

gradient

3 0 2 1

1 1 0 3

0 3 1 0

3 1 2 2

cluster index
 (2 bit uint)

2.00

1.50

0.00

-1.00

-0.02

-0.02

group by

fine-tuned
centroids

reduce

1.96

1.48

-0.04

-0.97

1:

lr0:

2:

3:

Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding, arXiv 2015

Trained Quantization

Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding, arXiv 2015

Bits per Weight

Pruning + Trained Quantization

See Workshop Poster：

Thur Dec 10 3:00 - 7:00 PM Deep Learning Symposium @ 210 A, B Level 2
Deep Compression: Compressing deep neural
networks with pruning, trained quantization and
Huffman coding
Song Han · Huizi Mao· Bill Dally

Paper Demo:
Pocket AlexNet

Summary of Compression
Under review as a conference paper at ICLR 2016

Table 1: The compression pipeline can save 35⇥ to 49⇥ parameter storage with no loss of accuracy.

Network Top-1 Error Top-5 Error Parameters Compress
Rate

LeNet-300-100 Ref 1.64% - 1070 KB
LeNet-300-100 Compressed 1.58% - 27 KB 40⇥
LeNet-5 Ref 0.80% - 1720 KB
LeNet-5 Compressed 0.74% - 44 KB 39⇥
AlexNet Ref 42.78% 19.73% 240 MB
AlexNet Compressed 42.78% 19.70% 6.9 MB 35⇥
VGG-16 Ref 31.50% 11.32% 552 MB
VGG-16 Compressed 31.17% 10.91% 11.3 MB 49⇥

Table 2: Compression statistics for LeNet-300-100. P: pruning, Q:quantization, H:Huffman coding.

Layer #Weights Weights%
(P)

Weight
bits
(P+Q)

Weight
bits
(P+Q+H)

Index
bits
(P+Q)

Index
bits
(P+Q+H)

Compress
rate
(P+Q)

Compress
rate
(P+Q+H)

ip1 235K 8% 6 4.4 5 3.7 3.1% 2.32%
ip2 30K 9% 6 4.4 5 4.3 3.8% 3.04%
ip3 1K 26% 6 4.3 5 3.2 15.7% 12.70%
Total 266K 8%(12⇥) 6 5.1 5 3.7 3.1% (32⇥) 2.49% (40⇥)

Table 3: Compression statistics for LeNet-5. P: pruning, Q:quantization, H:Huffman coding.

Layer #Weights Weights%
(P)

Weight
bits
(P+Q)

Weight
bits
(P+Q+H)

Index
bits
(P+Q)

Index
bits
(P+Q+H)

Compress
rate
(P+Q)

Compress
rate
(P+Q+H)

conv1 0.5K 66% 8 7.2 5 1.5 78.5% 67.45%
conv2 25K 12% 8 7.2 5 3.9 6.0% 5.28%
ip1 400K 8% 5 4.5 5 4.5 2.7% 2.45%
ip2 5K 19% 5 5.2 5 3.7 6.9% 6.13%
Total 431K 8%(12⇥) 5.3 4.1 5 4.4 3.05% (33⇥) 2.55% (39⇥)

has two convolutional layers and two fully connected layers, which achieves 0.8% error rate on
Mnist. Table 2 and table 3 show the statistics of the compression pipeline. The compression rate
includes the overhead of the codebook and sparse indexes. Most of the saving comes from pruning
and quantization (compressed 32⇥), while Huffman coding gives a marginal gain (compressed 40⇥)

5.2 ALEXNET ON IMAGENET

We further examine the performance of Deep Compression on the ImageNet ILSVRC-2012 dataset,
which has 1.2M training examples and 50k validation examples. We use the AlexNet Caffe model as
the reference model, which has 61 million parameters and achieved a top-1 accuracy of 57.2% and a
top-5 accuracy of 80.3%. Table 4 shows that AlexNet can be compressed to 2.88% of its original size
without impacting accuracy. There are 256 shared weights in each CONV layer, which are encoded
with 8 bits, and 32 shared weights in each FC layer, which are encoded with only 5 bits. The relative
sparse index is encoded with 4 bits. Huffman coding compressed additional 22%, resulting in 35⇥
compression in total.

5.3 VGG-16 ON IMAGENET

With promising results on AlexNet, we also looked at a larger, more recent network, VGG-16 (Si-
monyan & Zisserman, 2014), on the same ILSVRC-2012 dataset. VGG-16 has far more convolutional
layers but still only three fully-connected layers. Following a similar methodology, we aggressively
compressed both convolutional and fully-connected layers to realize a significant reduction in the
number of effective weights, shown in Table5.

The VGG16 network as a whole has been compressed by 49⇥. Weights in the CONV layers are
represented with 8 bits, and FC layers use 5 bits, which does not impact the accuracy. The two largest
fully-connected layers can each be pruned to less than 1.6% of their original size. This reduction
is critical for real time image processing, where there is little reuse of these layers across images

6

Compress neural networks without affecting accuracy by:
1. Pruning the unimportant connections =>
2. Quantizing the network and enforce weight sharing =>
3. Apply Huffman encoding

30x – 50x Compression Means

• Complex DNNs can be put in mobile applications (<100MB total)
– 1GB network (250M weights) becomes 20-30MB

• Memory bandwidth reduced by 30-50x
– Particuarly for FC layers in real-time applications with no reuse

• Memory working set fits in on-chip SRAM
– 5pJ/word access vs 640pJ/word

Outline
• The Problem
• Baseline
• Parallelization
• GPUs
• Reduced Precision
• Compression
• Better Algorithms
• Hardware for DNNs
• Summary

Before accelerating, make sure you have the fastest
algorithm

FFT for Convolution

FFTs

FFTs

FFT s-1Matrix
Multiply

kernels

inputs

outputs

Figure 1: Illustration of the algorithm. Note that the matrix-multiplication involves multiplying all
input feature maps by all corresponding kernels.

method requires (n � k + 1)2k2 operations. The complexity of the FFT-based method requires
6Cn

2 log n + 4n2 operations: each FFT requires O(n2 log n

2) = O(2n2 log n) = 2Cn

2 log n,
and the pointwise product in the frequency domain requires 4n2 (note that the products are between
two complex numbers). Here C represents the hidden constant in the O notation. 2

Our algorithm is based on the observation that in all of the operations (1), (2) and (3), each of the
matrices indexed by f is convolved with each of the matrices indexed by f

0. We can therefore
compute the FFT of each matrix once, and all pairwise convolutions can be performed as products
in the frequency domain. Even though using the FFT-based method may be less efficient for a given
convolution, we can effectively reuse our FFTs many times which more than compensates for the
overhead.

The following analysis makes this idea precise. Assume we have f input feature maps, f 0 output
feature maps, images consisting of n ⇥ n pixels and kernels of k ⇥ k pixels. Also assume we are
performing updates over minibatches of size S, and that C represents the hidden constant in the FFT
complexity. As an example, using the direct approach (1) will take a total of S ·f 0 ·f ·(n�k+1)2 ·k2
operations. Our approach requires (2C · n2 log n)(S · f + f

0 · f) operations to transform the input
feature maps and kernels to the Fourier domain, a total of 4S ·f 0 ·f ·n2 additions and multiplications
in the Fourier domain, and S · f 0 · (2C · n2 log n) operations to transform the output feature maps
back to the spatial domain. The same analysis yields similar complexity estimates for the other
operations:

Direct Convolution Our Method
P

f xf ⇤ wf 0f S · f 0 · f · n02 · k2 2Cn

2 log n[f 0 · S + f · S + f

0 · f] + 4S · f 0 · f · n2

@L
@yf0

⇤ wT
f 0f S · f 0 · f · n2 · k2 2Cn

02 log n

0[f 0 · S + f · S + f

0 · f] + 4S · f 0 · f · n02

@L
@yf0

⇤ xf S · f 0 · f · k2 · n02 2Cn log n

2[f 0 · S + f · S + f

0 · f] + 4S · f 0 · f · n2

Here n

0 = (n� k + 1) represents the size of the output feature map. Note that the high complexity
of the direct method for convolution comes from the product of five terms, whereas our method has
a sum of products with at most four terms. Figure 2 shows the theoretical number of operations for
direct convolution and our FFT method for various input sizes.

2.3 Implementation and Memory Considerations

Although conceptually straighforward, a number of challenges relating to GPU implementation
needed to be addressed. First, current GPU implementations of the FFT such as cuFFT are designed
to parallelize over individual transforms. This can be useful for computing a limited number of
transforms on large inputs, but is not suitable for our task since we are performing many FFTs over

2Since the FFT-based method is actually computing a circular convolution, the output is cropped to discard
coefficients for which the kernel is not completely contained within the input image. This yields an output of
the same size as the direct method, and does not require additional computation.

3

Mathieu, Henaff, & LeCunn, Fast Training of Convolutional Networks through FFTs, CVPR, 2014

Pointwise

FFT for Convolution

FFTs

FFTs

FFT s-1Matrix
Multiply

kernels

inputs

outputs

Figure 1: Illustration of the algorithm. Note that the matrix-multiplication involves multiplying all
input feature maps by all corresponding kernels.

method requires (n � k + 1)2k2 operations. The complexity of the FFT-based method requires
6Cn

2 log n + 4n2 operations: each FFT requires O(n2 log n

2) = O(2n2 log n) = 2Cn

2 log n,
and the pointwise product in the frequency domain requires 4n2 (note that the products are between
two complex numbers). Here C represents the hidden constant in the O notation. 2

Our algorithm is based on the observation that in all of the operations (1), (2) and (3), each of the
matrices indexed by f is convolved with each of the matrices indexed by f

0. We can therefore
compute the FFT of each matrix once, and all pairwise convolutions can be performed as products
in the frequency domain. Even though using the FFT-based method may be less efficient for a given
convolution, we can effectively reuse our FFTs many times which more than compensates for the
overhead.

The following analysis makes this idea precise. Assume we have f input feature maps, f 0 output
feature maps, images consisting of n ⇥ n pixels and kernels of k ⇥ k pixels. Also assume we are
performing updates over minibatches of size S, and that C represents the hidden constant in the FFT
complexity. As an example, using the direct approach (1) will take a total of S ·f 0 ·f ·(n�k+1)2 ·k2
operations. Our approach requires (2C · n2 log n)(S · f + f

0 · f) operations to transform the input
feature maps and kernels to the Fourier domain, a total of 4S ·f 0 ·f ·n2 additions and multiplications
in the Fourier domain, and S · f 0 · (2C · n2 log n) operations to transform the output feature maps
back to the spatial domain. The same analysis yields similar complexity estimates for the other
operations:

Direct Convolution Our Method
P

f xf ⇤ wf 0f S · f 0 · f · n02 · k2 2Cn

2 log n[f 0 · S + f · S + f

0 · f] + 4S · f 0 · f · n2

@L
@yf0

⇤ wT
f 0f S · f 0 · f · n2 · k2 2Cn

02 log n

0[f 0 · S + f · S + f

0 · f] + 4S · f 0 · f · n02

@L
@yf0

⇤ xf S · f 0 · f · k2 · n02 2Cn log n

2[f 0 · S + f · S + f

0 · f] + 4S · f 0 · f · n2

Here n

0 = (n� k + 1) represents the size of the output feature map. Note that the high complexity
of the direct method for convolution comes from the product of five terms, whereas our method has
a sum of products with at most four terms. Figure 2 shows the theoretical number of operations for
direct convolution and our FFT method for various input sizes.

2.3 Implementation and Memory Considerations

Although conceptually straighforward, a number of challenges relating to GPU implementation
needed to be addressed. First, current GPU implementations of the FFT such as cuFFT are designed
to parallelize over individual transforms. This can be useful for computing a limited number of
transforms on large inputs, but is not suitable for our task since we are performing many FFTs over

2Since the FFT-based method is actually computing a circular convolution, the output is cropped to discard
coefficients for which the kernel is not completely contained within the input image. This yields an output of
the same size as the direct method, and does not require additional computation.

3

Mathieu, Henaff, & LeCunn, Fast Training of Convolutional Networks through FFTs, 2013

FFTs are amortized over K input maps and J output maps
Conventional convolution is KJM2N2 ops for MxM kernel and NxN maps
FFT is 4KJN2 + C(K+J)(2N2logN)

Faster – even for M=3 – with moderate sized K, J.

Pointwise

FFT Performance

Figure 3: Speed comparison with respect to size of input image (top), kernel size (middle) and
minibatch size (bottom)

6

Ti
m

e
(s

)

Kernel size (M)

FFT

Mathieu, Henaff, & LeCunn, Fast Training of Convolutional Networks through FFTs, 2013

Winograd Convolution

Lavin & Gray, Fast Algorithms for Convolutional Neural Networks, 2015
Winograd. Arithmetic complexity of computations, volume 33. Siam, 1980

P = ⌈H/m⌉⌈W/m⌉ tiles per channel,C. F (m×m, r×r)
is then computed for each tile and filter combination in each
channel, and the results are summed over all channels.
Substituting U = GgGT and V = BT dB, we have:

Y = AT
[
U ⊙ V

]
A (9)

Labeling tile coordinates as (x̃, ỹ), we rewrite the con-
vnet layer formula (2) for a single image i, filter k, and tile
coordinate (x̃, ỹ) as:

Yi,k,x̃,ỹ =
C∑

c=1

Di,c,x̃,ỹ ∗Gk,c

=
C∑

c=1

AT

[
Uk,c ⊙ Vc,i,x̃,ỹ

]
A

= AT

[C∑

c=1

Uk,c ⊙ Vc,i,x̃,ỹ

]
A

(10)

Thus we can reduce over C channels in transform space,
and only then apply the inverse transform A to the sum.
This amortizes the cost of the inverse transform over the
number of channels.
We examine the sum

Mk,i,x̃,ỹ =
C∑

c=1

Uk,c ⊙ Vc,i,x̃,ỹ (11)

and simplify the notation by collapsing the image/tile coor-
dinates (i, x̃, ỹ) down to a single dimension, b. We also la-
bel each component of the element-wise multiplication sep-
arately, as (ξ, ν), yielding:

M (ξ,ν)
k,b =

C∑

c=1

U (ξ,ν)
k,c V (ξ,ν)

c,b (12)

This equation is just a matrix multiplication, so we can
write:

M (ξ,ν) = U (ξ,ν)V (ξ,ν) (13)
Matrix multiply has efficient implementations on CPU,

GPU, and FPGA platforms, owing to its high computational
intensity. Thus we have arrived at the practical implemen-
tation for the fast algorithm listed in Algorithm 1.
Winograd documented a technique for generating the

minimal filtering algorithm F (m, r) for any choice of m
and r. The construction uses the Chinese remainder the-
orem to produce a minimal algorithm for linear convolu-
tion, which is equivalent to polynomial multiplication, then
transposes the linear convolution algorithm to yield a min-
imal filtering algorithm. The reader is referred to Wino-
grad’s seminal book [13], or Blahut’s book [2] for a mod-
ern treatment of the subject. We provide derivations of the
specific algorithms used in this paper in the supplementary
material.

Algorithm 1 Compute Convnet Layer with Winograd Min-
imal Filtering Algorithm F (m×m, r × r)

P = N⌈H/m⌉⌈W/m⌉ is the number of image tiles.
α = m+ r − 1 is the input tile size.
Neighboring tiles overlap by r − 1.
dc,b ∈ Rα×α is input tile b in channel c.
gk,c ∈ Rr×r is filter k in channel c.
G, BT , and AT are filter, data, and inverse transforms.
Yk,b ∈ Rm×m is output tile b in filter k.
for k = 0 to K do
for c = 0 to C do

u = Ggk,cGT ∈ Rα×α

Scatter u to matrices U: U (ξ,ν)
k,c = uξ,ν

for b = 0 to P do
for c = 0 to C do

v = BTdc,bB ∈ Rα×α

Scatter v to matrices V: V (ξ,ν)
c,b = vξ,ν

for ξ = 0 to α do
for ν = 0 to α do

M (ξ,ν) = U (ξ,ν)V (ξ,ν)

for k = 0 to K do
for b = 0 to P do

Gather m from matrices M:mξ,ν = M (ξ,ν)
k,b

Yk,b = ATmA

4.2. F(3x3,2x2)

Training a network using stochastic gradient descent re-
quires computation of the gradients with respect to the in-
puts and weights. For a convnet layer, the gradient with re-
spect to the inputs is a convolution of the next layer’s back-
propagated error, of dimension N × K × H × W , with a
flipped version of the layer’s R × S filters. Therefore it
can be computed using the same algorithm that is used for
forward propagation.

The gradient with respect to the weights is a convolution
of the layer inputs with the backpropagated errors, produc-
ingR×S outputs per filter and channel. Therefore we need
to compute the convolutionF (R×S,H×W), which is im-
practical becauseH×W is much too large for our fast algo-
rithms. Instead we decompose this convolution into a direct
sum of smaller convolutions, for example F (3 × 3, 2 × 2).
Here the algorithm’s 4 × 4 tiles are overlapped by 2 pixels
in each dimension, and the 3 × 3 outputs are summed over
all tiles to form F (3× 3, H ×W).

Summary of Algorithms
• FFT or Winograd convolution

– ~2x faster for 3x3 convolutions
– ~25x faster for 11x11 convolutions

• Special purpose hardware running brute-force convolution looses its
advantage vs. GPU running FFT convolutions

• FFT convolution cost is independent of convolution size

Outline
• The Problem
• Baseline
• Parallelization
• GPUs
• Reduced Precision
• Compression
• Better Algorithms
• Hardware for DNNs
• Summary

To be maximally efficient use special-purpose hardware

Unless you are memory limited

Diannao (Electric Brain)

Figure 15. Layout (65nm).

Component Area Power Critical
or Block in µm2 (%) in mW (%) path in ns
ACCELERATOR 3,023,077 485 1.02
Combinational 608,842 (20.14%) 89 (18.41%)
Memory 1,158,000 (38.31%) 177 (36.59%)
Registers 375,882 (12.43%) 86 (17.84%)
Clock network 68,721 (2.27%) 132 (27.16%)
Filler cell 811,632 (26.85%)
SB 1,153,814 (38.17%) 105 (22.65%)
NBin 427,992 (14.16%) 91 (19.76%)
NBout 433,906 (14.35%) 92 (19.97%)
NFU 846,563 (28.00%) 132 (27.22%)
CP 141,809 (5.69%) 31 (6.39%)
AXIMUX 9,767 (0.32%) 8 (2.65%)
Other 9,226 (0.31%) 26 (5.36%)

Table 6. Characteristics of accelerator and breakdown by com-
ponent type (first 5 lines), and functional block (last 7 lines).

logic which is in charge of reading data out of NBin/NBout;
next versions will focus on how to reduce or pipeline this
critical path. The total RAM capacity (NBin + NBout + SB
+ CP instructions) is 44KB (8KB for the CP RAM). The area
and power are dominated by the buffers (NBin/NBout/SB) at
respectively 56% and 60%, with the NFU being a close sec-
ond at 28% and 27%. The percentage of the total cell power
is 59.47%, but the routing network (included in the different
components of the table breakdown) accounts for a signif-
icant share of the total power at 38.77%. At 65nm, due to
the high toggle rate of the accelerator, the leakage power is
almost negligible at 1.73%.

Finally, we have also evaluated a design with T

n

= 8,
and thus 64 multipliers in NFU-1. The total area for that
design is 0.85 mm

2, i.e., 3.59x smaller than for T
n

= 16
due to the reduced buffer width and the fewer number of
arithmetic operators. We plan to investigate larger designs
with T

n

= 32 or 64 in the near future.

7.2 Time and Throughput
In Figure 16, we report the speedup of the accelerator over
SIMD, see SIMD/Acc. Recall that we use a 128-bit SIMD
processor, so capable of performing up to 8 16-bit operations

Figure 16. Speedup of accelerator over SIMD, and of ideal ac-
celerator over accelerator.

every cycle (we naturally use 16-bit fixed-point operations
in the SIMD as well). As mentioned in Section 7.1, the
accelerator performs 496 16-bit operations every cycle for
both classifier and convolutional layers, i.e., 62x more (4968)
than the SIMD core. We empirically observe that on these
two types of layers, the accelerator is on average 117.87x
faster than the SIMD core, so about 2x above the ratio
of computational operators (62x). We measured that, for
classifier and convolutional layers, the SIMD core performs
2.01 16-bit operations per cycle on average, instead of the
upper bound of 8 operations per cycle. We traced this back
to two major reasons.

First, better latency tolerance due to an appropriate com-
bination of preloading and reuse in NBin and SB buffers;
note that we did not implement a prefetcher in the SIMD
core, which would partly bridge that gap. This explains the
high performance gap for layers CLASS1, CLASS3 and
CONV5 which have the largest feature maps sizes, thus
the most spatial locality, and which then benefit most from
preloading, giving them a performance boost, i.e., 629.92x
on average, about 3x more than other convolutional layers;
we expect that a prefetcher in the SIMD core would cancel
that performance boost. The spatial locality in NBin is ex-
ploited along the input feature map dimension by the DMA,
and with a small N

i

, the DMA has to issue many short mem-
ory requests, which is less efficient. The rest of the convolu-
tional layers (CONV1 to CONV4) have an average speedup
of 195.15x; CONV2 has a lesser performance (130.64x) due
to private kernels and less spatial locality. Pooling layers
have less performance overall because only the adder tree in
NFU-2 is used (240 operators out of 496 operators), 25.73x
for POOL3 and 25.52x for POOL5.

In order to further analyze the relatively poor behav-
ior of POOL1 (only 2.17x over SIMD), we have tested a
configuration of the accelerator where all operands (inputs
and synapses) are ready for the NFU, i.e., ideal behavior

Chen et al. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning, ASPLOS 2014

input

neuron

synapse

weight'

*'

neuron
output

+'

synapses
*'

+'

table'

x

x

ai
bi

hidden
layer

output
layer

Figure 9. Full hardware implementation of neural networks.

8x8 16x16 32x32 32x4 64x8 128x16

0
1

2
3

4
5

Critical Path (ns)
Area (mm^2)
Energy (nJ)

Figure 10. Energy, critical path and area of full-hardware layers.

neuron to a neuron of the next layer, and from one synap-
tic latch to the associated neuron. For instance, an execution
time of 15ns and an energy reduction of 974x over a core
has been reported for a 90-10-10 (90 inputs, 10 hidden, 10
outputs) perceptron [38].

4.2 Maximum Number of Hardware Neurons ?
However, the area, energy and delay grow quadratically with
the number of neurons. We have synthesized the ASIC ver-
sions of neural network layers of various dimensions, and
we report their area, critical path and energy in Figure 10.
We have used Synopsys ICC for the place and route, and the
TSMC 65nm GP library, standard VT. A hardware neuron
performs the following operations: multiplication of inputs
and synapses, addition of all such multiplications, followed
by a sigmoid, see Figure 9. A T

n

⇥ T

i

layer is a layer of T
n

neurons with T

i

synapses each. A 16x16 layer requires less
than 0.71 mm2, but a 32x32 layer already costs 2.66 mm2.
Considering the neurons are in the thousands for large-scale
neural networks, a full hardware layout of just one layer
would range in the hundreds or thousands of mm2, and thus,
this approach is not realistic for large-scale neural networks.

For such neural networks, only a fraction of neurons and
synapses can be implemented in hardware. Paradoxically,
this was already the case for old neural network designs

Tn#

NBin%

SB%

NFU)1%

M
em

ory#Interface#

NFU)2% NFU)3%

Inst.#

DM
A#

DM
A# Inst.#

Tn#x#Tn#

NBout%

Control#Processor#(CP)#

Instruc:ons#

Inst.#

DM
A#

Tn#

Figure 11. Accelerator.

such as the Intel ETANN [18] at the beginning of the 1990s,
not because neural networks were already large at the time,
but because hardware resources (number of transistors) were
naturally much more scarce. The principle was to time-
share the physical neurons and use the on-chip RAM to
store synapses and intermediate neurons values of hidden
layers. However, at that time, many neural networks were
small enough that all synapses and intermediate neurons
values could fit in the neural network RAM. Since this is no
longer the case, one of the main challenges for large-scale
neural network accelerator design has become the interplay
between the computational and the memory hierarchy.

5. Accelerator for Large Neural Networks
In this section, we draw from the analysis of Sections 3 and
4 to design an accelerator for large-scale neural networks.

The main components of the accelerator are the fol-
lowing: an input buffer for input neurons (NBin), an out-
put buffer for output neurons (NBout), and a third buffer
for synaptic weights (SB), connected to a computational
block (performing both synapses and neurons computations)
which we call the Neural Functional Unit (NFU), and the
control logic (CP), see Figure 11. We first describe the NFU
below, and then we focus on and explain the rationale for the
storage elements of the accelerator.

5.1 Computations: Neural Functional Unit (NFU)

The spirit of the NFU is to reflect the decomposition of
a layer into computational blocks of T

i

inputs/synapses and
T

n

output neurons. This corresponds to loops i and n for
both classifier and convolutional layers, see Figures 5 and
Figure 7, and loop i for pooling layers, see Figure 8.

Arithmetic operators. The computations of each layer
type can be decomposed in either 2 or 3 stages. For classifier
layers: multiplication of synapses ⇥ inputs, additions of all

Figure 15. Layout (65nm).

Component Area Power Critical
or Block in µm2 (%) in mW (%) path in ns
ACCELERATOR 3,023,077 485 1.02
Combinational 608,842 (20.14%) 89 (18.41%)
Memory 1,158,000 (38.31%) 177 (36.59%)
Registers 375,882 (12.43%) 86 (17.84%)
Clock network 68,721 (2.27%) 132 (27.16%)
Filler cell 811,632 (26.85%)
SB 1,153,814 (38.17%) 105 (22.65%)
NBin 427,992 (14.16%) 91 (19.76%)
NBout 433,906 (14.35%) 92 (19.97%)
NFU 846,563 (28.00%) 132 (27.22%)
CP 141,809 (5.69%) 31 (6.39%)
AXIMUX 9,767 (0.32%) 8 (2.65%)
Other 9,226 (0.31%) 26 (5.36%)

Table 6. Characteristics of accelerator and breakdown by com-
ponent type (first 5 lines), and functional block (last 7 lines).

logic which is in charge of reading data out of NBin/NBout;
next versions will focus on how to reduce or pipeline this
critical path. The total RAM capacity (NBin + NBout + SB
+ CP instructions) is 44KB (8KB for the CP RAM). The area
and power are dominated by the buffers (NBin/NBout/SB) at
respectively 56% and 60%, with the NFU being a close sec-
ond at 28% and 27%. The percentage of the total cell power
is 59.47%, but the routing network (included in the different
components of the table breakdown) accounts for a signif-
icant share of the total power at 38.77%. At 65nm, due to
the high toggle rate of the accelerator, the leakage power is
almost negligible at 1.73%.

Finally, we have also evaluated a design with T

n

= 8,
and thus 64 multipliers in NFU-1. The total area for that
design is 0.85 mm

2, i.e., 3.59x smaller than for T
n

= 16
due to the reduced buffer width and the fewer number of
arithmetic operators. We plan to investigate larger designs
with T

n

= 32 or 64 in the near future.

7.2 Time and Throughput
In Figure 16, we report the speedup of the accelerator over
SIMD, see SIMD/Acc. Recall that we use a 128-bit SIMD
processor, so capable of performing up to 8 16-bit operations

Figure 16. Speedup of accelerator over SIMD, and of ideal ac-
celerator over accelerator.

every cycle (we naturally use 16-bit fixed-point operations
in the SIMD as well). As mentioned in Section 7.1, the
accelerator performs 496 16-bit operations every cycle for
both classifier and convolutional layers, i.e., 62x more (4968)
than the SIMD core. We empirically observe that on these
two types of layers, the accelerator is on average 117.87x
faster than the SIMD core, so about 2x above the ratio
of computational operators (62x). We measured that, for
classifier and convolutional layers, the SIMD core performs
2.01 16-bit operations per cycle on average, instead of the
upper bound of 8 operations per cycle. We traced this back
to two major reasons.

First, better latency tolerance due to an appropriate com-
bination of preloading and reuse in NBin and SB buffers;
note that we did not implement a prefetcher in the SIMD
core, which would partly bridge that gap. This explains the
high performance gap for layers CLASS1, CLASS3 and
CONV5 which have the largest feature maps sizes, thus
the most spatial locality, and which then benefit most from
preloading, giving them a performance boost, i.e., 629.92x
on average, about 3x more than other convolutional layers;
we expect that a prefetcher in the SIMD core would cancel
that performance boost. The spatial locality in NBin is ex-
ploited along the input feature map dimension by the DMA,
and with a small N

i

, the DMA has to issue many short mem-
ory requests, which is less efficient. The rest of the convolu-
tional layers (CONV1 to CONV4) have an average speedup
of 195.15x; CONV2 has a lesser performance (130.64x) due
to private kernels and less spatial locality. Pooling layers
have less performance overall because only the adder tree in
NFU-2 is used (240 operators out of 496 operators), 25.73x
for POOL3 and 25.52x for POOL5.

In order to further analyze the relatively poor behav-
ior of POOL1 (only 2.17x over SIMD), we have tested a
configuration of the accelerator where all operands (inputs
and synapses) are ready for the NFU, i.e., ideal behavior

- Diannao improved CNN computation efficiency by using dedicated functional
units and memory buffers optimized for the CNN workload.

- Multiplier + adder tree + shifter + non-linear lookuporchestratedby instructions
- Weights in off-chip DRAM
- 452 GOP/s, 3.02 mm^2 and 485 mW

Diannao and Friends

DaDiannao (Bigger Computer) uses
multi-chip and EDRAM to fit larger
models. Each chip is 68mm^2 fitting
12 Million parameters, consumes 16W

Tile0 Tile1

Tile2 Tile3

· ·

· ·

Tile4 Tile5

Tile6 Tile7

-96.3 ·

-96.3 ·

Tile8 Tile9

Tile10 Tile11

· ·

· ·

Tile12 Tile13

Tile14 Tile15

-96.3 ·

-96.3 ·

HT0 PHY
HT0

Controller

HT3
Controller

HT3 PHY

HT2
Controller

HT
2

PH
Y

HT1 PHY

HT1
Controller

Central Block

Figure 9: Snapshot of the node layout.

Component/Block Area (µm2) (%) Power (W) (%)
WHOLE CHIP 67,732,900 15.97
Central Block 7,898,081 (11.66%) 1.80 (11.27%)
Tiles 30,161,968 (44.53%) 6.15 (38.53%)
HTs 17,620,440 (26.02%) 8.01 (50.14%)
Wires 6,078,608 (8.97%) 0.01 (0.06%)
Other 5,973,803 (8.82%)
Combinational 3,979,345 (5.88%) 6.06 (37.97%)
Memory 32207390 (47.55%) 6.12 (38.30%)
Registers 3,348,677 (4.94%) 3.07 (19.25%)
Clock network 586323 (0.87%) 0.71 (4.48%)
Filler cell 27,611,165 (40.76%)

Table VI: Node layout characteristics.

eDRAM). The combinational logic and register only account
for 5.88% and 4.94% of the area respectively.

We used Synopsys PrimePower to estimate the power
consumption of the chip. The peak power consumption is
15.97 W (at a pessimistic 100% toggle rate), i.e., roughly 5-
10% of a state-of-the-art GPU card. The architecture block
breakdown shows that the tiles consume more than one third
(38.53%) of the power, and the four HT IPs consume about
one half (50.14%). The component breakdown shows that,
overall, memory cells (tile eDRAMs + central eDRAM)
account for 38.30% of the total power, combinational logic
and registers (mostly NFUs and HT protocol analyzers)
consume 37.97% and 19.25% respectively.

B. Performance

In Figure 10, we compare the performance of our ar-
chitecture against the GPU baseline described in Section
VI. Because of its large memory footprint (numbers of
neurons and synapses), CONV1 needs a 4-node system.
Even though CONV1 is a shared-kernel convolutional layer,
it contains 256 input feature maps, 384 output feature
maps and 11 × 11 kernels, so that the total number of
synapses is 256× 384× 11× 11 = 11, 894, 784, i.e., 22.69
MB (16-bit data). We must also store all layer inputs and
outputs, i.e., respectively 256 × 256 × 256 × 2 = 32MB,
246× 246× 384× 2 = 44.32MB (fewer output neurons due
to a border effect since the kernel is 11 × 11). So, overall,
99.01MB must be stored, which exceeds the node capacity
of 36MB. The convolutional layers with private kernels, i.e.,

1

10

100

1000

1chip 4chips 16chips 64chips

Figure 10: Speedup w.r.t. the GPU baseline (inference). Note that
CONV1 and the full NN need a 4-node system, while CONV3* and
CONV4* even need a 36-node system.

CONV3* and CONV4*, need a 36-node system because
their size is respectively 1.29 GB and 1.32 GB. The full
NN contains 59.48M synapses, i.e., 118.96MB (16-bit data),
requiring at least 4 nodes.

On average, the 1-node, 4-node, 16-node and 64-node
architectures are respectively 21.38x, 79.81x, 216.72x, and
450.65x faster than the GPU baseline. 1 The first reason for
the higher performance is the large number of operators:
in each node, there are 9216 operators (mostly multipliers
and adders), compared to the 2496 MACs of the GPU.
The second reason is that the on-chip eDRAM provides the
necessary bandwidth and low-latency access to feed these
many operators.

Nevertheless, the scalability of the different layers varies a
lot. LRN layers scale the best (no inter-node communication)
with a speedup of up to 1340.77x for 64 nodes (LRN2),
CONV and POOL layers scale almost as well because they
only have inter-node communications on border elements,
e.g., CONV1 achieves a speedup of 2595.23x for 64 nodes,
but the actual speedup of LRN and POOL layers is lower
than CONV layers because they are less computationally
intensive. On the other hand, CLASS layers scale less well
because of the high amount of inter-node communication-
s, since each output neuron uses all input neurons from
different nodes, see Section V-E2, e.g., CLASS1 has a
speedup of 72.96x for 64 nodes. This is further illustrated
in the time breakdown of Figure 11. Note that each bar
is normalized to the total execution time, but due to the
overlap of computation and communication, the cumulated
bars can exceed 100%. This communication issue is mostly
due to our relatively simple 2D mesh topology where the
larger the number of nodes, the longer the time required
to send each block of inputs to all nodes. It is likely that
a more sophisticated multi-dimensional torus topology [4]
can largely reduce the total broadcast time as the number
of nodes increases, but we leave this optimization for future
work.

1Considering that the area of K20M GPU is about 550 mm2, and our
node is only 67.7 mm2, our design also has a high area-normalized speedup
with respect to GPU (21.38∗550/67.7 = 173.69x for 1-node and 450.65∗
550/(64 ∗ 67.7) = 57.20x for 64-node).

NBin

NBout

SB

IB

NFU

Figure 17: Layout of ShiDianNao (65 nm).

Benchmarks. We collected 10 CNNs from representative
visual recognition applications and used them as our bench-
marks (Table 2). Among all layers of all benchmarks, input
neurons consume at most 45 KB, and synapses consume at
most 118 KB, which do not exceed the SRAM capacities of
our design (Table 3).

10. Experimental Results

10.1. Layout Characteristics

We present in Tables 3 and 4 the parameters and layout char-
acteristics of the current ShiDianNao version (see Figure 17),
respectively. ShiDianNao has 8⇥ 8 (64) PEs and a 64 KB
NBin, a 64 KB NBout, a 128 KB SB, and a 32 KB IB. The
overall SRAM capacity of ShiDianNao is 288 KB (11.1⇥
larger than that of DianNao), in order to simultaneously store
all data and instructions for a practical CNN. Yet, the total
area of ShiDianNao is only 3.52⇥ larger than that of DianNao
(4.86 mm2 vs. 1.38 mm2).

10.2. Performance

We compare ShiDianNao against the CPU, the GPU, and Di-
anNao on all benchmarks listed in Section 9. The results are
shown in Figure 18. Unsurprisingly, ShiDianNao significantly
outperforms the general purpose architectures and is, on aver-
age, 46.38 ⇥ faster than the CPU and 28.94⇥ faster than the
GPU. In particular, the GPU cannot take full advantage of its
high computational power because the small computational
kernels of the visual recognition tasks listed in Table 1 map
poorly on its 2,496 hardware threads.

More interestingly, ShiDianNao also outperforms our accel-
erator baseline on 9 out of 10 benchmarks (1.87⇥ faster on
average on all 10 benchmarks). There are two main reasons for
that: Firstly, compared to DianNao, ShiDianNao eliminates
off-chip memory accesses during execution, thanks to a suffi-
ciently large SRAM capacity and a correspondingly slightly
higher cost. Secondly, ShiDianNao efficiently exploits the lo-
cality of 2D feature maps with its dedicated SRAM controllers
and its inter-PE data reuse mechanism; DianNao, on the other
hand, cannot make good use of that locality.

ShiDianNao performs slightly worse than the accelerator
baseline on benchmark Simple Conv. The issue is that ShiD-
ianNao works on a single output feature map at a time and
each PE works on a single output neuron of the feature map.

Table 3: Parameter settings of ShiDianNao and DianNao.

ShiDianNao DianNao

Data width 16-bit 16-bit
multipliers 64 64
NBin SRAM size 64 KB 1 KB
NBout SRAM size 64 KB 1 KB
SB SRAM size 128 KB 16 KB
Inst. SRAM size 32 KB 8 KB

Table 4: Hardware characteristics of ShiDianNao at 1GHz,
where power and energy are averaged over 10 benchmarks.

Accelerator Area (mm2) Power (mW) Energy (nJ)

Total 4.86 (100%) 320.10 (100%) 6048.70 (100%)
NFU 0.66 (13.58%) 268.82 (83.98%) 5281.09 (87.29%)
NBin 1.12 (23.05%) 35.53 (11.10%) 475.01 (7.85%)
NBout 1.12 (23.05%) 6.60 (2.06%) 86.61 (1.43%)
SB 1.65 (33.95%) 6.77 (2.11%) 94.08 (1.56%)
IB 0.31 (6.38%) 2.38 (0.74%) 35.84 (0.59%)

Therefore, when most of an application consists of uncom-
monly small output feature maps with fewer output neurons
than implemented PEs (e.g., 5⇥ 5 in the C2 layer of bench-
mark Simple Conv for 8⇥ 8 PEs in the current accelerator
design), some PEs will be idle. Although we played with the
idea of alleviating this issue by adding complicated control
logic to each PE and allowing different PEs to simultaneously
work on different feature maps, we ultimately decided against
this option as it appeared a poor trade-off with a detrimental
impact on the programming model.

Concerning the ability of ShiDianNao to process in real
time a stream of frames from a sensor, the longest time to
process a 640x480 video frame is for benchmark ConvNN
which requires 0.047 ms to process a 64⇥ 36-pixel region.
Since each frame contains d(640 � 64)/16 + 1e ⇥ d(480 �
36)/16+1e= 1073 such regions (overlapped by 16 pixels),
a frame takes a little more than 50 ms to process, resulting
in a speed of 20 frames per second for the most demanding
benchmark. Since typical commercial sensors can stream
data at a desired rate and since streaming speed can thus be
matched to the processing rate, the partial frame buffer must
store only the parts of the image reused across overlapping
regions. This is of the order of a few tens of pixel rows and fits
well the 256 KB of commercial image processors. Although
apparently low, the 640⇥480 resolution is in line with the
fact that usually images are resized in certain range before
processing [47, 34, 23, 16].

10.3. Energy

In Figure 19, we report the energy consumed by GPU, Dian-
Nao and ShiDianNao, inclusive of main memory accesses to
obtain the input data. Even if ShiDianNao is not meant to
access DRAM, we have conservatively included main mem-
ory accesses for the sake of a fair comparison. ShiDianNao
is on average 4688.13⇥ and 63.48⇥ more energy efficient
than GPU and DianNao, respectively. We also evaluate an
ideal version of DianNao (DianNao-FreeMem, see Figure 19),
where we assume that main memory accesses incur no en-
ergy cost. Interestingly, we observe that ShiDianNao is still

101

move only neurons and to keep synapses in a fixed storage
location. This serves two purposes.
First, the architecture is targeted for both inference and
training. In inference, the neurons of the previous layer
are the inputs of the computation; in training, the neurons
are forward-propagated (so neurons of the previous layer
are the inputs) and then backward-propagated (so neurons
of the next layer are now the inputs). As a result, de-
pending on how data (neurons and synapses) are allocated
to nodes, they need to be moved between the forward
and backward phases. Since there are many more synapses
than neurons (e.g., O(N2) vs. O(N) for classifier layers,
K × K × Nif × Nof × Nx × Ny vs. Nif × Nx × Ny for
convolutional layers with private kernels, see Section II), it
is only logical to move neuron outputs instead of synapses.
Second, having all synapses (most of the computation input-
s) next to computational operators provides low-energy/low-
latency data (synapses) transfers and high internal band-
width.

As shown in Table I, layer sizes can range from less than
1MB to about 1GB, most of them ranging in the tens of MB.
While SRAMs are appropriate for caching purposes, they
are not dense enough for such large-scale storage. However,
eDRAMs are known to have a higher storage density. For
instance, a 10MB SRAM memory requires 20.73mm2 at
28nm [36], while an eDRAM memory of the same size and
at the same technology node requires 7.27mm2 [50], i.e., a
2.85x higher storage density.

Moreover, providing sufficient eDRAM capacity to hold
all synapses on the combined eDRAM of all chips will
save on off-chip DRAM accesses, which are particularly
costly energy-wise. For instance, a read access to a 256-
bit wide eDRAM array at 28nm consumes 0.0192nJ (50µA,
0.9V, 606 MHz) [25], while a 256-bit read access to a
Micron DDR3 DRAM consumes 6.18nJ at 28nm [40], i.e.,
an energy ratio of 321x. The ratio is largely due to the
memory controller, the DDR3 physical-level interface, on-
chip bus access, page activation, etc.

If the NFU is no longer limited by the memory bandwidth,
it is possible to scale up its size in order to process more
output neurons (No) and more inputs per output neuron
(Ni) simultaneously, and thus, to improve the overall node
throughput. For instance, to scale up by 16x the number of
operations performed every cycle compared to the acceler-
ator mentioned in Section IV, we need to have Ni = 64
(instead of 16) and No = 64 (instead of 16). In order to
achieve maximal throughput, we must fetch Ni × No 16-
bit values from the eDRAM to the NFU every cycle, i.e.,
64× 64× 16 = 65536 bits in this case.

However eDRAM has three well-known drawbacks: high-
er latency than SRAM, destructive reads and periodic refresh
[38], as in traditional DRAMs. In order to compensate for
the eDRAM drawbacks and still feed the NFU every cycle,
we split the eDRAM into four banks (65536-bit wide in the

HT2.0 (North Link)

HT2.0 (South Link)

NFU

eDRAM0 eDRAM1

eDRAM2 eDRAM3Wires

Wires Wires

Wires

3.27 mm

0.88 mm

HT2.0 (W
est Link)

HT2.0 (East Link)

Figure 4: Simplified floorplan with a single central NFU showing
wire congestion.

tile tile

tile tile

tile tile

tile tile

tile tile

tile tile

tile tile

tile tile

eDRAM
router

HT2.0 (South Link)

HT2.0 (W
est Link)

HT2.0 (East Link)

HT2.0 (North Link)
SB

eDRAM
Bank1

SB
eDRAM
Bank3

SB
eDRAM
Bank0

SB
eDRAM
Bank2

16
input

neurons
16

output
neurons

Data
to SB

NFU

Figure 5: Tile-based organization of a node (left) and tile archi-
tecture (right). A node contains 16 tiles, two central eDRAM banks
and fat tree interconnect; a tile has an NFU, four eDRAM banks
and input/output interfaces to/from the central eDRAM banks.

above example), and we interleave the synapses rows among
the four banks.

We placed and routed this design at 28nm (ST technology,
LP), and we obtained the floorplan of Figure 4. The NFU
footprint is very small at 0.78mm2 (0.88mm×0.88mm), but
the process imposes an average spacing of 0.2µm between
wires, and provides only 4 horizontal metal layers. As a
result, the 65536 wires connecting the NFU to the eDRAM
require a width of 65536×0.2

4 = 3.2768mm, see Figure 4.
Consequently, wires occupy 4× 3.2768× 3.2768− 0.88×
0.88 = 42.18mm2, which is almost equal to the combined
area of all eDRAM banks, all NFUs and the I/O.

2) High Internal Bandwidth: In order to avoid this con-
gestion, we adopt a tile-based design, as shown in Figure 5.
The output neurons are spread out in the different tiles, so
that each NFU can simultaneously process 16 input neurons

input
neurons

synapses

partial
sum

s/gradients

Stage1

Multiply Add Transfer
function

!
!

!
!

Stage2 Stage3

output
neurons

updated
Synapses

NBin NBout

Figure 6: The different (parallel) operators of an NFU: multipliers,
adders, max, transfer function.

ShiDiannao (Vision Computer) It can
fits small model (up-to 64K parameters)
on-chip. It maps the computation on 2D
PE array. The chip is 4.86 mm^2 and
consumes 320 mW ,

Convolution Engine

• Convolution Engine (CE), is specialized for the convolution-like data-flow that is common in image
processing.

• CE achieves energy efficiency by capturing data reuse patterns, eliminating data transfer overheads,
and enabling a large number of operations per memory access.

• With restricted the domain in image and video processing, flexible convolution engine improves
improves energy and area efficiency by 8-15x over a SIMD engine.

It does not have to be convolution

 It only looks like convolution:

ISCA'13 shacham@alumni.stanford.edu 15

Out

()[][]],[],[
],[

, lmknlk
c

ck
c
cl

mn

CE
fImgmapReduceReducefImg −−−=−=="

#
$

%
&
' ⊗

In

coefficients

re
du

ce

map

Wajahat Qadeer et.al, Convolution Engine: Balancing Efficiency & Flexibility in Specialized Computing

NeuFlow

• An SoC designed to accelerate neural networks and other complex vision algorithms
based on large numbers of convolutions and matrix-to-matrix operations.

• 160 GOPS, 570 mW, 12.5 mm^2 @ IBM SOI 45nm

• First, the system must be able to adapt to arbitrary
data-flow graphs, which typically occurs in “systolic”
computing systems [4] due to high-level parallelism.

• Second, the system must quickly reconfigure to meet the
run-time change of data-flow graphs occurring during
application execution under a profiling from high-level
compiler. Hence, the need of a dynamically reconfigura-
tion system [5] is mandatory.

The neuFlow [3] processor, its architecture and development
tools, were developed with these considerations.

A. NeuFlow Architecture

Figure 1 reports the neuFlow architecture [6], which is
designed to accelerate data stream ConvNets computation. The
architecture has several key components: Calculator, Streamer
and Flow-cpu.

The Calculator consists of a 2D grid of N
PT

Processing
Tiles (PTs). Each PT contains a bank of processing oper-
ators and a multiplexer (MUX) based on-chip router. This
grid-based architecture interconnected by an on-chip network
is considered as the architecture of interest due to several
reasons. First, the coarse-grained property of PT enables a
low configuration overhead compared to FPGA approach,
meanwhile it has advantage of programming flexibility of
general-purpose processors. Second, the use of on-chip net-
work can flexibly adapt the system to accelerate arbitrary
dataflow graphs formed during the application execution [7].
The bank of processing operators is highly optimized for
ConvNets computation. A processing operator can be a term-
by-term streaming operator (MUL, DIV, ADD, SUB, MAX),
a MAC-based full 1/2D parallel convolver, a configurable
bank of FIFOs for stream buffering, a configurable piece-
wise linear or quadratic mapper. These operators are locally
connected to each other, and/or to global data wires and
neighbor tiles through an on-chip network of MUX-based
routers. The on-chip network, once being configured, will form

Fig. 1. The neuFlow architecture

Fig. 2. An example of the grid configured for a dataflow computation: the 3
top tiles perform a 3⇥ 3 convolution, the 3 intermediate tiles another 3⇥ 3
convolution, the bottom left tile sums these two convolutions, and the bottom
central tile applies a function to the result.

the configurable paths to support streaming dataflow graphs at
runtime.

The Streamer functions as a Smart Direct Memory Access
module (Smart DMA), which interfaces with off-chip mem-
ory and provides asynchronous data transfers with priority
management. The Smart DMA module is customized to allow
N

DMA

ports to fully access the external memory. The DMA
is considered to be ”smart”, because it can be configured to
read or write a particular chunk of data, with an optional stride
(for 2D streams), and feedbacks its status to Flow-cpu.

The Flow-cpu works as a central Control Unit that can re-
configure the computing grid and the Smart DMA at runtime.
The configuration data from Flow-cpu placed on a Runtime
Configuration Bus (re-)configures most aspects of the grid
at runtime, including connections, operators and Smart DMA
modes.

B. Operation

An execution on neuFlow typically has the following steps:
(1) the Control Unit configures each tile to be used for the
computation and each connection between the tiles and their
neighbors and/or the global lines, by sending a configuration
command to each of them, (2) it configures the Smart DMA
to prefetch the data to be processed, and to be ready to write
results back to off-chip memory, (3) when the DMA is ready, it
triggers the streaming out, (4) each tile processes its respective
incoming streaming data, and passes the results to another tile,
or back to the Smart DMA, (5) the control unit is notified of
the end of operations when the Smart DMA has completed.

The computing grid interconnected by the on-chip network
can perform arbitrary computations on streams of data, from
plain unary operations to complex nested operations. By a
networking of MUX-based routers, operators can be easily
cascaded and connected across tiles, independently managing
their flow by the use of input/output FIFOs. As illustrated in

Fig. 5. Chip power breakdown estimation

TABLE I
POST-LAYOUT CHIP SUMMARY

Process IBM SOI 45nm
Chip area 2.5 x 5 mm2

Supply Voltages 1V Vcore, 1.8V and 3.3V VI/O

Target frequency 400MHz
Estimated average power 570mW
Peak performance 160 GOPS
GOPs per Watt ⇠ 254
Number of transistors, memo-
ries, etc.

23.6 million transistors and 75KB
2-port RAM

Pin count 317 (299 I/Os and 18 P/Gs)
Packaging Flip-chip

C. Performance Comparison

Table II reports the performance comparison for a typical
ConvNets computation implemented in various platforms. The
CPU data is measured from compiled C code (GNU C
compiler and Blas libraries) on a Core 2 Duo 2.66 GHz Apple
Macbook PRO laptop operating at 90 W (30 W for the CPU).
The mGPU and GPU data are obtained from a CUDA-based
implementation running on a laptop/mobile nVidia GT335m
operating at 1 GHz and 30 W and on a nVidia GTX480
operating at 1 GHz and 220 W. The FPGA performance was

Fig. 6. Chip layout in a 2.5 x 5mm2 die area

TABLE II
PERFORMANCE COMPARISON

CPU1 mGPU2 GPU3 neuV64 neuIBM5

Peak GOPs 10 182 1350 160 160
Real GOPs 1.1 54 294 147 147
Power (W) 30 30 220 10 0.579
GOPs/W 0.04 1.8 1.34 14.7 254
1 CPU: Intel DuoCore, 2.7GHz, optimized C code
2-3 mGPU, GPU: a mobile Nvidia GT335m and a high-end GTX480
4 neuV6: neuFlow prototyped Xilinx Virtex 6 FPGA
5 neuIBM: 45nm IBM SOI process neuFlow (this work)

measured on a Xilinx Virtex-6 VLX240T operating at 200
MHz and 10 W [3]. The SoC characteristics are estimated
from post-layout chip implemented in IBM 45 nm SOI process
at a target frequency of 400 MHz.

As denoted in Table II, the neuFlow ASIC chip offers a peak
performance of 160 GOPs, which satisfies the real-time com-
putation requirement of many driving assistance vision tasks
typically ranged from 60 to 120 GOPs [6]. Particularly, the
chip power efficiency of 254 GOPS/W enables development
of vision tasks in embedded systems.

IV. CONCLUSION

This paper presented the neuFlow system-on-a-chip archi-
tecture and its IBM 45 nm implementation. The neuFlow
SoC is highly optimized for vision tasks in car navigation.
Implementation result in IBM 45nm SOI process shows a high
power efficiency of the chip, which can be easily to develop
embedded applications for car driving assistance. Future works
will extend the computation capacity of the systems and
develop turnkey vision applications for driving assistance in a
post-silicon prototype.

ACKNOWLEDGMENT

This work was partially supported by NSF award 0901742
and ONR award N000141110287. We would like to thank
TAPO (www.tapoffice.org) for the chip tape-out.

REFERENCES

[1] Mobileye. [Online]. Available: http://www.mobileye.com
[2] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best

multi-stage architecture for object recognition?” in Proc. International
Conference on Computer Vision (ICCV’09). IEEE, 2009.

[3] Neuflow. [Online]. Available: http://www.neuflow.org
[4] M. H. Cho, C.-C. Cheng, M. Kinsy, G. E. Suh, and S. Devadas, “Diastolic

arrays: throughput-driven reconfigurable computing,” in Proceedings of
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 2008, pp. 457–464.

[5] M. Platzner, J. Teich, and N. Wehn, Dynamically Reconfigurable Systems:
Architectures, Design Methods and Applications, 1st ed. Springer
Publishing Company, Incorporated, 2010.

[6] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. Le-
Cun, “Neuflow: A runtime reconfigurable dataflow processor for vision,”
in Computer Vision and Pattern Recognition Workshops (CVPRW), 2011
IEEE Computer Society Conference on, june 2011, pp. 109 –116.

[7] P.-H. Pham, P. Mau, J. Kim, and C. Kim, “An on-chip network fabric
supporting coarse-grained processor array,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 10.1109/TVLSI.2011.2181546
(in press).

[8] R. Collobert, “Torch,” presented at the Workshop on Machine Learning
Open Source Software, NIPS, 2008.

P. Pham et.al, NeuFlow: Dataflow Vision Processing System-on-a-Chip

Efficient Inference Engine
SpMat

SpMat

Ptr_Even Ptr_OddArithm

Pointer Read Act R/W

Act Queue

Sparse Matrix Access

Sparse
Matrix
SRAM

 Arithmetic Unit

Regs

Col
Start/
End

Addr

Act Index

Weight
Decoder

Address
Accum

Dest
Act

Regs

Act
SRAM

Act Value

Encoded
Weight

Relative
Index

Src
Act

Regs
Absolute Address

Bypass

Leading
NZero
Detect

Even Ptr SRAM Bank

Odd Ptr SRAM Bank
ReLU

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

(a) (b)

Pointer Read Act R/W

Act Queue

Sparse Matrix Access

Sparse
Matrix
SRAM

 Arithmetic Unit

Regs

Col
Start/
End

Addr

Act Index

Weight
Decoder

Address
Accum

Dest
Act

Regs

Act
SRAM

Act Value

Encoded
Weight

Relative
Index

Src
Act

Regs
Absolute Address

Bypass

Leading
NZero
Detect

Even Ptr SRAM Bank

Odd Ptr SRAM Bank ReLU

(b)

Figure 4: (a) The architecture of Leading Non-zero Detection Node. (b) The architecture of Processing Element.

the entries of the x array.
In the example of Figure 2, the first non-zero is a2 on PE2.

The value a2 and its column index 2 is broadcast to all PEs.
Each PE then multiplies a2 by every non-zero in its portion
of column 2. PE0 multiplies a2 by W0,2 and W12,2; PE1 has
all zeros in column 2 and so performs no multiplications;
PE2 multiplies a2 by W2,2 and W14,2, and so on. The result
of each dot product is summed into the corresponding row
accumulator. For example PE0 computes b0 = b0 +W0,2a2
and b12 = b12 +W12,2a2. The accumulators are initialized to
zero before each layer computation.

The interleaved CCS representation facilitates exploita-
tion of both the dynamic sparsity of activation vector a and
the static sparsity of the weight matrix W . We exploit ac-
tivation sparsity by broadcasting only non-zero elements of
input activation a. Columns corresponding to zeros in a are
completely skipped. The interleaved CCS representation al-
lows each PE to quickly find the non-zeros in each column
to be multiplied by a j. This organization also keeps all of the
computation except for the broadcast of the input activations
local to a PE. The interleaved CCS representation of matrix
in Figure 2 is shown in Figure 3.

This process may have the risk of load imbalance because
each PE may have a different number of non-zeros in a par-
ticular column. We will see in Section 4 how this load im-
balance can be reduced by queuing.

4. HARDWARE IMPLEMENTATION
Figure 4 shows the architecture of EIE. A Central Control

Unit (CCU) controls an array of PEs that each computes one
slice of the compressed network. The CCU also receives
non-zero input activations from a distributed leading non-
zero detection network and broadcasts these to the PEs.

Almost all computation in EIE is local to the PEs ex-
cept for the collection of non-zero input activations that are
broadcast to all PEs. However, the timing of the activa-
tion collection and broadcast is non-critical as most PEs take
many cycles to consume each input activation.

Activation Queue and Load Balancing. Non-zero ele-
ments of the input activation vector a j and their correspond-
ing index j are broadcast by the CCU to an activation queue
in each PE. The broadcast is disabled if any PE has a full
queue. At any point in time each PE processes the activation
at the head of its queue.

The activation queue allows each PE to build up a backlog
of work to even out load imbalance that may arise because

the number of non zeros in a given column j may vary from
PE to PE. In Section 6 we measure the sensitivity of perfor-
mance to the depth of the activation queue.

Pointer Read Unit. The index j of the entry at the head
of the activation queue is used to look up the start and end
pointers p j and p j+1 for the v and x arrays for column j.
To allow both pointers to be read in one cycle using single-
ported SRAM arrays, we store pointers in two SRAM banks
and use the LSB of the address to select between banks. p j
and p j+1 will always be in different banks. EIE pointers are
16-bits in length.

Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers p j and p j+1 to read the non-zero elements (if
any) of this PE’s slice of column I j from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and con-
tains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section 6) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits of
the current pointer p selects an SRAM row, and the low 3-
bits select one of the eight entries in that row. A single (v,x)
entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v,x) en-
try from the sparse matrix read unit and performs the multiply-
accumulate operation bx = bx + v⇥ a j. Index x is used to
index an accumulator array (the destination activation regis-
ters) while v is multiplied by the activation value at the head
of the activation queue. Because v is stored in 4-bit encoded
form, it is first expanded to a 16-bit fixed-point number via a
table look up. A bypass path is provided to route the output
of the adder to its input if the same accumulator is selected
on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors across
64 PEs. Longer activation vectors can be accommodated
with the 2KB activation SRAM. When the activation vector
has a length greater than 4K, the M⇥V will be completed in
several batches, where each batch is of length 4K or less. All
the local reduction is done in the register, and SRAM is read

4

(a)

From NE

From SE

From SW

Leading
Nzero
Detect

Act0

Act1

Act3

Act Value

s0

s1

s3

From NW Act2 s2

Nzero Index

Act0,1,2,3

Figure 4: (a) The architecture of Leading Non-zero Detection Node. (b) The architecture of Processing Element.

the entries of the x array.
In the example of Figure 2, the first non-zero is a2 on PE2.

The value a2 and its column index 2 is broadcast to all PEs.
Each PE then multiplies a2 by every non-zero in its portion
of column 2. PE0 multiplies a2 by W0,2 and W12,2; PE1 has
all zeros in column 2 and so performs no multiplications;
PE2 multiplies a2 by W2,2 and W14,2, and so on. The result
of each dot product is summed into the corresponding row
accumulator. For example PE0 computes b0 = b0 +W0,2a2
and b12 = b12 +W12,2a2. The accumulators are initialized to
zero before each layer computation.

The interleaved CCS representation facilitates exploita-
tion of both the dynamic sparsity of activation vector a and
the static sparsity of the weight matrix W . We exploit ac-
tivation sparsity by broadcasting only non-zero elements of
input activation a. Columns corresponding to zeros in a are
completely skipped. The interleaved CCS representation al-
lows each PE to quickly find the non-zeros in each column
to be multiplied by a j. This organization also keeps all of the
computation except for the broadcast of the input activations
local to a PE. The interleaved CCS representation of matrix
in Figure 2 is shown in Figure 3.

This process may have the risk of load imbalance because
each PE may have a different number of non-zeros in a par-
ticular column. We will see in Section 4 how this load im-
balance can be reduced by queuing.

4. HARDWARE IMPLEMENTATION
Figure 4 shows the architecture of EIE. A Central Control

Unit (CCU) controls an array of PEs that each computes one
slice of the compressed network. The CCU also receives
non-zero input activations from a distributed leading non-
zero detection network and broadcasts these to the PEs.

Almost all computation in EIE is local to the PEs ex-
cept for the collection of non-zero input activations that are
broadcast to all PEs. However, the timing of the activa-
tion collection and broadcast is non-critical as most PEs take
many cycles to consume each input activation.

Activation Queue and Load Balancing. Non-zero ele-
ments of the input activation vector a j and their correspond-
ing index j are broadcast by the CCU to an activation queue
in each PE. The broadcast is disabled if any PE has a full
queue. At any point in time each PE processes the activation
at the head of its queue.

The activation queue allows each PE to build up a backlog
of work to even out load imbalance that may arise because

the number of non zeros in a given column j may vary from
PE to PE. In Section 6 we measure the sensitivity of perfor-
mance to the depth of the activation queue.

Pointer Read Unit. The index j of the entry at the head
of the activation queue is used to look up the start and end
pointers p j and p j+1 for the v and x arrays for column j.
To allow both pointers to be read in one cycle using single-
ported SRAM arrays, we store pointers in two SRAM banks
and use the LSB of the address to select between banks. p j
and p j+1 will always be in different banks. EIE pointers are
16-bits in length.

Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers p j and p j+1 to read the non-zero elements (if
any) of this PE’s slice of column I j from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and con-
tains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section 6) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits of
the current pointer p selects an SRAM row, and the low 3-
bits select one of the eight entries in that row. A single (v,x)
entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v,x) en-
try from the sparse matrix read unit and performs the multiply-
accumulate operation bx = bx + v⇥ a j. Index x is used to
index an accumulator array (the destination activation regis-
ters) while v is multiplied by the activation value at the head
of the activation queue. Because v is stored in 4-bit encoded
form, it is first expanded to a 16-bit fixed-point number via a
table look up. A bypass path is provided to route the output
of the adder to its input if the same accumulator is selected
on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors across
64 PEs. Longer activation vectors can be accommodated
with the 2KB activation SRAM. When the activation vector
has a length greater than 4K, the M⇥V will be completed in
several batches, where each batch is of length 4K or less. All
the local reduction is done in the register, and SRAM is read

4

only at the beginning and written at the end of the batch.
Distributed Leading Non-Zero Detection. Input activa-

tions are hierarchically distributed to each PE. To take ad-
vantage of the input vector sparsity, we use leading non-zero
detection logic to select the first positive result. Each group
of 4 PEs does a local leading non-zero detection on input ac-
tivation. The result is sent to a Leading Non-zero Detection
Node (LNZD Node) illustrated in Figure 4. Four of LNZD
Nodes find the next non-zero activation and sends the result
up the LNZD Node quadtree. That way the wiring would not
increase as we add PEs. At the root LNZD Node, the posi-
tive activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master
such as CPU and monitors the state of every PE by setting
the control registers. There are two modes in the Central
Unit: I/O and Computing. In the I/O mode, all of the PEs
are idle while the activations and weights in every PE can be
accessed by a DMA connected with the Central Unit. In the
Computing mode, the CCU will keep collecting and sending
the values from source activation banks in sequential order
until the input length is exceeded. By setting the input length
and starting address of pointer array, EIE will be instructed
to execute different layers.

5. EVALUATION METHODOLOGY
Simulator, RTL and Layout. We implemented a custom

cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. All hard-
ware modules are abstracted as an object that implements
two abstract methods: Propagate and Update, corresponding
to combination logic and the flip-flop in RTL. The simula-
tor is used for design space exploration. It also serves as the
checker for the RTL verification.

To measure the area, power and critical path delay, we im-
plemented the RTL of EIE in Verilog and verified its output
result with the golden model. Then we synthesized EIE us-
ing the Synopsys Design Compiler (DC) under the TSMC
45nm GP standard VT library with worst case PVT corner.
We placed and routed the PE using the Synopsys IC com-
piler (ICC). We used Cacti [25] to get SRAM area and en-
ergy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU, a
state-of-the-art GPU for deep learning as our baseline using
nvidia-smi utility to report the power. To run the bench-
mark, we used cuBLAS GEMV to implement the original

Power (%) Area (%)
(mW) (µµµmmm222)

Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act_queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Table 2: The implementation results of one PE in EIE and
the breakdown by component type (line 3-7), by module
(line 8-13). The critical path of EIE is 1.15ns

dense layer, as the Caffe library does []. For the compressed
sparse layer, we stored the sparse matrix in in CSR format,
and used cuSPARSE CSRMV kernel, which is optimized for
sparse matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has 192
CUDA cores as our mobile GPU baseline. We used cuBLAS
GEMV for the original dense model and cuSPARSE CSRMV
for the compressed sparse model. Tegra K1 doesn’t have
software interface to report power consumption, so we mea-
sured the total power consumption with a power-meter, then
assumed 15% AC to DC conversion loss, 85% regulator ef-
ficiency and 15% power consumed by peripheral compo-
nents [26, 27] to report the AP+DRAM power for Tegra K1.

Table 3: Benchmark from state-of-the-art DNN models
Layer Size Weight% Act% FLOP% Description
Alex-6 9216, 9% 35.1% 3% Compressed4096

AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000
NT-We 4096, 10% 100% 10% Compressed

600 NeuralTalk [7]
NT-Wd 600, 11% 100% 11% with RNN and

8791 LSTM for
NTLSTM 1201, 10% 100% 11% automatic

2400 image captioning

Benchmarks. We compare the performance on two sets
of models: uncompressed DNN model and the compressed
DNN model. The uncompressed DNN model is obtained
from Caffe model zoo [28] and NeuralTalk model zoo [7];
The compressed DNN model is produced as described in [23,
15]. The benchmark networks have 9 layers in total obtained
from AlexNet, VGGNet, and NeuralTalk. We use the Image-
Net dataset [29] and the Caffe [30] deep learning framework
as golden model to verify the correctness of the hardware
design.

6. EXPERIMENTAL RESULT

5

Speedup

248
507

115

1018 618

92 63 98 60
189

0.1x

1x

10x

100x

1000x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean

Sp
ee
du
p

CPU (Baseline) CPU Compressed GPU GPU Compressed mGPU mGPU Compressed EIE

Energy Efficiency

35K 62K
15K

120K 77K

12K 9K 11K 8K
24K

1x

10x

100x

1000x

10000x

100000x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo MeanEn
er

gy
 E

ffi
ci

en
cy

CPU (Baseline) CPU Compressed GPU GPU Compressed mGPU mGPU Compressed EIE

Scalability and load balancing

1

10

100

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM

Sc
al
ab
ili
ty

1PE 2PEs 4PEs 8PEs 16PEs 32PEs 64PEs 128PEs 256PEs

Figure 11: System scalability. The average efficiency of single PE finally decreases as the number of PEs increases. On some
very sparse layers, having more PEs initially increases the efficiency a bit.

0%
20%
40%
60%
80%
100%

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM

Us
ef

ul

Co
m

pu
ta

tio
n

~
#P

E

1PE 2PEs 4PEs 8PEs 16PEs 32PEs 64PEs 128PEs 256PEs

Figure 12: The number of padding zeros decreases as the number of PEs goes up, leading to less padding zeros and better
compute efficiency.

0%
20%
40%
60%
80%
100%
120%

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM

Lo
ad

 B
al

an
ce

  ~

#P
E

1PE 2PEs 4PEs 8PEs 16PEs 32PEs 64PEs 128PEs 256PEs

Figure 13: Load efficiency is measured by the ratio of stalled cycles over total cycles in ALU. More PEs lead to worse load
imbalance accompanied with less load efficiency. This explains the sub-linear speedup at large number of PEs.

scale, smaller number of PEs should be used.
Figure 12 shows the number of padding zeros with differ-

ent number PEs. Padding zero lead to wasted computation.
Using more PEs reduces padding zeros, because the distance
between non-zero elements get smaller due to matrix parti-
tioning, and 4-bits encoding a max distance of 16 will be
enough.

Figure 13 shows the load balance with different number
of PEs. The y-axis is the number of idle cycles due to star-
vation. Load balance get worse with more PEs.

In conclusion, with more PEs, load balance becomes worse,
but padding zero also becomes less. As a result, the overall
speedup is almost linear.

7.3 Flexibility
EIE is designed for large neural networks. The weights

and input/ouput of most layers can be easily fit into EIE’s
storage. For those with extremely large input/output sizes
(for example, FC6 layer of VGG-16 has an input size of
25088), EIE is still able to execute them with 64PEs.

EIE can assist general-purpose processors for sparse neu-
ral network acceleration or other tasks related to SPMV. One
type of neural network structure can be decomposed into cer-
tain control sequence so that by writing control sequence to
the registers of EIE, a network could be executed.

8. RELATED WORK
DNN accelerator. Many custom accelerator designs have

been proposed for DNNs. DianNao [10] implements an ar-
ray of multiply-add units and proposes a blocking scheme to
map large DNN onto its core architecture. Due to the limited
SRAM resources, the offchip DRAM traffic still dominates
the energy consumption after blocking. In later iterations,
DaDianNao [11] and ShiDianNao [12] eliminate the DRAM
access to weight values by buffering all weights in on-chip
buffers (SRAM or eDRAM). However, in both architectures,
the weights are uncompressed and stored in the dense for-
mat. ShiDianNao can only handle DNN models of up to 64K
parameters, which is 3 orders of magnitude smaller than the
60 Million parameter AlexNet by only containing 128KB
on-chip RAM. Such large networks are impossible to fit on
chip on ShiDianNao without compression.

Previous DNN accelerators targeting ASIC and FPGA plat-
forms [10, 33] used mostly CONV layer as benchmarks, but
have few dedicated experiments on FC layers, which has sig-
nificant bandwidth bottlenecks. Loading weights from the
external memory for the FC layer may significantly degrade
the overall performance of the network[14].

We report the results of both peak performance and real
performance on M⇥V in Table 5. The performance is eval-
uated on the three FC layers of AlexNet. We select four

9

Table 4: Performance comparison between CPU, GPU, mobile GPU implementations and EIE.

Platform Batch Matrix AlexNet VGG16 NT-
Size Type FC6 FC7 FC8 FC6 FC7 FC8 We Wd LSTM

CPU 1 dense 7516.2 6187.1 1134.9 35022.8 5372.8 774.2 605.0 1361.4 470.5
(Core sparse 3066.5 1282.1 890.5 3774.3 545.1 777.3 261.2 437.4 260.0
i7-5930k) 64 dense 318.4 188.9 45.8 1056.0 188.3 45.7 28.7 69.0 28.8

sparse 1417.6 682.1 407.7 1780.3 274.9 363.1 117.7 176.4 107.4

GPU 1 dense 541.5 243.0 80.5 1467.8 243.0 80.5 65 90.1 51.9

(Titan X)
sparse 134.8 65.8 54.6 167.0 39.8 48.0 17.7 41.1 18.5

64 dense 19.8 8.9 5.9 53.6 8.9 5.9 3.2 2.3 2.5
sparse 94.6 51.5 23.2 121.5 24.4 22.0 10.9 11.0 9.0

mGPU 1 dense 12437.2 5765.0 2252.1 35427.0 5544.3 2243.1 1316 2565.5 956.9

(Tegra K1)
sparse 2879.3 1256.5 837.0 4377.2 626.3 745.1 240.6 570.6 315

64 dense 1663.6 2056.8 298.0 2001.4 2050.7 483.9 87.8 956.3 95.2
sparse 4003.9 1372.8 576.7 8024.8 660.2 544.1 236.3 187.7 186.5

EIE Theoretical Time 28.1 11.7 8.9 28.1 7.9 7.3 5.2 13.0 6.5
Actual Time 30.3 12.2 9.9 34.4 8.7 8.4 8.0 13.9 7.5

0%
20%
40%
60%
80%
100%

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTMLo
ad

 B
al

an
ce

 ~

#F
IF

O

FIFO=1 FIFO=2 FIFO=4 FIFO=8 FIFO=16 FIFO=32 FIFO=64 FIFO=128 FIFO=256

Figure 8: Load efficiency improves as FIFO size increases. When the size is larger than eight, the marginal gain quickly
diminishes. So we choose FIFO depth to be eight.

each benchmark, comparing the computation time of EIE
on compressed network over CPU / GPU / TK1 on uncom-
pressed / compressed network. Energy is obtained by mul-
tiplying computation time and total measured power as de-
scribed in section 5.

EIE consumes on average, 24,000⇥, 3,400⇥, and 2,700⇥
less energy compared to CPU, GPU and the mobile GPU re-
spectively. This is a 3-order of magnitude energy saving.
The saving comes from three places: first, the required en-
ergy per memory read is saved (SRAM over DRAM): using
a compressed network model enables state-of-the-art neural
networks to fit in on-chip SRAM, reducing energy consump-
tion by 120⇥ compared to fetching a dense uncompressed
model from DRAM (Figure 6). Second, the number of re-
quired memory read is saved. The compressed DNN model
has 10% of the weights where each weight is quantized by
only 4 bits, making the model 35⇥ smaller [15]. Lastly, by
taking advantage of vector sparsity saved 65.14% redundant
computation cycles. Multiplying those factors 120⇥35⇥3
gives 12600⇥ theoretical energy saving. Considering we are
using 45nm technode and Titan-X GPU and Tegra K1 mo-
bile GPU are using 28nm technode, the three-order of mag-
nitude energy saving is predictable.

6.3 Design Space Exploration
Queue Depth. The activation FIFO queue deals with load

imbalance between the PEs. A deeper FIFO queue can bet-
ter decouple producer and consumer, but with diminishing
returns, as shown in our experiment in Figure 8. We var-
ied the FIFO queue depth from 1,2,4... till 256 across 9
benchmarks using 64 PEs, and measured the load balance
efficiency. This efficiency is defined as idle cycles (due to
starvation) divided by total computation cycles. At FIFO

size = 1, around half of the total cycles are idle and the accel-
erator suffers from sever load imbalance. This get improved
as FIFO gets deeper. However, after FIFO size = 8, we got
very little return while doubling the FIFO size. Thus, we
choose 8 as the optimal queue depth.

Notice the NT-We benchmark has poorer load balance ef-
ficiency compared with others. This is because that it has
only 600 rows. Divided by 64 PEs and considering the 11%
sparsity, each PE gets only around one entry, which is highly
susceptible to variation among PEs, leading to load imbal-
ance. For such small matrices, 64 PEs are more than needed.

SRAM Width. We choose 64-bit SRAM interface stor-
ing the sparse matrix (Spmat) since it minimized the total
energy. Wider SRAM interfaces reduce the number of to-
tal SRAM accesses, but increase the energy cost per SRAM
read. The experimental trade-off is shown in Figure 9. SRAM
energy is modeled using Cacti [25] under 45nm process.
SRAM access times are measured by the cycle-accurate sim-
ulator on AlexNet benchmark. As the total energy is shown
on the right, the minimum total access energy is achieved
when SRAM width equals to 64 bits. For larger SRAM
widths, read data become wasted: the typical number of ac-
tivation elements of FC layer is 4K[1, 3] so assuming 64 PEs
and 10% sparsity [15], each column in a PE will have 6.4 el-
ements on average. This matches a 64-bit SRAM interface
that provides 8 elements. If more elements are fetched and
the next column corresponds to a zero activation, that read
will be wasted.

Arithmetic Precision. We use 16-bit fixed-point arith-
metic. As shown in Figure 10, 16-bit fixed-point multiplica-
tion consumes 5⇥ less energy than 32-bit fixed-point and
6.2⇥ less energy than 32-bit floating-point. At the same
time, using 16-bit fixed-point arithmetic results in less than

7

FPGAs
• A field-configurable ASIC
• Fixed-function units have good

efficiency
– Arithmetic units (int and FP)
– RAMs
– ARM cores

• Logic built from LUTs has poor
efficiency
– 30-100x worse ops/J than an ASIC

Microsoft Experience

Platform Library/OS
ImageNet 1K

Inference
Throughput

Peak TFLOPs
Effective
TFLOPs

Estimated
Peak Power with

Server

Estimated
GOPs/J

(assuming
peak power)

16-core, 2-socket Xeon
E5-2450, 2.1GHz

Caffe + Intel MKL
Ubuntu 14.04.1*

53 images/s 0.27T 0.074T (27%) ~225W ~0.3

Arria 10 GX1150 Windows Server 2012 369 images/s1 1.366T 0.51T (38%) ~265W ~1.9

NervanaSys-32 on
NVIDIA Titan X

NervanaSys-32 on
Ubuntu 14.0.4 4129 images/s2 6.1T 5.75T (94%) ~475W ~12.1

33
2https://github.com/soumith/convnet-benchmarks

Includes server power; however, CPUs
available to other jobs in the datacenter 1Dense layer time estimated

Ovtcharov et al., Toward Accelerating Deep Learning at Scale Using Specialized Logic, Hot Chips 2015

Comparison of FPGAs

Table 6: Performance of different platforms with VGG-16-SVD network.
Platform Embedded FPGA CPU GPU mGPU CPU GPU mGPU

Layer Theoretical Real Total Real Real Computation Time (ms) Real Performance (GOP/s)

(Group) Computation Computation Operations Performance Batch Size Batch Size Batch Size Batch Size Batch Size Batch Size
Time (ms) Time (ms) (GOP) (GOP/s) 1 64 1 64 1 1 64 1 64 1

CONV1 21.408 31.294 3.8728 123.76 83.434 81.945 2.453 2.225 59.446 46.418 47.261 1578.8 1740.6 65.148
CONV2 16.056 23.584 5.5491 235.29 68.987 67.660 3.312 2.110 79.733 80.437 82.014 1675.5 2629.9 69.596
CONV3 26.761 39.292 9.2485 235.38 76.076 72.393 4.248 2.545 89.347 151.57 127.75 2177.1 3634.0 103.51
CONV4 26.761 36.296 9.2485 254.81 62.528 58.105 3.313 1.628 107.49 147.91 159.17 2791.6 5680.9 86.041
CONV5 32.112 32.954 2.3120 70.158 12.364 19.421 2.304 0.521 63.746 186.99 119.05 1003.5 4437.6 36.269

CONV Total 123.10 163.42 30.691 187.80 312.36 299.93 15.454 9.029 399.77 98.255 102.33 1986.0 3399.1 76.771
FC6-1 10.453 20.166 0.0251 1.2447 1.688 0.139 0.445 0.023 29.346 14.870 180.58 56.404 1091.3 0.8553
FC6-2 1.707 3.754 0.0041 1.0922 0.262 0.029 0.031 0.003 5.261 15.649 141.38 132.26 1366.7 0.7793
FC7 13.981 30.02 0.0336 1.1193 1.863 0.0172 0.189 0.012 14.744 18.035 1953.5 177.78 2800.0 2.2789
FC8 3.413 7.244 0.0082 1.1320 0.462 0.046 0.958 0.008 4.582 17.749 178.26 8.5595 1025.0 1.7896

FC Total 29.554 61.184 0.0734 1.200 4.276 0.405 1.791 0.046 53.933 17.166 181.23 40.983 1595.7 1.3609
Total 152.65 224.60 30.764 136.97 316.64 299.93 17.245 9.075 453.70 97.158 102.57 1783.9 3390.0 67.807

NFC
phase = ⌈nin

T i
⌉ × ⌈ nout

To× PE_num
⌉

tFC
load_data =

PE_num× T i× To
datain_port_num

tFC
load_weight =

T i
weightin_port_num

tFC
compute_data = tFC

compute_weight =
T i× To

convolver_num
.

Typically, for FC layers, tFC
compute is much smaller than tFC

load, and
thus the total cycles needed by one FC layer can be estimated as:

tFC = NPhase × tload

= ⌈
nin

T i
⌉ × ⌈

nout

To× PE_num
⌉ ×

PE_num× T i× To

datain_port_num

≈
nin × nout

datain_port_num
.

In summary, under the given constraints, the runtime of a CON-
V layer and an FC layer can estimated through Equation 14 and
Equation 13:

tFC =
nin × nout

datain_port_num
, (13)

tCONV =
nin · nout · row2

convolver_num2 × PE_num
. (14)

As shown in Equation 14, CONV layers are bounded both by band-
width and computation resources. For FC layer, as shown in E-
quation 13, it is bandwidth-bounded only. Consequently, higher
bandwidth can help reduce the runtime of FC layers.

8.2 Performance Analysis
Though the performance of FC layer on FPGA is limited by the

bandwidth, it still higher than ARM processors. Consequently, in
our implementation, the FC layer workloads are placed on FPGA.

The performance of our system, CPU, GPU, and mGPU is shown
in Table 6. The VGG-16-SVD network needs 30.764 GOPs includ-
ing multiplications, adds, and non-linear functions. Our system
achieves an average performance of 187.80 GOP/s for CONV lay-
ers and 136.97 GOP/s for the whole network. The frame rate of our
system is 4.45 fps, which is 1.4× and 2.0× faster than the CPU and
mGPU platform when batch size is 1. The overall performance of
GPU (batch size = 1) is 13.0× higher than our implementation, but
it consumes 26.0× more power (250W versus 9.63W).

The performance of our system on FC layers (1.200 GOP/s) is
much lower than that of CONV layers (187.80 GOP/s), as we pre-
dicted. Consequently, though the number of operations needed by
FC layers is only 0.0024× of CONV layers, the runtime of FC lay-
ers is 0.374× of CONV layer. The mGPU platform suffers from
the same problem. For the CPU and the GPU platform, their per-
formance on FC layers is much higher than our implementation
especially when the batch size is 64. One important reason is that

Table 7: Comparison with other FPGA accelerators.

[13] [30] [8] Ours
Year 2010 2014 2015 2015

Platform Virtex5 Zynq Virtex7 Zynq
SX240t XC7Z045 VX485t XC7Z045

Clock(MHz) 120 150 100 150
Bandwidth (GB/s) – 4.2 12.8 4.2

Quantization 48-bit fixed 16-bit fixed 32-bit float 16-bit fixedStrategy
Power (W) 14 8 18.61 9.63

Problem 0.52 0.552 1.33 30.76Complexity (GOP)
Performance 16 23.18 61.62 187.80 (CONV)

(GOP/s) 136.97 (Overall)
Resource

4.30×10−4 – 8.12×10−4 3.58×10−3 (CONV)Efficiency 2.61×10−3 (Overall)(GOP/s/Slices)
Power Efficiency 1.14 2.90 3.31 19.50 (CONV)

(GOP/s/W) 14.22 (Overall)

Table 8: Projected frame rates on Zynq/VC707 board and us-
ing 8/4-bit quantization with VGG-16-SVD network.

Platform Total Resources 16-bit Quantization 8-bit Quantization
LUT FF Bandwidth # of PE FPS # of PE FPS

Zynq 218600 437200 4.2GBps 2 4.45 4 8.9
VC707 303600 607200 4.2GBps 3 5.88 6 11.76

CPU and GPU platforms have much larger bandwidth compared
with the embedded platforms.

Compared to theoretical computation time, there is around 47%
performance degradation for on-board test, as shown in the 2nd
column and the 3rd column of Table 6. The reason is the DDR ac-
cess latency. Our theoretical model omits the influence of external
memory for simplicity. However, there is a latency between each
read/write access of DDR memory, which will cause significant
performance degradation for computation.

8.3 Design Comparison
As shown in Table. 7, we compare our CNN accelerator with

previous work. In [30], they testify their accelerator on 3 model-
s including a single CONV layer, a model consisting of 2 CONV
layers for face recognition, and a model for street parsing without
structure details. The first model lacks of generality, and for the
third, it is hard to analyze with the lack of model structure. There-
fore, we choose the second 2-layer model for comparison. And we
also transform the unit GFLOP in [8] into GOP for comparison.

In summary, our accelerator has shown the highest performance,
resource efficiency, and power efficiency compared with other de-
signs. It should be noted, all the performance results of previous
designs were obtained from CONV layers only. If we only consid-
er CONV layers, the average performance of our system is 187.80
GOP/s, which is several times higher than previous designs. The
performance of the whole VGG-16-SVD network is 136.97 GOP/s.

[1] [2] [3] [4]

[1] S.Chakradhar, et.al,“A dynamically configurable coprocessor for convolutional neural networks,” in ACM SIGARCH Computer Architecture News,
[2] V. Gokhale, et.al, “A 240 g-ops/s mobile coprocessor for deep neural networks,” in Computer Vision and Pattern Recognition Workshops (CVPRW),
[3] C. Zhang et.al, “Optimizing fpga-based accelerator design for deep convolutional neural networks,” in FPGA 2015
[4] J. Qiu et.al, “Going Deeper with Embedded FPGA Platform for Convolutional Neural Network”, to appear in FPGA 2016

Hardware Comparison
Table 5: Comparison with existing platforms for DNNs

Platform Titan X Tegra K1 A-Eye [14] DaDianNao[11] EIE (ours)
Year 2015 2014 2015 2014 2015
Platform Type GPU mGPU FPGA ASIC ASIC
Technology 28nm 28nm - 28nm 45nm
Clock (MHz) 1075 852 150 606 800

Memory type DRAM+ DRAM+ DRAM eDRAM+ SRAMSRAM SRAM SRAM
Max DNN model size <3G <500M <500M 11.3M 84M
Quantization Stategy 32-bit float 32-bit float 16-bit fixed 16-bit fixed 4-bit ! 16-bit fixed
Area (mm2) - - - 67.7 40.8
Peak Throughput (GOP/s) 3225 365 188 5580 102
Throughput for M⇥V (GOP/s) 138.1 5.8 1.2 205 94.6
Power(W) 250 8.0 9.63 15.97 0.59
Power Efficiency (GOP/s/W) 12.9 45.6 19.5 349.4 172.9
Power Efficiency for M⇥⇥⇥V (GOP/s/W) 0.55 0.73 0.12 12.8 160.3

platforms that are able to store and execute large-scale neu-
ral networks: Titan X (GPU), Tegra K1 (mobile GPU), A-
Eye (FPGA) and DaDianNao (ASIC). All other four plat-
forms suffer from low-efficiency during matrix-vector mul-
tiplication. A-Eye is optimized for CONV layers and all of
the parameters are fetched from the external DDR3 mem-
ory, making it extremely sensitive to bandwidth problem.
DaDiannao distributes weights on 16 tiles, each tile with 4
eDRAM banks, thus has a bandwidth of 16⇥4⇥6.4GB/s =
409.6GB/s. Its performance on M⇥V is estimated based on
the peak memory bandwidth because M ⇥V is completely
memory bounded. In contrast, EIE maintains a high through-
put for M⇥V .

Model Compression. Considering the above scenario,
network compression for the FC layers is crucial for reduc-
ing memory energy. Hence, model compression is quite nec-
essary for state-of-the-art DNN models with large amount of
parameters.

Network compression is widely used to reduce the storage
required by CNN models. In early work, network pruning
proved to be a promising approach to reducing the network
complexity and over-fitting [34, 35, 36]. Han et al. pruned
less influential connections in neural networks and achieved
9x and 13x compression rate for AlexNet and VGG-16 with
no loss of accuracy [15]. The Singular Value Decomposi-
tion (SVD) [37] is frequently used to reduce memory foot-
print. Denton et al. used SVD and filters clustering to speedup
the first layers of CNNs [38]. Zhang et al. [39] proposed a
method that tested on a deeper model, which used low rank
decomposition on network parameters and took nonlinear
units into consideration. Jaderberg et al. [40] used rank-1
filters to approximate the original convolution kernels.

Sparse Matrix-Vector Multiplication Accelerator. There
is some research effort on the implementation of sparse matrix-
vector multiplication (SPMV) on general-purpose proces-
sors. Monakov et al. [41] proposed a matrix storage format
that improves locality, which has low memory footprint and
enables automatic parameter tuning on GPU. Bell et al. [42]
implemented data structures and algorithms for SPMV on
GeForce GTX 280 GPU and achieved performance of 36
GFLOP/s in single precision and 16 GFLOP/s in double pre-

cision. [43] developed SPMV techniques that utilizes large
percentages of peak bandwidth for throughput-oriented ar-
chitectures like the GPU. They achieved over an order of
magnitude performance improvement over a quad-core Intel
Clovertown system.

To pursue a better computational efficiency, several recent
works focus on using FPGA as an accelerator for SPMV.
Zhuo et al. [31] proposed an FPGA-based design on Virtex-
II Pro for SPMV. This design used CRS [24] format and
made no assumptions about the sparsity structure of the input
matrix. Their design outperforms general-purpose proces-
sors, but the performance is limited by memory bandwidth.
Fowers et al. [44] proposed a novel sparse matrix encoding
and an FPGA-optimized architecture for SPMV. With lower
bandwidth, it achieves 2.6x and 2.3x higher power efficiency
over CPU and GPU respectively while having lower perfor-
mance due to lower memory bandwidth. Dorrance et al. [21]
proposed a scalable SMVM kernel on Virtex-5 FPGA. It out-
performs CPU and GPU counterparts with > 300⇥ compu-
tational efficiency and has 38-50x improvement in energy
efficiency.

9. CONCLUSION
Fully-connected layers of deep neural networks perform a

matrix-vector multiplication. For real-time networks where
batching cannot be employed to improve re-use, these lay-
ers are memory limited. To improve the efficiency of these
layers, one must reduce the energy needed to fetch their pa-
rameters.

This paper presents EIE, an energy-efficient engine opti-
mized to operate on compressed deep neural networks. By
leveraging sparsity in both the activations and the weights,
EIE reduces the energy needed to compute a typical FC layer
by 12,600⇥. This energy saving comes from three main fac-
tors: the parameter matrix is compressed by 35⇥ compared
to a dense, uncompressed model; the smaller model can be
fetched from SRAM and not DRAM, giving a 120⇥ energy
advantage; and since the activation vector is also sparse, only
35% of the matrix columns need to be fetched for a final 3⇥
savings. These savings enable an EIE PE to do 1.6 GOPS
in an area of 0.64mm2 and dissipate only 9mW. The archi-

10

[2] S. Han et.al, “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, submitted to ISCA 2016

Summary of Special Purpose Hardware

• Diannao – 16 16b multiply-accumulators with buffers optimized for DNNs
– All data stored in off-chip DRAM

• ShiDiannao – for conv layers – up to 64K parameters on chip
• DaDiannao – for FC layers – up to 12M parameters in on-chip EDRAM
• Convolution Engine – fast convolutions (brute-force algorithm)
• EIE – hardware for compressed networks

– Trained quantization and pruning
– No data movement – scalable to 256PEs

Bottom Line
• Arithmetic perf/W of special purpose hardware is ~2x a GPU (FP16)
• Perf/W on memory limited layers (FC, not batch) is no better than GPU
• Big win from special-purpose hardware is

– When entire network fits on chip
– Decompressing highly-compressed networks

• FPGAs are just inefficient ASICs
– Good arithmetic and on-chip memory
– 30-100x less efficient elsewhere

Outline
• The Problem
• Baseline
• Parallelization
• GPUs
• Reduced Precision
• Compression
• Better Algorithms
• Hardware for DNNs
• Summary

Hardware and Data enable DNNs

In 1990, CPUs had one 100 SpecINT Core

C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011

Today they have 6-8 30,000SpecINT cores
(~200,000x) But Moore’s Law is over…

C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011

GPUs give an additional 5-10x (2,000,000x)

0
50

100
150
200
250
300

Core i7 TX1

f/s

242
258

0
10
20
30
40
50

Core i7 TX1

f/J

3.9

45

11.5x

binds one process to each GPU. These processes then exchange gradient matrices during the back-
propagation with by using all-reduce, which exchanges a matrix between multiple processes and
sums the result so that at the end, each process has a copy of the sum of all matrices from all pro-
cesses.

We find synchronous SGD useful because it is reproducible and deterministic. We have found
that the appearance of non-determinism in our system often signals a serious bug, and so having
reproducibility as a goal has greatly facilitates debugging. In contrast, asynchronous methods such
as asynchronous SGD with parameter servers as found in Dean et al. [17] typically do not provide
reproducibility and are therefore more difficult to debug. Synchronous SGD is simple to understand
and implement. It scales well as we add multiple nodes to the training process.

20 21 22 23 24 25 26 27

GPUs

211

212

213

214

215

216

217

218

219

Ti
m

e
(s

ec
on

ds
)

5-3 (2560)
9-7 (1760)

Figure 4: Scaling comparison of two networks—a 5 layer model with 3 recurrent layers containing 2560
hidden units in each layer and a 9 layer model with 7 recurrent layers containing 1760 hidden units in each
layer. The times shown are to train 1 epoch. The 5 layer model trains faster because it uses larger matrices and
is more computationally efficient.

Figure 4 shows that time taken to train one epoch halves as we double the number of GPUs that
we train on, thus achieving near-linear weak scaling. We keep the minibatch per GPU constant at
64 during this experiment, effectively doubling the minibatch as we double the number of GPUs.
Although we have the ability to scale to large minibatches, we typically use either 8 or 16 GPUs
during training with a minibatch of 512 or 1024, in order to converge to the best result.

Since all-reduce is critical to the scalability of our training, we wrote our own implementation of
the ring algorithm [46, 63] for higher performance and better stability. Our implementation avoids
extraneous copies between CPU and GPU, and is fundamental to our scalability. We configure
OpenMPI with the smcuda transport that can send and receive buffers residing in the memory of
two different GPUs by using GPUDirect. When two GPUs are in the same PCI root complex,
this avoids any unnecessary copies to CPU memory. This also takes advantage of tree-structured
interconnects by running multiple segments of the ring concurrently between neighboring devices.
We built our implementation using MPI send and receive, along with CUDA kernels for the element-
wise operations.

Table 7 compares the performance of our all-reduce implementation with that provided by OpenMPI
version 1.8.5. We report the time spent in all-reduce for a full training run that ran for one epoch
on our English dataset using a 5 layer, 3 recurrent layer architecture with 2560 hidden units for all
layers. In this table, we use a minibatch of 64 per GPU, expanding the algorithmic minibatch as we
scale to more GPUs. We see that our implementation is considerably faster than OpenMPI’s when
the communication is within a node (8 GPUs or less). As we increase the number of GPUs and
increase the amount of inter-node communication, the gap shrinks, although our implementation is
still 2-4X faster.

All of our training runs use either 8 or 16 GPUs, and in this regime, our all-reduce implementation
results in 2.5⇥ faster training for the full training run, compared to using OpenMPI directly. Opti-
mizing all-reduce has thus resulted in important productivity benefits for our experiments, and has
made our simple synchronous SGD approach scalable.

13

Data Parallelism Can get another 128x (256,000,000x)
More with Model and Hyper-Parameter Parallelism

Baidu, Deep Speech 2: End-to-End Speech Recognition in English and Mandarin, 2015

Special-Purpose Hardware Can Give another 100x
(25,000,000,000x)

Mostly from localizing memory

35K 62K
15K

120K 77K

12K 9K 11K 8K
24K

1x

10x

100x

1000x

10000x

100000x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo MeanEn
er

gy
 E

ffi
ci

en
cy

CPU (Baseline) CPU Compressed GPU GPU Compressed mGPU mGPU Compressed EIE

Accelerate the best algorithms
Prune the network
Compress the network
FFT convolutions

So what should you do?
• For training use clusters of 8-16GPUs

– Best perf, perf/W, perf/$, and memory bandwidth
– Easy parallelism

• For inference in the data center use single GPUs
– Tesla M4 and M40

• For inference in mobile devices (Automotive, IoT)
– Use a TX1 (11.5x perf/W of CPU)

• For the absolute best performance and efficiency use an ASIC
– But make sure the model fits (memory limited ASICs no better than GPU)
– And that your algorithm isn’t going to change

Thank You

