
Lecture Notes on Weak Supervision

Mayee Chen, Frederic Sala, Chris Ré

December 2, 2019

1 Motivation

Modern ML is data-hungry. To train models, we need labeled data—and lots of it. Acquiring
unlabeled data is easier than ever, but labeling this data tends to be an expensive and slow
process. Instead, techniques relying on weaker forms of supervision have become popular.

Given data without labels, we will rely on such noisy weak supervision sources to approx-
imate what the true labels are. There are many ways to build such sources:

• Heuristic rules,

• Encoding constraints,

• Off-the-shelf models,

• Lookups in knowledge bases,

and many others. The key intuition is that while we do not observe the true label at all, by
obtaining multiple noisy sources of information, we can learn a model over the sources and
the unobserved label, enabling us to infer this label. This places weak supervision somewhere
between supervised and unsupervised learning.

The idea of assembling multiple noisy voters brings crowdsourcing to mind. In fact,
crowdsourcing can often be modeled by weak supervision approaches—we discuss this con-
nection in Appendix A. Crowdsourcing often studies the accuracy of voters, while assuming
that their voting noise is independent. We begin our discussion of weak supervision from
the same starting point. Afterwards we show how we can extend our approach to more
challenging settings.

2 Problem Setup

Suppose we have a training set with n data points x1, . . . , xn ∈ X and corresponding labels
y1, . . . , yn ∈ Y . Here, the points (X, Y) are drawn from some distribution D. However, we
only observe the sampled x’s, and not any of the corresponding y’s. That is, Y is a latent

1

variable. For simplicity, we discuss the case where Y ∈ {−1,+1}, though we will mention
how to extend this setup beyond binary classes.

Instead of accessing the labels, we have m weak supervision sources, which are functions
from X to {−1,+1} that output labels—noisy estimates of Y . The random variables that
are outputs of these functions are denoted by λ1, . . . , λm, and their random vector is λ =
[λ1, . . . , λm]T . We sometimes also call these variables labeling functions (LFs). Note that we
observe a labeling function output for each data point, so we see m× n samples in total.

Our goal is to learn a model over the sources and the latent variable Y . Such a model will
enable us to compute a probabilistic estimate of the true label P (Y |λ) given the observed
labeling function outputs. Intuitively, this model must capture, for example, the accuracies
and correlations of the labeling functions.

Training an End Model Once we have learned a label model and can compute prob-
abilistic training data P (Y |λ), we can then use it to train an end model—using standard
supervised learning. In fact, as long as we learn the label model, and this model corresponds
to the true distribution, we can then bound the performance of the end model (i.e., its ability
to generalize) and compare it to the model trained on data with the true labels, as in the
supervised case. In fact, the end model trained with our probabilistic data can have the
same asymptotic performance as if we really had the true labels. Thus the goal is to figure
out how to learn the label model.

Sampling Our goal is to figure out the behavior of unobserved variables (like the true label
Y) based on observed variables (like the sources λi). In fact our core tool will be information
about the rates of agreement and disagreement between observed terms. If we had infinite
data, we would know, for example, moments like E [λi] and E [λiλj] and covariances like
Cov [λi, λj]. These are population-level statistics. We develop our algorithms as if we had
access to these (i.e., with infinite data).

However, in practice, we only have access to n samples, and we have to empirically
estimate the terms above. This induces sampling error. This sampling error can be bounded
(with tools from probability like tail bounds), and we can propagate these bounds through
the algorithm to determine rates—which tell us the error of our algorithm (on average) in
terms of the number of samples we see. Below, we show everything algebraically, with infinite
data, and then comment on sampling at the end.

3 Learning the Accuracies of Weak Supervision Sources

We start with the setting where the sources have independent noise, i.e., the conditionally
independent label model. In this case, the only parameters we need to learn are the accuracies
of the sources.

Afterwards, we get rid of the conditional independence assumption by allowing depen-
dencies. We will later tackle even more complex models. The key thread running throughout
these approaches is exploiting independencies.

2

3.1 Fully Independent Noise

An important setting is that of uncorrelated noise, similar to the crowdsourcing model de-
scribed earlier. Although any two sources λi and λj are not independent, we assume that
λiY and λjY are independent for all distinct i, j, meaning that pairwise noise is uncorrelated.
Later, in Section 4.1 we will connect this notion to the conditional independence λi ⊥⊥ λj|Y ,
which can be encoded by graphical models.

Note that since the λi’s and Y are in {−1,+1}, λiY is 1 when λi votes on Y correctly,
and −1 otherwise. Moreover, E [λiY] = 2P (λi = Y) − 1, so we are justified in thinking of
E [λiY] as a way to measure a type of accuracy, but scaled to [−1,+1]. We write it as ai.
Then, ai = 1 indicates that λi always outputs correct labels, ai = −1 indicates that λi is
always incorrect, and ai = 0 indicates that λi is a random guess.

How shall we exploit independencies to estimate ai = E [λiY]? From our independence
assumption,

E [λiλj] = E [λiY λjY] = E [λiY]E [λjY] = aiaj,

where first we used the fact that Y 2 = 1, and then independence.
Note that while we have no way of directly observing ai, the product of aiaj is just the

rate at which a pair of LFs vote together—and this is observable.
Now, since we can see aiaj, we can also look at a third source λk, allowing us to see

aiak and ajak. This gives us enough information to solve for the accuracies up to sign, e.g.,
|ai|, |aj|, |ak|—we’ll see how to solve this system with three equations and three variables
below.

The sign tells us whether each LF has a better-than-random, random, or worse-than-
random chance of voting on Y correctly. If we make the assumption that all of our LFs have
a better than random probability of voting correctly—even as low as 1

2
+ ε, then we know

the signs are positive, and we have identified the accuracies. We will later significantly relax
this assumption.

Now we show how to formalize this approach to obtaining the accuracies.

Accuracy Recovery Procedure Let M be the m×m second moment matrix of the LFs,
defined where

Mij =

{
E[λiλj] i 6= j,

E[λ2
i] = 1 i = j.

Solving with SGD We can use the observable M matrix to solve for the accuracies of the
labeling functions. Let a be the vector with the ai’s. Now, consider the covariance matrix of
the λiY terms. This covariance, by assumption, is diagonal, and for these diagonal entries,
we know that V ar(λiY) = E [λiY λiY]−E [λiY]2 = 1−a2

i . This means that it is I−diag(a2),
where diag(a2) is computed through element-wise squaring. We also know that elements of

3

the covariance matrix are equal to E [λiY λjY]−E [λiY]E [λjY] = Mij − aiaj for any i, j, so
overall the covariance matrix can be written as M − aaT . Setting these equal, we get that

M = I − diag(a2) + aaT

It is possible to solve this using SGD or other optimization methods by computing

a∗ = argmina||M − I + diag(a2)− aaT ||F .

Solving the System However, there is a more direct way of computing a exactly by
writing out the system of equations with the off-diagonal entries of M .

a1a2 = M12

a1a3 = M13

...

am−1am = Mm−1,m

While it is a possibility to use all O(m2) equations to obtain the m accuracies, a simpler
approach is to select disjoint sets of triplets of sources and solve exactly for three accuracies
at a time to avoid redundancy and potentially conflicting information in M . Define Ti to
be a set of three labeling functions such that Ti(1), Ti(2), Ti(3) represent their indices for
i ∈ 1, 2, . . . , dm

3
e. When m is divisible by 3, all Ti will be disjoint; otherwise, there will be an

extra Ti that includes some labeling functions whose accuracies have already been computed.
Then we have

aTi(1)aTi(2) = MTi(1)Ti(2),

aTi(1)aTi(3) = MTi(1)Ti(3),

aTi(2)aTi(3) = MTi(2)Ti(3).

It is easy to solve for aTi :

|aTi(1)| =

√
|MTi(1)Ti(2)||MTi(1)Ti(3)|

|MTi(2)Ti(3)|
, |aTi(2)| =

√
|MTi(2)Ti(3)||MTi(2)Ti(1)|

|MTi(1)Ti(3)|
,

and |aTi(3)| =

√
|MTi(1)Ti(3)||MTi(2)Ti(3)|

|MTi(1)Ti(2)|
.

Recoverability What assumptions are needed for the above procedure to work? We will
discuss two types of conditions, involving the minimum (absolute value) of an accuracy, and
the signs of accuracies—that is, dealing with symmetries.

First, note that we divide by some Mij to solve for |a|, so when Mij ≈ 0 then our
corresponding element of |a| cannot be calculated.

4

Y

λ2λ1 λ3 λm...

Y

λ3λ2λ1 λ4 λm...

Y

λ2λ1 λ3 λm...

Figure 1: Left: Conditionally independent weak supervision sources; Middle: Adding de-
pendencies. Right: Chain graph.

When can this take place? Recall that Mij = aiaj, so if Mij = 0, then one of ai and aj
must be 0. That is, we only run into trouble precisely when P (λi = Y) = 0.5, e.g. a random
guess. Thus we require that the aj’s are bounded away from 0.

Later we will discuss the sampling case, where we do not have access to the true values
of M but an empirical estimate, M̂ , from our data. Then, even if the ai’s are bounded
away from 0, due to sampling noise we might have some M̂ij = 0. Fortunately, this is not a

problem either: with high probability, M̂ij will be within ε of the value of Mij 6= 0. More on

the sampled second moment matrix M̂ will be discussed in Section 5.
Since the system of equations only provides a straightforward way of computing |â|, we

will also need to find the sign of each accuracy. Fortunately, when all labeling functions
are conditionally independent given Y , we only need to know the sign of one accuracy.
For example, if we know if a1 is positive or negative, we can use a1a2 = M12, a1a3 =
M13, . . . , a1am = M1m to recover all other signs. This is much less restrictive—we no longer
need each accuracy to be better than random chance.

What if we don’t know even a single sign? We only need to break one symmetry: is the
sum of the signs smaller or greater than 0? Thus we could add the following weak assumption:
require that

∑
i ai > 0, and still recover. This is because without any information, we only

have two possibilities for what the entire list of signs could be, corresponding to if a1 is
positive or negative from which we can recover the other signs. Then one choice for the
accuracies will yield a positive

∑
i ai while the other will be negative.

3.2 Adding Dependencies

We now consider the more general case where not all pairs of λi, λj are conditionally inde-
pendent given Y . Now we have correlations: dependencies between LFs. These are natural:
often LFs use similar information or principles, and thus no longer have independent noise.

One way to represent these dependencies is via graphical models. Let G = (V,E). V is
the set of random variables {λ1, . . . , λm} ∪ {Y }, and E is the edge set. When our LFs have
dependencies, we put an edge between them. Naturally, we make all of the LFs connected
to Y . We shall be more formal in the following section.

The independent noise case is then just the left of Figure 1. Once we start adding
dependencies, we have cases like the center graph. A more challenging case is the chain
graph on the right.

5

How can we handle the middle case? Suppose the graph can be split up into d condition-
ally independent subgraphs of weak sources such that the vertices V \{Y } are partitioned into
the sets V1, . . . , Vd. This means that for two of these sets Va and Vb, λi ⊥⊥ λj|Y for any λi ∈ Va
and λj ∈ Vb. If we define the set of edges among the LFs to be EY = {(u, v) ∈ E : u, v 6= Y },
this is equivalent to there being no path using EY between λi and λj.

If d ≥ 3, we can apply the same method of selecting conditionally independent triplets of
LFs where their accuracies are independent. Rather than having dm

3
e sets of triplets however,

we will have maxi |Vi| sets, because no two LFs in the same subgraph can have their accuracies
computed by one triplet set and thus must each use separate sets to estimate their accuracies.
Note that maxi |Vi| ≤ m − d + 1 in the case of all other subgraphs besides the largest one
being single vertices, so we’re only using at most 3 times the number of triplet sets as the
full conditional independence case.

This general case does not require any more information about the signs of the accuracies.
Given the sign of the accuracy of a LF in Vi, we will be able to directly compute the accuracies
of the LFs in all other subgraphs, but not of the other LFs in Vi. But once we have the signs
of accuracies in the other subgraphs, we can use those to solve for the signs of the other LFs
in Vi. Therefore, we only need any 1 accuracy’s sign to recover all other signs.

4 Weak Supervision, Graphical Models, and the In-

verse Covariance Matrix

Next we relax our assumption of there being conditionally independent subgraphs and handle
more complicated distributions and settings by exploiting the properties of graphical models
and exponential families. For example, note the chain graph on the right of Figure 1; the
previous methods fail because we have no independent subgraphs. We can also handle more
challenging cases, like the multiclass labels. Before we begin, we’ll briefly introduce some
basics from the theory of probabilistic graphical models.

4.1 Undirected Graphical Models

Graphical models are ways to express multivariate probability distributions in a convenient
way. They have a deep statistical and algorithmic theory. There are two ways to think
of such undirected graphical models. Both involve a graph G = (V,E), where V indicates
the random variables we are working with x1, . . . , xm and E involves a type of dependency
between a pair of variables.

Gibbs fields and MRFs The first concept, the Gibbs field, operates over the cliques
of G; these are fully connected subsets of nodes. The set of such cliques is C. We create
functions called clique potentials ψi for each clique ci ∈ C; these are functions from the
variables involved in each clique to the positive reals. We can think of these functions as

6

defining a certain weight for a configuration of the variables they work on. Note, however,
that they do not need to sum to 1 over all configurations.

Next, we define the density for the distribution as

f(x1, . . . , xn) =
1

Z

∏
ci∈C

ψi(ci), (1)

where Z is selected to ensure that this is a valid probability distribution. That is, Z =∑
x

∏
ci∈C ψi(ci). Note that (1) specifically defines the factorization of the distribution.

There is a trivial way to describe a Gibbs field: one giant clique over the entire graph. This
does not help reduce the complexity of the distribution, however. Note also that we can
write (1) as an energy function: f(x) = 1/Z exp

(
−
∑

ci∈C fi(ci)
)
.

A second approach is called a Markov random field (MRF). In this case, the graph encodes
Markov properties: if N (xi) denotes the set of neighbors of xi in the associated graph G,
then we have that

xi ⊥⊥ xj | N (xi),

for xj 6∈ N (xi).
These two approaches are equivalent for positive densities, as shown by the Hammersley-

Clifford theorem (for example, check out [10]). Let’s see a simple example of how this works.
Consider a zero-mean multivariate Gaussian where x = [x1, x2]T and x ∼ N (0,Σ). Let’s say
that Σ is diagonal, so that our variables our independent. Then, recall that the density is

fX(x1, x2) =
1√

(2π)2|Σ|
exp

(
−1

2
xTΣ−1x

)
.

What is the graph here? We have V = {x1, x2} and E = ∅. Let’s see why the indepen-
dence property (i.e., a Markov property coming from the MRF point of view) is the same as
a factorization property (from the Gibbs field point of view) with respect to the graph G:

The energy function interpretation of the Gibbs field tells us the factorization inside the
exp should give us the sum f1(x1) + f2(x2). This is because there are two cliques: {x1} and
{x2}. The MRF property tells us that our variables are independent, which is equivalent
to zero covariance; that is f(x1, x2) = f(x1)f(x2), which means that Σ−1

12 = Σ−1
21 = 0 in our

density.
Note that these are equivalent: if we require that xTΣ−1x = Σ−1

11 x
2
1 + Σ−1

22 x
2
2 + (Σ−1

12 +
Σ−1

21)x1x2 is everywhere equal to f1(x1)+f2(x2), by taking derivatives, we obtain Σ−1
12 +Σ−1

21 =
0. Since these are equal (our covariance matrix is symmetric), they are both zero. Note that
we needed symmetry, otherwise we could have Σ−1

12 = −Σ−1
21 .

The Hammersley-Clifford theorem formalizes these equivalences between Gibbs fields and
MRFs for other distributions and more general graphs—the idea is that factorizing according
to a graph G is equivalent to the Markov properties. Note how the inverse covariance matrix
played a role as well; we shall later see how to make it useful for weak supervision.

7

x2

x4x3x1 x5 x6

{x1, x2, x3} {x2, x3, x4}

{x2, x5}

{x2, x6}

Figure 2: Left: undirected graph G; Right: junction tree T for G.

Junction trees In addition to being compact ways to represent distributions that have
independencies/factorize, graphical models allow for efficient algorithms to perform infer-
ence, marginalization, etc. We briefly discuss a useful tool for such tasks, the junction tree.
Junction trees arise from doing operations on the cliques of the graph G; the idea is to have
an efficient way to move through the graph when marginalizing.

Junction trees are built from the original graph. First, each node of the tree T is now a
cluster that contains one or more nodes in G. Next, each clique in G is part of some cluster
in G. Finally, for any pair of clusters that contain some node xi, each of the clusters on the
path connecting the pairs contains xi (the running intersection property).

This is easier to understand by example. Consider Figure 2. Note that the maximal
cliques on the left are {x1, x2, x3}, {x3, x4, x2}, {x2, x5}, {x2, x6}. Each of these has become a
cluster in the tree T on the right, so that there are 4 nodes. The edges here are set to ensure
the running intersection property holds: For example, x2 is contained in the left-most node
and the bottom node, so it must be in each node on the path, in this case the {x2, x3, x4}
node.

Finally we note a couple of useful facts. First, there is always a junction tree that follows
from a having triangulated graph G, one where there is no cycle of length ≥ 4 without a
chord breaking it up. Indeed, this is the case for the graph G on the left in Figure 2. Lastly,
the edges can be thought of as the intersections of the clusters in the tree T , these are
referred to as separator sets.

4.2 Weak Supervision Models

After this brief interlude, we return to weak supervision. First, we model our setup. See [1]
for more details.

Model Setup We model the joint distribution of λ1, λ2, . . . , λm, Y via an exponential
family/MRF with associated graph G = (V,E) with V = {λ1, . . . , λm} ∪ {Y }. For our

8

binary setting, this produces what is known as an Ising model:

fG(λ1, . . . , λm, y) =
1

Z
exp

∑
λi∈V

θiλi +
∑

(λi,λj)∈E

θi,jλiλj + θY y +
∑
λi∈V

θY,iyλi

 , (2)

The Ising model has only pairwise interactions; that is, there is no monomial inside the
exponent term above that has more than two variables. Note how (2) is also written as
the energy function formulation of the Gibbs field we discussed in Section 4.1 (in terms of
cliques and clique potentials). On the other hand, it is also an MRF. For more details on
these ideas, [6] is a good reference.

We can use a more compact notation for (2). We write the variables as a vector x =
[λ1, . . . , λm, Y]T . Next, we also use similar notation for the θ parameters: we let A =
[θ1, . . . , θm, θY]T and B to be a (m + 1)× (m + 1) matrix where Bi,j = θi,j for (λi, λj) ∈ E,
Bi,m+1 = Bm+1,i = θY,i for 1 ≤ i ≤ m and 0 otherwise. Then, (2) can be written as

fG(x) =
1

Z
exp

(
ATx+ xTBx

)
, (3)

which shows the more common expression for distributions that are part of an exponential
family.

Above, the θ’s are called the canonical or natural parameters, and Z is the partition
function (recall that this is a normalization term that ensures the density is valid). The
partition function Z satisfies

Z =
∑

x∈{−1,+1}m+1

exp
(
ATx+ xTBx

)
.

As we alluded to above, one of the nice features of the approach above is that we can model
more complex settings than we could in the previous section. For example, by including
additional terms in (2), we can learn models with λi ∈ {−1, 0, 1}, so that 0 indicates an
abstain. We can include more classes for Y (beyond binary) and even consider multitask
settings. We can also learn class-conditional accuracies. However, for simplicity, we present
the binary case below.

Recall that in the prior section, we assumed that the noise of each labeling function was
uncorrelated, e.g. λiY ⊥⊥ λjY for all i, j, which allowed us to write off-diagonal entries of
M as products of accuracies. We can recover this setting: if we set θi = 0 (i.e., no unary
potentials), we can prove the uncorrelated noise property directly from the model (2).

Goal Our goal is to learn the parameters of the model. On one hand, we could directly
learn the θ canonical parameters. However, in most cases it is equivalent to learn what are
called the mean parameters, which are also sufficient to characterize the model. The mean
parameters µ are the expectations of the sufficient statistics of the model, which, in our case,
are all of the terms with θ’s attached to them (λi, Y, λiY, λuλv). So, we simply need to learn

9

• E [λi] and E [λiλj],

• E [Y] and E [Y λi].

The first two of these are immediate: we observe the quantities. The latter two are the
challenging cases, since we don’t observe Y . In the following, we will mainly focus on ways
to estimate E [Y λi], which are exactly the accuracies we discussed earlier. In fact there are
ways to estimate the class balance E [Y] without ever seeing samples of Y . In more complex
settings, we will also need to estimate parameters over cliques.

Graph Structure in the Inverse Covariance Matrix Our approach is going to involve
estimating certain quantities related to the inverse covariance matrix of the model defined
by (2). These quantities, combined with structural information about the inverse covariance
matrix, will give us enough information to estimate the parameters of the label model. We
start by explaining what this structural information is.

To understand the intuition behind the connection of the inverse covariance matrix and
the graph G, let’s return to our zero-mean multivariate normal distribution. Let Σ be its
covariance matrix, so that X ∼ N (0,Σ). We no longer require Σ to be independent. The
density is

fX(x) =
1√

(2π)m|Σ|
exp

(
−1

2
xTΣ−1x

)
.

Note that this expression is just like (3), with A = 0 and B = −1
2
Σ−1. Since a multivariate

normal is indeed an MRF and a Gibbs field, as we discussed earlier, it both factorizes and
encodes independencies. Thus, we can obtain the graph G directly from the canonical
parameters, which are simply entries of B = −1

2
Σ−1. We see that if θi,j = 0 and thus

Bi,j = 0, we must have also that Σ−1
i,j = 0. That is, the inverse covariance matrix reflects the

structure of G and is hence graph-structured : there is no edge between a pair of variables iff
the corresponding entry in the inverse covariance matrix is 0.

This beautiful property was easy to derive for Gaussians precisely because the inverse
covariance matrix Σ−1 directly expresses the canonical parameters1 θ, but this is not neces-
sarily the case with other distributions, including discrete distributions like the ones we are
working with. Fortunately, there is an elegant result for Ising and other discrete exponential
models as well, developed in [3].

To present this result, we need a little bit more notation. Let us write K for the inverse
covariance matrix for the model in (2). Now we use the junction tree notions we introduced
in Section 4.1.

First, we will triangulate our graph. Next, we consider the resulting junction tree T ; recall
that a separator S is the intersection of adjacent clusters in T (e.g., edges in the junction
tree). Then S = C1 ∩ C2 for clusters C1 and C2, for example. Next, consider the sufficient

1That is, the relationship between the mean and canonical parameters for zero-mean Gaussian MRFs
is extremely simple: they are inverses. In general, this does not hold, and the relationship could be very
complex.

10

Figure 3: Left: graph G for weak supervision. Right: KO, corresponding inverse covariance matrix.
This is an example of a weak supervision label model. There are eight LFs in four blocks: one
triplet, two pairs, and one singleton. {Y }, the latent variable, is the only separator, so K = Σ−1,
the inverse covariance matrix shows the graph structure, as shown to the right. We only show KO,
the submatrix consisting of the sources. Note that the black areas are 0: there is no edge between
the different groups of LFs, so their entries in the inverse covariance are zero.

statistic ΨS associated with S; in the binary case, if C1 = {λ1, λ2, Y }, C2 = {λ2, λ3, Y }, then
S = {λ2, Y } and ΨS = λ2Y . By augmenting the covariance matrix Σ with all such ΨS, then
the resulting inverse matrix K ′ will exhibit the graph-structured property.

Proposition 1 K ′ := Cov [X,Ψ] is graph-structured.

Note that if our model satisfies the singleton separator set assumption, then each S only
contains one variable (that is, our junction tree here is trivial). These S’s are already in
the covariance matrix, so K itself is graph-structured, without further augmentation. An
example of this idea is shown in Figure 3. Note that each of the LFs are organized as cliques,
and the intersection of these cliques is simply {Y }, so that we are in the singleton separator
set regime. Then, K is graph-structured, as shown on the right of Figure 3. Note, this
is in contrast to the method presented in section 3, which handles non-singleton separator
sets without any augmentation as long as there are at least 3 conditionally independent
subgraphs.

4.3 Learning the Label Model With The Inverse

The material in this section is presented in [1]. We want to learn the parameters of our
model given access the m weak supervision sources and no ground truth labels. Let O =
{λ1, . . . , λm} be the observed labels from the weak supervision sources, and S = {Y } be the
unobserved latent variable. We want to take advantage of the known structure of graph G.
In Appendix B, we’ll show how to learn the graph directly. Let us see how to connect G to
items we can observe.

11

Figure 4: Left: graph G for weak supervision. Right: Σ−1
O , corresponding inverse of the observed

block ΣO of the covariance matri Σ. Note that unlike with KO, Σ−1
O does not exhibit graph

structure.

First, let’s set up some additional notation:

Cov [O ∪ S] := Σ =

[
ΣO ΣOS
ΣT
OS ΣS

]
.

Next, we write

Σ−1 := K =

[
KO KOS
KT
OS KS

]
.

Then, using Prop. 1, K is graph-structured : there is no edge between λi and λj in G when
the corresponding term in Σ−1 is 0.

What’s the problem? We never know Y , so we cannot observe the full covariance matrix
Σ, or the graph-structured K = Σ−1. Of course, we do see ΣO, and we can invert it.
Unfortunately, (ΣO)−1 6= KO, unless K is block-diagonal, and in our setting, it is not. We
might guess that the Σ−1 term still has graph structure, but it does not, as shown in Figure 4.

Note that while we can recognize some of the behavior of KO in the color pattern shown
by Σ−1, it is masked. For example, the term corresponding to LF7 and LF4 is clearly non-
zero—without seeing the corresponding entry in KO, we cannot say whether or not there
should be an edge between these two or not.

Using Block Matrix Inversion Clearly KO and Σ−1
O are not the same, so we start by

figuring out the difference. Using the block matrix inversion formula,

KO = Σ−1
O + cΣ−1

O ΣOSΣT
OSΣ−1

O , (4)

where c =
(
ΣS − ΣT

OSΣ−1
O ΣOS

)−1 ∈ R+. Let z =
√
cΣ−1

O ΣOS ; we can write (4) as

Σ−1
O = KO − zzT . (5)

12

 = −

Σ𝑂
−1 = Σ−1

𝑂 − 𝑧𝑧𝑇
Low-Rank Observed Sparse

Figure 5: The difference between the observable Σ−1
O term and the structured and sparse KO block

of the inverse covariance matrix is just a low-rank matrix zzT .

Note that we are back to an equation similar to earlier approach with accuracies. We
have an observable term Σ−1

O , a term where we know certain entries KO (i.e., we know the
0’s in KO from the graph G), and we know that zzT is low-rank (in this case, it is rank-1).
This information is often enough to solve the problem. An illustration of all of these terms
is shown in Figure 5.

Here, by solving, we will recover z, which also enables us to recover the full Σ. This
takes us back to our goal: The entries of Σ corresponding to the “missing” row involving λi
and Y will almost immediately tell us the mean parameter E [λiY]. That is, Cov [λi, Y] =
E [λiY]−E [λi]E [Y], and the right-hand term there consists of the class balance (which, as
we mentioned, we can also estimate) and the observable mean for λi.

Solving The Matrix Equation Thus our goal is to solve Equation (5). zzT only has m
parameters, while we observe Θ(m2) values in Σ−1

O . The challenge, however, is that we do
not know all of KO, only the entries where it is 0, corresponding to non-edges in the graph
G.

We then set up a mask Ω = {(i, j) : (λi, λj) 6∈ E(G)}. Now Ω consists of pairs of entries
where we know KO is 0. By applying this mask to the two matrices, we get the equation

0 = (Σ−1
O)Ω + (zzT)Ω. (6)

Now we are ready to solve. We can do this by minimizing the objective
∣∣∣∣∣∣Σ̂−1

O + zzT
∣∣∣∣∣∣

Ω
via SGD. This is shown in Algorithm 1. Note that the norm here is the Frobenius norm, but
only computed on the values in the mask Ω. The algorithm estimates ẑ and then computes
the terms in (4), finally producing estimates of the mean parameters, as was our goal.

The Rank-One Case Note that Algorithm 1 runs for zzT that can be higher than rank-
one. This happens, for example, when Y is multi-class: if there are k classes, then ΣOS and
zzT are rank-k. However, in the binary setting z is a vector and zzT is rank-one. In this
case, we can perform the optimization step in the algorithm by solving a linear system. This
approach resembles the one we took for the sources in Section 3.

13

Algorithm 1 Source Estimation for Weak Supervision

Input: Labeling rates and covariance E [O], ΣO; class balance and variance E [Y] ,ΣS;
dependency mask Ω
ẑ ← argminz

∣∣∣∣Σ−1
O + zzT

∣∣∣∣
Ω

ĉ← Σ−1
S (1 + ẑTΣOẑ)

Σ̂OS ← ΣOẑ/
√
ĉ

Ê [λiY]← Σ̂OS + E [Y]E [O]
Return: Mean parameters Ê [λiY]

From (6), we have that if (i, j) ∈ Ω, then zizj = (Σ−1
O)i,j. If we take the log of squares of

both sides of this equation, we get

log z2
i + log z2

j = log(((Σ−1
O)i,j)

2).

We have such an equation for each pair (i, j) ∈ Ω. Then we can produce the corresponding
linear system. We write MΩ for a |Ω| ×m matrix where the row corresponding to (i, j) has
a 1 in positions i and j and 0 elsewhere. We set `i = log(z2

i) and q(i,j) = log(((Σ−1
O)i,j)

2).
Then we have the linear system

MΩ` = qΩ. (7)

This system is now easy to solve, e.g., by least squares. Note that when solving it, we do
not directly recover estimates of zi, but rather z2

i . That is, we recover up to sign. Next, we
discuss conditions for recovery.

Conditions For Recovery and Symmetries Clearly, to solve the system (7) uniquely
we must have full rank in the matrix MΩ. In other words, we must have enough independence
to have a chance to solve. We also need ΣO to be invertible (which requires at least n ≥ m
samples), and for the entries in (ΣO)−1

Ω to be bounded away from 0.
Once we’ve solved the system, we need to perform sign recovery: since we only obtain

ẑ2
i , we only know |ẑi| and we must obtain its sign. Clearly, both +|ẑi| and −|ẑi| are valid

solutions of (7).
We must break the symmetry here. We do so by relying on our conditions that at least

some of the accuracies are positive (which translates into signs for the recovered ẑ’s). Note
also that for each connection in Ω (these are precisely the non-edges of G), if we recover a
single sign, we recover all of the other ones. This is because zizj = (Σ−1

O)i,j, and if we know
the sign of two of these terms, we know the third. For example, if we are working with the
case where there are no dependencies, then Ω = {(i, j) : i < j}, and a single sign generates
all of the other signs.

What about the higher-rank case, as in Algorithm 1? In this case, breaking symmetries
is more challenging, because we are dealing with more than reflections. Note if we have
some ẑ recovered, for any orthogonal matrix O, ẑO is also a solution, since (ẑO)(ẑO)T =
ẑOOT ẑT = ẑẑT . In this case, we have to break both rotations as well.

14

5 Sampling Error

Up until this point, we have been treating terms like E[λi],M,ΣO as the exact population
mean vectors, second moment matrices, and covariance matrices in our algorithms. However,
in reality these are computed from our observed sample of data points. More precisely, rather
than using some µ vector of means of the outputs of the LFs, we define µ̂ = 1

n

∑n
i=1 li where

li is a length m vector containing labels for the data point xi. Rather than using M we must
use some M̂ = 1

n

∑n
i=1 lil

T
i , and we define Σ̂O = M̂ − µ̂µ̂T .

How many data points do we need to obtain a good estimate of these population values,
and how do these impact the final value of accuracy a? The way such results work are by
bounding the sampling error via concentration inequalities. For example, since we often use
the 3 × 3 subblocks R of M for our triplet approaches, we can use the Matrix Hoeffding
inequality to write

P (||R̂−R||2 ≥ γ) ≤ 6 exp

(
−nγ

2

288

)
.

By integrating the bound above with respect to γ, we can obtain a bound on E
[
‖R̂−R‖2

]
.

Then, we propagate this error through our algorithm from Section 3. We get the following
result:

Theorem 2 Let â be an estimate of the accuracies a using M̂ computed from n samples,
where all LFs are conditionally independent given Y . Assume that the signs of a are recov-
erable, that |ai| ≥ amin is bounded away from 0, and that c is an absolute constant. Then,
with high probability, we have

E[||â− a||2] ≤ c

a5
min

√
m

n
.

Let’s interpret the behavior of the bound. First, the expression goes to 0 as we increase
the number of samples n. Next, we are estimating m parameters (because there are m
accuracies, and these are independent). Thus, if we wanted a fixed error, we need about m
samples. Next, the closer amin gets to 0, the more samples we need (but, this is a constant
independent of m or n).

Of course, this was for the independent case. Here we were able to limit ourselves to
working with triplets and thus only estimate O(m) parameters. However, when we use the
’inverse’ method, we need to estimate all the entries in ΣO in order to compute Σ−1

O , so
that we need to estimate O(m2) parameters. To efficiently estimate such matrices, we use a
powerful tool, the effective rank, which allows us to tighten our bounds on sample complexity
even for full-rank matrices.

15

Effective rank The effective rank of the m×m matrix Σ, described by Vershynin in [7],
is defined as

re(Σ) = tr(Σ)/‖Σ‖2

where ‖Σ‖2 is the largest singular value of the matrix Σ. It is always true that re(Σ) ≤
rank(Σ) ≤ m.

Effective rank is a tool often applied to covariance matrix estimation and essentially
measures the dimension of the subspace of the distribution of the random variables over
which the covariance matrix is calculated. Therefore, a low effective rank shows that the
data distribution is low dimensional.

The reason we’re interested in the effective rank is that it yields tighter control over the
error. Consider for example the error in estimating the covariance matrix for the inverse
method. A beautiful result from Bunea [4] states that

E[||Σ̂− Σ||2] ≤ c‖Σ‖2 max
{√re(Σ) logmn

n
,
(re(Σ) logmn

n

)}
.

Examining the right-hand side, if we replace re(Σ) with worst-case, the full rank m,
we would need m‖Σ‖2 logm samples just to control the multiplicative error. However, the
effective rank can be much smaller—even a constant, as we sketch out below.

Bounding the Effective Rank For the case described in section 3 of all weak sources
being conditionally independent, we may have that the M matrix we estimate is full rank—
but we shall see that its effective rank captures the notion that this is an easy case. Recall
that M can be written as M = I − diag(a2) + aaT .

The trace of M is m since each diagonal element is 1. For ||M ||, the largest singular value
of M , we can find a lower bound using Weyl’s inequality. The eigenvalues of I−diag(a2) are
1 − a2

|min| ≥ · · · ≥ 1 − a2
|max| where we order the accuracies in terms of absolute value, and

the eigenvalues of aaT are ||a||22 with multiplicity 1 and 0 with multiplicity 0. This is easy
to see because we want aaTv = λv ⇒ aTaaTv = λaTv ⇒ ||a||22aTv = λaTv, so λ = ||a||22.
Furthermore, we can find m − 1 v’s that are orthogonal to a such that aTv = 0, in which
case λ = 0. Weyl’s inequality states that the largest eigenvalue of M will be greater than
the smallest eigenvalue of I − diag(a2) plus the largest eigenvalue of aaT , so

σmax(M) ≥ 1− a2
|max| + ||a||22 = 1 +

m∑
i 6=|max|

a2
i ≥ 1 + (m− 1)a2

|min| ≥ ma2
|min|.

Therefore, the effective rank of M is at most

re(M) =
m

σmax(M)
≤ m

1− a2
|max| + ||a||22

≤ 1

a2
|min|

.

Note how our effective rank is also intimately tied to amin: the closer to random the
accuracy, the worse off we are.

16

References

[1] A. J. Ratner, B. Hancock, J. Dunnmon, F. Sala, S. Pandey, and C. Ré. Training complex
models with multi-task weak supervision. In Proceedings of the AAAI Conference on
Artificial Intelligence, Honolulu, Hawaii, 2019.

[2] P. Varma, F. Sala, A. He, A. Ratner, and C. Ré. Learning dependency structures for
weak supervision models. In ICML, pp 6418-6427, 2019.

[3] P.-L. Loh and M. Wainwright. Structure estimation for discrete graphical models: Gen-
eralized covariance matrices and their inverses. Annals of Statistics, vol. 41, no. 6, 2013.

[4] F. Bunea and L. Xiao. On the sample covariance matrix estimator of reduced effective
rank population matrices, with applications to fpca. Bernoulli, 21(5):1200-1230, 2015.

[5] D. R. Karger, S. Oh, and D. Shah. Iterative Learning for Reliable Crowdsourcing Systems.
Proc. Advances in Neural Information Processing Systems 24, 2011.

[6] M. Wainwright and M. Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008.

[7] R. Vershynin. Introduction to the Non-Asymptotic Analysis of Random Matrices. Com-
pressed Sensing, pages 210268. Cambridge University Press, 2012.

[8] E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis?. Journal
of the ACM, vol. 58, no. 11, 2011.

[9] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. Rank-sparsity inco-
herence for matrix decomposition. SIAM Journal on Optimization, vol. 21, no. 2, 2011.

[10] S. Lauritzen. Graphical Models. Clarendon Press, 1996.

[11] F. Sala, P. Varma, S. Sagawa, J. Fries, D. Fu, S. Khattar, A. Ramamoorthy, K. Xiao, K.
Fatahalian, J. Priest, and C. Ré. Multi-resolution weak supervision for sequential data.
Neural Information Processing Systems (NeurIPS), 2019.

A Connections to Crowdsourcing

The key idea behind crowdsourcing is easy to see by looking at a simple noise model. Say
we have m workers that seek to estimate some value Y , and that each voter produces an
estimate Y + ε, for ε ∼ N (0, σ2). If each worker’s noise is chosen i.i.d., then we can simply
take the average of the workers’ estimates, and a simple Chernoff bound shows that the
probability that the error is greater than some fixed δ decreases exponentially fast in m.

The idea of averaging worker estimates has a discrete analog. For example, when each
worker produces a vote in {−1,+1}, we can take the majority vote. These techniques

17

work well when we are in the restrictive setting where each voter has independent and
identical error probability. Unfortunately, for both crowdsourcing and weak supervision,
this is unlikely to be true: workers and weak sources vary in their accuracy, and may be
correlated with each other.

More modern approaches to crowdsourcing (e.g., Karger, Oh, and Shah in [5]) estimate
the accuracies of the workers. One of the scenarios for their approach is the spammer/ham-
mer model: a worker is either a hammer, and has probability 1 of predicting the correct
value, or a spammer, who has probability 1/2, and thus has no useful information. For this
model, the algorithm in [5] follows a message passing-style approach. Here, the graph being
used is a bipartite graph with connections between (multiple) tasks and workers when a
particular worker is allocated to a task. This yields opportunities to see distinct groups of
agreements and disagreements. This approach, however, still requires independent noise for
each worker.

Note that we can in fact model the scenario in [5] with our tools, in particular the ones
from [1] and [11]. In particular, we can model the tasks in [5] with the task graph of [1].
Then, we can use the conditionally independent setting and run Algorithm 1. In addition,
if we wish to avoid the matrix inversion step, we can apply the work in [11].

B Structure Learning

In the body of these notes, we assumed that we have access to the graph structure G. What
if we do not have access to it? In general, this is known as the structure learning problem. In
the typical setting, all of the variables are observed; the fact that we have a latent variable
(the label) makes our case more challenging.

Below we briefly sketch out a surprising solution by applying a tool called robust PCA.
Recall that PCA produces a low-rank decomposition. It can tolerate low-magnitude noise,
but very large-magnitude noise is difficult. Robust PCA algorithms are designed to handle
this specific case.

In robust PCA, we only get to observe a matrix M ∈ Rm×m that is equal to the sum of
a low-rank matrix and a sparse matrix,

M = L+ S,

where rank(L) = r and |supp(S)| = k. The goal is to decompose M into L and S. The we
can keep L and get rid of the noise S.

Note that the decomposition M = L+S is not identifiable without additional conditions.
For example, if M = eie

T
j , M is itself both sparse and low-rank, and thus the pairs (L, S) =

(M, 0) and (L, S) = (0,M) are equally valid solutions. Therefore, the fundamental question
of robust PCA studies is to determine conditions under which the decomposition can be
recovered. The two seminal works on robust PCA [8, 9] studied transversality conditions for
identifiability.

18

Algorithm 2 Weak Supervision Structure Learning

Input: Estimate of the covariance matrix Σ̂O, parameters λn, γ, threshold T
Solve: (Ŝ, L̂) = argmin(S,L) − log det(S − L) + tr((S − L)Σ̂O) + λn(γ‖S‖1 + ‖L‖∗)

s.t. S − L � 0, L � 0
Ê ← {(i, j) : i < j, Ŝij > T}
Return: Ĝ = (V, Ê)

Robust PCA for Structure Learning How do we connect this notion of robust PCA
to our approach? Let’s go back to (5), which says that

Σ−1
O = KO − zzT .

Before, we knew the structure, which was reflected in the sparsity pattern of KO. Now
we do not know it—we just assume there is sparsity. We only get to observe Σ−1

O . Note,
however, that the problem matches the robust PCA setup:

• Like M , Σ−1
O is the sum of:

– a low-rank term L = −zzT ,

– and a sparse term S = KO.

Thus, if we run an algorithm for robust PCA, we will decompose the observed Σ−1
O into zzT

and KO. Note how the roles here are reversed: normally, in robust PCA, S is a noise term
that we wish to remove, while in our case KO contains the desired structure. See [2] for
details.

Note that we can even learn the parameters by using zzT via this approach—but we may
choose not to. We can learn the structure with high probability with potentially a smaller
number of samples, and then run the simpler Algorithm 1 on more or new samples. We
may also run the structure learning algorithm on just a binary setting while leaving the full
multiclass approach to Algorithm 1 once the structure is known.

Finally, we show a convex program (in fact, a semidefinite program) for performing the
decomposition. Note how each of the terms in the objective function encourages the right
behavior: the nuclear norm serves to encourage low-rank in L and the `1 norm encourages
sparsity in S.

19

	Motivation
	Problem Setup
	Learning the Accuracies of Weak Supervision Sources
	Fully Independent Noise
	Adding Dependencies

	Weak Supervision, Graphical Models, and the Inverse Covariance Matrix
	Undirected Graphical Models
	Weak Supervision Models
	Learning the Label Model With The Inverse

	Sampling Error
	Connections to Crowdsourcing
	Structure Learning

