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Abstract

We propose a new approach to collision and self–
collision detection of dynamically deforming ob-
jects that consist of tetrahedrons. Tetrahedral
meshes are commonly used to represent volumet-
ric deformable models and the presented algorithm
is integrated in a physically–based environment,
which can be used in game engines and surgical
simulators. The proposed algorithm employs a hash
function for compressing a potentially infinite reg-
ular spatial grid. Although the hash function does
not always provide a unique mapping of grid cells,
it can be generated very efficiently and does not re-
quire complex data structures, such as octrees or
BSPs. We have investigated and optimized the pa-
rameters of the collision detection algorithm, such
as hash function, hash table size and spatial cell
size. The algorithm can detect collisions and self–
collisions in environments of up to 20k tetrahedrons
in real–time. Although the algorithm works with
tetrahedral meshes, it can be easily adapted to other
object primitives, such as triangles.

Figure 1: Environment with dynamically deforming
objects, that consist of tetrahedrons.

1 Introduction

Physically–based simulations and animations of de-
formable objects play an important role in vari-
ous research areas, such as cloth modeling, games,
and computational surgery. In order to realistically
process the interaction between deformable objects,
very efficient collision detection algorithms are re-
quired. Further, the information provided by the
collision detection approach should allow for an ef-
ficient and physically–correct collision response.

This paper describes a new algorithm for the
detection of collisions and self–collisions of de-
formable objects based on spatial hashing. The al-
gorithm classifies all object primitives, i. e. vertices
and tetrahedrons, with respect to small axis–aligned
bounding boxes AABB. Therefore, a hash function
maps the 3D boxes (cells) to a 1D hash table index.
As a result, each hash table index contains a small
number of object primitives, that have to be checked
against each other for intersection. Since a hash ta-
ble index can contain more than one primitive from
the same object as well as primitives from differ-
ent objects, self–collisions and collisions of differ-
ent objects can be detected. The actual collision de-
tection test computes barycentric coordinates of a
vertex with respect to a penetrated tetrahedron. This
information can be employed to estimate the pen-
etration depth for a pair of colliding tetrahedrons.
The penetration depth can be used for further pro-
cessing, such as collision response.

Using a hash function for spatial subdivision is
very efficient. While spatial subdivision usually
requires one pre–processing pass through all ob-
ject primitives to estimate the global bounding box
and the cell size, this pass can be omitted in our
approach. On the other hand, the hash mecha-
nism does not always provide a unique mapping
of grid cells to hash table entries. If different 3D
grid cells are mapped to the same index, the per-
formance of the proposed algorithm decreases. In
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order to reduce the number of index collisions, we
have optimized the parameters of the collision de-
tection algorithm that have an impact on this prob-
lem, namely the characteristics of the hash function,
the hash table size, and the 3D cell size. The paper
investigates these factors.

Further, the paper presents experimental results,
that have been obtained using physically-based en-
vironments for deformable objects with varying ge-
ometrical complexity (see Fig. 1). Environments
with up to 20000 tetrahedrons can be tested for col-
lisions and self–collisions in real–time on a PC.

The remainder of the paper is organized as fol-
lows. Sec. 2 discusses the state-of-the-art in col-
lision detection for rigid and deformable objects.
Sec. 3 presents the proposed algorithm. Sec. 4 fo-
cuses on the relevant parameters of the algorithm
and investigates their influence on the performance.
In Sec. 6, results and experiments are described.
Sec. 7 discusses limitations of our approach, fol-
lowed by directions for ongoing research and a con-
clusion.

2 Related Work

Efficient collision detection is an essential com-
ponent in physically–based simulation or anima-
tion [2], [6], including cloth modeling [4], [24],
[28]. Further applications can be found in robotics,
computer animation, medical simulations, compu-
tational biology, and games.

Collision detection algorithms based on
bounding–volume (BV) hierarchies have proven to
be very efficient and many types of BVs have been
investigated. Among the acceleration structures we
find spheres [13], [25], [26], axis–aligned bounding
boxes [14], [3], oriented bounding boxes [9], and
discrete–oriented polytopes [17]. In [29], various
optimizations to BV hierarchies are presented.

Initially, BV approaches have been designed for
rigid objects. In this context, the hierarchy is com-
puted in a pre–processing step. In the case of de-
forming objects, however, this hierarchy must be
updated at run time. While effort has been spent
to optimize BV hierarchies for deformable objects
[19], they still pose a substantial computational bur-
den and storage overhead for complex objects. As
an additional limitation for physically–based appli-
cations, BV approaches typically detect intersecting
surfaces. The computation of the penetration depth

for collision response requires an additional step.
As an alternative to object partitioning, other ap-

proaches employ discretized distance fields as volu-
metric object representation for collision detection.
The presented results, however, suggest that this
data structure is less suitable for real–time process-
ing of geometrically complex objects [11]. In [10],
a hybrid approach is presented, which uses BVs and
distance fields.

Recently, various approaches have been intro-
duced that employ graphics hardware for collision
detection. In [1], a multi–pass rendering method is
proposed for collision detection. However, this al-
gorithm is restricted to convex objects. In [20], the
interaction of a cylindrical tool with deformable tis-
sue is accelerated by graphics hardware. [12] pro-
poses a multi–pass rendering approach for collision
detection of 2–D objects, while [15] and [16] per-
form closest–point queries using bounding–volume
hierarchies along with a multipass–rendering ap-
proach. The aforementioned approaches decom-
pose the objects into convex polytopes.

There exist various approaches that propose spa-
tial subdivision for collision detection. These algo-
rithms employ uniform grids [27], [8], [30] or BSPs
[21]. In [27], spatial hashing for collision detec-
tion is mentioned, but no details are given. [22]
presents a hierarchical spatial hashing approach as
part of a robot motion planning algorithm, which is
restricted to rigid bodies.

We employ spatial hashing for the collision de-
tection of deformable tetrahedral meshes. R

3 is im-
plicitly subdivided into small grid cells. Informa-
tion about the global bounding box of our environ-
ment is not required and 3D data structures, such as
grids or BSPs are avoided. Further, our approach in-
herently detects collisions and self–collisions. The
parameters of the algorithm have been investigated
and optimized.

3 Collision Detection Algorithm

The collision detection algorithm implicitly subdi-
vides R

3 into small AABBs. In a first pass, all
vertices of all objects are classified with respect to
these small 3D cells. In a second pass, all tetra-
hedrons are classified with respect to the same 3D
cells. If a tetrahedron intersects with a cell, all
vertices, that have been associated with this cell in
the first pass, are checked for interference with this
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tetrahedron. The actual intersection test computes
barycentric coordinates of a vertex with respect to
a tetrahedron in order to estimate, whether a vertex
penetrates a tetrahedron.

The consistent processing of all object primi-
tives enables the detection of collisions and self–
collisions. If a vertex penetrates a tetrahedron, a
collision is detected. If the vertex and the tetrahe-
dron belong to the same object, a self–collision is
detected. If a vertex is part of a tetrahedron, the in-
tersection test is omitted.

Spatial Hashing of Vertices: In the first pass, the
positions of all vertices are discretized with respect
to a user–defined cell size. Therefore, the coor-
dinates of the vertex position (x, y, z) are divided
by the given grid cell size l and rounded down to
the next integer (i, j, k): i = �x/l�, j = �y/l�,
k = �z/l�.

The hash function hash maps the discretized 3D
position (i, j, k) to a 1D index h and the vertex and
object information is stored in a hash table at this
index h: h = hash(i, j, k).

Refer to Sec. 4.1 for details on the hash function.
Sec. 4.2 and Sec. 4.3 describe how to find the opti-
mal hash table size and cell size, respectively.

In addition to generating a hash value for each
vertex, this first pass also computes the AABBs
of all tetrahedrons based on their current deformed
state.

Spatial Hashing of Tetrahedrons: While the first
pass has considered all vertices to build the hash ta-
ble and to update the AABBs of the tetrahedrons,
the second pass of the algorithm traverses all tetra-
hedrons.

First, the minimum and maximum values de-
scribing the AABB of a tetrahedron, are discretized.
Again, these values are divided by the user–defined
cell size and rounded down to the next integer. Sec-
ond, hash values are computed for all cells affected
by the AABB of a tetrahedron. Therefore, all cells
are traversed from the discretized minimum to the
discretized maximum of the AABB (see Fig. 2). All
vertices found at the according hash table index are
tested for intersection.

Intersection Test: If a vertex p and a tetrahedron
t are mapped to the same hash index and p is not
part of t, a penetration test has to be performed.

The actual intersection test consists of two steps.
First, p is checked against the AABB of t, which
has been updated in the first pass. If p penetrates the

Figure 2: Hash values are computed for all grid cells
covered by the AABB of a tetrahedron. The tetra-
hedron is checked for intersection with all vertices
found at these hash indices.

AABB of t, the second step actually tests, whether
p is inside t. This test computes barycentric coordi-
nates of p with respect to a vertex of t. Details are
given in Sec. 4.4.

4 Parameters

In this section, we investigate the parameters of the
presented algorithm. The characteristics of the hash
function, the size of the hash table, the size of a
3D cell for spatial subdivision, and the actual inter-
section test influence the performance of the algo-
rithm. We have optimized all these aspects of the
algorithm.

4.1 Hash Function

In the first pass of the algorithm, hash values are
computed for all discretized vertex positions. These
hash values should be uniformly distributed to guar-
antee an adequate performance of the algorithm.
The hash function has to work with vertices of the
same object, that are close to each other, and with
vertices of different objects, that are farther away.

We have tested several hash functions in our
implementation, basically variants of additive and
rotating hash functions. However, we have not
systematically investigated the characteristics of
hash functions. It gets three values, describing a
vertex position (x, y, z), and returns a hash value:

hash(x,y,z) = ( x p1 xor y p2 xor z p3) mod n

where p1, p2, p3 are large prime numbers, in
our case 73856093, 19349663, 83492791, respec-
tively. The value n is the hash table size.
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The function can be evaluated very efficiently
and produces a comparatively small number of hash
collisions for small hash tables. As described in
Sec. 4.2, the quality of the hash function is less im-
portant for larger hash tables.

4.2 Hash Table Size

The size of the hash table significantly influences
the performance of the collision detection algo-
rithm. Experiments indicate, that larger hash tables
reduce the risk of mapping different 3D positions
to the same hash index. Therefore, the algorithm
generally works faster with larger hash tables. On
the other hand, the performance slightly decreases
for larger hash tables due to memory management.
Fig. 3 and Fig. 4 show the performance of our algo-
rithm for two test scenarios with a varying hash ta-
ble size. If the hash table is significantly larger than
the number of object primitives, the risk of hash col-
lisions is minimal. Although it is known, that hash
functions work most efficiently if the hash table size
is a prime number [5], Fig. 3 and Fig. 4 show per-
formance measurements with hash table sizes of 99,
199, 299 and so on.
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Figure 3: Performance of the collision detection al-
gorithm for two deformable vessels (see Fig. 9) with
an overall number of 5898 vertices and 20514 tetra-
hedrons with varying hash table size of 99, 199, 299
and so on. The grid cell size is set to the average
edge length of all tetrahedrons (see Sec. 4.3).

Our implementation of the hash table does not
require a re–initialization in each simulation step,
which would reduce the efficiency in case of larger
tables. To avoid this problem, each simulation step
is labeled with a unique time stamp. If the first
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Figure 4: Performance of the collision detection al-
gorithm for 100 deformable objects (see Fig. 8) with
an overall number of 1200 vertices and 1000 tetra-
hedrons with varying hash table size of 99, 199, 299
and so on. The grid cell size is set to the average
edge length of all tetrahedrons (see Sec. 4.3).

pass stores vertices in a hash table cell with out-
dated time stamp, the time stamp is updated and the
cell is reset before new vertices are inserted. If the
time stamp is up to date, new vertices are appended
to the hash table cell. When the second pass gen-
erates hash indices for the tetrahedrons, the current
time stamp is compared to the time stamp found in
the hash table entry. If the time stamps differ, the
information in the hash table is outdated and no in-
tersection tests have to be performed. Therefore,
no re–initialization of the hash table has to be per-
formed during the simulation, which would be com-
paratively costly for larger hash tables.

4.3 Grid Cell Size

The grid cell size, which is used for spatial hashing,
influences the number of object primitives, that are
mapped to the same hash index. In case of larger
cells, the number of primitives per hash index in-
creases and the intersection test slows down. If the
cell size is significantly smaller than a tetrahedron,
the tetrahedron covers a larger number of cells and
has to be checked against vertices in a larger number
of hash entries. The measurements in Fig. 5 and 6
indicate, that a grid cell should have the size of the
average edge length of all tetrahedrons to achieve
optimal performance. The graphs illustrate, that the
grid cell size has a more significant impact on the
performance than hash table size or hash function.

666



0

20

40

60

80

100

120

140

160

180

200
C

ol
lis

io
n 

de
te

ct
io

n 
[m

s]

1 2 3 4 5
Cell size / average edge length

Figure 5: Performance of the collision detection al-
gorithm for two deformable vessels (see Fig. 9) with
an overall number of 5898 vertices and 20514 tetra-
hedrons with varying grid cell size. Hash table size
is 9973.

4.4 Intersection Test

We have compared two tests for detecting, whether
a vertex p penetrates a tetrahedron t, whose ver-
tices are at positions x0,x1,x2, x3,. The first test
computes barycentric coordinates of a vertex with
respect to a vertex of a tetrahedron. The second
test considers oriented faces of a tetrahedron and
checks, whether a vertex is in the positive or nega-
tive half–space of these faces.

Since the barycentric–coordinate test is slightly
faster than the half–space test, we have performed
our experiments in Sec. 6 using this vertex-in-
tetrahedron test:

Barycentric coordinates with respect to x0: We
express p in new coordinates β = (β1, β2, β3)

T

with respect to a coordinate frame, whose origin co-
incides with x0 and whose axis coincide with the
edges of t adjacent to x0: p = x0 + Aβ,, where
A = [x1 − x0, x2 − x0,x3 − x0] is a 3 by 3 di-
mensional matrix. The coordinates β of p in this
new coordinate frame are: β = A−1(p − x0).

Now the point p lies inside tetrahedron t, if
β1 ≥ 0, β2 ≥ 0, β3 ≥ 0 and β1 + β2 + β3 ≤ 1.

5 Time Complexity

Let n be the number of primitives (vertices and
tetrahedrons). To find all intersecting vertex–
tetrahedron pairs a naive approach would test all
vertices against all tetrahedrons resulting in a time
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Figure 6: Performance of the collision detection al-
gorithm for 100 deformable objects (see Fig. 8) with
an overall number of 1200 vertices and 1000 tetra-
hedrons with varying grid cell size. Hash table size
is 4999.

complexity of the order of O(n2). The goal of
our approach is to reduce this complexity to O(n).
Since a deformation algorithm needs to process all
the primitives at each time step, linear time com-
plexity for collision detection does not decrease its
performance significantly.

During the first pass, all vertices are inserted into
the hash table. This pass takes O(n) time. First,
the hash table does not need to be initialized, so the
time is independent of the hash table size. Second,
for each vertex, the hash function can be evaluated
and a vertex reference can be added to the hash cell
in O(1) time.

In the second pass, for all tetrahedrons all ver-
tices in a local neighborhood are tested for collision.
The time complexity of this pass is of the order of
O(n·p·q) where p is the average number of cells in-
tersected by a tetrahedron and q is the average num-
ber of vertices per cell. If the cell size is chosen
to be proportional to the average tetrahedron size,
p is a constant. If there are no hash collisions, the
average number of tetrahedrons per cell is constant
too and so is q, since there are at most four times
as many vertices as tetrahedra in a cell. With both,
p and q being constant, the time complexity of the
algorithm turns out to be linearly dependent on the
number of primitives.
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6 Results

We have performed experiments with various
setups of deformable objects (see Tab. 1 and
Tab. 2). Setups A, B and D are illustrated in Fig. 7,
8, 9, respectively. Fig. 10 illustrates the tetrahedral
meshes of the patient–individual models of two
vessels used in setup D. Setup C and E use the
same deformable objects like B.

Table 1: The following setups with dynamically de-
forming objects have been tested in our physically–
based environment.

setup objects tetras vertices

A 100 1000 1200
B 8 4000 1936
C 20 10000 4840
D 2 20514 5898
E 100 50000 24200

Table 2: Performance of the collision detection al-
gorithm for setups in Tab. 1. Average collision de-
tection time, minimum, maximum, and standard de-
viation for 1000 simulation step are given.

setup ave [ms] min [ms] max [ms] dev [ms]

A 4.3 4.1 6.5 0.24
B 12.6 11.3 15.0 0.59
C 30.4 28.9 34.4 1.25
D 70.0 68.5 72.1 0.86
E 172.5 170.5 174.6 1.08

Experiments indicate, that the detection of all
collisions and self–collisions for dynamically de-
forming objects can be performed with 15 Hz with
up to 20k tetrahedrons and 6k vertices on a PC, Intel
Pentium 4, 1.8GHz. The performance is indepen-
dent from the number of objects. It only depends on
the number of object primitives. The performance
varies slightly during simulations due to the chang-
ing number of hash collisions and due to a varying
distribution of hash table elements.

7 Discussion

The proposed algorithm detects, whether a vertex
penetrates a tetrahedron, but it does not detect,
whether an edge intersects with a tetrahedron. This

Figure 7: Test setup A.

Figure 8: Test setup B.

is due to two reasons. First, the performance of
the algorithm would decrease significantly, while
the relevance of an edge test is unclear in case of
densely sampled objects. Second, the collision de-
tection is intended to be a component in physically–
based environments with integrated collision re-
sponse. While collision response can be easily real-
ized for penetrating vertices, it is rather uncommon
and costly to implement collision response in case
of penetrating edges.

The presented algorithm performs two passes on
the objects, even though it would be sufficient to
only perform one pass, which computes hash val-
ues for all tetrahedrons. In this case, each hash ta-
ble entry contains tetrahedrons, that could intersect.
We have implemented this approach, but found it
less efficient compared to the two–pass approach.
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Figure 9: Test setup D.

Figure 10: Tetrahedral mesh of test setup D.

While vertex positions are mapped to the hash ta-
ble exactly once, tetrahedrons are usually mapped
to several hash indices, which leads to a larger num-
ber of elements in the hash table, thus decreasing
the performance of the algorithm.

The comparison of the performance with other
existing collision detection approaches is difficult.
There exist numerous public domain libraries, such
as RAPID [9], PQP [18], and SWIFT [7]. However,
these approaches are not optimized for deformable
objects. They work with data structures, that can
be pre–computed for rigid bodies, but have to be
updated in case of deformable objects.

Our approach has been implemented based on
tetrahedrons. However, it is not restricted to tetra-
hedrons and could handle other object primitives as
well by simply replacing the intersection test.

8 Ongoing Work

Efficient collision detection is an essential compo-
nent in real–time simulation environments for de-
formable objects. However, a realistic interaction
between dynamically deforming objects also re-
quires a correct collision response. Since our algo-
rithm provides the exact position of a vertex inside
a penetrated tetrahedron, we can employ this infor-
mation for collision response. If we assume, that a
face or a vertex of the penetrated tetrahedron is part
of the object surface, we can easily derive the pen-
etration depth, which allows for a correct collision
response.

Further, we are about to accomplish a mod-
ular framework for real–time simulation of de-
formable objects, which can be used in game en-
gines or surgical simulators. We have integrated ef-
ficient deformable models based on linear finite ele-
ments [23] and the proposed collision detection ap-
proach. Completed with the above mentioned colli-
sion response, the framework will handle interact-
ing deformable models of up to several thousand
tetrahedrons in real–time.

9 Conclusion

We have introduced a method for detecting colli-
sions and self–collisions of dynamically deforming
objects. Instead of computing the global bounding
box of all objects and explicitly performing a spa-
tial subdivision, we propose to use a hash function
that maps 3D cells to a hash table, thus realizing a
very efficient, implicit spatial subdivision. The ac-
tual vertex-in-tetrahedron test is based on barycen-
tric coordinates. It provides information, that can be
used for physically–based collision response. We
have investigated and optimized the parameters of
our approach. Experiments, performed with vari-
ous test scenarios, show that environment of up to
20k tetrahedrons can be processed in real–time, in-
dependent from the number of objects.
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