


SEED is a technical and creative research division of Electronic Arts. We are a 

cross-disciplinary team with a mission to explore the future of interactive 

entertainment. One of our recent projects is an experiment in hybrid real-time 

rendering, deep learning agents, and procedural level generation.



Here is a video we circulated, showing our recent real-time ray tracing work.



We have built the PICA PICA from the ground up in our custom R&D framework 

called Halcyon. It is a flexible experimentation framework that is very capable of 

rendering fast and shiny pixels.



So lets talk a bit about Halcyon itself



Halcyon is a rapid prototyping framework, serving a different purpose than our 

flagship AAA engine, Frostbite.

And Halcyon is currently supported on Windows, Linux, and macOS.



A major goal of Halcyon is to minimize or eliminate busy-work; something I call - artist 

“meta-data” meshes.

Show me one artist that actually enjoys making these meshes over something more 

creative, and I guarantee you they are brainwashed, and need an intervention and our 

caring support.

Another critical goal, is the live reloading of all assets. We don’t want to take a coffee 

break while we shut down Halcyon, launch a data build, come back, and resume 

whatever we were doing.



One luxury we had by starting from scratch, was choosing our feature set and min 

spec. We decided to only target modern APIs, so we are not restricted by legacy.

Another interesting goal is to provide easy access to multiple GPUs, without 

sacrificing API cleanliness or maintainability. To accomplish this, we decided on 

explicit heterogeneous mGPU, not linked adapters.

We also are avoiding any AFR nonsense for a number of reasons, including problems 

with temporal techniques.



We chose to support rendering locally, and also performing some computation or 

rendering remotely, and transmitting the results back to the application.

In order to deliver on our promise of fast experimentation, we needed to ensure a 

minimal amount of boilerplate code. This includes code to load a shader, set up 

pipelines and render state, query scene representations, etc.

This was critical in developing and supporting a vast number of rendering techniques 

and approaches that we have in Halcyon.



We have a unique rendering pipeline which is inspired by classic techniques in real-

time rendering, with ray tracing sprinkled on top.

We have a deferred renderer with compute-based lighting, and a fairly standard post-

processing stack. And then there are a few pluggable components. We can render 

shadows via ray tracing or cascaded shadow maps.

Reflections can be traced or screen-space marched. Same story for ambient 

occlusion.

Only our global illumination and translucency actually require ray tracing.



Here is an example of a scene using our hybrid rendering pipeline



And here is the same scene uses our traditional pure rasterization rendering pipeline.

As you can see, most of our visual fidelity holds up between the two, especially with 

respect to our materials.



PICA PICA and Halcyon were both built from scratch, and our goals required us to 

implement a lot of bespoke technology.

In the end, our flexible architecture means it is minimal effort to add a new API or 

platform, and we can render large and dynamic scenes very efficiently.





There are a number of render components making up our architecture.



The first component I will talk about is render backend



Render backends are implemented as live-reloadable DLLs. Each backend 

represents a particular API, and provides enumeration of adapters and capabilities. In 

addition, the backends will determine the ideal adapters to use, depending on the 

desired purpose.



Each render backend also supports a debugging and profiling interface – this 

provides functionality like RenderDoc integration, CPU and GPU validation layers, 

etc..

Most importantly, render backends support the creation and destruction of render 

devices, which I’ll cover shortly.



We have a variety of render backends implemented



For Direct3D 12, we support the latest shader model 6, DirectX ray tracing, full 

bindless resources, explicit heterogeneous mGPU, and we plan to add support for 

DirectML.



Vulkan is a similar story to Direct3D 12, except we haven’t implemented multi-GPU or 

ray tracing support at this time, but it is planned.



Metal 2 is still in early development, but very promising.



We have another pretty crazy backend which I discuss later in this presentation.



Finally, we have our mock render backend which is for unit testing, debugging, and 

validation. This backend does all the same work the other backends do, except 

translation from high level to low level just runs a validation test suite instead of 

submitting to a graphics API.



The next component to discuss is render device



Render device is an abstraction of a logical GPU adapter, such as VkDevice or 

ID3D12Device.

It provides an interface to various GPU queues, and provides API specific command 

list scheduling and submission functionality



Render device has full ownership and lifetime tracking of its GPU resources, and 

provides create and destroy functionality for all the high level render resource types.

The high level application refers to these resources using handles, so render device 

also provides an efficient mapping of these handles to internal device resources.



First off, I will describe what our render handles are



Our rendering resources are associated by handle.

The handles are lightweight (just 64 bits), and the associated resources are fetched 

with a constant-time lookup. The handles are type safe, protecting against errors like 

trying to pass a buffer in place of a texture.

The handles can be serialized or transmitted, as long as some contract is in place 

about what the handle represents.

And the handles are generational for safety, which protects against double-delete, or 

using a handle after deletion



Handles allow a one-to-many cardinality where a single handle can have a unique 

representation on each device



There is an API to query if a particular render device has a handle loaded or not. This 

makes it safely add and remove devices while the application is running. The handle 

is owned by the application, so the representation can be loaded or reloaded for any 

number of devices.



Shared resources are also supported, allowing for copying data between various 

render devices.



A crazy feature of this architecture is that we can mix and match different backends in 

the same process!

This made debugging Vulkan much easier, as I could have Dx12 rendering on the left 

half of the screen, while Vulkan was rendering on the right half of the screen.



An key rendering component is our high level command stream



We developed an API agnostic high level command stream that allows the application 

to efficiently express how a scene should be updated and rendered, but allowing each 

backend to control how this is done, including render state changes and resource 

barriers or transitions.



Each render command specifies a queue type, which is primarily for spec validation 

(such as putting graphics work on a compute queue), and also to aid in automatic 

scheduling, like with async compute.



As an example, here is a compute dispatch command, which specifies Compute as 

the queue type. The underlying backend and scheduler can interpret this 

accordingly



The high level commands are encoded into a render command list. As each 

command is encoded, a queue mask is updated which helps indicate the 

scheduling rules and restrictions for that command list.

The commands are stateless, which allows for fully parallel recording.



The render command lists are compiled by each render backend, which means the 

high level commands are translated to the low level API. Command lists can be 

compiled once, and submitted multiple times, in appropriate cases.

The low level translation is a serial operation by design, as this is basically running 

at memcpy speed. Doing this part serial means we get perfect redundant state 

filtering.



Another significant rendering component is our render graph



Render Graph is inspired by Frostbite’s Frame Graph

Just like Frame Graph, we automatically handle transient resources. Complex 

rendering uses a number of temporary buffers and textures, that stay alive just for the 

purpose and duration of an algorithm. These are called transient resources, and the 

graph automatically manages these lifetimes efficiently.

Automatic resource transitions are also performed



Compared to Frame Graph, we opted for a simpler memory management model. We 

are not targeting current consoles with Halcyon, so we don’t need such fine grained 

memory reuse. Current PC drivers and APIs are not as efficient in this area (for a 

variety of reasons), and you lose ~5% on aliasing barriers and discards.

In render graph, we support automatic queue scheduling (graphics, copy, compute, 

etc..). This is an area of ongoing research, as it’s not enough to just specify input and 

output dependencies. You also need heuristics on task duration and bottlenecks to 

further improve the scheduling.



We call our implementation Render Graph, because we don’t have the concept of a 

“frame”.

Our transitions and split barriers are fully automatic, and there is a single 

implementation, regardless of backend. This is thanks to our high level render 

command stream, which hides API differences from render graph.

We also support multi-gpu, which is mostly implicit and automatic, with the exception 

of a scheduling policy you configure on your pass – this represents what devices a 

pass runs on, and what transfers are performed going in or out of the pass.



Render graph supports composition of multiple graphs at varying frequencies. These 

graphs can run on the same GPU - such as async compute. They can run with multi-

gpu, with a graph on each GPU. And they can even run out of core, such as in a 

server cluster, or on another machine streamed remotely.



There are a number of techniques that can easily run at a different frequency from the 

main graph, such as object space translucency and reflection, or our surfel based 

global illumination.



Render graph runs in two phases, construction and evaluation.

Construction specifies the input and output dependencies, and this is a serial 

operation by design.

If you implement a hierarchical gaussian blur as a single pass that gets chained X 

times, you want to read the size of the input in each step, and generate the proper 

sized output. Maybe you could split it up into some threads, but tracking 

dependencies in order to do construction in a parallel fashion might be more costly 

than just running it serially.

Evaluation is highly parallelized, and this is where high level render commands are 

recorded, and automatic barriers and transitions are inserted.



Here is an example render graph pass, with the construction phase up top, and the 

evaluation phase at the bottom.



As mentioned, we support explicit heterogeneous multi-GPU. We use a parallel fork-

join approach, and we copy resources through system memory using the copy queue. 

It costs roughly 1ms to transfer 15mb of data, so it’s important to minimize how much 

we transfer. This is done by redundantly replicating immutable data to all GPUs (such 

as meshes and textures), and also tightly packing or compressing data to minimize 

the transfer size.



Our workloads are divided into partitions, where the number of partitions is based on 

the number of available GPUs.

We designate one of the GPUs as the primary device, and the other devices are 

designated as secondaries.

With complex rendering and computation, there are a variety of scheduling and 

transfer patterns needed. We built a simple rules engine to drive the logic of our 

workloads.



For our ray tracing workloads, the common pattern is to run the ray generation on the 

primary GPU. Then we copy slices or sub-regions of this data to the other secondary 

GPUs, where each GPU performs tracing on its own sub-region or partition.

The tracing results are then copied back to the primary GPU, and then filtering is 

performed exclusively on the primary GPU.

This approach avoids many problems with temporal techniques, and also means we 

don’t need to transfer as much data, such as the full g-buffer, to the secondary GPUs.



The workloads are only divided into partitions based on the X axis, or width. This 

simplifies textures vs. buffers, since we can treat all sub-regions as 1D instead of 2D.

Passes are unaware of the GPU count, which keeps the code clean, and avoids any 

edge cases or bugs with untested mGPU configurations. This code snippet shows all 

that is needed for a pass to scale the workloads, regardless of how many GPUs are in 

use.



The automatic scaling window works quite well for us, but there were lots of fun 

coordinate snapping bugs to fix up, like 3 GPUs partitioning to 0.3 repeating.



And then some interesting bugs when we did crazy configurations, like 16 GPUs, 

because why not? ☺



Our simple rules engine allows for a pass to specify the scheduling, and also request 

transfers in or out of the pass.



The transfers specify what partitions are copied from source to destination.

And the transfers also specify rules for the transfer destination, allowing for basic 

copies, multi-cast copies, etc..



The transfer partition is specified for both the source and the destination GPU, 

allowing for a variety of transfer patterns. 



Here is an example render graph pass which specifies the mGPU scheduling policy, 

in this case, to run on all available devices.

This example also schedules a transfer of the resultant data back to the primary 

device. Isolated to isolated means that each device will only copy the sub-region or 

partition that it was responsible for computing.

In the bottom half of the code, you can see the evaluation phase which is scaling the 

work dimensions for the compute dispatch, based on the mGPU configuration.



When developing mGPU support for our render graph passes, some scheduling or 

transfer bugs were obvious.



Here’s another example



And then some bugs were very subtle, like this weird cell shading.

Incorrect transfers would result in input data being incorrect or uninitialized, or result 

data not being copied back to the main GPU for filtering.

Incorrect scheduling would cause passes to not run, to run when they shouldn’t, or 

have an incorrect partitioning window, interfering with the work of another GPU.



This is a list of some of our render graph passes in PICA PICA – we ended up adding 

mGPU support to reflections, shadows, lighting, global illumination, shadows, and 

ambient occlusion.



The initial implementation of render graph would explicitly chain input and output 

dependencies between passes, but this lead to messy coupling, and also explicit 

checks like if a depth pre-pass has already run import the depth target, and if not, 

clear the depth target or disable depth.

We improved the implementation to support implicit data flow using explicit scopes. 

This allows for long-distance extensible parameter passing. A scope is given to each 

render pass, which supports nested scopes for sub-graphs, and the results are stored 

in the scope. Hygiene is provided via nesting and shadowing.



The scopes can be looked up by type, such as depth or gbuffer resources. The 

lookup returns parameters stored in plain old data structs.



We have also been experimenting with various implementations of a DSL for 

Render Graph – currently it’s using hacky macro magic, but we’re thinking about 

writing a code generator using Rust, relying on many amazing features of the 

language to develop our DSL.

The goal here is to make Render Graph fully data driven, and even serializable.



Render graph can collect automatic profiling data, presenting you with GPU and CPU 

counters per-pass

Additionally, this works with mGPU, where each GPU is shown in the list



There is also a live debugging overlay, using ImGui. This overlay shows the 

evaluated render graph passes in-order of execution, the input and output 

dependencies, and the resource version information.





In order to make multi-GPU development easier, we built something we call virtual 

multi-GPU



Most developers typically have just a single GPU in their workstations. It is quite 

uncommon for 2 GPU machines, and it is rare for machines to have more than 2 

GPUs. Having a huge machine is practical for the show floor, and cranking settings 

up to 11, but this is impractical for regular development. Testing these configurations 

becomes challenging.



Our solution was to build a device indirection table. We enumerate available device 

adapters, and based on a setting specifying how many copies of a device are desired, 

we redirect our own virtual device indices to actual adapter indices.



We do this by creating multiple instances of a given device. Similar to multiple 

applications sharing a GPU, the OS (such as WDDM on Windows 10) will execute 

multiple instances of a device sequentially.



This approach increases the overall wall time, so don’t use it for end to end profiling. 

However, this is amazing for development and testing, even estimating the possible 

performance characteristics of the mGPU algorithm in isolation.



There is a fun story around this stuff..   For PICA PICA, all developers only had a 

single GPU, and there was very limited testing with 2 GPUs.

The show floor at GDC 2018 was a machine with 4 GPUs, a configuration we had 

only ever tested using virtual mGPU. We crossed our fingers, and hoped we didn’t 

make a horrible mistake by relying exclusively on virtual mGPU for testing.

The demo worked flawlessly on the first try with the actual hardware, and gave us the 

wall time improvements we had estimated.



Virtual mGPU allows us to develop multi-GPU with only a single GPU

Virtual mGPU even reproduces most mGPU bugs in the same way, which is 

incredibly useful.

Some developers never tested on physical mGPU, and developed entire features like 

our surfel GI using only virtual mGPU. (The night before GDC, I might add..)



Another interesting capability of our architecture is our render proxy



Render proxy is another render backend implementation, like DirectX12 or Vulkan, 

except this allows us to mix any API with any OS.



The way it works is our render API calls get routed remotely using gRPC, which is a 

high performance RPC framework developed by Google.

This lets us use an API on an incompatible OS, such as using Direct3D 12 on macOS 

or Linux.

This is especially nice for bringing up new platforms, as we can get base memory, IO, 

and core functionality running, without initially worrying about the graphics system.



Render proxy allows us to scale large workloads with a GPU cluster. Render graph 

passes which support mGPU can transparently scale to the cluster without any 

additional code, which is a really powerful design.

Another interesting property is that only the rendering is routed, the scene state is 

local. This means that the rendering is based on the actual local version of code and 

data, which allows for fast iteration and development.

This lets us work from the couch! Such as using Direct X ray tracing with a Turing 

GPU from a Macbook



With our render handle design, it’s pretty easy to implement gRPC proxy functions of 

our render backend interface. Create and destroy resource calls will pass the handle 

value and initial data over to the remote proxies to create their representation of that 

handle.

High level command lists are recorded as normal, and these command streams are 

replicated over to the remote proxies, referencing the resource handles. Remote 

compilation and submission of the command lists is performed, and then the results 

are sent back to the application.



We define the RPC data types and functions with Google Protocol Buffers, which 

supports gRPC, and also HTTP 1.1 using a reverse REST gateway, so even web 

browsers can submit work to our render proxy backend and get back the results.



With our render proxy architecture, the possibilities are truly endless!



I also wanted to briefly cover some of our machine learning support in Halcyon



PICA PICA uses deep reinforcement learning, trained with Halcyon rendering 36 

semantic views.

The training is performed with TensorFlow and our on-premise GPU cluster.

The PICA PICA demo did in-process inference with TensorFlow using AVX2 on the 

CPU



We are adding inferencing support with DirectML to Halcyon. This will provide 

hardware accelerated inferencing operators. DirectML allows us to do our own 

resource management, schedule ML work explicitly, and also interleave ML work 

with other GPU workloads.

We are investigating a fall back for other APIs if DirectML is not available.



We can treat the trained ML models like any other 3D assets.

We will also expose DirectML with render graph abstractions. We want to reference 

the same render resources, and provide a similar approach to chaining compute 

passes.

Similar to our other high level commands bracketed within a render pass, we will 

record some form of “meta” render commands for ML, bracketed together, and this 

will allow the various backends to fuse or transform these commands for 

performance, if desired.



As mentioned, we will provide various operators as render commands, such as the 

ones shown here.



Lastly, I wanted to quickly mention some interesting aspects of our asset pipelines



Just like any other engine or framework, we have a variety of asset types that we 

load from a source or intermediate representation, process with a pipeline, and 

produce a more optimal representation for runtime.



The cool thing is that all our assets are content addressable - we don’t reference 

resources by virtual file system path, instead we only reference by a hash like 

sha256.

We use Merkle trees for efficient dependency evaluation



The general idea with Merkle trees is that the leaf nodes are data blocks, which are 

hashed, and nodes further up the tree are hashes of their respective children.

You can test if a leaf node is part of a given tree by computing a number of hashes 

proportional to the logarithm of the number of leaf nodes in the tree. This allows for 

efficient dependency evaluation, avoiding redundant network transmission of data, 

and secure verification of data contents.



Our pipelines are all containerized in Linux Docker, running on Kubernetes. We 

can scale our pipelines on Google Cloud Platform, and also in our on-premise 

cluster, comprised of AMD Threadrippers and Nvidia Titan Vs.

Communication between Halcyon and the pipelines is done with gRPC and 

Protobuf, and our content addressable data is all backed by Google Cloud Storage.



Our pipelines support detailed analytics with Prometheus and Grafana. We publish 

custom metrics to an HTTP endpoint, and these metrics get scraped into a rich UI.

We can’t stress enough how important collecting data is – for profiling how long 

pipelines are taking including bottlenecks to improve, and also for tracking down 

errors and bugs.



This is what our on-premise GPU cluster metrics look like when displayed with 

Grafana. This is a very rich and responsive Web UI, and it is very easy for us to 

add in all sorts of interesting metrics and dashboards for whatever we want to 

track.



Shaders are also an important component



We implemented a system which supports multiple microfacet layers arranged into 

stacks. The stacks could also be probabilistically blended to support prefiltering of 

material mixtures. This allowed us to rapidly experiment with the look of our demo, 

while at the same time enforcing energy conservation, and avoiding common 

gamedev hacks like “metalness”. An in-engine material editor meant that we could 

quickly jump in and change the look of everything.

The material system works with all our render modes, be that pure rasterization, path 

tracing, or hybrid.

For performance, we can bake down certain permutations for production.



We exclusively use HLSL 6 as a source language, and the majority of our shaders 

are compute

Performance is critical, so we rely heavily on group shared memory, and wave 

operations



We don’t rely on any reflection information, outside of validation. We avoid costly 

lookups by requiring explicit bindings.

We also make extensive use of HLSL spaces, where the spaces can be updated at 

varying frequency.



Here is a flow graph of our shader compilation. We always start with HLSL 

compiled with the DXC shader compiler. The DXIL is used by Direct3D 12, and the 

SPIR-V is used by Vulkan 1.1. We also have support for taking the SPIR-V, 

running it through SPIRV-CROSS, and generating MSL for Metal, or ISPC to run 

on the CPU.



We have a concept in Halcyon called shader arguments, where each argument 

represents an HLSL space. We limit the maximum number of arguments to 4 for 

efficiency, but this can be configured. It is important to note that this limit represents 

the maximum number of spaces, not the maximum number of resources.



Each shader argument contains a “ShaderViews” handle, which refers to a 

collection of SRV and UAV handles. Additionally, each shader argument also 

contains a constant buffer handle and offset into the buffer.



Our constant buffers are all dynamic, and we avoid having temporary descriptors. 

We have just a few large buffers, and offsets into these buffers change frequently. 

For Vulkan, we use the uniform buffer dynamic descriptor type, and on Dx12 we 

use root descriptors, just passing in a GPU virtual address.

All our descriptor sets are only written once, then persisted or cached.



Here is an example HLSL snippet showing one usage of spaces. Each space 

contains a collection of SRVs and a constant buffer. The shader argument 

configuration on the CPU is shown below.



Our architecture simplified the development effort, for Vulkan we just needed a new 

backend and device implementation, API specific memory allocators, barrier and 

transition logic, and a resource binding model that aligned with our shader 

compilation.



The first stage was to get command translation working, and performing the correct 

barriers and transitions. This was done using the Vulkan validation layers, and lots 

of glorious printf debugging



The second stage was getting basic ImGui, resource creation, and swap chain flip 

working. This meant I could easily toggle any display mode or render settings while 

debugging.



Naturally, fun bugs occurred



The third stage was to bring up more of the Halcyon asset loading operations, and 

get a basic entry point running



Plenty of fun bugs with this, as well



Plenty of fun bugs with this, as well



The final stage was to bring up absolutely everything else, including render graph!

To simplify things, I worked on getting just the normals and albedo display modes 

working.

I relied on the fact that render graph will cull any passes not contributing to the final 

result, so I could easily remove problematic passes from running while I get the 

basics working.



With that working, I started to bring up the more complicated passes. As expected, 

there were plenty of fun issues to sort through. 



Eventually, everything worked!



Eventually, everything worked!



Eventually, everything worked!



An important part of our Vulkan backend, was consuming HLSL as a source 

language, and fixing up the SPIR-V to behave the same as our Dx12 resource 

binding model.

We decided to use the spirv-reflect library from Hai and Cort; it does a great job at 

providing SPIR-V reflection using DX12 terminology, but we use it exclusively to 

patch up our descriptor binding numbers.



SRVs, Samplers, and UAVs are simple. These types are uniquely name spaced in 

DX12, so t0 and s0 wouldn’t collide. This is not the case in SPIR-V, so we apply a 

simple offset to each type to emulate this behavior.



Constant or uniform buffers are a bit more interesting. We want to move CBVs to 

their own descriptor sets, in order to make our ShaderViews representing the other 

resource types persistent and immutable.

To do so, we don’t adjust the offset, as we’ll have a single CBV per descriptor set. 

However, we do shift the descriptor set number by the max number of shader 

arguments.

This means if descriptor set 0 contained a constant buffer, that constant buffer 

would move to descriptor set 5 (if max shader arguments is 4).



If a dispatch or draw is using 2 HLSL spaces, the patched SPIR-V will require the 

following descriptor set layout. Notice the shifted offsets for the SRVs, Samplers, 

and UAVs, and how the dynamic constant buffers have been hoisted out to their 

own descriptor sets.



Another important aspect of a new render backend is the translation from our high 

level command stream to low level API calls.



Here is an example of translating a high level compute dispatch command to Vulkan.



Here is an example of translating a high level begin timing command to Vulkan 

timestamps



And here is an example of translating a high level resolve timings command to 

Vulkan. Notice that the complexity behind fence tracking or resetting the query pool is 

completely hidden from the calling code. Each backend implementation can choose 

how to handle this efficiently.



This comparison shows that our Vulkan implementation is nearing the performance 

of our DirectX 12 version, and is completely usable. There are a number of reasons 

for the delta, but none of them represent any amount of significant work to resolve. 



I will briefly mention some useful tools used for the Vulkan implementation



For debugging and profiling, the usual suspects were quite helpful, and used 

extensively.



For debugging and profiling, the usual suspects were quite helpful, and used 

extensively.



The API statistics view in Nvidia Nsight is a great way to look at the count and cost of 

each API call.



Another awesome feature with Nsight is the ability to export a capture as a 

standalone C++ application. Nsight will write out binary blobs of your resources in the 

capture, and write out source code issues your API calls. You can build this app and 

debug problems in an isolated solution.



Another awesome feature with Nsight is the ability to export a capture as a 

standalone C++ application. Nsight will write out binary blobs of your resources in the 

capture, and write out source code issues your API calls. You can build this app and 

debug problems in an isolated solution.



Here is our bug being reproduced in the standalone C++ export



With our goal of having everything be live-reloadable and live-tweakable, we used 

DearImGui and ImGuizmo extensively for a number of useful overlays









And before I finish, I would like to thank all the people who contributed to the PICA 

PICA project. It was a very awesome and dedicated effort by our team, and we could 

not have done it without our external partners either.



On one last note, I would like to point out that we’re hiring for multiple positions at 

SEED. If you’re interested, please give us a shout!




