
By Max Halford

A brief introduction to
online machine learning
Hong Kong Machine Learning - June 10th 2020

1

https://maxhalford.github.io/
http://www.hkml.ai/

What is online machine learning?

Why is it desirable?

Which models are available?

Live demo

Questions

2

Outline

Online machine learning in a nutshell

3

• An algorithm is “online” when it can learn with one element at a time

• For ML, this refers to models that can be updated with a single sample

• Most ML is batch; all the data is assumed to be available

• Many synonyms: incremental, streaming, sequential, lifelong

• Online ML has many benefits but isn’t very popular (paradox)

• Online ML requires rethinking the whole data science workflow in a new way

Thinking online

4

• Many algorithms have an online counterpart:

❖ Mean, variance, skew, kurtosis → Welford’s algorithm

❖ Gradient descent → stochastic gradient descent

❖ Fourier transform → SDFT algorithm

❖ Histograms → see this paper

• Most of the time, these algorithms are actually easier to understand…

• … and even easier to implement

https://www.wikiwand.com/en/Algorithms_for_calculating_variance#/Welford's_online_algorithm
https://www.comm.utoronto.ca/~dimitris/ece431/slidingdft.pdf
http://jmlr.org/papers/volume11/ben-haim10a/ben-haim10a.pdf

You might already be doing it …

• Deep learning essentially boils down to stochastic gradient descent

• Bayesian inference is about updating a current model with new evidence

• (Dynamic) Bayesian networks can be updated online

• Most recommendation systems work online under the hood

• Tech giants are doing it all the time

5

… you just don’t know it!

6

• Online machine learning is not as popular as batch machine learning

• Before the Internet era, there was no need to process streaming data

• Universities don’t teach it very much, vicious circle

• Kaggle mentality: see every problem as a train and test scenario

Online machine learning is good for you

7

• You can update your model with new data

• You don’t have to retrain your model from scratch

• Your model is always up-to-date

• Your model can (usually) adapt to concept drift

• You can process huge datasets with a laptop

• Local model development is more realistic

https://www.wikiwand.com/en/Concept_drift

• Library for online machine learning

• Written in Python (pip install creme)

• General-purpose (like scikit-learn)

• Started in January 2019

• Interest is growing at a steady pace

• github.com/creme-ml/creme

8

http://github.com/creme-ml/creme

Usage example

9

from creme import compose
from creme import datasets
from creme import linear_model
from creme import metrics
from creme import preprocessing

X_y = datasets.Phishing() # this doesn't put anything in memory

model = compose.Pipeline(
 preprocessing.StandardScaler(),
 linear_model.LogisticRegression()
)

metric = metrics.ROCAUC()

for x, y in X_y:
 y_pred = model.predict_proba_one(x) # make a prediction
 metric = metric.update(y, y_pred) # update the metric
 model = model.fit_one(x, y) # make the model learn

Data representation

• Features are stored in dictionaries (called “dicts” in Python)

• Dicts are to lists what pandas DataFrames are to numpy arrays

• Dicts can naturally represent sparse data

• Dicts allow naming features

• Dicts are native to Python → no overhead from specialised data structures

• Dicts are JSON-friendly

10

Flask web routes example

11

@app.route('/predict', methods=['GET'])
def predict():

 payload = flask.request.json
 x = payload['features']

 model = db.load_model()
 y_pred = model.predict_proba_one(x)

 return y_pred, 200

@app.route('/learn', methods=['POST'])
def learn():

 payload = flask.request.json
 x = payload['features']
 y = payload['target']

 model = db.load_model()
 model.fit_one(x, y)

 return {}, 201

A refreshingly simple philosophy

12

• We favour simplicity: what works on your laptop should work everywhere

• Data preprocessing and cleaning should be doable online

• Pipelines are first-class citizens and we encourage using them

• Model deployment and maintenance shouldn’t be a headache

creme has got you covered

13

• Anomaly detection

• Linear models

• Imbalanced learning

• Recommendation systems

• Decision trees

• Streaming utilities

• Feature extraction

• Feature selection

• Ensembles

• Model selection

• Latent Dirichlet Allocation

• Time series

• Clustering

• Performance metrics

• Naïve Bayes

• Nearest neighbours

Decision trees

• By design, decision trees require scanning a dataset multiple times

• It’s possible to start with a single leaf and create branches on the fly

• Two main variants:

❖ Hoeffding trees → store sufficient statistics, decide to split every so often

❖ Mondrian trees → build deep trees completely at random

• I’m working on a Cython implementation of Mondrian trees, with a twist

14

More information in these slides

https://homes.cs.washington.edu/~pedrod/papers/kdd00.pdf
https://papers.nips.cc/paper/5234-mondrian-forests-efficient-online-random-forests.pdf
http://maxhalford.github.io/slides/online-decision-trees.pdf

Bayesian inference

• We begin with a prior model

• When new evidence arrives, we update out model with it

• Mixing a prior with evidence produces a posterior distribution

• The posterior becomes the new prior

• Bayesian inference provides a sound foundation to do this

15

Bayesian inference

16

More details in this blog post

prior
distribution

likelihood

predictive
distribution posterior

distribution

https://maxhalford.github.io/blog/bayesian-linear-regression/

Disclaimer

• Online machine learning isn’t a one-size-fits-all solution

• Batch learning is perfectly adequate for many problems

• It makes sense when you are dealing with streaming data

• Both approaches are complementary; neither dominates the other

• Use the right tool for the job!

17

Speed considerations

18

• Many libraries implement gradient descent, which allows comparing them

• creme shines when samples arrive one by one:

❖ 20x faster than scikit-learn

❖ 50x faster than PyTorch

❖ 180x faster than Tensorflow

• The figures are similar for learning and predicting

Click here to access the complete benchmarks

https://github.com/creme-ml/creme/tree/master/benchmarks

What about big data?

• Learning with one sample at a time incurs overhead and is not efficient

• To go big, we have to make use of vectorisation

• Therefore, we need to support mini-batches

• The next version of creme will support mini-batches for some models

• We will also integrate more tightly with dask and vaex

• However, pure online learning will remain our core philosophy

Exciting prospects, stay tuned!

19

https://www.wikiwand.com/en/Array_programming
https://dask.org/
https://vaex.io/

Time for a demo!
https://git.io/JfM9W

20

https://gist.github.com/MaxHalford/e23c4fe26c035b818bc40cbdde9c3a8f

maxhalford.github.io

github.com/MaxHalford

maxhalford25@gmail.com

21

http://maxhalford.github.io
http://github.com/MaxHalford
mailto:maxhalford25@gmail.com

