Reachable Coverage: Estimating Saturation in Fuzzing

Danushka Liyanage’ Marcel Bohme!

"Monash University, Australia

Abstract—Reachable coverage is the number of code elements
in the search space of a fuzzer (i.e., an automatic software testing
tool). A fuzzer cannot find bugs in code that is unreachable.
Hence, reachable coverage quantifies fuzzer effectiveness. Using
static program analysis, we can compute an upper bound on
the number of reachable coverage elements, e.g., by extracting
the call graph. However, we cannot decide whether a coverage
element is reachable in general. If we could precisely determine
reachable coverage efficiently, we would have solved the software
verification problem. Unfortunately, we cannot approach a given
degree of accuracy for the static approximation, either.

In this paper, we advocate a statistical perspective on the
approximation of the number of elements in the fuzzer’s search
space, where accuracy does improve as a function of the analysis
runtime. In applied statistics, corresponding estimators have been
developed and well established for more than a quarter century.
These estimators hold an exciting promise to finally tackle the
long-standing challenge of counting reachability. In this paper,
we explore the utility of these estimators in the context of
fuzzing. Estimates of reachable coverage can be used to measure
(a) the amount of untested code, (b) the effectiveness of the
testing technique, and (c) the completeness of the ongoing fuzzing
campaign (w.r.t. the asymptotic max. achievable coverage). We
make all data and our analysis publicly available.

I. INTRODUCTION

Fuzzing has become one of the most successful automatic
bug finding techniques in practice. For instance, in the five
years since its launch, OSS-Fuzz alone has found about 41,000
bugs in over 650 open source projects—only by fuzzing [35].
Ever since, many new fuzzers have been released, some more
effective than others.

What does it mean for a fuzzer to be effective? Given a
program, we consider a fuzzer which has the capability of
exposing more bugs as more effective. Since bugs are scarce,
we measure the amount of “reachable code”. A fuzzer cannot
find bugs in unreachable code. Such bugs are outside of the
fuzzer’s search space. With “fuzzer” we mean the automatic
testing tool that generates the test inputs, the fest harness that
passes the test inputs to the program, and the initial corpus of
seed inputs (if one is used). The effectiveness of a fuzzer can
be increased by improving the test harnesses, by changing the
seed corpus, or by using a different testing tool.

Evaluating fuzzer effectiveness is important. Together with
the fuzzing research community, Google has been developing
a fuzzer benchmarking platform, called Fuzzbench [45], to
identify the most effective fuzzer for each program and across
all programs in one of the largest benchmarks. The most
effective fuzzers are given higher priority when run within
the ClusterFuzz project. To measure the fuzzer effectiveness,
Fuzzbench follows the standard recommendations from the
fuzzing community [42], S]], [13]] and measures the coverage
achieved (and #bugs found) within a given time budget.

Chakkrit Tantithamthavorn®
fMPI-SP, Germany

Stephan Lipp*
*TU Munich, Germany

However, the number of covered elements S(n) in a fixed-
length fuzzing campaign is not a reliable indicator of fuzzing
effectiveness. Firstly, the chosen time budget is an arbitrary
convention. For instance, in the fuzzing literature, a typical
recommendation is to run the fuzzer for one day [42], [45]. In
the search-based testing literature, time budgets vary between
3 and 15 minutes [4], [32]]. Secondly, for all practical purposes
S(n) does not even seem to asymptotically approach S as the
number of generated test inputs n increases. We checked the
coverage achieved by 11 fuzzers run 20 times on 32 programs
for 7 days and have been unable to identify the asymptotic,
maximum achievable coverage in log-scale time for all but one
program (cf. [Section IT-A). In fact, Bhme et al. [13]] observed
that there is only a moderate agreement between benchmarking
results given a 1-hour versus a 23-hour time budget. The best
fuzzer after one hour might be the worst fuzzer after one
day. So then, what is a reasonable time budget? Fortunately,
the total number of reachable coverage elements S—as our
measure of fuzzing effectiveness—is not parametric in n.

Given a fuzzer, reachable coverage S measures the amount
of code that the fuzzer has the capability of reaching, i.e., the
maximum achievable coverage. Conversely, reachable cover-
age also measures the amount of currently untestable code.
Some code might only be testable when the test harness is
improved or better seeds are provided. Fuzzer effectiveness is
maximized when the amount of untestable code is minimized.
In an ongoing campaign of length n, the currently achieved
coverage S(n) provides a trivial lower bound on the reachable
coverage. The proportion S(n)/S of reachable coverage cur-
rently achieved provides a measure of progress of the ongoing
fuzzing campaign towards completion (i.e., when to stop).

Using static program analysis, we can upper-bound the
number of reachable coverage elements. For instance, OSS-
Fuzz uses a static analyzer called Fuzz-Introspector [16] which
analyzes the call graph to approximate reachable coverage and
assess the quality of the fuzzer integration into any of the 650
enrolled projects. However, static analysis suffers from over-
and undercounting which cannot be remedied
by a longer running time. In fact, we cannot decide whether
there exists an input that executes a given coverage element in
general. If we could precisely determine reachable coverage
efficiently, we would be proving the absence of errors not their
presence. To see this, let us encode the verification problem
as a reachability problem. We let each assert () -statement
be transformed into 1 f (—p) assert (false). We would
prove that the program is correct w.r.t. these assertions if none
of these assert (false)-statements is reachable. So how
can we efficiently approximate the effectiveness of a fuzzer to
a given degree of accuracy?

Fig. 1: We can model the estimation of reachable coverage as
an estimation of the number of colors in an urn full of colored
balls (Illustration by Quartl; CC-BY-SA 3.0).

In this paper, we propose a statistical approach for the
approximation of fuzzer effectiveness which may allow us
to tackle the undecidability challenge of the reachability
problem empirically by increasing the analysis runtime until
achieving a required degree of accuracy. This approach is
inspired by Bohme [8] who proposed applying techniques
from biostatistics such as estimators and extrapolators to assess
fuzzing. Prior work has successfully used and extended this
link between fuzzing and biostatistics to assess other aspects
in fuzzing such as efficiency [7] scalability [9], behavioral
diversity [49] and residual risk [10]. Here, we use STADS to
study the fuzzer’s effectiveness.

As illustrated in given an urn with colored balls
from which n balls are sampled with replacement and S(n)
colors are observed, how many colors S are in this urn?
Variants of this question appear in many disciplines, such that
applied statisticians have developed a number of estimators
over the past thirty years [22], [24], [48]. In the following,
we explore—in the context of fuzzing—the utility of the most
widely used estimators to quantify the asymptotic total number
of coverage elements in a fuzzer’s search space.

We empirically evaluate the accuracy of the approxima-
tions of reachable coverage produced by seven state-of-the-
art estimators [19], [211], [27], [43], [37], [15] and two static
analysis tools [51], [L6] in a context where the ground-truth
reachable coverage is known and in a context where it is not
known. For static analysis tools, we find that they over- and
under-count reachable coverage. The static approximation is
inaccurate, but it is difficult to know exactly how inaccurate
the approximation is or how to improve its accuracy. For the
statistical method, we find that the Jackknife estimators [15]]
exhibit the smallest magnitude in bias and variance compared
to the other estimators. All estimators are asymptotically con-
sistent, meaning that their accuracy improves with campaign
length. However, in the context where the reachable coverage
is empirically unknown, we find that all estimators predict
false peaks: More coverage can be achieved upon reaching
the predicted reachable coverage.

In summary, our paper makes the following contributions:

o An empirical investigation of the size of a fuzzer’s search
space. Particularly, we study the asymptotic behavior of the
coverage achieved over time S(n) as n grows large (7 days).
For 31 out of 32 programs, we are unable to identify the
asymptote S in log-scale time which motivates our work on
better estimates of reachable coverage S.

IEfficiency is the rate at which new elements are reached.

o An in-depth discussion of over- and under-counting in static
analysis designed to provide an upper bound on reachable
coverage S (state-of-the-art used in OSS-Fuzz [16], [3]).

« A survey and empirical evaluation of statistical estimators of
reachable coverage S which have been developed in applied
statistics and widely used in other disciplines. We find that
existing estimators under-estimate fuzzer effectiveness and
motivate the development of novel estimators specifically
for the domain of fuzzing.

II. CHALLENGES OF EXISTING APPROXIMATIONS OF S

Reachable coverage quantifies the number of elements in
the fuzzer’s search space and thus a fuzzer’s effectiveness. In
the following, we shed some light on the challenges of existing
approximations of reachable coverage. Firstly, we attempt
to determine the total number of coverage elements in the
fuzzer’s search space by observing the asymptotic behavior of
the coverage achieved S(n) as n grows very large. Secondly,
we discuss the challenges of over- and undercounting in static
call graph reachability analysis, as it is used at OSS-Fuzz [16]]
to analyze fuzzer effectiveness on more than 300 OSS projects.

A. Coverage Achieved: No Indication of an Asymptote

Setup. How often can we observe the asymptotic, maximum
achievable coverage in a week-long fuzzing campaign? Cover-
age achieved within a given time budget is the standard eval-
uation of automatic testing effectiveness [3], [42]], [13], [45].
But is it really indicative of the maximum achievable (i.e.,
reachable) coverage? We plot coverage achieved over time
for all week-long fuzzing campaigns in Fuzzbench [45] that
were not terminated prematurelyE] Together they involve 32
widely-used open-source programs, 11 fuzzers (incl. AFL++),
and more than one CPU-century worth of fuzzing campaigns.
The experiments were run in default configuration using fuzz
harnesses, initial seeds, and dictionaries provided by the open-
source community. Fuzzbench records coverage information in
fifteen-minute intervals using the coverage-increasing inputs
that are being added to the current seed corpus.

Results. shows the coverage achieved on a log-
scale for time. Apart from one program (jsoncpp) there is
no evidence that the fuzzer reaches an asymptote for any of
these 32 programs. For 22 programs, the coverage achieved
over time comes out as a straight line in log-time while for
the remaining seven (7) programs, the straight line is clearly
identifiable after the first hour. We should point out that every
tick on the y-axis increases the length of the fuzzing campaign
by a factor of 10x. The next tick at the 1000-hour-mark would
require 30 repetitions of 1.5-month-long fuzzing campaigns.

The linear shape in log-scale time might be explained by
Bohme’s empirical law which hypothesizes an exponential
cost for fuzzing [9]. However, the absence of a discernible
asymptote in log-scale time comes as a surprise—given that
there always seems to be an asymptote in linear-scale timeE]

2The Experiment IDs are 2021-04-11-7d-paper, 2021-04-23-7d-paper,
2021-07-10-redo-7d, and 2021-08-19-crash-s-7d.

3We confirmed the absence of an asymptote for Fuzztastic ll too,
where we measure basic block coverage over time in week-long campaigns.

https://de.wikipedia.org/wiki/Urnenmodell#/media/Datei:Urn_problem_qtl1.svg

arrow bloaty curl
5250 8500 17700

5000 - 17400+
4750 17100+
4500 - 16800 -

freetype2

24000
23000
22000
21000
20000
19000

8000
7500

i
i
i
N

7000

harfbuzz jsoncpp lems libarchive

9000
8000

8600 639.15

8500 -
8400 -
8300 -
8200 -
8100

3000 -
2750
2500 -
2250
2000

libpcap 1850 libpng

1850
1840
1830+
1820 4

639.10

639.05 7000

N
e
N
X

639.00 6000

libjpeg-turbo libxml2

11000
3700

3600 -
3500 -
3400

2500 10000

2000 9000

il
X
il
B

8000

libxslt matio mbedtls ndpi
18500 9000 -

2600 5000
» 18000 2500 8700+ 4000
g 2400 8400 - 3000
8 17500 2300 8100 - 2000
IS 2200
=3}
8 njs openh264 openss| openthread
1] 5800

7500

é 14100 13760+ 5700
#7000 13900 5600

13740+ 5500

5400
13720 5300

php poppler pdf proj4
39000 4500 -

38000 4000
37000 35001

36000 30001
2500+

6500 - 13700

N
i
iy
il

proj4_2

43400 - 6000

43000 - 5500

42600 - 5000

N
X
i
N

re2 sqlite systemd tpm2

6000
5500
5000
4500
4000

3540

3520
3500 -
3480

638 -
637+
6367
635+
634+
6334

32500
30000
27500
25000
22500

vorbis wireshark woff2 2zlib

N
i
i
N

2160
2140+
2120+

450000
420000
390000

1840+ 965

1800 -

960

2100 - 1760+

I
N
N\
B

' ; T 955
10 100 10 10
Time in hours (log-scale)

N

10 10

S
N
N
S
i

10 100

S}

Fig. 2: No discernible asymptote when plotting the average
number of branches covered over time in 30x 7-day campaigns
on the log-time scale (116.9 CPU years).

In practice, we cannot precisely determine the reachable
coverage S of a fuzzer by observing the achieved coverage
S(n) in a very long fuzzing campaign (as n gets larger).

This result motivates the invention and study of better esti-
mators of reachable coverage to measure fuzzing effectiveness.

B. Static Call Graph Reachability: Inaccurate Approximation

Setup. How well does static analysis approximate reachable
coverage? In OSS-Fuzz [3]], the quality of the fuzzer integra-
tion into each of the 650+ OSS projects is evaluated using
reachable coverage. The compliment, unreachable code identi-
fies untestable code, beyond the currently untested, uncovered
code. Specifically, OSS-Fuzz uses the Fuzz-Introspector (FI)
static analysis tool to compute the number of reachable and the
number of covered functions [[16]]. FI implements an LLVM
link time optimization (LTO) pass to extract the program’s
entire call graph when the C project is built. During link time,
all code is available and can be analyzed. FI uses several
state-of-the-art heuristics to improve the completeness of the

100% -

80% -

60% -

40% -

20% -
2-

¢ 0%-

IoglO(#ReachabIe)lf log10(#Covered) #[Reachable and not Icovered] / #Reachable

Fig. 3: Under-counting and over-counting in Fuzz-Introspector
static analyzer of reachable coverage in OSS-Fuzz [16], [3].

extracted call graph. FI finds reachable functions (i) by finding
destinations of normal function calls, (ii) by finding destina-
tions of register-indirect calls in the vtable (dynamic dispatch
via virtual method table), and (iii) by finding assignments of
function pointers to variables or function call parametersﬁ
[Figure 3|illustrates under- and over-counting of the FI static
analysis. We extracted the number of functions reported as
reachable (#reachable) and the number of functions that were
covered (#covered) from the FI reports generated of all 354
open source programs that were analyzed on 15 August 2022E|
To mitigate threats to validity, we removed 202 programs with
multiple fuzz harnesses (which were not properly handled in
FI, yet) and 14 programs where no function was reported as
covered (due to a bug in the coverage instrumentation), leaving
us with the current FI reports for 138 programs.
Under-counting. [Figure 3]left shows the difference in the
logarithm of the number of functions considered reachable
versus actually covered. We use a log-transformation because
there are many programs with a few functions but a few pro-
grams with many functions (showing a long-tail distribution).

For the majority of projects (i.e., on the median), there are
more functions covered than considered reachable.

Over-counting. right shows the proportion of reach-
able functions not covered. For the majority of projects about
30+% of the reachable functions are not covered, suggesting
a large potential to improve the function coverage. However,
if we compare the number of functions covered today with
those covered five months prior, coverage does not increase
for 72% of projects, despite continuous fuzzing. The corpus
is saturated. For the remaining 28% of programs, the median
coverage increase is just over 2%. Given these numbers,
the 30+% of uncovered but reachable functions that FI
predicts seems unrealistic. Unfortunately, there is no way to
“non-technically” improve the accuracy of this approximation.
Generally, the question of whether there exists an input that

4https,://gilhub.(:om/ossf/fuzz—inlrospeclor/blob/main/frontends/]lvm/lib/Transforms/
FuzzIntrospector/Fuzzlntrospector.cpp#L812-L850

“List of analyzed projects: hupsoss-fuzz-i is.com. Project-specific FI
reports: |hups:/storage.googleapis.com/oss- fuzz- introspector/[project|/inspector- report/20220816/fuzz_report.html

.storage.

https://github.com/ossf/fuzz-introspector/blob/main/frontends/llvm/lib/Transforms/FuzzIntrospector/FuzzIntrospector.cpp#L812-L850
https://github.com/ossf/fuzz-introspector/blob/main/frontends/llvm/lib/Transforms/FuzzIntrospector/FuzzIntrospector.cpp#L812-L850
https://oss-fuzz-introspector.storage.googleapis.com
https://storage.googleapis.com/oss-fuzz-introspector/[project]/inspector-report/20220816/fuzz_report.html

reaches a function is undecidable. As mentioned earlier, if a
practical decision procedure existed, we could consider the
software verification problem as solved.

For the majority of projects, the predicted number of reach-
able but uncovered functions seems unrealistic.

III. ESTIMATION OF REACHABLE COVERAGE AS
MEASURE OF FUZZER EFFECTIVENESS

We wish to measure reachable coverage as the number of
coverage elements in the fuzzer’s search space (i.e., #elements
that the fuzzer has the capability of covering). This measure of
fuzzer effectiveness does not depend on the generated number
n of test inputs. Instead of computing reachable coverage
statically before running a fuzzing campaign, we propose
to estimate it dynamically during the campaign. In contrast
to static analysis, the estimation allows us to approximate
reachable coverage to a given degree of accuracy. The hope is
to overcome the undecidability challenge of the reachability
problem that afflicts any static reachability analysis.

Using statistical estimation to approximate the effectiveness
of a fuzzer seems particularly promising given the previous
results of estimating (i) the efficiency of a fuzzer [L1], (ii) the
residual risk of an ongoing campaign [10], and (iii) the
diversity of the generated inputs [49].

A. Statistical Model

The simple urn model illustrated in [Figure T|can be extended
by allowing each ball to have multiple colors. In the following,
we recall the standard definitions from the Bernoulli Product
model of the STADS statistical framework [8]. The Bernoulli
Product model associates each input (i.e., ball) with the
exercised coverage elements (i.e., colors or “species”).

Terminology. Let P be the program we wish to fuzz and D
the set of all inputs that P can exercise. A fuzzing campaign
is a stochastic process

F={X,| X, D},

where N input are sampled with replacement from D. Sup-
pose, we can divide the search space D into S individual
subdomains {D;};_, called coverage elements (or species).
An input X,, € F is said to newly cover element D; if
X,, € D; and there does not exist a previously sampled input
X, € F such that m < n and X,,, € D; (i.e., D; is covered
for the first time). In this paper, we are interested in estimating
the total number of coverage elements S that the fuzzer can
cover. We let {p; }5_, be the probability that a fuzzer-generated
input X,, € D; where ¢ : 1 <14 < .S. We call F as the fuzzing
campaign of a non-deterministic blackbox fuzzer.

Bernoulli Product model. If we define branches as our
coverage elements of interest, then the coverage of the new
element corresponds to an increase in branch coverage. In the
Bernoulli product model [8], [24], an input can cover one or
more elements. Specifically, for a fuzzing campaign of length
N, we let the incidence matrix Wgy v be defined as

WSXN:{Wij | i:1,2,...,S/\j:1,2,...,N}

where W;; = 1 if input X; covers D; and W;; = 0 otherwise.
We further define the incidence frequency counts fi, where
0 < k < N, as the number of elements covered by exactly
k generated inputs. It is assumed that each element W;; is
a Bernoulli random variable with probability p; [24]], such
that the probability distribution for the incidence matrix can
be expressed as the probability for all 7 : 1 < i < S and
j:1 <1< N that we have W;; = w;;.

N S
P (V(’L,])Ww = wU) — H szﬂu(l 7pi)17wij (1)

j=1li=1

The marginal for Y; follows a binomial distribution character-
ized by campaign length N and coverage probability p;,

s
P(ViY; =y;) = [[ol (1 —p)N ¥)
i=1
Hence, the incidence frequency counts can be derived as
s S /n
IY; =k)| = Fl-p)" " @3
> >] > (3)a-mr o

i=1
Specifically, S(n) = S— fo(n) where fo(n) = Zle(l—pi)".

B. Estimators

fr(n) =E

The class of estimators that have been developed to estimate
the total number of colors in an urn full of colored balls
(cf. and those for the Bernoulli Product model
is called species richness estimators. shows seven
(7) state-of-the-art 39, [14], [50] species richness estimators
defined for the Bernoulli Product model [8]. All listed species
richness estimators are non-parametric. This means, they can
be used for any type of coverage criterion (statement, branch,
MCDC, mutation coverage, etc.), for any fuzzer, and for any
program irrespective of the underlying distribution {p;}s_;.
We do not consider parametric estimators that assume specific
distributions [29]. All estimators shown in are also
made available via the Spade R package which implements
the state-of-the-art in species richness estimation [[17]].

Chao-type estimators. In 1984, Anne Chao suggested that
it is unreasonable to provide a point estimate of the total
number of species S = S(n) + fo(n). In applied statistics,
the sample coverage C(n) is a property of a sample that
quantifies the probability that the next sampled individual
(n 4+ 1) belongs to a species that is already present in the
sample. Chao’s position is that the complement of the sample
coverage (i.e., the discovery probability 1 — C'(n) [10]) is
always non-zero, and that we can always add arbitrarily
many species fy into this “missing” probability mass. Instead,
Chao proposed an estimator of a lower bound on S [18]],
which for the Bernoulli Product model is called the Chao2
estimator. It can be theoretically shown that Chao2 performs
best for the uniform distribution where species are equally
likely. In addition to Chao2, we also evaluate a bias-corrected
variant which tackles systematic bias (Chao2-bc [21]) plus an
improved variant which also uses f3 and f; (iChao2 [27]).

Estimator | Description and Formula
Chao?2 Chao estimator (1984) ,
19 (n—=1) fi(n) :
- SChao2 = {S(n) - 1) 2 () =0
S(n) + %fl(n)% if fa(n) =0
Chao2-bc | Bias corrected Chao estimator (2005)
-1
(21 SChao2(bc = S(n) + f1(n) [%}
iChao2 Improved Chao estimator (2014)
. Sicnace = 35hec2) 3 fa(n)f3(n)
n— 3(n n n
+ 2 Ty max (fi(n) — 523 LA 0)

ICE [43] | Incidence-based coverage estimator (1994)

S _ S(?’L) + S(n)infr ~92

1CE red G (nYice

where .

2 S()inr Minfr 2i—q 1(i—1) fi(n)

/¢ = max (C'(n)lcE I (ras)2 -1, 0)

S(n)ingr = Zz 1fi(n), S(n)preg = S(n) — S(n)inpr

Ninfr = Zz 12fi(n), Cln)eg =1— fr(n)/Ning»

k is a constant (often, &k = 10), and

infr or freq denote “rare” and “frequent” species categories.
ICE-1 Modified incidence—basedscovemge estimator (2013)

& infr 22
[37] SICE—l = S(n)fm] + T)/ch%"f’

where (16)5k

22 2 14+n(1-C(n)ice) Zi=1 1(i—1) fi(n)

Ving = max (Tinr (n(n—1)C(n)ice) 70)
JK1 [15] | First-order Jackkmfe estimator (1978)

Sjk1 = S(n) + =L fi(n) = S(n) + fi(n)
JK2 [15]] | Second-order Jackknife estimator (19782)

- e —2

Sjka = S(n) + 2222 f1(n) — =20 fo(n)

~ S(n) +2f1(n) — fa(n)

Fig. 4: State-of-the-art species richness estimators under the
Bernoulli-product model [[17], [24]].

Intuition. From we can easily see that all es-
timators are functions of the number of rare species (e.g.,
singletons f; and doubletons f5). The underpinning insight
is that the number of rare and discovered species (f; through
fr) are excellent predictors of even rarer and undiscovered
species fp. Rare species simply carry most information about
unseen species [24]].

Incidence-based coverage estimators (ICE) extend this
idea of the improved Chao estimator iChao to consider more
than just singletons and doubletons and integrate the recent
understanding of sample coverage C(n). When the individuals
are independently sampled from an invariant species distribu-
tion, the complement of the missing mass probability given
by Good-Turing estimator [34] (i.e. C=1- f1/n) provides
a highly accurate estimate of the current sample coverage. By
incorporating sample coverage, the incidence-based coverage
estimator (ICE) was derived [43]]. It assumes that any species
distribution {p}f:1 can be fully characterized by the coeffi-
cient of variation 72 and the mean incidence probability 1/
[20]. Under ICE, species are distinguished, using an arbitrary
threshold k, as “frequent” and “rare” (i.e., infrequent) species.
Using this distinction, we can obtain an accurate estimate of
~?% using only the rare species category. However, the ICE

estimator is known to underestimate for highly heterogeneous
distribution with very high species richness; like the ones
we encounter in fuzzing. A modified version, ICE-1 [37] is
derived through standard statistical approximations for such
mega-diverse communities; but with the same set of factors as
ICE For the modified ICE (ICE-1), the coefficient of variation
':y is estimated as a factor of the coefficient of variation 42
for the original ICE.

Jackknife (JK) estimators for species richness are in-
stances of the general Jackknife method, which uses resam-
pling to estimate certain statistical parameters and to reduce
bias. The j"-order Jackknife estimate (JK-j) is obtained by
excluding j sample points from the original sample of size n.
For instance, the first-order Jackknife J K1 of spec1es richness
[15] uses the Good-Turing estimator 1 — () = fi(n)/n of
the probability of discovering (single) new species. Assuming
this probability be equivalent for the reduced sample with n—1
sampling units, the expected number of undiscovered species
fo is approximate (n — 1) f1/n.

IV. EXPERIMENTAL SETUP

The main objective of this work is to evaluate the statistical
method for approximating reachable coverage. Specifically, we
evaluate how well the seven state-of-the-art species richness
estimators in perform as approximators of the total
number of coverage elements reachable during fuzzing. To
evaluate estimator performance under different assumptions
for the ground truth, we design three research questions.

A. Research Questions

RQ.1 (Ground truth). For programs where we know the
reachable coverage, how do existing species richness

estimators (Figure 4)) perform as approximators of

reachable coverage?

RQ.2 (Real world). For real-world programs, how do exist-
ing estimators perform as approximators of reachable
coverage?

RQ.3 (Bootstrapped ground truth). For real-world programs,
where we “force” a known asymptote by bootstrapping,
how do existing estimators perform?

B. Variables and Measures

Our estimation target (i.e., estimand) is the total number
of reachable basic blocks, i.e., the maximum achievable basic
block coverage. For every estimator in we measure
the mean bias and imprecision w.r.t. the estimand as a function
of the number of test inputs n that have been generated
throughout a fuzzing campaign. The mean bias(n) of an
estimator S is the average degree to which S systematically
over- or underestimates the estimand S

2N

=1

bias(n) =

Subject Project Version LoC # BBs
readelf Binutils 2.29 22,347 18,578
ffmpeg FFmpeg n3.3.2 522,813 432,244
ftfuzzer FreeType2 2.7 44,686 27,521
gif2png Gift2png 253 988 700
jasper JasPer 1.900.0 17,385 14,417
jsoncpp_fuzz JsonCpp 1.8.4 7,251 5,938
Total 615470 499,398

(a) Real-world. Open-source programs with unknown reachable coverage
from the OSS-Fuzz [3] continuous fuzzing platform.

Subject Version LoC # BBs
tcas 2.0 173 63
totinfo 2.0 565 132
replace 2.1 564 228
schedule2 2.0 374 138
printtokens2 2.0 570 198
Total 2246 1261

(b) Ground-truth. Programs with known reachable coverage from the Soft-
ware-artifact Infrastructure Repository| (SIR; by Siemens Corporate Research).

Fig. 5: Fuzztastic subject programs.

where N is the total number of repetitions. The imprecision(n)
of an estimator S is the variance of the (individual) bias:

N S‘infs
Zi—1< (S) B
N -1

Intuitively, an estimator with a high, negative mean bias and
a low imprecision produces similar underestimates while an
estimator with a low positive mean bias and a high impreci-
sion generates many different estimates that, on the average,
slightly over-estimate.

A 2
(=X, Si<n>s])

NS
imprecision(n) =

C. Benchmarks: Ground-Truth and Real-World

For our evaluation, we use two benchmarks integrated into
Fuzztastic [44] fuzzer evaluation platform. Fuzztastic allows
us to track hit counts and calculate the required quantities (f%)
used for estimationE] Fuzztastic records hit counts for every
basic block, i.e., the number of fuzzer-generated inputs that
exercise that basic block. From this hit count information, we
can empirically measure coverage over time S(n) as well as
the number of rarely covered basic blocks (e.g., f1(n), f2(n)).

Infrastructure. Each fuzzing campaign was run on one of
four (4) virtual machines with 32x 2GHz x86_64 CPU cores,
32 GB of RAM, and 200 GB of disk space each. All VMs were
running in the Nectar Research Cloud. To address randomness
in the outcomes, we repeated each campaign at least 30 times.

Real-world. We selected six (6) open-source C programs
that have already been integrated into Fuzztastic [44] and are
widely used in practice (cf. [Figure 5]a). These are programs
or libraries that process binary, movie, font, image, and JSSON
files (in that order). However, as discussed in [Section 1I-A]
there is no indication of the maximum achievable coverage
in log-scale time even for extremely long fuzzing campaigns.

SFuzzbench [43] does not provide hit count information.

For these programs, we do not have the ground-truth value
of the estimand S in order to evaluate the performance
of the estimators S. For this reason, we evaluate estimator
performance on smaller-scale programs where the ground-truth
estimand can be discovered.

Ground-truth. We selected the “Siemens programs”; five
(5) C programs from the Software-artifact Infrastructure
Repository (SIR) [[1] that are widely used for fault localization
research (cf. [Figure 3|b). The Siemens programs are small
enough that we expect to see the reachable basic block
coverage achieved within a practical time limit. This allows us
to establish the ground-truth estimand S and evaluate estimator
performance with respect to the ground-truth S.

Fuzzer. We selected AFL++ [31] (version: 2.64c; —m
none), a community-driven extension of the AFL fuzzer [55]
which is also used in the OSS-Fuzz platform [3]]. For the
listed programs, Fuzztastic uses as fuzz harnesses the provided
command line options for the subject programs and uses the
initial seeds provided by AFL’s GitHub repository[]

V. EMPIRICAL EVALUATION OF THE STATISTICAL
METHOD TO APPROXIMATE REACHABLE COVERAGE

RQI. Ground Truth-Based Estimator Performance Evaluation

Ground-truth estimand S. [Figure 6la-top shows the basic
block coverage as campaign length n increases on a log-scale.
In all cases, we see basic block coverage saturate to the extent
that increasing the number of generated test inputs by one
order of magnitude does not change the current basic block
coverage S(n) anymore. For all programs, 100% reachable
coverage is achieved before n = 10° test inputs are generated.
Hence, it is reasonable to take S(10°) as the maximum
achievable coverage S for our five Siemens programs and
benchmark the estimators against this value.

Estimating S. [Figure 6la-middle shows the estimator mean
bias for the Siemens programs. At the beginning of the
campaign, all estimators exhibit a negative mean bias. For
tcas, replace, and printtokens?2, the negative bias is particularly
obvious for the period where S(n) is still increasing at a high
rate. For totinfo and schedule2, the fuzzer seems to be stuck
trying to resolve a coverage roadblock for one or two orders
of magnitude until the coverage achieved S(n) suddenly
increases again. During this period the estimators maintain a
fairly constant negative bias. One or two orders of magnitude
before S(n) reaches S all estimators start exhibiting a positive
bias. They over-estimate .S. However, over time the magnitude
of the bias decreases and the estimate becomes highly accu-
rate. The estimators are asymptotically consistent. We make a
similar observation for estimator variance (Figure 6la-bottom).
In that region where the estimators tend to over-estimate, the
variance (thus imprecision) is maximized, as well.

Overall, the Jackknife estimators (JK1, JK2) exhibit the
lowest degree of bias and variance. [Figure 6|b gives a close-up.
We can see for the Siemens programs, the Jackknife estimates
S are closer to the actual reachable coverage S than the

https://github.com/google/AFL/tree/master/testcases

https://sir.csc.ncsu.edu/php/previewfiles.php
https://sir.csc.ncsu.edu/php/previewfiles.php
https://github.com/google/AFL/tree/master/testcases

totinfo schedule2 replace printtokens2
80
125 1004
100+
0 j
a 60
5] 80
k<] 75+
Y
2 404
E 507 60
P4
25+ 204
40+
10° 10%
400% A
200%4 200%
0%+ = > 300% A
8
© J 200%
D 3094 100% 100%
=
[
2 100% 1
~60% 0%1 0%4
-90% L - :) T100%1 = ! ! -100% -+ - : : I b ! ! I b ! !
10° 10° 10 10° 10° 10° 10° 10° 10° 10° 10° 10° 10° 10° 10 10° 10° 10° 10° 10 10°
64
7.5+
c
S 44
K] 5.0
(5}
[
o
g
= 254 27
0.0+== ==-= ot-----= J-

10 10° 10* 10° 10° 10° 10* 10° 10°

(a) Basic block coverage S(n), mean bias(n), and imprecision(n) for the estimators of S as the number n of generated test inputs increases (log-scale).

10° 10* 10°

Tests

tcas totinfo

schedule2

replace printtokens2

5.0% 5.0%-

15.0%

2.5% 2.5%-

10.0%

10.0%

2.00%+

1.00% /

5.0%

>

@
C
o 0.0% /
c 0.0% 1 - 0.0% = 0.00%- / -
$ 50%
=
o ~1.00%- — Chao2
0.0% - - M- - e -2.5% -2.5% — Chao2_bc
— iChao2
— ICE
= ~2.00% — ICEL
10.0% KL
-5.0% -5.0% -5.0%- oK
10° 10° 10 10* 10*° 10° 10*° 10° 0% 10 10°° 10°° 10* 10*° 10° 10° 10°° 10* 10** 10° 10°° 10°° 10° 10°? 10°
Tests

(b) Close up of the estimators’ mean bias near the asymptote to provide a closer look at the bias for individual estimators.

Fig. 6: Ground-truth. Estimator performance in Siemens programs from the SIR (more than 990 repetitions for each program).

other estimators, both individually (low variance) and on the
average (low mean bias). The incidence-based estimators (ICE,
ICE1) appear on second place and perform almost identically.
They outperform the Jackknife estimators (only) on schedule2.
The improved Chao estimator (iChao2) performs worst and
exhibits the largest bias and variance.

e)
After an initial burn-in period, apart from iChao2, all

estimators over-estimate the reachable coverage to within
15%, on average. All estimators are asymptotically consis-
tent, i.e., the magnitude of the bias reduces as n increases.
For these programs that are small enough that the asymp-
tote can be known, the Jackknife estimators perform best.

& J

Statically approximating S. How does a static approxima-
tion of the number S of reachable basic blocks stack up? We
used the Static Value-Flow Analysis Framework (SVF) [51],
a state-of-the-art static analysis framework for C that enables
interprocedural dependence analysis and is able to perform
pointer alias analysis, memory SSA form construction, value-
flow tracking, and context-free-reachability analysis.
shows the number of basic blocks (BBs) that SVF considers
reachable, and the number of BBs that the fuzzer achieved
upon saturation (see ground-truth estimand).

The result confirms our previous results in

Static analysis over-counts reachable coverage. For instance,
there is a difference of 3 BBs between the statically ap-

Subject # Covered BBs # Reachable BBs Total # BBs
by AFL++ Using Static PA

tcas 60 63 63

totinfo 127 132 132

replace 104 228 228

schedule2 77 138 138

printtokens?2 190 198 198

Fig. 7: Static approximation of reachable coverage.

proximated and the actual reachable coverage in tcas. We
confirmed two as unreachable error conditions due to reading
the input file. The third is manually marked as unreachable [2].

g
Even an advanced static analysis tool designed for inter-

procedural reachability analysis that can handle pointer
aliasing cannot produce a precise approximation for our
small benchmark programs. Because the static analysis
tool cannot solve all possible path conditions, it can only
conservatively over-approximate reachable coverage. In
contrast to estimation, there are no systematic means to
dynamically improve the accuracy of the approximation.

RQ2. Real-World Estimator Performance Evaluation

sso0 finzE) frectype2 gif2png Subject # Reachable BBs
oo 7000 500 Using Static PA
6500+ 490
o 1750 50004 480 ffmpeg 8,850
& 15000 o 470 freetype2 1,512
H 1 1 10 1 10 100 1 10 100 gif2png 700
(9“ jasper jsoncpp readelf jasper 13,712
8 as00 1120~ 3000 jsoncpp 2,454
* 4250 1080+ 2750 readelf 11,215
4000 1040+ 2500
3750 1000 2250

110 100 110 100 110 100
Time in hours

Fig. 8: Basic block (BB) coverage over time (3.5 CPU years)
and SVF’s static approximation of reachable BB coverage.

To investigate estimator performance in a more realistic
setup where the ground-truth value of the reachable coverage
S is unknown, we conducted 30 fuzzing campaigns for each of
six (6) programs (cf. [Figure 5]a) that lasted for seven (7) days.
[Figure 8]left shows the average basic block coverage achieved
over the 1-week period and confirms our previous observation
that the ground-truth reachable coverage can indeed not be
identified (cf. [Section II-A). [Figure 8|right shows the static
approximation of reachable coverage as produced by the SVF
tool [S1] and confirms our previous observation that static
analysis over- and undercounts (cf. [Section II-B].

Estimator performance. shows the coverage
achieved S(n) and our non-parametric estimates S of the
reachable coverage for these fuzzing campaigns. Our main
observation is that all seven state-of-the-art estimators pre-
dict “false peaks” In most cases, more coverage can be
achieved upon reaching the predicted maximum achievable
(i.e., reachable) coverage. For instance, the current coverage
S(n) for the [1-week]-long campaign is often higher than

8In mountaineering, a false peak is a location where the climbers predict
to be the summit; but upon reaching, it turns out the summit is higher.

Estimates of the Asymp

Subject Campaign Current | Chao2 Chao2 iChao2 ICE ICE-1 JKI JK2
Length Coverage (bc)

15 min 13900 | 13975 13968 13975 13992 13992 13943 13973

fimpeg 3 1S 15087 | 16011 15589 16012 15248 15249 15133 15176

1 day 15296 | 17237 16932 17049 16241 16258 15362 15428

1 week 20555 | 31047 28991 75424 24300 24304 22774 22685

15 min 5573 | 6181 6137 6258 5734 5734 5715 5832

frectype2’ S 5984 | 7456 7323 7541 6476 6476 6181 6352

1 day 6294 | 6836 6806 7068 6629 6629 6439 6551

1 week 7204 | 7498 7481 7410 7296 7297 7235 7257

15 min 365 | 466 466 466 465 465 466 466

oone 3 IS 479 | 480 480 480 479 479 480 480

EUPIE | day 486 | 486 486 486 486 486 486 486

1 week 506 | 506 506 506 506 506 506 506

15 min 3560 | 11213 9542 12201 4023 4023 3831 4002

. 3 hrs 3671 | 4929 4429 4732 4344 4390 3697 3722

JAPET | day 3959 | 4517 4402 4190 4254 4256 4004 4046

1 week 4584 | 4585 4585 4585 4586 4586 4585 4584

15 min 979 | 1009 1003 1001 999 999 987 989

. 3hrs 1095 | 1095 1095 1095 1095 1095 1095 1095

JSONCPP 1 gay 1113 | 1113 1113 1113 1113 1113 1113 1113

1 week 1124 | 1124 1124 1124 1124 1124 1124 1124

15 min 2057 | 2527 2516 2719 2746 2746 2278 2446

readel 3 TS 2431 | 2560 2548 2818 2510 2510 2492 2464

1 day 2716 | 3105 3064 2782 3105 3105 2871 2963

1 week 3056 | 3458 3451 3593 3629 3629 3311 346l

Fig. 9: The average basic block (BB) coverage for AFL++
campaigns of different length and the corresponding estimates
of reachable BB coverage.

the reachable coverage S that was predicted by any of the
estimators. Particularly for the Chao-type estimators (i.e., all
except JK1 and JK?2) this is reasonable since they were derived
as lower bounds on the total number of species. However, this
also means that none of these state-of-the-art estimators can
be used as estimators of fuzzing effectiveness.

One possible explanation is that applied statisticians would
consider our domain as mega-diverse [23|]: There is a very
large number of classes or species that we wish to tally,
and most of these species are very rare. For such mega-
diverse communities, the ICE-1 estimator was specifically
developed as an estimator of species richness. So, we were
particularly interested in its performance. However, compared
to the baseline incidence- and coverage-based species richness
estimator (ICE), the improved estimator (ICE-1) often only
predicts a few more species with a similar magnitude in bias.

All evaluated estimators predict false peaks: In most cases,
more coverage can be achieved upon reaching the predicted
reachable coverage. All estimators under-estimate S.

RQ3. Real-World: Boostrapping Reachable Coverage

How can we evaluate estimator performance in the absence
of a ground-truth? Bootstrapping is a powerful methodology in
statistics to conduct statistical inference from an approximate
(observed sample or empirical) distribution [46]. Bootstrap-
ping is a resampling process with replacement to compute
various population statistics, such as the confidence interval
around a point estimate. The key intuition is that the re-
lationship between the approximate (empirical) distribution
and the theoretical population from which it is derived is

ffmpeg freetype2 gif2png jasper jsoncpp readelf
2.5e+04 56403
5e+02 ©
g 2 0eroe 6e+03 464024 4e+03 9e+02 3e+03
QO 1.5e+04
=) 4 3e+03
s 4e+03 3et02 6e+02 2e+03
[
g 1.0e+04 2e+024 2e+03
prd 2e+03 3e+02 1e+03
m 5.0e+03 1e+02 1e+03
0.0e+00 0e+00 0e+004 0e+00 0e+00 0e+004
1e+03 1e+07 le+ll 1e+03 1e+07 le+1l 1e+03 1e+07 1le+1l 1e+03 1e+07 le+ll 1e+03 1e+07 le+1l 1e+03 1e+07 le+1l
100% 100% | 100% 100% 100% 100%
— Chao(bc)
— Chao2
50% 50% 50% 50% 50% 50% -
" -
8
o
g 0% 0% 0% 0% 0% 0%
(5}
=
-50% -50% -50% ~50% -50% -50%
-100% -100% | -100% -100% -100% -100%
1e+03 1e+07 le+1l 1e+03 1e+07 le+1l 1e+03 1e+07 le+1l 1e+03 1e+07 le+ll 1e+03 1e+07 le+ll 1e+03 1e+07 le+ll
(a) Basic block coverage and average estimator bias as a function of the number of generated test inputs (log-scale).
ffmpeg | I freetype2 | gif2png | jasper | jsoncpp | readelf
3.00% - | 0.20%- 0.20% | 3.00%
0.10% | = Chao(bc)
5 1.00% o = Chao2
2.00%- | o.100%4 0.10% 2.00% - :8;1
@ 1.00%- 0.00% 0-00% 1.00% - ‘JcKhlaoz
o 0.00% - 0.00% — JK2
% 0.00% - 0.10% 0.00%
-0.10% |
] -0.10%- | TLoow | -0.10% |
= -1.00%- | -1.00%
—2.00%- | -0.20%- | -2.00% | -0.20% | ~020% | -2.00%

1e+09 1e+07 1e+08 1e+09 le+11 le+12 1e+13

1e+08

1e+10 le+11 le+12 le+11 le+12 1e+13 16403 1e+04 1e+05 1e+06 1e+07 1et06 1e+07

Tests
(b) Close up of the estimators’ mean bias near the asymptote of the bootstrapped BB coverage curve.

Fig. 10: Basic block coverage and estimator performance when bootstrapping S(n) from the empirical distribution.

the campaign. Until about one order of magnitude before the
asymptote is actually reached, there does not seem to be any
information about the asymptote within the estimates. This
confirms the false-peaks observation of RQ2 for the period
before the asymptote of S(n) is discernible. It is notable that
the classic Chao estimator (Chao2) and the incidence-based
estimators (ICE, ICE-1) substantially over-estimate very early
in the fuzzing campaign when a few thousand test inputs have
been generated.

asymptotically equivalent to the relationship between the boot-
strap samples and the empirical distribution. The Jackknife
presented in is also based on the bootstrapping
method (by excluding sampling points). Another advantage
of bootstrapping is, due to resampling with replacement, we
can control for adaptive bias prevalent in greybox fuzzing.
In other words, adaptive bias cannot be an explanation if
the estimators do not perform well. Lastly, we can directly
work with expected values rather than random variables. For
instance, we can directly compute S(n) = S — Zle (I—py)™
instead of resampling n inputs from the multinomial.

Ground-truth. For every real-world program in [Figure Sla,
we simulate the reachable coverage by bootstrapping from the
empirical distribution. Concretely, we i) compute the probabil-
ity p; that an input exercises a basic block BB; by dividing the
hit count for BB; by the tallied hit count across all BBs, and
ii) resample from the resulting distribution. This “forces” a
natural asymptote at the empirically observed number of BBs
of a week-long fuzzing campaign and allows us to evaluate the
estimators against this bootstrapped ground-truth asymptote.
Indeed, in we observe the bootstrapped reachable
coverage is achieved within a practical period.

Results. shows the performance for the estimators
introduced in[Figure 4]and evaluated for smaller programs with
a known reachable coverage in RQ1. Our first observation is
that the magnitude of the bias is substantial at the beginning of

g
At the beginning of the campaign when no asymptote is

discernible in log-scale time, all estimators predict false
peaks (as in RQ.2). However, the systematic negative bias
reduces as the campaign length increases, demonstrating
the asymptotic consistency of all estimators. After the
“initial” burn-in period, all estimators start accurately
predicting the reachable coverage to within £3%. Among
evaluated estimators, Jackknifes perform best (as in RQ.1).

_/

Overall, the Jackknife estimators (JK1, JK2) exhibit the
lowest degree of bias. [Figure 10/b gives a close-up. We can
see that second-order Jackknife (JK2) is the first to estimate
reachable coverage within +3% for the largest, smallest, and a
medium size program, and to within £0.2% for the remaining
three programs. In the second place, we find the coverage-
based estimators (ICE, ICE-1), which almost never over-

N\

estimate, unlike the Jackknifes. On our fuzzing campaigns
bootstrapped from the empirical distribution in real-world
programs, the improved Chao estimator (iChao2) performs
worst. In summary, this ranking of estimators agrees with the
ranking we have got in RQ1 for the Siemens programs where
the reachable coverage is known (rather than bootstrapped).

VI. THREATS TO VALIDITY

As for any empirical study, there are various threats to the
validity of our results and conclusions.

One concern is external validity, i.e., the degree to which
our study can be generalized to and across other fuzzers, static
analysis tools, programs, and estimators. We evaluate coverage
saturation in terms of branch coverage by running 11 popular
fuzzers for 7 days on 32 real-world C programs started from
the available initial corpus. The fuzzers represent a range
of the most popular fuzzers. The programs cover a wide
variety of domains and are part of a fuzzer benchmarking suite
developed by Google [45]. The initial corpus was provided by
the FuzzBench benchmarking platform. However, we note if
the initial corpus were collected over many years of greybox
fuzzing, an asymptote may be observed in practical time even
for these large programs. Furthermore, we evaluate the per-
formance of seven state-of-the-art species richness estimators
for reachable coverage on five smaller toy programs and six
real-world programs using the AFL++ fuzzer started from a
single seed. As our statistical framework requires the fuzzer
to be a stochastic process where inputs are sampled with
replacement, we suggest that a similar study be conducted
to assess estimator performance for fuzzers where this as-
sumption does not hold, specifically symbolic execution-based
whitebox fuzzers. However, the most widely-used fuzzers are
greybox or blackbox. Since all fuzzers 11 fuzzers currently
in FuzzBench are subject to the saturation illusion (Fig. [2),
we do not expect major differences in estimator performance
for similar fuzzers. We also checked and found that the
distribution of hit counts (as input to the evaluated estimators)
is similar across fuzzers.

Another concern is internal validity, i.e., the degree to
which our study minimizes systematic error. Previous studies
of species richness estimators evaluated estimator performance
against the total number of species observed after a very
large sampling effort. This assumes that saturation is possible
with practical sampling effort. However, as we show in this
paper, this assumption is invalid in the context of fuzzing.
To mitigate this threat to internal validity, we investigate
estimator performance (i) for small programs where the ground
truth reachable coverage can be known, and (ii) for real-
world programs where we develop and employ a new method
to simulate reachable coverage by bootstrapping from the
empirical distribution (cf. RQ3).

VII. RELATED WORK

Effectiveness. Given a program and an oracle that dis-
tinguishes passing from failing executions, the problem of
automated software testing, or fuzzing for short, is to generate

10

inputs that witness failing executions. However, as Dijkstra
notes, “program testing can be used to show the presence of
bugs, but never to show their absence”ﬂ Hence, in order to
measure testing effectiveness in the absence of bugs, it was
proposed to measure other properties of a program, such as
the number of structural code elements that are covered or the
number of artificially injected faults that could be discovered
(as in fault- or mutation-based testing [47], [41]). Indeed,
recent empirical studies have shown that the code coverage
achieved is a strong predictor of the bug finding ability of a
fuzzer (i.e., there is a strong correlation) [11], [33], [36], [26].

Counting. Common to all effectiveness measures is to
count. The more of something is covered, found, or exer-
cised, the better the fuzzer. This general insight has previ-
ously been studied both theoretically and empirically under
partition testing, where the input space is partitioned into
(sometimes overlapping) subdomains [40], [30], [38], [25],
[54]. We can think of the number of partitions, that the
fuzzer can generate inputs for, as the fuzzer’s search space
(as opposed to the program’s input space). For instance, the
more program statements a fuzzer can exercise, the greater its
search space. While previous work on partition testing was
concerned with the optimal partitioning strategy, our work is
concerned with the total number .S of partitions in the fuzzer’s
search space, given a concrete partitioning strategy (e.g., a
coverage criterion). If we can measure the fuzzer’s search
space, i.e., its reachable coverage, we can also measure the
fuzzing campaign’s progress towards completion (e.g., “99%
of reachable statements are covered”).

Finding unreachable code. We wish to count the number of
reachable code elements. As we have established in
precisely determining statically which code elements can be
reached is at least as hard as the verification problem. Stati-
cally reachable coverage can only be approximated resulting
in over- and under-counting problems (cf. Sec. & [V).
Nevertheless, removing unreachable code to reduce the size
of the compiled binary is a common compiler optimization,
called dead code elemination [28], [52]. If the problem of
identifying unreachable code complements the problem of
identifying reachable code, why is dead code elimination so
effective? Well, dead code elimination is under-approximated
and does not remove all unreachable code. For instance, only
by a short glance at the control-flow graph, we could find
(unreachable) code that follows a return statement. Similar
analysis rules exist for other common cases [31].

Finding reachable code. Given a program statement s,
static program slicing allows us to compute all statements
whose value may affect the execution or the value of s
[S3]. Starting from the slicing criterion, static program slicing
computes the transitive closure of data- and control-flow
dependencies in the program dependence graph. To establish
the reachability of s by the fuzzer, we could check whether the
statement holding the fuzzer’s input is in the static backward
slice w.r.t. s. However, static slicing is over-approximate.

9EWD249, §3: https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF

https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF

Statements that are not members of the slice have definitely
no impact on the reachability or value of the slicing criterion.
Statements in the slice may or may not have an impact on
the reachability or value of the slicing criterion. Despite a
statement being a member of the slice, no execution may
exist that contains both, the reported statement and the slicing
criterion s. The resulting slices can be impractically large,
sometimes containing the entire program [6]. In this work, we
do not require program dependence graphs or static analysis
to establish the reachable code. Instead, we evaluate the
possibility of estimating the total number of coverage elements
in the fuzzer’s search space.

Estimation in fuzzing. While the development of more
effective and efficient software testing techniques has a long
history in software engineering research, the statistically sound
estimation of pertinent properties has found significant interest
only more recently. For instance, Béhme and Falk [9]] empiri-
cally investigated and probabilisticly explained the scalability
of fuzzing, i.e., the number of new species discovered within
a given time budget as the number of available machines in-
creases, where vulnerability discovery was found to be subject
to an exponential cost. Bohme, Liyanage, and Wiistholz [10]
investigated means to estimate the residual risk of a fuzzing
campaign that has found no errors. Lam and Grunske [49]
developed general estimators of the diversity of program
behaviors excercised by a fuzzer. Previous work explored the
probabilistic and information-theoretic foundations of fuzzer
efficiency [12], [11], i.e., the rate at which a fuzzer discovers
new species. In this paper, we have proposed the estimation of
fuzzer effectiveness, i.e., the total number of coverage elements
(“species”) in the fuzzer’s search space.

The STADS statistical framework [8]] casts fuzzing as a
stochastic process ammenable to estimation and discusses var-
ious estimators from biostatistics. The author already discusses
some species richness estimators in the STADS paper, but only
provides a preliminary evaluation of one estimator (Chao2)
while we evaluate all seven (7) state-of-the-art estimators. As
is customary for the evaluation of species richness estimators
[24], [48], [20], the preliminary evaluation in the STADS
paper [8]] also assumes that the campaign is saturated after 24
hours and evaluates the performance of the estimator against
this assumption. However, as we demonstrate by fuzzing 32
programs for 116 CPU years, saturation is an illusion in log-
scale time (Sec[lI-A). Hence, we develop a simulation method-
ology based on bootstrapping from the empirical distribution
that allows us to “force” saturation for a sound evaluation
of estimator performance (RQ.3) and investigate estimator
performance for small programs where the asymptote can
actually be (and is) known (RQ.1). In contrast to previous
work, we also evaluate static analysis as a means to compute
reachable coverage and study the problem of over- and under-

counting (cf. Sec. and RQ.1).
VIII. DISCUSSION

The reachable coverage S for a fuzzer can be used to
measure (a) the amount of untested code, (b) the effectiveness

11

Commit ID # of
subjects

27‘

of
fuzzers
10

11

11

11

of
runs
10
10
10
10

Experiment ID

2021-04-11-7d-paper
2021-04-23-7d-paper
2021-07-10-redo-7d
2021-08-19-crash-s-7d
Experiment infrastructure
Experiment data

69b67c0
1471300
00dbe2a 4
db192b6 10
https:/gitlab.lrz.de/fuzztastic/
https://www.tuzzbench.com/reports/[ExperimentID]

11

(a) Fuzzbench reproducibility information

Commit ID

dd51a2b8

3b68483c
https://gitlab.lrz.de/fuzztastic/
https://anonymous.4open.science/r/
reachable_coverage-experiments/data/
experimental_data.zip

Repository
Repo fuzztastic-evaluations

Repo fuzztastic-1lvm-pass
Experiment infrastructure
Experiment data

(b) Fuzztastic reproducibility information

Fig. 11: Reproducibility information.

of a fuzzer, and (c) the completeness of an ongoing fuzzing
campaign. We empirically studied two approaches to approx-
imate S. Static analysis [16], [51] analyzes the program’s
source code before the fuzzer is run. Estimation analyzes a
sample of program executions while the fuzzer is run.

For static analysis, we find that even state-of-the-art tools
developed in industry and academia drastically over- or under-
count reachable coverage. Fuzz-Introspector [[16]] is developed
by Google to measure fuzzer effectiveness. SVF [31] is de-
veloped by Sui’s research group to maximize precision during
inter-procedural reachability analysis. Yet, their approximation
cannot be reliably interpreted. In fact, the concrete degree of
inaccuracy is hard to determine and cannot be dynamically
improved simply by running the analysis for longer.

For estimation, we find that the Jackknife estimators [15]]
exhibit the least bias or variance compared to the other
state-of-the-art estimators. The Ist-order Jackknife (JK1) is
computed as the number of covered code elements added to the
number of singletons S = S(n) + f1(n). The mean difference
between the estimate S and the actual reachable coverage S
is within £3% of S between one or two orders of magnitude
before S is actually achieved. To exemplify this statement, if
S was achieved in 30 days, then the Jacknifes would estimate
S+3% within about three (3) days. However, without knowing
the actual value of S, we found that all estimators predict
false peaks at the beginning of the fuzzing campaign: Upon
reaching the predicted reachable coverage S, there was always
more coverage to be achieved, S > S.

Assuming completeness, static analysis can only ever pro-
vide an upper bound on S (unless the verification problem is
practical). In contrast, the evaluated state-of-the-art estimators
can only provide a lower bound. As we find in this paper, in
both cases, it is difficult to determine precisely the degree to
which both methods over- or under-approximate .S. However,
unlike a static analysis, the estimation always allows us to
improve the lower bound by running the campaign for longer.
In practice, we recommend employing both methods.

Open Science. We make the experiment infrastructure and
all data publicly available at jhttps://anonymous.4open.science/

r/reachable_coverage-experiments| shows more. We
will submit the artifact to Zenodo for long-term archival.

REFERENCES

[1] “Software-artifact infrastructure repository (sir),” https://sir.csc.ncsu.edu/
php/previewfiles.php, accessed: 2022-08-20.

https://gitlab.lrz.de/fuzztastic/
https://www.fuzzbench.com/reports/[Experiment ID]
https://gitlab.lrz.de/fuzztastic/
https://anonymous.4open.science/r/reachable_coverage-experiments/data/experimental_data.zip
https://anonymous.4open.science/r/reachable_coverage-experiments/data/experimental_data.zip
https://anonymous.4open.science/r/reachable_coverage-experiments/data/experimental_data.zip
https://anonymous.4open.science/r/reachable_coverage-experiments
https://anonymous.4open.science/r/reachable_coverage-experiments
https://sir.csc.ncsu.edu/php/previewfiles.php
https://sir.csc.ncsu.edu/php/previewfiles.php

[2]

[3]

[5]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

“Tcas. unreachable coverage,’ https://github.com/lichcat/
Dy VerityUsingCrest/blob/master/pgcrest/benchmarks/tcas/source/
tcas.c#L.129| accessed: 2022-08-20.

OSS-Fuzz: Google’s Continuous Fuzzing Service for Open-Source Soft-
ware. Vancouver, BC: USENIX Association, aug 2017.

M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An industrial evaluation of unit test generation: Finding real faults
in a financial application,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP), 2017, pp. 263-272.

A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering,” Sofiw.
Test. Verif. Reliab., vol. 24, no. 3, p. 219-250, may 2014. [Online].
Available: https://doi.org/10.1002/stvr. 1486

D. Binkley, N. Gold, and M. Harman, “An empirical study of
static program slice size,” ACM Transactions on Software Engineering
Methodology, vol. 16, no. 2, p. 8—es, apr 2007. [Online]. Available:
https://doi.org/10.1145/1217295.1217297

M. Boehme, C. Cadar, and A. Roychoudhury, “Fuzzing: Challenges
and Reflections,” IEEE Software, vol. 38, no. 3, pp. 79-86, 2021.
[Online]. Available: https://ieeexplore.ieee.org/document/9166552/

M. Bohme, “STADS: Software testing as species discovery,” ACM
Transactions on Software Engineering and Methodology, vol. 27, no. 2,
pp. 7:1-7:52, Jun. 2018.

M. Bohme and B. Falk, “Fuzzing: On the exponential cost of vulnerabil-
ity discovery,” in Proceedings of the 14th Joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE, 2020, pp.
747-758.

M. Bohme, D. Liyanage, and V. Wiistholz, “Estimating residual risk
in greybox fuzzing,” ser. ESEC/FSE 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 230-241. [Online].
Available: https://doi.org/10.1145/3468264.3468570

M. Bohme, V. Manes, and S. K. Cha, “Boosting fuzzer efficiency:
An information theoretic perspective,” in Proceedings of the 14th Joint
meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, ser.
ESEC/FSE, 2020, pp. 970-981.

M. Bohme and S. Paul, “A probabilistic analysis of the efficiency of au-
tomated software testing,” IEEE Transactions on Software Engineering,
vol. 42, no. 4, pp. 345-360, April 2016.

M. Bohme, L. Szekeres, and J. Metzman, “On the reliability of coverage-
based fuzzer benchmarking,” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE 22, 2022, pp. 1-13.
M. Branco, F. G. Figueiras, and P. Cermeiio, “Assessing the efficiency
of non-parametric estimators of species richness for marine microplank-
ton,” Journal of Plankton Research, vol. 40, no. 3, pp. 230-243, 03
2018.

K. P. Burnham and W. S. Overton, “Estimation of the size of a closed
population when capture probabilities vary among animals,” Biometrika,
vol. 65, no. 3, pp. 625-633, 1978.

O. Chang, N. Emamdoost,
czynski, “Introducing fuzz
improve fuzzing coverage,’

A. Korczynski, and D. Kor-
introspector, an openssf tool to
https://opensst.org/blog/2022/06/09/

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

(35]

[36]

[37]

[38]

introducing-fuzz-introspector-an-openssf-tool-to-improve-tfuzzing-coverage/,

accessed: 2022-08-15.

A. Chao, K. H. Ma, T. C. Hsieh, and C. H. Chiu, “Online program spader
(species-richness prediction and diversity estimation in r),” Program
and User’s Guide published at http://chao.stat.nthu.edu.tw/wordpress/
software_download, 2015.

A. Chao, “Nonparametric estimation of the number of classes in a
population,” Scandinavian Journal of Statistics, vol. 11, no. 4, pp. 265—
270, 1984.

——, “Estimating the population size for capture-recapture data with
unequal catchability,” Biometrics, vol. 43, no. 4, pp. 783-791, 1987.
——, “Species estimation and applications,” Wiley StatsRef: Statistics
Reference Online, 2014.

A. Chao, R. L. Chazdon, R. K. Colwell, and T.-J. Shen, “A new statistical
approach for assessing similarity of species composition with incidence
and abundance data,” Ecology letters, vol. 8, no. 2, pp. 148-159, 2005.
A. Chao, C.-H. Chiu, R. K. Colwell, L. F. S. Magnago, R. L. Chazdon,
and N. J. Gotelli, “Deciphering the enigma of undetected species,
phylogenetic, and functional diversity based on good-turing theory,”
Ecology, vol. 98, no. 11, pp. 2914-2929, 2017.

12

[39]

[40]

[41]

[42]

[43]

[44]

A. Chao, C.-H. Chiu, and L. Jost, “Statistical challenges of evaluating
diversity patterns across environmental gradients in mega-diverse com-
munities,” Journal of Vegetation Science, vol. 27, no. 3, pp. 437438,
2016.

A. Chao and R. K. Colwell, “Thirty years of progeny from chao’s
inequality: Estimating and comparing richness with incidence data and
incomplete sampling,” Statistics and Operations Research Transactions,
vol. 41, no. 1, pp. 3-54, 2017.

T. Y. Chen and Y.-T. Yu, “On the expected number of failures detected by
subdomain testing and random testing.” IEEE Transactions on Software
Engineering, vol. 22, no. 2, pp. 109-119, 1996.

Y. T. Chen, R. Gopinath, A. Tadakamalla, M. D. Ernst, R. Holmes,
G. Fraser, P. Ammann, and R. Just, “Revisiting the Relationship
Between Fault Detection, Test Adequacy Criteria, and Test Set Size,”
in Proceedings of the ACM International Conference on Automated
Software Engineering, 2020, pp. 237-249. [Online]. Available:
https://doi.org/10.1145/3324884.3416667

C.-H. Chiu, Y.-T. Wang, B. A. Walther, and A. Chao, “An improved
nonparametric lower bound of species richness via a modified good—
turing frequency formula,” Biometrics, vol. 70, no. 3, pp. 671-682, 2014.
R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck, “Efficiently computing static single assignment form
and the control dependence graph,” ACM Trans. Program. Lang.
Syst., vol. 13, no. 4, p. 451-490, oct 1991. [Online]. Available:
https://doi.org/10.1145/115372.115320

R. M. Dorazio and J. Andrew Royle, “Mixture models for estimating the
size of a closed population when capture rates vary among individuals,”
Biometrics, vol. 59, no. 2, pp. 351-364, 2003.

J. W. Duran and S. C. Ntafos, “An evaluation of random testing,” IEEE
Transactions on Software Engineering, vol. 10, no. 4, pp. 438—444, Jul.
1984.

A. Fioraldi, D. Maier, H. Eififeldt, and M. Heuse, “AFL++: Combining
Incremental Steps of Fuzzing Research,” in Proceedings of the USENIX
Workshop on Offensive Technologies, 2020.

G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transac-
tions on Software Engineering, vol. 39, no. 2, pp. 276-291, 2013.

M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. Alipour, and
D. Marinov, “Comparing Non-adequate Test Suites Using Coverage
Criteria,” in Proceedings of the International Symposium on Software
Testing and Analysis, 2013, pp. 302-313. [Online]. Available:
https://doi.org/10.1145/2483760.2483769

I. J. Good, “The population frequencies of species and the estimation
of population parameters,” Biometrika, vol. 40, no. 3-4, pp. 237-264,
1953.

Google, “Oss-fuzz: Continuous fuzzing for open source software,” https:
//github.com/google/oss-fuzz#trophies, accessed: 2022-08-12.

R. Gopinath, C. Jensen, and A. Groce, “Code Coverage for Suite
Evaluation by Developers,” in Proceedings of the International
Conference on Software Engineering, 2014, pp. 72-82. [Online].
Available: https://doi.org/10.1145/2568225.2568278

N. J. Gotelli and A. Chao, “Measuring and estimating species richness,
species diversity, and biotic similarity from sampling data,” 2013.

W. J. Gutjahr, “Partition testing vs. random testing: The influence of
uncertainty,” IEEE Transactions on Software Engineering, vol. 25, no. 5,
pp. 661-674, Sep. 1999.

D. C. Gwinn, M. S. Allen, K. I. Bonvechio, M. V. Hoyer, and L. S.
Beesley, “Evaluating estimators of species richness: the importance of
considering statistical error rates,” Methods in Ecology and Evolution,
vol. 7, no. 3, pp. 294-302, 2016.

D. Hamlet and R. Taylor, “Partition testing does not inspire confidence
[program testing],” IEEE Transactions on Software Engineering, vol. 16,
no. 12, pp. 1402-1411, Dec 1990.

Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649-678, Sept 2011.

G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
Fuzz Testing,” in Proceedings of the Conference on Computer and
Communications Security. New York, NY, USA: ACM, oct 2018,
pp. 2123-2138. [Online]. Available: https://doi.org/10.1145/3243734.
3243804

S.-M. Lee and A. Chao, “Estimating population size via sample coverage
for closed capture-recapture models,” Biometrics, pp. 88-97, 1994.

S. Lipp, D. Elsner, T. Hutzelmann, S. Banescu, A. Pretschner, and
M. Bohme, “FuzzTastic: A fine-grained, fuzzer-agnostic coverage ana-

https://github.com/lichcat/DyVerifyUsingCrest/blob/master/pgcrest/benchmarks/tcas/source/tcas.c#L129
https://github.com/lichcat/DyVerifyUsingCrest/blob/master/pgcrest/benchmarks/tcas/source/tcas.c#L129
https://github.com/lichcat/DyVerifyUsingCrest/blob/master/pgcrest/benchmarks/tcas/source/tcas.c#L129
https://doi.org/10.1002/stvr.1486
https://doi.org/10.1145/1217295.1217297
https://ieeexplore.ieee.org/document/9166552/
https://doi.org/10.1145/3468264.3468570
https://openssf.org/blog/2022/06/09/introducing-fuzz-introspector-an-openssf-tool-to-improve-fuzzing-coverage/
https://openssf.org/blog/2022/06/09/introducing-fuzz-introspector-an-openssf-tool-to-improve-fuzzing-coverage/
http://chao.stat.nthu.edu.tw/wordpress/software_download
http://chao.stat.nthu.edu.tw/wordpress/software_download
https://doi.org/10.1145/3324884.3416667
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/2483760.2483769
https://github.com/google/oss-fuzz#trophies
https://github.com/google/oss-fuzz#trophies
https://doi.org/10.1145/2568225.2568278
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

lyzer,” in Proceedings of the 44th International Conference on Software
Engineering Companion, ser. ICSE’22 Companion, 2022, pp. 1-5.

J. Metzman, L. Szekeres, L. Simon, R. Sprabery, and A. Arya,
“FuzzBench: An Open Fuzzer Benchmarking Platform and Service,” in
Proceedings of the Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2021, pp. 1393-1403. [Online]. Available: https://doi.org/10.1145/
3468264.3473932

C. Z. Mooney, C. F. Mooney, C. L. Mooney, R. D. Duval, and R. Duvall,
Bootstrapping: A nonparametric approach to statistical inference. sage,
1993, no. 95.

L. Morell, “A theory of fault-based testing,” IEEE Transactions on
Software Engineering, vol. 16, no. 08, pp. 844-857, aug 1990.

W. E. Nagy and R. C. Anderson, “How many words are there in printed
school english?” Reading research quarterly, pp. 304-330, 1984.

H. L. Nguyen and L. Grunske, “Bedivfuzz: Integrating behavioral
diversity into generator-based fuzzing,” in Proceedings of the 44th
International Conference on Software Engineering, ser. ICSE °22, 2022,
pp. 1-13.

G. C. Reese, K. R. Wilson, and C. H. Flather, “Performance of species
richness estimators across assemblage types and survey parameters,”
Global Ecology and Biogeography, vol. 23, no. 5, pp. 585-594, 2014.
Y. Sui and J. Xue, “Svf: interprocedural static value-flow analysis in
Ilvm,” in Proceedings of the 25th international conference on compiler
construction. ACM, 2016, pp. 265-266.

L. Torczon and K. Cooper, Engineering A Compiler, 2nd ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.

M. Weiser, “Program slicing,” ser. ICSE ’81. IEEE Press, 1981, p.
439-449.

E. J. Weyuker and B. Jeng, “Analyzing partition testing strategies,” [EEE
Transactions on Software Engineering, vol. 17, no. 7, pp. 703-711, Jul
1991.

M. Zalewski, “American fuzzy lop (afl),” https://lcamtuf.coredump.cx/
afl/, accessed: 2021-03-12.

13

https://doi.org/10.1145/3468264.3473932
https://doi.org/10.1145/3468264.3473932
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

	Introduction
	Challenges of Existing Approximations of S
	Coverage Achieved: No Indication of an Asymptote
	Static Call Graph Reachability: Inaccurate Approximation

	Estimation of Reachable Coverage as Measure of Fuzzer Effectiveness
	Statistical Model
	Estimators

	Experimental Setup
	Research Questions
	Variables and Measures
	Benchmarks: Ground-Truth and Real-World

	Empirical Evaluation of the Statistical Method to Approximate Reachable Coverage
	Threats to Validity
	Related Work
	Discussion
	References

