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What is online machine learning? 

Why is it desirable? 

Which models are available? 

Live demo 

Questions

2

Outline



Online machine learning in a nutshell
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• An algorithm is “online” when it can learn with one element at a time 

• For ML, this refers to models that can be updated with a single sample 

• Most ML is batch; all the data is assumed to be available 

• Many synonyms: incremental, streaming, sequential, lifelong 

• Online ML has many benefits but isn’t very popular (paradox) 

• Online ML requires rethinking the whole data science workflow in a new way



Thinking online
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• Many algorithms have an online counterpart: 

❖ Mean, variance, skew, kurtosis → Welford’s algorithm 

❖ Gradient descent → stochastic gradient descent 

❖ Fourier transform → SDFT algorithm 

❖ Histograms → see this paper 

• Most of the time, these algorithms are actually easier to understand… 

• … and even easier to implement

https://www.wikiwand.com/en/Algorithms_for_calculating_variance#/Welford's_online_algorithm
https://www.comm.utoronto.ca/~dimitris/ece431/slidingdft.pdf
http://jmlr.org/papers/volume11/ben-haim10a/ben-haim10a.pdf


You might already be doing it …

• Deep learning essentially boils down to stochastic gradient descent 

• Bayesian inference is about updating a current model with new evidence 

• (Dynamic) Bayesian networks can be updated online 

• Most recommendation systems work online under the hood 

• Tech giants are doing it all the time
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… you just don’t know it!
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• Online machine learning is not as popular as batch machine learning 

• Before the Internet era, there was no need to process streaming data 

• Universities don’t teach it very much, vicious circle 

• Kaggle mentality: see every problem as a train and test scenario



Online machine learning is good for you
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• You can update your model with new data 

• You don’t have to retrain your model from scratch 

• Your model is always up-to-date 

• Your model can (usually) adapt to concept drift 

• You can process huge datasets with a laptop 

• Local model development is more realistic

https://www.wikiwand.com/en/Concept_drift


• Library for online machine learning 

• Written in Python (pip install creme) 

• General-purpose (like scikit-learn) 

• Started in January 2019 

• Interest is growing at a steady pace 

• github.com/creme-ml/creme
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http://github.com/creme-ml/creme


Usage example
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from creme import compose
from creme import datasets
from creme import linear_model
from creme import metrics
from creme import preprocessing

X_y = datasets.Phishing()  # this doesn't put anything in memory

model = compose.Pipeline(
    preprocessing.StandardScaler(),
    linear_model.LogisticRegression()
)

metric = metrics.ROCAUC()

for x, y in X_y:
    y_pred = model.predict_proba_one(x)  # make a prediction
    metric = metric.update(y, y_pred)    # update the metric
    model = model.fit_one(x, y)          # make the model learn



Data representation

• Features are stored in dictionaries (called “dicts” in Python) 

• Dicts are to lists what pandas DataFrames are to numpy arrays 

• Dicts can naturally represent sparse data 

• Dicts allow naming features 

• Dicts are native to Python → no overhead from specialised data structures 

• Dicts are JSON-friendly
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Flask web routes example
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@app.route('/predict', methods=['GET'])
def predict():

    payload = flask.request.json
    x = payload['features']

    model = db.load_model()
    y_pred = model.predict_proba_one(x)

    return y_pred, 200

@app.route('/learn', methods=['POST'])
def learn():

    payload = flask.request.json
    x = payload['features']
    y = payload['target']

    model = db.load_model()
    model.fit_one(x, y)

    return {}, 201



A refreshingly simple philosophy
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• We favour simplicity: what works on your laptop should work everywhere 

• Data preprocessing and cleaning should be doable online  

• Pipelines are first-class citizens and we encourage using them 

• Model deployment and maintenance shouldn’t be a headache



creme has got you covered
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• Anomaly detection 

• Linear models 

• Imbalanced learning 

• Recommendation systems 

• Decision trees 

• Streaming utilities 

• Feature extraction 

• Feature selection 

• Ensembles 

• Model selection 

• Latent Dirichlet Allocation 

• Time series 

• Clustering 

• Performance metrics 

• Naïve Bayes 

• Nearest neighbours



Decision trees

• By design, decision trees require scanning a dataset multiple times 

• It’s possible to start with a single leaf and create branches on the fly 

• Two main variants: 

❖ Hoeffding trees → store sufficient statistics, decide to split every so often 

❖ Mondrian trees → build deep trees completely at random 

• I’m working on a Cython implementation of Mondrian trees, with a twist
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More information in these slides

https://homes.cs.washington.edu/~pedrod/papers/kdd00.pdf
https://papers.nips.cc/paper/5234-mondrian-forests-efficient-online-random-forests.pdf
http://maxhalford.github.io/slides/online-decision-trees.pdf


Bayesian inference

• We begin with a prior model 

• When new evidence arrives, we update out model with it 

• Mixing a prior with evidence produces a posterior distribution 

• The posterior becomes the new prior 

• Bayesian inference provides a sound foundation to do this
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Bayesian inference

16

More details in this blog post

prior 
distribution

likelihood

predictive 
distribution posterior 

distribution

https://maxhalford.github.io/blog/bayesian-linear-regression/


Disclaimer

• Online machine learning isn’t a one-size-fits-all solution 

• Batch learning is perfectly adequate for many problems 

• It makes sense when you are dealing with streaming data 

• Both approaches are complementary; neither dominates the other 

• Use the right tool for the job!
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Speed considerations
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• Many libraries implement gradient descent, which allows comparing them 

• creme shines when samples arrive one by one: 

❖ 20x faster than scikit-learn 

❖ 50x faster than PyTorch 

❖ 180x faster than Tensorflow 

• The figures are similar for learning and predicting 

Click here to access the complete benchmarks

https://github.com/creme-ml/creme/tree/master/benchmarks


What about big data?

• Learning with one sample at a time incurs overhead and is not efficient 

• To go big, we have to make use of vectorisation 

• Therefore, we need to support mini-batches 

• The next version of creme will support mini-batches for some models 

• We will also integrate more tightly with dask and vaex 

• However, pure online learning will remain our core philosophy

Exciting prospects, stay tuned!
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https://www.wikiwand.com/en/Array_programming
https://dask.org/
https://vaex.io/


Time for a demo! 
https://git.io/JfM9W
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https://gist.github.com/MaxHalford/e23c4fe26c035b818bc40cbdde9c3a8f


maxhalford.github.io 

github.com/MaxHalford 

maxhalford25@gmail.com
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