
Understanding, Scripting and Extending GDB

Kevin Pouget
Jean-François Méhaut, Fabrice Rastello

Université Grenoble Alpes / LIG, INRIA, CEA

Séminaire Corse, Aussois, France
4 janvier 2017

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 1 / 29

IntroductionIntroduction

What is a debugger?

It’s not a tool to remove bugs!

Tools like GDB have the ability to ...

access the program state
I read and write memory cells and CPU registers ...
I in the language’s type system

control the application execution
I execute debugger-side code on specific events
I execute process-side code on user demand

Like ?
Nope!

the execution is 100% native

everything done through collaboration between ...

I the OS, the compiler, the CPU ... and ol’ hackers’ tricks!

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 2 / 29

IntroductionIntroduction

What is a debugger?
It’s not a tool to remove bugs!

(not even to shoot them like the Archerfish of GDB’s logo ;-)

Tools like GDB have the ability to ...

access the program state
I read and write memory cells and CPU registers ...
I in the language’s type system

control the application execution
I execute debugger-side code on specific events
I execute process-side code on user demand

Like ?
Nope!

the execution is 100% native

everything done through collaboration between ...

I the OS, the compiler, the CPU ... and ol’ hackers’ tricks!

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 2 / 29

IntroductionIntroduction

What is a debugger?
It’s not a tool to remove bugs!

Tools like GDB have the ability to ...

access the program state
I read and write memory cells and CPU registers ...
I in the language’s type system

control the application execution
I execute debugger-side code on specific events
I execute process-side code on user demand

Like ?
Nope!

the execution is 100% native

everything done through collaboration between ...

I the OS, the compiler, the CPU ... and ol’ hackers’ tricks!

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 2 / 29

IntroductionIntroduction

What is a debugger?
It’s not a tool to remove bugs!

Tools like GDB have the ability to ...

access the program state
I read and write memory cells and CPU registers ...
I in the language’s type system

control the application execution
I execute debugger-side code on specific events
I execute process-side code on user demand

Like ?

Nope!

the execution is 100% native

everything done through collaboration between ...

I the OS, the compiler, the CPU ... and ol’ hackers’ tricks!

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 2 / 29

IntroductionIntroduction

What is a debugger?
It’s not a tool to remove bugs!

Tools like GDB have the ability to ...

access the program state

control the application execution

Like ?
Nope!

the execution is 100% native

everything done through collaboration between ...

I the OS, the compiler, the CPU ... and ol’ hackers’ tricks!

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 2 / 29

IntroductionIntroduction

What is a debugger?
It’s not a tool to remove bugs!

Tools like GDB have the ability to ...

access the program state

control the application execution

Like ?
Nope!

the execution is 100% native

everything done through collaboration between ...

I the OS, the compiler, the CPU ... and ol’ hackers’ tricks!

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 2 / 29

IntroductionIntroduction

Help from the compiler

Dwarf debug info: type system and calling conventions

Help from the CPU

not much (mainly watchpoint and instruction-level step-by-step)

Help from the OS

... the rest (access to the memory/registers + scheduler)

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 3 / 29

IntroductionIntroduction

Help from the compiler

Dwarf debug info: type system and calling conventions

Help from the CPU

not much (mainly watchpoint and instruction-level step-by-step)

Help from the OS

... the rest (access to the memory/registers + scheduler)

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 3 / 29

IntroductionIntroduction

Help from the compiler

Dwarf debug info: type system and calling conventions

Help from the CPU

not much (mainly watchpoint and instruction-level step-by-step)

Help from the OS

... the rest (access to the memory/registers + scheduler)

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 3 / 29

IntroductionIntroduction

Help from the compiler

Dwarf debug info: type system and calling conventions

Help from the CPU

not much (mainly watchpoint and instruction-level step-by-step)

Help from the OS

... the rest (access to the memory/registers + scheduler)

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 3 / 29

AgendaAgenda

1 GDB Under the Hood

2 Programming GDB in Python

3 New GDB Functionnalities

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 3 / 29

GDB Under the Hood: DefinitionsGDB Under the Hood: Definitions

Stopping the execution ...

breakpoint on an address execution

watchpoint on an address access (read or write)

catchpoints on particular events (signals, syscalls, fork/exec, ...)

Controlling the execution:

next/i go to next line/instruction
step/i step into the current line’s function call (if any)

finish continue until the end of the current function
return abort the current function call

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 4 / 29

GDB Under the Hood: DefinitionsGDB Under the Hood: Definitions

Stopping the execution ...

breakpoint on an address execution

watchpoint on an address access (read or write)

catchpoints on particular events (signals, syscalls, fork/exec, ...)

Controlling the execution:

next/i go to next line/instruction
step/i step into the current line’s function call (if any)

finish continue until the end of the current function
return abort the current function call

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 4 / 29

AgendaAgenda

1 GDB Under the Hood
Help from the Compiler
Help from the OS
Help from the CPU
Internal algorithms

2 Programming GDB in Python
Python Interface Capabilities
Ex. 1: (re)discovering gdb-cli and gdb.py
Ex. 2: gdb simple scripting

3 New GDB Functionnalities
Section breakpoint
Return true breakpoint
Register watchpoint
Step into next call
Faking function execution

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 4 / 29

Under the Hood: Help from the CompilerUnder the Hood: Help from the Compiler

Everything GDB knows about the language (Dwarf)

the type system

the calling conventions and local variables

the address-to-line mapping

$ dwarfdump prodconsum (see docker machine)

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 5 / 29

Under the Hood: Help from the CompilerUnder the Hood: Help from the Compiler

Everything GDB knows about the language (Dwarf)

the type system

the calling conventions and local variables

the address-to-line mapping

struct Context {
pthread cond t *cond;

...

};

void *consumer(void *_context){
struct Context *context = ...;

...

}

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 5 / 29

Under the Hood: Help from the CompilerUnder the Hood: Help from the Compiler

Everything GDB knows about the language (Dwarf)

the type system

the calling conventions and local variables

the address-to-line mapping

DW_TAG_subprogram

DW_AT_name consumer
DW_AT_decl_file prodconsum.c

DW_AT_type <0x00000094> # void *

DW_AT_low_pc 0x00400d47

DW_AT_high_pc <offset-from-lowpc>237

...

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 5 / 29

Under the Hood: Help from the CompilerUnder the Hood: Help from the Compiler

Everything GDB knows about the language (Dwarf)

the type system

the calling conventions and local variables

the address-to-line mapping

DW_TAG_subprogram

DW_AT_name consumer

...

DW_TAG_formal_parameter

DW_AT_name context
DW_AT_decl_file 0x00000001 prodconsum.c

DW_AT_decl_line 0x0000007b # 123

DW_AT_type <0x00000094> # void *

DW_AT_location len 0x0002: 9158: DW OP fbreg -40

...
Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 5 / 29

Under the Hood: Help from the CompilerUnder the Hood: Help from the Compiler

Everything GDB knows about the language (Dwarf)

the type system

the calling conventions and local variables

the address-to-line mapping

DW_TAG_subprogram

DW_AT_name consumer

...

DW_TAG_variable

DW_AT_name context
DW_AT_decl_file 0x00000001 prodconsum.c

DW_AT_decl_line 0x0000007d # 125

DW_AT_type <0x00000596> # struct Context *

DW_AT_location len 0x0002: 9168: DW OP fbreg -24

...
Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 5 / 29

Under the Hood: Help from the CompilerUnder the Hood: Help from the Compiler

Everything GDB knows about the language (Dwarf)

the type system

the calling conventions and local variables

the address-to-line mapping

DW_TAG_pointer type # <0x00000596> struct Context*

DW_AT_byte_size 0x00000008

DW_AT_type <0x0000050a>

DW_TAG_structure type # <0x0000050a> struct Context

DW_AT_name Context
DW_AT_byte_size 0x00000018

DW_TAG_member

DW_AT_name cond
DW_AT_type <0x0000054c> # pthr cond t *

DW_AT_data_member_location 0
Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 5 / 29

Under the Hood: Help from the CompilerUnder the Hood: Help from the Compiler

Everything GDB knows about the language (Dwarf)

the type system

the calling conventions and local variables

the address-to-line mapping

DW_TAG_pointer type # 0x00000094 void *

DW_AT_byte_size 0x00000008

DW_TAG_base type # 0x0000003f int

DW_AT_name int
DW_AT_byte_size 0x00000004

DW_AT_encoding DW ATE signed

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 5 / 29

Under the Hood: Help from the CompilerUnder the Hood: Help from the Compiler

Everything GDB knows about the language (Dwarf)

the type system

the calling conventions and local variables

the address-to-line mapping

<pc> [lno,col] NS BB ET PE EB IS= DI= uri: "filepath"

0x00400aa6 [44, 0] NS uri: "prodconsum.c"
0x00400aae [46, 0] NS

0x00400abc [47, 0] NS

0x00400aca [48, 0] NS

0x00400ad1 [50, 0] NS

0x00400ae2 [51, 0] NS

0x00400af3 [56, 0] NS

0x00400afd [57, 0] NS

...
Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 5 / 29

AgendaAgenda

1 GDB Under the Hood
Help from the Compiler
Help from the OS
Help from the CPU
Internal algorithms

2 Programming GDB in Python
Python Interface Capabilities
Ex. 1: (re)discovering gdb-cli and gdb.py
Ex. 2: gdb simple scripting

3 New GDB Functionnalities
Section breakpoint
Return true breakpoint
Register watchpoint
Step into next call
Faking function execution

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 5 / 29

Under the Hood: Help from the OSUnder the Hood: Help from the OS

Everything GDB knows about the execution

In Linux: the ptrace API

read/write access to memory addresses
read/write access to CPU registers

start/stop/interrupt the process
a few more notifications...

I catching syscalls
I handling signals
I ...
Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 6 / 29

Under the Hood: Help from the OSUnder the Hood: Help from the OS

Everything GDB knows about the execution

read/write access to memory addresses
I PTRACE PEEKTEXT, PTRACE PEEKUSER, PTRACE POKE...

I copy to user() , copy from user()

read/write access to CPU registers

start/stop/interrupt the process
a few more notifications...

I catching syscalls
I handling signals
I ...
Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 6 / 29

Under the Hood: Help from the OSUnder the Hood: Help from the OS

Everything GDB knows about the execution

read/write access to memory addresses
I PTRACE PEEKTEXT, PTRACE PEEKUSER, PTRACE POKE...

I copy to user() , copy from user()

read/write access to CPU registers
I registers are saved in the scheduler’s struct task struct
I copy regset to , copy regset from user

start/stop/interrupt the process
a few more notifications...

I catching syscalls
I handling signals
I ...

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 6 / 29

Under the Hood: Help from the OSUnder the Hood: Help from the OS

Everything GDB knows about the execution

read/write access to memory addresses
read/write access to CPU registers

start/stop/interrupt the process
I basic scheduler operations
I ie: put it on the run-queue, send a signal-like interruption request, ...

a few more notifications...
I catching syscalls
I handling signals
I ...Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 6 / 29

Under the Hood: Help from the OSUnder the Hood: Help from the OS

Everything GDB knows about the execution

read/write access to memory addresses
read/write access to CPU registers

start/stop/interrupt the process
a few more notifications...

I catching syscalls
I handling signals
I ...

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 6 / 29

AgendaAgenda

1 GDB Under the Hood
Help from the Compiler
Help from the OS
Help from the CPU
Internal algorithms

2 Programming GDB in Python
Python Interface Capabilities
Ex. 1: (re)discovering gdb-cli and gdb.py
Ex. 2: gdb simple scripting

3 New GDB Functionnalities
Section breakpoint
Return true breakpoint
Register watchpoint
Step into next call
Faking function execution

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 6 / 29

GDB Under the Hood: Help from the CPUGDB Under the Hood: Help from the CPU

Everything GDB ... Single-stepping and Watchpoints

Single-stepping execute one CPU instruction

Watchpoint stop on memory-address reads and writes

it’s inefficient to implement in software
main CPUs only have 4 debug registers

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 7 / 29

GDB Under the Hood: Help from the CPUGDB Under the Hood: Help from the CPU

Everything GDB ... Single-stepping and Watchpoints

Single-stepping execute one CPU instruction

Watchpoint stop on memory-address reads and writes

it’s inefficient to implement in software
main CPUs only have 4 debug registers

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 7 / 29

AgendaAgenda

1 GDB Under the Hood
Help from the Compiler
Help from the OS
Help from the CPU
Internal algorithms

2 Programming GDB in Python
Python Interface Capabilities
Ex. 1: (re)discovering gdb-cli and gdb.py
Ex. 2: gdb simple scripting

3 New GDB Functionnalities
Section breakpoint
Return true breakpoint
Register watchpoint
Step into next call
Faking function execution

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 7 / 29

GDB Under the Hood: Internal algorithmsGDB Under the Hood: Internal algorithms

Callstack current frame saved on CPU registers (IP, FP, BP)
older frames computed with calling conventions
(⇔ where registers are stored)

Finish set a temporary breakpoint on the upper-frame PC
(+ exception handlers / setjumps)

Step get current line’s address boundaries in Dwarf info
single-step until out / in a new frame

Next same as step, but invoke finish in new frames

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 8 / 29

GDB Under the Hood: Internal algorithmsGDB Under the Hood: Internal algorithms

Callstack current frame saved on CPU registers (IP, FP, BP)
older frames computed with calling conventions
(⇔ where registers are stored)

Finish set a temporary breakpoint on the upper-frame PC
(+ exception handlers / setjumps)

Step get current line’s address boundaries in Dwarf info
single-step until out / in a new frame

Next same as step, but invoke finish in new frames

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 8 / 29

GDB Under the Hood: Internal algorithmsGDB Under the Hood: Internal algorithms

Callstack current frame saved on CPU registers (IP, FP, BP)
older frames computed with calling conventions
(⇔ where registers are stored)

Finish set a temporary breakpoint on the upper-frame PC
(+ exception handlers / setjumps)

Step get current line’s address boundaries in Dwarf info
single-step until out / in a new frame

Next same as step, but invoke finish in new frames

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 8 / 29

GDB Under the Hood: Internal algorithmsGDB Under the Hood: Internal algorithms

Callstack current frame saved on CPU registers (IP, FP, BP)
older frames computed with calling conventions
(⇔ where registers are stored)

Finish set a temporary breakpoint on the upper-frame PC
(+ exception handlers / setjumps)

Step get current line’s address boundaries in Dwarf info
single-step until out / in a new frame

Next same as step, but invoke finish in new frames

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 8 / 29

GDB Under the Hood: Internal algorithmsGDB Under the Hood: Internal algorithms

Callstack current frame saved on CPU registers (IP, FP, BP)
older frames computed with calling conventions
(⇔ where registers are stored)

Finish set a temporary breakpoint on the upper-frame PC
(+ exception handlers / setjumps)

Step get current line’s address boundaries in Dwarf info
single-step until out / in a new frame

Next same as step, but invoke finish in new frames

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 8 / 29

GDB Under the Hood: Internal algorithmsGDB Under the Hood: Internal algorithms

Catchpoint Kernel notification (via ptrace)

Watchpoint CPU notification to the kernel (trap)
Kernel notification to GDB (ptrace)

or
Instruction-by-instruction execution
Instruction parsing to figure out reads and writes

⇒ very slow!

Breakpoint it’s a bit more complicated ...

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 9 / 29

GDB Under the Hood: Internal algorithmsGDB Under the Hood: Internal algorithms

Catchpoint Kernel notification (via ptrace)

Watchpoint CPU notification to the kernel (trap)
Kernel notification to GDB (ptrace)

or
Instruction-by-instruction execution
Instruction parsing to figure out reads and writes

⇒ very slow!

Breakpoint it’s a bit more complicated ...

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 9 / 29

GDB Under the Hood: Internal algorithmsGDB Under the Hood: Internal algorithms

Catchpoint Kernel notification (via ptrace)

Watchpoint CPU notification to the kernel (trap)
Kernel notification to GDB (ptrace)

or
Instruction-by-instruction execution
Instruction parsing to figure out reads and writes

⇒ very slow!

Breakpoint it’s a bit more complicated ...

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 9 / 29

GDB Under the Hood: Internal algorithmsGDB Under the Hood: Internal algorithms

Catchpoint Kernel notification (via ptrace)

Watchpoint CPU notification to the kernel (trap)
Kernel notification to GDB (ptrace)

or
Instruction-by-instruction execution
Instruction parsing to figure out reads and writes

⇒ very slow!

Breakpoint it’s a bit more complicated ...

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 9 / 29

GDB Under the Hood: Internal algorithmsGDB Under the Hood: Internal algorithms

The algorithm behind breakpoints

original insn = *addr to breakpoint

*addr to breakpoint = <special instruction>
continue && wait(signal)

I SIGTRAP if ISA has a breakpoint instruction (0xcc in x86)
I SIGILL if illegal instruction

if PC /∈ set(bpts): deliver(signal); done;
otherwise: # breakpoint hit

I cancel(signal)
I stop if bpt.cli condition() || bpt.py.stop() || ...

I *addr to breakpoint = original insn
I cpu(single step)
I *addr to breakpoint = <special instruction>
I continue && wait(...)

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 9 / 29

GDB Under the Hood: Internal algorithmsGDB Under the Hood: Internal algorithms

The algorithm behind breakpoints

original insn = *addr to breakpoint

*addr to breakpoint = <special instruction>
continue && wait(signal)

I SIGTRAP if ISA has a breakpoint instruction (0xcc in x86)
I SIGILL if illegal instruction

if PC /∈ set(bpts): deliver(signal); done;
otherwise: # breakpoint hit

I cancel(signal)
I stop if bpt.cli condition() || bpt.py.stop() || ...

I *addr to breakpoint = original insn
I cpu(single step)
I *addr to breakpoint = <special instruction>
I continue && wait(...)

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 9 / 29

GDB Under the Hood: Internal algorithmsGDB Under the Hood: Internal algorithms

The algorithm behind breakpoints

original insn = *addr to breakpoint

*addr to breakpoint = <special instruction>
continue && wait(signal)

I SIGTRAP if ISA has a breakpoint instruction (0xcc in x86)
I SIGILL if illegal instruction

if PC /∈ set(bpts): deliver(signal); done;
otherwise: # breakpoint hit

I cancel(signal)
I stop if bpt.cli condition() || bpt.py.stop() || ...

I *addr to breakpoint = original insn
I cpu(single step)
I *addr to breakpoint = <special instruction>
I continue && wait(...)

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 9 / 29

GDB Under the Hood: Internal algorithmsGDB Under the Hood: Internal algorithms

The algorithm behind breakpoints

original insn = *addr to breakpoint

*addr to breakpoint = <special instruction>
continue && wait(signal)

I SIGTRAP if ISA has a breakpoint instruction (0xcc in x86)
I SIGILL if illegal instruction

if PC /∈ set(bpts): deliver(signal); done;
otherwise: # breakpoint hit

I cancel(signal)
I stop if bpt.cli condition() || bpt.py.stop() || ...

I *addr to breakpoint = original insn
I cpu(single step)
I *addr to breakpoint = <special instruction>
I continue && wait(...)

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 9 / 29

GDB Under the Hood: Internal algorithmsGDB Under the Hood: Internal algorithms

The algorithm behind breakpoints

original insn = *addr to breakpoint

*addr to breakpoint = <special instruction>
continue && wait(signal)

I SIGTRAP if ISA has a breakpoint instruction (0xcc in x86)
I SIGILL if illegal instruction

if PC /∈ set(bpts): deliver(signal); done;
otherwise: # breakpoint hit

I cancel(signal)
I stop if bpt.cli condition() || bpt.py.stop() || ...

I *addr to breakpoint = original insn
I cpu(single step)
I *addr to breakpoint = <special instruction>
I continue && wait(...)

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 9 / 29

AgendaAgenda

1 GDB Under the Hood
Help from the Compiler
Help from the OS
Help from the CPU
Internal algorithms

2 Programming GDB in Python
Python Interface Capabilities
Ex. 1: (re)discovering gdb-cli and gdb.py
Ex. 2: gdb simple scripting

3 New GDB Functionnalities
Section breakpoint
Return true breakpoint
Register watchpoint
Step into next call
Faking function execution

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 9 / 29

GDB Python interfaceGDB Python interface

Extending (not for today)

pretty-printers custom variable printing based on its type

frame decorators custom display of the callstack

frame unwinders tell GDB how your callstacks are structured

more to come, eventually:
I thread management and process abstractions

F bypass existing process access mechanisms
F access to embedded systems, virtual machines, core files ...
F already possible but in C !

Scripting (for today)

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 10 / 29

https://sourceware.org/gdb/current/onlinedocs/gdb/Pretty-Printing-API.html
https://sourceware.org/gdb/current/onlinedocs/gdb/Frame-Filter-API.html
https://sourceware.org/gdb/current/onlinedocs/gdb/Frame-Decorator-API.html
https://sourceware.org/gdb/current/onlinedocs/gdb/Unwinding-Frames-in-Python.html

GDB Python interfaceGDB Python interface

Extending (not for today)

Scripting (for today)

values and types manipulation

access the callstack and local variables, registers, ...

create new commands

action on breakpoints

action on events (exec. stop/cont/exit, library loading, ...)

...

for the rest: gdb.execute("command", to string=True)

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 10 / 29

https://sourceware.org/gdb/current/onlinedocs/gdb/Values-From-Inferior.html
https://sourceware.org/gdb/current/onlinedocs/gdb/Type-Printing-API.html
https://sourceware.org/gdb/current/onlinedocs/gdb/Basic-Python.html
https://sourceware.org/gdb/current/onlinedocs/gdb/Commands-In-Python.html
https://sourceware.org/gdb/current/onlinedocs/gdb/Breakpoints-In-Python.html
https://sourceware.org/gdb/current/onlinedocs/gdb/Events-In-Python.html
https://sourceware.org/gdb/current/onlinedocs/gdb/Python-API.html

GDB Python interfaceGDB Python interface

Extending (not for today)

Scripting (for today)

values and types manipulation

access the callstack and local variables, registers, ...

create new commands

action on breakpoints

action on events (exec. stop/cont/exit, library loading, ...)

...

for the rest: gdb.execute("command", to string=True)

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 10 / 29

https://sourceware.org/gdb/current/onlinedocs/gdb/Values-From-Inferior.html
https://sourceware.org/gdb/current/onlinedocs/gdb/Type-Printing-API.html
https://sourceware.org/gdb/current/onlinedocs/gdb/Basic-Python.html
https://sourceware.org/gdb/current/onlinedocs/gdb/Commands-In-Python.html
https://sourceware.org/gdb/current/onlinedocs/gdb/Breakpoints-In-Python.html
https://sourceware.org/gdb/current/onlinedocs/gdb/Events-In-Python.html
https://sourceware.org/gdb/current/onlinedocs/gdb/Python-API.html

Your turnYour turn

Interactive part!

https://github.com/kpouget/tuto-gdb.py
I kpouget/tuto-gdb.py/blob/master/home/exercices.md

docker run -it

I -v $HOME/gdb.py debug:/home/gdb.py/host

I -e GROUPID=$(id -g) -e USERID=$(id -u)

I --cap-add sys ptrace # or --priviledged

I pouget/gdb-tuto

edit in host@$HOME/gdb.py debug or docker@∼/host

consider adding this line in your $HOME/.gdbinit

I source $HOME/gdb.py debug/gdbinit

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 11 / 29

https://github.com/kpouget/tuto-gdb.py
kpouget/tuto-gdb.py/blob/master/home/exercices.md

Your turn! print, evaluate, access, ...Your turn! print, evaluate, access, ...

Exercise 1: (re)discovering gdb-cli and gdb.py

print a variable print i

(gdb) p context

$1 = {
cond = 0x400e40 < libc csu init>,

mutex = 0x4009b0 < start>,

holder = -128,

error = 32767

}
print its type ptype i

print it as another type print (unsigned int) i

print its address / target print &i; print *i

evaluate C expression i + 1; i & 0x4

evaluate functions f(i)

frame register access

gdb.newest_frame().older().read_reg("pc")

function call

ret = gdb.parse_and_eval("puts")("text") <gdb.Value()>

text

disassemble a specified section of memory disassemble main

in Python: gdb.execute("disa fct", to string=True) or

frm = gdb.selected_frame()

frm.architecture().disassemble(frm.read_register("pc"))

[{‘addr’: 4595344, ‘asm’: ‘sub $0x28,%rsp’, ‘length’: 4}]

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 12 / 29

Your turn! print, evaluate, access, ...Your turn! print, evaluate, access, ...

Exercise 1: (re)discovering gdb-cli and gdb.py

print a variable print i

print its type ptype i

(gdb) ptype context

type = volatile struct Context {
pthread cond t *cond;

thread mutex t *mutex;

char holder;

int error;

}
print it as another type print (unsigned int) i

print its address / target print &i; print *i

evaluate C expression i + 1; i & 0x4

evaluate functions f(i)

frame register access

gdb.newest_frame().older().read_reg("pc")

function call

ret = gdb.parse_and_eval("puts")("text") <gdb.Value()>

text

disassemble a specified section of memory disassemble main

(gdb) disassemble main

Dump of assembler code for function main:

0x00000400aa6 <+0>: push %rbp

0x00000400aa7 <+1>: mov %rsp,%rbp

0x00000400aaa <+4>: sub $0x30,%rsp

=> 0x00000400aae <+8>: mov $0x30,%edi

0x00000400ab3 <+13>: callq 0x400950 <malloc>

in Python: gdb.execute("disa fct", to string=True) or

frm = gdb.selected_frame()

frm.architecture().disassemble(frm.read_register("pc"))

[{‘addr’: 4595344, ‘asm’: ‘sub $0x28,%rsp’, ‘length’: 4}]

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 12 / 29

Your turn! print, evaluate, access, ...Your turn! print, evaluate, access, ...

Exercise 1: (re)discovering gdb-cli and gdb.py

print a variable print i

print its type ptype i

print it as another type print (unsigned int) i

(gdb) print (unsigned int) context.holder

$3 = 4294967168

print its address / target print &i; print *i

evaluate C expression i + 1; i & 0x4

evaluate functions f(i)

frame register access

gdb.newest_frame().older().read_reg("pc")

function call

ret = gdb.parse_and_eval("puts")("text") <gdb.Value()>

text

disassemble a specified section of memory disassemble main

(gdb) disassemble main

Dump of assembler code for function main:

0x00000400aa6 <+0>: push %rbp

0x00000400aa7 <+1>: mov %rsp,%rbp

0x00000400aaa <+4>: sub $0x30,%rsp

=> 0x00000400aae <+8>: mov $0x30,%edi

0x00000400ab3 <+13>: callq 0x400950 <malloc>

in Python: gdb.execute("disa fct", to string=True) or

frm = gdb.selected_frame()

frm.architecture().disassemble(frm.read_register("pc"))

[{‘addr’: 4595344, ‘asm’: ‘sub $0x28,%rsp’, ‘length’: 4}]

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 12 / 29

Your turn! print, evaluate, access, ...Your turn! print, evaluate, access, ...

Exercise 1: (re)discovering gdb-cli and gdb.py

print a variable print i

print its type ptype i

print it as another type print (unsigned int) i

print its address / target print &i; print *i

(gdb) p &context.mutex

$5 = (pthread mutex t **) 0x7fffffffe588

(gdb) p *context.mutex

$6 = {
data = {
lock = -1991643855,

...

}
}

evaluate C expression i + 1; i & 0x4

evaluate functions f(i)

frame register access

gdb.newest_frame().older().read_reg("pc")

function call

ret = gdb.parse_and_eval("puts")("text") <gdb.Value()>

text

disassemble a specified section of memory disassemble main

in Python: gdb.execute("disa fct", to string=True) or

frm = gdb.selected_frame()

frm.architecture().disassemble(frm.read_register("pc"))

[{‘addr’: 4595344, ‘asm’: ‘sub $0x28,%rsp’, ‘length’: 4}]

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 12 / 29

Your turn! print, evaluate, access, ...Your turn! print, evaluate, access, ...

Exercise 1: (re)discovering gdb-cli and gdb.py

print a variable print i

print its type ptype i

print it as another type print (unsigned int) i

print its address / target print &i; print *i

access to variables

i = gdb.parse and eval("i") <gdb.Value(int)>

i.type <gdb.Type(int)>

uint = gdb.lookup_type("unsigned int") <gdb.Type(uint)>

i.cast(uint) <gdb.Value(uint)>

gdb.newest_frame().read_var("i")

evaluate C expression i + 1; i & 0x4

evaluate functions f(i)

frame register access

gdb.newest_frame().older().read_reg("pc")

function call

ret = gdb.parse_and_eval("puts")("text") <gdb.Value()>

text

disassemble a specified section of memory disassemble main

in Python: gdb.execute("disa fct", to string=True) or

frm = gdb.selected_frame()

frm.architecture().disassemble(frm.read_register("pc"))

[{‘addr’: 4595344, ‘asm’: ‘sub $0x28,%rsp’, ‘length’: 4}]

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 12 / 29

Your turn! print, evaluate, access, ...Your turn! print, evaluate, access, ...

Exercise 1: (re)discovering gdb-cli and gdb.py

print a variable print i

print its type ptype i

print it as another type print (unsigned int) i

print its address / target print &i; print *i

evaluate C expression i + 1; i & 0x4

evaluate functions f(i)

frame register access

gdb.newest_frame().older().read_reg("pc")

function call

ret = gdb.parse_and_eval("puts")("text") <gdb.Value()>

text

disassemble a specified section of memory disassemble main

in Python: gdb.execute("disa fct", to string=True) or

frm = gdb.selected_frame()

frm.architecture().disassemble(frm.read_register("pc"))

[{‘addr’: 4595344, ‘asm’: ‘sub $0x28,%rsp’, ‘length’: 4}]

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 12 / 29

Your turn! print, evaluate, access, ...Your turn! print, evaluate, access, ...

Exercise 1: (re)discovering gdb-cli and gdb.py

print a variable print i

print its type ptype i

print it as another type print (unsigned int) i

print its address / target print &i; print *i

evaluate C expression i + 1; i & 0x4

evaluate functions f(i)

(gdb) p puts("creating first thread") # print or call

creating first thread

$10 = 23

frame register access

gdb.newest_frame().older().read_reg("pc")

function call

ret = gdb.parse_and_eval("puts")("text") <gdb.Value()>

text

disassemble a specified section of memory disassemble main

in Python: gdb.execute("disa fct", to string=True) or

frm = gdb.selected_frame()

frm.architecture().disassemble(frm.read_register("pc"))

[{‘addr’: 4595344, ‘asm’: ‘sub $0x28,%rsp’, ‘length’: 4}]

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 12 / 29

Your turn! print, evaluate, access, ...Your turn! print, evaluate, access, ...

frame register access

gdb.newest_frame().older().read_reg("pc")

function call

ret = gdb.parse_and_eval("puts")("text") <gdb.Value()>

text

disassemble a specified section of memory disassemble main

in Python: gdb.execute("disa fct", to string=True) or

frm = gdb.selected_frame()

frm.architecture().disassemble(frm.read_register("pc"))

[{‘addr’: 4595344, ‘asm’: ‘sub $0x28,%rsp’, ‘length’: 4}]

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 12 / 29

Your turn! print, evaluate, access, ...Your turn! print, evaluate, access, ...

Exercise 1: (re)discovering gdb-cli and gdb.py

Time to work!

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 13 / 29

Your turn! commands, breakpoints and eventsYour turn! commands, breakpoints and events

Exercise 2: Hooking into gdb.py

Defining new commands

CLI

define cmd

...

...

end

Python

class MyCommand(gdb.Command):

def __init__(self):

gdb.Command.__init__(self, "cmd", gdb.COM)

def invoke (self, args, from_tty):

...

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 14 / 29

Your turn! commands, breakpoints and eventsYour turn! commands, breakpoints and events

Exercise 2: Hooking into gdb.py

Defining new commands

CLI

define cmd

...

...

end

Python

class MyCommand(gdb.Command):

def __init__(self):

gdb.Command.__init__(self, "cmd", gdb.COM)

def invoke (self, args, from_tty):

...

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 14 / 29

Your turn! commands, breakpoints and eventsYour turn! commands, breakpoints and events

Exercise 2: Hooking into gdb.py

Conditional breakpoints break <loc> if f(i) == &j
I internally, the breakpoint is hit all the time
I but GDB only notifies the user if the condition is met

CLI

break fct

command
silent

print i

cont

end

Python

class MyBreakpoint(gdb.Breakpoint):

def init (self):

gdb.Breakpoint.__init__(self, "fct",

internal=True)

self.silent = True

def stop(self):

print(gdb.parse and eval("i"))

return True or False

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 14 / 29

Your turn! commands, breakpoints and eventsYour turn! commands, breakpoints and events

Exercise 2: Hooking into gdb.py

Conditional breakpoints break <loc> if f(i) == &j
I internally, the breakpoint is hit all the time
I but GDB only notifies the user if the condition is met

CLI

break fct

command
silent

print i

cont

end

Python

class MyBreakpoint(gdb.Breakpoint):

def init (self):

gdb.Breakpoint.__init__(self, "fct",

internal=True)

self.silent = True

def stop(self):

print(gdb.parse and eval("i"))

return True or False

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 14 / 29

Your turn! commands, breakpoints and eventsYour turn! commands, breakpoints and events

Executing code on events

def say_hello(evt): print("hello")

gdb.events.stop.connect(say_hello) # then disconnect

gdb.events.cont

gdb.events.exited

gdb.events.new objfile # shared library loads, mainly

gdb.events.clear objfiles

gdb.events.inferior call pre/post

gdb.events.memory/register changed # user-made changes

gdb.events.breakpoint created/modified/deleted

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 15 / 29

Your turn! commands, breakpoints and eventsYour turn! commands, breakpoints and events

Exercise 2: Hooking into gdb.py

Time to work!

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 16 / 29

AgendaAgenda

1 GDB Under the Hood
Help from the Compiler
Help from the OS
Help from the CPU
Internal algorithms

2 Programming GDB in Python
Python Interface Capabilities
Ex. 1: (re)discovering gdb-cli and gdb.py
Ex. 2: gdb simple scripting

3 New GDB Functionnalities
Section breakpoint
Return true breakpoint
Register watchpoint
Step into next call
Faking function execution

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 16 / 29

Your turn, part 2!Your turn, part 2!

Adding new functionalities to GDB

1 Section breakpoint
I break section start profiling stop profiling run

2 Break when returned true
I break return run 1

3 Register watchpoint
I reg watch eax main void *

4 Step-to-next-call
I step-before-next-call

I step-to-next-call

5 Faking function execution
I skip function run

I fake run function

https://sourceware.org/gdb/current/onlinedocs/gdb/Python-API.html
Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 17 / 29

https://sourceware.org/gdb/current/onlinedocs/gdb/Python-API.html

Your turn: build itYour turn: build it

make all; make help

make run {section|return|watch|step|fake} DEMO={y|n}
I DEMO=y to run my code, DEMO=n for yours (default)

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 18 / 29

Your turn: section.c (1/2)Your turn: section.c (1/2)

int main() {
int i;

srand(time(NULL));

int bad = rand() % NB ITER;

for(i = 0; i < NB ITER; i++) {
if (i != bad) start profiling();

run(i); # calls bugs(i) if not profiling

if (i != bad) stop profiling();

}
}

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 18 / 29

Your turn: section.c (2/2)Your turn: section.c (2/2)

void start profiling(void) {
assert(!is_profiling);

is_profiling = 1;

}
void stop profiling(void) {
assert(is_profiling);

is_profiling = 0;

}
int run(int i) {
if (!is_profiling) bug(i);

return is_profiling;

}

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 18 / 29

Section breakpointSection breakpoint

Context
We want to profile the function run() .

I profiling starts with function start profiling()

I and stops with function stop profiling() .

Problem

run() is sometimes called outside of the profiling region.

⇒ we want to stop the debugger there.

(gdb) break section start profiling stop profiling run

Section bpt set on start_profiling/run/stop_profiling

(gdb) run

Section breakpoint hit outside of section

15 if (!is_profiling) bug(i);
Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 19 / 29

Section breakpointSection breakpoint

Idea:

breakpoint on start profiling() that sets a flag,

breakpoint on stop profiling() that unsets a flag,

breakpoint on run() that checks the flag

Better:

start() / stop() breakpoints enable/disable the bpt on run()

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 20 / 29

Return true breakpointReturn true breakpoint

Context

I want to stop the execution whenever function run() has
returned true .

Problem (kind of :)

Function run() has many return statements

I don’t want to breakpoint all of them.

(gdb) break return run 1

(gdb) run

Stopped after finding ‘run’ return value = 1 in $rax.

#0 0x00000000004006f7 in main () at section.c:36

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 21 / 29

Return true breakpointReturn true breakpoint

(gdb) break return <fct> <expected value>

Idea:
BreakReturn cmd.invoke

I parse and cast the expected value:
gdb.parse and eval(<expected value>)

I Function breakpoint on target function:
FunctionReturnBreakpoint(<fct>, <expected value>)

FunctionReturnBreakpoint.prepare before()

I before the function call: nothing to do

FunctionReturnBreakpoint.prepare after()

I after the call: read register eax

my gdb.my archi.return value(<expected value>.type)

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 22 / 29

Register watchpointRegister watchpoint

Context

Inside a function, we want to see all the accesses to a register.

Problem

GDB only supports memory watchpoints

(gdb) reg_watch eax main void *

20 watchpoints added in function main

(gdb) cont

before: (void *) 0xffffffffffffd256

0x00000000004006a4 <+18>: mov %eax,%edi

after: <unchanged>

(gdb) cont

before: (void *) 0xffffffffffffd256

0x00000000004006be <+44>: mov %ecx,%eax

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 23 / 29

Register watchpointRegister watchpoint

(gdb) reg watch <reg name> <fct> [<fmt>]

Idea:

ensure that target function exists

if not gdb.lookup symbol(fct)[0]:...

I may through a gdb.error if there is no frame selected

examine the function binary instructions

I gdb.execute("disassemble {fct}", to string=True)

for all of them,
I check if <reg name> appears

I if yes, breakpoint it’s address (*addr)

...

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 24 / 29

Register watchpointRegister watchpoint

(gdb) reg watch <reg name> <fct> [<fmt>]

Idea:

on breakpoint hit:
I read and print the current value of the register

gdb.parse and eval("({fmt}) ${regname}")
I print the line to be executed (from disassembly)
I in my gdb.before prompt:

F execute instruction (nexti)
F re-read the register value
F print it if different

I mandatory stop here
(GDB cannot nexti from a Breakpoint.stop callback)

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 24 / 29

Step into next callStep into next call

Context

I want to step into the next function call, even if far away.
I stop right before step-before-next-call

I stop right after step-into-next-call

(gdb) step-before-next-call

step-before-next-call: next instruction is a call.

0x4006ed: callq 0x40062f <start_profiling>

(gdb) step-into-next-call

Stepped into function start profiling

#0 start_profiling () at section.c:21

21 assert(!is_profiling);

#1 0x00000000004006f2 in main () at section.c:37

37 if (i != bad) start_profiling();

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 25 / 29

Step into next callStep into next call

Idea:
step-before-next-call:

I run instruction by instruction
gdb.execute("stepi")

I until the current instruction contains a call
gdb.selected frame().read register("pc")

arch = gdb.selected frame().architecture()

"call" in arch.disassemble(current pc)[0]["asm"]

step-into-next-call:
I run step by step: gdb.execute("stepi")

I stop when the stack depth increases
def callstack depth():

depth = 1; frame = gdb.newest frame()

while frame: frame = frame.older(); depth += 1

return depth
Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 26 / 29

Faking function executionFaking function execution

Context

I don’t want function run() code to execute,

Instead I want to control its side effects from the debugger.

(gdb) run

BUG BUG BUG (i=<random>)

(gdb) skip_function run; run

[nothing]

(gdb) fake_run_function # calls bug(i) if not i % 10

BUG BUG BUG (i=0)

BUG BUG BUG (i=10)

BUG BUG BUG (i=20)...
Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 27 / 29

Faking function executionFaking function execution

Idea:

skip function <fct>:
I Breakpoint on <fct> , then call return:

gdb.execute("return")

fake run function:
I as above, but run code before return:

i = int(gdb.newest frame().read var("i"))

if not i % 10: gdb.execute("call bug({})".format(i))

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 28 / 29

Understanding, Scripting and Extending GDB

Kevin Pouget
Jean-François Méhaut, Fabrice Rastello

Université Grenoble Alpes / LIG, INRIA, CEA

Séminaire Corse, Aussois, France
4 janvier 2017

Kevin Pouget Understanding/Scripting/Extending GDB Séminaire Corse 29 / 29

	GDB Under the Hood
	Programming GDB in Python
	New GDB Functionnalities

