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ABSTRACT
In democratic countries, voting is one of the most important ways for citizens to influence policy and
hold their representatives accountable. And yet, in the United States and many other countries, rates of
voter turnout are alarmingly low. Every election cycle, mobilization efforts encourage citizens to vote and
ensure that elections reflect the true will of the people. To establish the most effective way of encouraging
voter turnout, this article seeks to differentiate between (1) the synergy hypothesis that multiple instances of
voter contact increase the effectiveness of a single formof contact, and (2) the diminishing returnshypothesis
that multiple instances of contact are less effective or even counterproductive. Remarkably, previous stud-
ies have been unable to compare these hypotheses because extant approaches to analyzing experiments
with noncompliance cannot speak toquestions of causal interaction. I resolve this impasse by extending the
traditional instrumental variables framework to accommodate multiple treatment–instrument pairs, which
allows for the estimation of conditional and interaction effects to adjudicate between synergy and dimin-
ishing returns. The analysis of two votermobilization field experiments provides the first evidence of dimin-
ishing returns to follow-up contact and a cautionary tale about experimental design for these quantities.
Supplementary materials for this article are available online.

1. Introduction

In democratic countries, casting a ballot is one of the most
important ways for ordinary citizens to influence policy or hold
their representatives accountable. Low voter turnout can skew
election results away from the true “will of the people” and
result in policies that disproportionately benefit a minority of
citizens (see Fowler 2013, and references therein). To combat
or take advantage of this, in every election cycle nonprofit
groups, political parties, and candidates themselves dedicate
tremendous resources to get-out-the-vote (GOTV) efforts.
Over the course of the 2012 presidential election, the Barack
Obama campaign alone had 2.2 million volunteers make over
150 million door knocks and phone calls designed to encourage
(supportive) citizens to vote (Obama for America 2013), which
is remarkable since there were only 127 million votes actually
cast in the election.

To combat the effects of low voter turnout on the electoral
process, it is crucial to understand the efficacy of these types
of GOTV contact and how they might interact. For example,
does door-knocking increase turnout? Should it be paired with
phone calls or done in isolation? Two rival hypotheses exist in
the GOTV literature to answer this latter question: (1) the syn-
ergy hypothesis that multiple forms of contact combine to pro-
duce larger effects than either separately, and (2) the diminishing
returns hypothesis that additional contact is less effective or even
counterproductive compared to a single intervention (Green,
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McGrath, andAronow 2013). These two hypotheses have strong
implications for how to maximize voter turnout with a fixed
budget. If diminishing returns exist, then GOTV campaigns
should focus their efforts on maximizing the number of citizens
contacted, whereas if synergy exists, they should attempt more
follow-up contact on a smaller group of respondents.

The synergy and diminishing returns hypotheses directly
concern the causal interaction between multiple forms of con-
tact, a quantity well-understood in traditional randomized
experiments with full compliance (VanderWeele 2015). Unfor-
tunately, experimental studies of GOTV efforts are subject to
noncompliance since citizens often fail to answer their door or
pick up the phone, which could lead to unmeasured confound-
ing between actual (as opposed to randomized) GOTV contact
and voter turnout. Thus, while a large and influential literature
in political science has relied on randomized experiments to
assess the impact GOTV appeals (Gerber and Green 2000;
Green, Gerber, and Nickerson 2003; Nickerson 2007; Gerber,
Green, and Larimer 2008; Arceneaux and Nickerson 2009),
there has been no study of the interaction between different
forms of GOTV contact that has dealt with issues of noncom-
pliance. Gerber and Green (2000) used an intention-to-treat
(ITT) analysis to investigate the interaction between the ran-
domization to in-person canvassing and the randomization to
telephone canvassing, but noncompliance makes it difficult to
ascertain if these ITT interactions reflect the true interaction

©  American Statistical Association

D
ow

nl
oa

de
d 

by
 [S

m
ith

so
ni

an
 A

str
op

hy
sic

s O
bs

er
va

to
ry

] a
t 1

7:
38

 1
6 

Se
pt

em
be

r 2
01

7 

https://doi.org/10.1080/01621459.2016.1246363
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2016.1246363&domain=pdf&date_stamp=2017-06-24
mailto:mblackwell@gov.harvard.edu
http://www.tandfonline.com/r/JASA
http://www.tandfonline.com/r/JASA


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 591

between actual in-person contact and actual telephone contact.
Furthermore, there is no statistical literature on how one would
use instrumental variables, a common approach to handling
noncompliance, to estimate these causal interactions.

This article extends the single-treatment instrumental vari-
ables framework by Angrist, Imbens, and Rubin (1996) to allow
for the identification and estimation of certain conditional and
interaction effects of two forms of GOTV contact. Each binary
randomized assignment to GOTV contact serves as an instru-
ment for the binary treatment of actual GOTV contact and
the goal is to identify the joint effects and interactions of the
binary treatments. Previous extensions of IV methods to allow
for multiple-level treatments (relevant since two binary treat-
ments can be thought of as a single four-level treatment) did
not separately identify conditional effects, but rather a weighted
average that would be difficult to interpret in this context
(Angrist and Imbens 1995). In contrast, I use a principal strati-
fication approach to generalize the concept of compliance types
to the setting of two binary treatments and define various
“local” quantities of interest, which are average comparisons
between pairs of treatment vectors (i.e., actual contact) within
levels of these compliance types. These include a local average
interaction effect (LAIE) that I use to adjudicate between the
synergy and diminishing returns hypotheses. I also show that
these estimands are nonparametrically identified from the usual
IV assumptions and a novel assumptions called the treatment
exclusion restriction, which ensures that each treatment is only
affected by a single instrument. The article develops consistent
and asymptotically normal plug-in estimators for these quanti-
ties along with consistent variance estimators. I also show how
an interacted version of two-stage least squares (TSLS) can iden-
tify the LAIE but cannot identify conditional effects without fur-
ther assumptions.

I investigate the question of synergy versus diminishing
returns in two large GOTV field experiments that can speak to
these questions. In the first, over 11,000 households were ran-
domly assigned to receive telephone canvassing, in-person can-
vassing, both, or neither ahead of the 1998 general election in
New Haven, CT (Gerber and Green 2000). In this experiment,
there is strong variation in conditional effects between compli-
ance groups, indicating that compliance with phone contact, for
instance, may be predictive of response to door-to-door can-
vassing. But this experiment also suffered from very low rates
of compliance and an experimental design that minimized the
number of respondents that received both forms of treatment.
These factors combined to produce very high uncertainty over
the conditional and interaction effects.

To overcome issues of low compliance, I analyze a sec-
ond experiment, conducted by the Youth Voting Coalition
(YVC) during the 2004 presidential election, wherein over
26,000 young registered voters across 10 sites were ran-
domly assigned to phone calls from either a volunteer
phone bank, a professional phone bank, both, or neither
(Nickerson 2007). The compliance rate in this experiment
was far higher than in the New Haven experiment. I find
support for the diminishing returns hypothesis among
college-aged students—a second round of phone contact
produces far weaker mobilizing effects than a single phone
call. This represents the first piece of evidence for causal

interaction in GOTV efforts. Finally, I discuss how the
estimands developed in this article can be useful for maxi-
mizing the cost effectiveness of future GOTV efforts.

2. A Joint Instrumental Variable Framework for GOTV
Studies

Using the New Haven experiment as a guide, let Di1 = 1 indi-
cate that a respondent received a phone canvassing message
and Di2 = 1 indicate that a respondent received in-person can-
vassing. Furthermore, let Zi1 ∈ {0, 1} be random assignment to
phone canvassing and Zi2 be random assignment to in-person
canvassing. Let Yi be the outcome of interest, whether or not
respondent i voted. DefineYi(d1, d2) as the potential outcomes,
representing whether or not respondent i would have voted if
we set Di1 to d1 and Di2 to d2 (Rubin 1974). Note that under the
usual exclusion restriction (stated formally below), these poten-
tial outcomes will not depend on the value of the instruments.

In these experiments, canvassers were unable to contact all
respondents assigned to receive contact. For phone contact, this
could be caused by incorrect phone numbers in voter registra-
tion records or by respondents refusing to answer the phone. For
in-person canvassing, the travel time between physical house-
holds could be quite long and could prevent the canvassers from
reaching all households intended for contact (Gerber and Green
2000, p. 655). Furthermore, canvassing in theNewHaven exper-
iment ceased at sunset for safety reasons, preventing the can-
vassers from contacting residents not home during the day. So,
in these studies Di j may not equal Zi j. To account for this,
define the potential (outcome for) treatment by Di1(z1, z2) as
the outcome which would be observed if the experimenter set
(Zi1,Zi2) = (z1, z2), withDi2(z1, z2) similarly defined. By using
this definition, I have implicitly assumed the potential treat-
ments with respect to one treatment are unaffected by the value
taken by the other, so that Di1(z1, z2, d1) = Di1(z1, z2, d′

1) =
Di1(z1, z2), and similarly for Di2. It is also useful to define
Di1(z1) = Di1(z1,Zi2) and Di2(z2) = Di2(Zi1, z2) as the poten-
tial outcomes for these variables when only setting one of the
two instruments and leaving the other instrument at its observed
value. Finally, let Di = (Di1,Di2) and Zi = (Zi1,Zi2). Implicit
in the definition of all these potential outcomes is the stable
unit treatment value assumption (SUTVA) of no interference
between units since the potential outcomes and treatments for
unit i only depend on the treatment and instrument values of
unit i. Note that in these types of GOTV experiments, there is
often, though not always, one-sided noncompliance whereby if
Zi = 0 then Di = 0 since treatment is withheld from those who
are assigned to control. I develop the statistical theory below
without relying on this assumption and highlight where it sim-
plifies the general framework.

This article generalizes the single-treatment IV framework by
Angrist, Imbens, and Rubin (1996), which makes the following
assumptionsmodified for the presence of two binary treatments:

Assumption 1 (Single-Treatment IV). For all values d1, d2, z1,
z′
1, z2, z′

2 and j ∈ {1, 2}, the following statements hold:
1. Consistency: Yi = Yi(Di1,Di2), Di1 = Di1(Zi1,Zi2), and

Di2 = Di2(Zi1,Zi2);
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592 M. BLACKWELL

2. Randomization of the instruments: (Zi1,Zi2) ⊥⊥
{Yi(d1, d2),Di1(z1, z2),Di2(z′

1, z′
2)}.

3. Outcome exclusion restriction: Yi(d1, d2, z1, z2) =
Yi(d1, d2, z′

1, z′
2) = Yi(d1, d2).

4. Effect of instrument on treatment: Pr[Di j(z j = 1)] ̸=
Pr[Di j(z j = 0)].

5. Monotonicity: Pr[Di j(z j = 1) ≥ Di j(z j = 0)] = 1.

These are the standard assumptions by Angrist, Imbens, and
Rubin (1996) applied separately to each instrument–treatment
pair and allowing for the joint randomization of Zi. The exclu-
sion restriction is uncontroversial in these GOTV studies since
respondents only learn of their random assignment through
actual contact. Monotonicity is often, though not always, satis-
fied by restricting contact to those who are randomly assigned to
receive it, which ensures one-sided noncompliance. For the sake
of generality, I develop the framework using the more general
monotonicity assumption. Note that this framework depends
heavily on binary instruments and treatment.

Under Assumption 1, there may be unmeasured con-
founding between actual (as opposed to assigned) GOTV
contact and voter turnout, which renders the average treat-
ment effects of actual contact (Di j) unidentified. Angrist,
Imbens, and Rubin (1996) instead identified average causal
effects within levels of a respondent’s compliance type or prin-
cipal strata, which are defined by how a unit responds to
the instrument (Frangakis and Rubin 2002). In the single-
treatment IV case with a binary treatment and instrument,
these strata are defined by the vector (Di(0),Di(1)), which
can respectively take on four different values: compliers with
(0, 1), always-takers with (1, 1), never-takers with (0, 0), and
defiers with (1, 0). Using this notation, let Ci ∈ {c, a, n, d}
denote the compliance type for unit i. Monotonicity implies
that there are no defiers in the population and allows for the
identification of the local average treatment effect (LATE),
which is the average effect of actual contact among compliers:
E[Yi(1) −Yi(0)|Ci = c]. Past analyses of GOTV experiments
have leveraged this fact to estimate the LATEs of each form
of actual GOTV contact separately. In the GOTV context,
compliers are those respondents that are reachable—they pick
up the phone when called or answer the door when canvassers
knock.

While this basic framework has been previously extended
beyond single treatments, these endeavors have not addressed
the identification or estimation of causal interactions or con-
ditional effects in 2 × 2 factorial experiments such as the ones
considered here. Angrist and Imbens (1995) extended the
single-treatment setting to accommodate multiple-level instru-
ments and treatments, focusing on ordinal treatments, where
higher values indicate “more” treatment. While it is possible to
redefine two binary treatments as a single four-level treatment,
their results cannot identify the separate effects of between-level
contrasts (Yi(1, 0) vs. Yi(0, 0), e.g.), but rather a complicated
weighted average of these comparisons. Cheng and Small (2006)
studied noncompliance in randomized experiments to compare
the effectiveness of two treatments, but they focus on three-arm
trials, where both treatments are never assigned together and
not the full factorial designs of these GOTV studies. Finally,
an alternative approach to IV uses a class of models called

structural nested mean models (SNMMs), avoiding mono-
tonicity and instead relying homogeneity assumptions on the
causal effects to point identify population-average effects (e.g.,
Robins 1994; Hernán and Robins 2006; Clarke andWindmeijer
2010). In the present context, monotonicity holds by design and
so I focus on an approach that leverages this fact.

2.1. Joint Compliance Types, Treatment Exclusion, and
Quantities of Interest

To generalize single-treatment IV framework, I will define, iden-
tify, and estimate average causal effects of actual contact within
levels of the two-treatment principal strata. The definition
of these principal strata with two forms of contact, which I call
the joint compliance types, follows a similar logic to the single-
treatment case and can be written as a vector of eight values:

(Di1(0, 0),Di1(1, 0),Di1(0, 1),Di1(1, 1),Di2(0, 0),
Di2(1, 0),Di2(0, 1),Di2(1, 1)).

This vector completely characterizes how both potential treat-
ments react to both instruments. The joint compliance types
can be reorganized in terms of the single-treatment compli-
ance types by noting that, for example, {Di1(0, 0),Di1(1, 0)}
defines the compliance type for phone contact when i is assigned
to no in-person contact. This vector can take on the four
above types. For example, if Di1(0, 0) = 0,Di2(1, 0) = 1 then
i is a complier for Di1 when z2 = 0. More generally, let Ci1|z ∈
{c, a, n, d} be the compliance status for Di1 when z2 = z (i.e.,
for {Di1(0, z),Di1(1, z)} and Ci2|z be the compliance status for
Di2 when z1 = z (that is, for {Di2(z, 0),Di2(z, 1)}). We can
then characterize the joint compliance types for unit i as Ci =
(Ci1|0,Ci1|1,Ci2|0,Ci2|1), letting Ci = kmst be a shorthand for
Ci = (k,m, s, t ) where k,m, s, t ∈ {c, a, n, d}. With four ele-
ments taking on four different values, there are 44 = 256 of these
principal strata. One example of these compliance types is the
“joint complier” group, Ci = cccc, who are reachable by either
phone or door-to-door canvassing under any randomization.
Another group are those with Ci = ncnc that we might call the
“interacted compliers” and who can only be contacted when
they are assigned to receive both forms of contact: Di(z1, z2) =
(1, 1) if (z1, z2) = (1, 1) and (0, 0) otherwise. For the joint
compliers, each treatment only depends on its own instrument,
whereas for the interacted compliers,Di1 depends on z2 andDi2
depends on z1.

To identify and estimate the causal effect of multiple types
of actual GOTV contact within joint compliance types, two
sets of causal quantities need to be identified: the average
potential outcomes within principal strata, E[Yi(d1, d2)|Ci =
kmst], and the probability of each principal strata, Pr[Ci =
kmst]. To identify these, we will use the observed-data parame-
ters, which consist of the 12 treatment–instrument strata prob-
abilities, Pr[Di = (d1, d2)|Zi = (z1, z2)], and the 16 average
observed outcomes,E[Yi|Di = (d1, d2),Zi = (z1, z2)]. These 28
observed-data parameters will clearly not be sufficient to iden-
tify the 255 compliance probabilities, let alone the full set of
causal parameters. Monotonicity in the present setting reduces
the number of compliance types to 34 = 81, since there are no
defiers, but even this is not enough to achieve identification.
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To reduce the number of compliance types even further and
identify the causal parameters, I rely on a novel assumption that
is justified from the experimental design of the GOTV studies.
Namely, if the two forms of canvassing are done by different
organizations (as is true both experiments) and if the forms of
contact are substantially different (as they are in the New Haven
experiment), then it is reasonable to assume that randomization
to one form of contact has no impact on the actual receipt of
the other form of contact. I call this assumption the treatment
exclusion restriction:

Assumption 2 (Treatment Exclusion Restriction). For all values
z1, z′

1, z2, z′
2,

Di1(z1, z2) = Di1(z1, z′
2) = Di1(z1),

Di2(z1, z2) = Di2(z′
1, z2) = Di2(z2).

Treatment exclusion says that each instrument only affects
its “own” treatment and so the compliance type for one form of
contact is unaffected by the randomization of the other contact.
This implies that Ci j|0 = Ci j|1 = Ci j for j ∈ {0, 1} and allows us
to simplify the principal strata asCi = km (meaningCi1 = k and
Ci2 = m), leaving 32 = 9 compliance types and making identi-
fication possible. Table 1 shows the mapping between values Ci
and the potential contacts, Di j(z j). In the GOTV experiments,
treatment exclusion could be violated if, for instance, actually
receiving a phone call changed a person’s propensity to respond
to attempts at door-to-door contact. This could occur if a
respondent finds a single conversation with an in-person can-
vasser uncomfortable, discouraging them from answering the
phone in future contact attempts so thatCi1|0 = c andCi1|1 = n.
While this is a strong assumption and must be evaluated in
each context, one silver lining is that, under Assumptions 1(i)
and (ii), it has testable implications. Conditional on its own
instrument, a treatment should be unrelated to the other instru-
ment so that E[Di1|Zi1 = z1,Zi2 = 1] = E[Di1|Zi1 = z1,Zi2 =
0] and E[Di2|Zi1 = 1,Zi2 = z2] = E[Di2|Zi1 = 0,Zi2 = z2],
which can be tested with, say, a regression of each treatment on
both instruments to detect violation of the treatment exclusion
restriction.

We can now define the quantities of interest in these GOTV
experiments. Their factorial designs allow the investigation of
the conditional effect of one form of contact conditional on the
other, but noncompliance only allows for identification of these

Table . Joint compliance types (principal strata) under treatment exclusion and
monotonicity and the local average conditional effects (LACEs) associated with
each.

Ci Di1(0) Di1(1) Di2(0) Di2(1) LACE(s) for this strata

cc     τcc,1(0) = E[Yi(1, 0) − Yi(0, 0)|Ci = cc]
τcc,1(1) = E[Yi(1, 1) − Yi(0, 1)|Ci = cc]

τcc,2(0) = E[Yi(0, 1) − Yi(0, 0)|Ci = cc]
τcc,2(1) = E[Yi(1, 1) − Yi(1, 0)|Ci = cc]

cn     τcn,1(0) = E[Yi(1, 0) − Yi(0, 0)|Ci = cn]
nc     τnc,2(0) = E[Yi(0, 1) − Yi(0, 0)|Ci = nc]
ca     τca,1(1) = E[Yi(1, 1) − Yi(0, 1)|Ci = ca]
ac     τac,2(1) = E[Yi(1, 1) − Yi(1, 0)|Ci = ac]
aa     None
an     None
na     None
nn     None

quantities within the above principal strata. I call these the local
average conditional effects, or LACEs. Each LACE is associated
with a particular treatment, a particular level of the other treat-
ment, and a joint compliance type:

τkm,1(d2) = E[Yi(1, d2) −Yi(0, d2)|Ci = km],
τkm,2(d1) = E[Yi(d1, 1) −Yi(d1, 0)|Ci = km],

recalling that Ci = km corresponds to (Ci1,Ci2) = (k,m) ∈
{c, n, a}. This is the contrast between receiving treatment j and
not receiving it with the other treatment fixed at a particular
value among those in stratum Ci. There are four basic condi-
tional effects with two binary treatments, but not all of them are
well-defined for all compliance types. For instance, the contrast
Yi(1, 0) −Yi(0, 0) is meaningless for always-takers for the sec-
ond treatment, because this groupwould logically never observe
Yi(1, 0) or Yi(0, 0) since they will never have Di2 = 0. In gen-
eral, ifCi1 = n thenY (1, .) can never be observed, and ifCi1 = a
thenY (0, .) can never be observed, and similarly forCi2. Table 1
shows the basic LACEs in this setup—four for the joint compli-
ers, and one for each of the strata that comply with at least one
of the treatments.

The LACEs can provide useful information both to politi-
cal scientists about how voters make decisions and to candi-
dates and campaigns who can use them to better allocate their
resources. For instance, if a campaign has made a failed attempt
to call a citizen, then they know that because of one-sided non-
compliance this person is a never-taker for phone calls and
can base their decision to canvass their physical address on the
LACE that conditions on this information, τnc,2(0). The cam-
paign obviously will not know if this respondent is a complier
for in-person canvassing, but can use the compliance type prob-
abilities from past studies to derive a prediction for the cost-
effectiveness of a second GOTV effort.

The LACEs can be combined to create other interesting esti-
mands. The synergy and diminishing returns hypotheses, for
instance, speak to the causal interaction between the two treat-
ments. Thus, I define the LAIE, which is the difference in the
conditional effects for the joint compliers:

τLAIE = τcc,1(1) − τcc,1(0)
= E[(Yi(1, 1) −Yi(0, 1))

− (Yi(1, 0) −Yi(0, 0))|Ci = cc]. (1)

This represents the difference in the effect of phone canvassing
when it is and is not paired with in-person canvassing, which
is the exact quantity needed to adjudicate these two hypotheses.
Synergy would imply that τLAIE > 0, while diminishing returns
would imply that τLAIE < 0. In addition to the LAIE, I also define
the local average joint effect, or LAJE, as the effect of receiv-
ing both treatments for the joint compliers: τLAJE = τcc,1(1) +
τcc,2(0) = E[Yi(1, 1) −Yi(0, 0)|Ci = cc]. Both of these quanti-
ties are only defined among the joint compliers since they are
functions of multiple LACEs. If a respondent is not reachable by
both forms of contact, it is hardly sensible to discuss the inter-
action or joint effects for them.

It is also possible to aggregate LACEs across compliance
types, which can be useful to increase power and to maxi-
mize the target population of interest. To do this, we simply
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594 M. BLACKWELL

take the weighted average of the basic LACEs across the com-
pliance types for which they are defined:

τc−,1(0) = E[Yi(1, 0) −Yi(0, 0)|Ci ∈ {cc, cn}]
= (ρcc + ρcn)

−1(ρccτcc,1(0) + ρcnτcn,1(0)). (2)

As we will see below, these weighted averages are the target of
TSLS estimation in designs with one-sided noncompliance.

3. Identification and Estimation

To identify these estimands, we must connect the causal param-
eters with the parameters of the observed data. Table 2 pro-
vides a sense of how this works by showing how the joint
compliance type probabilities, ρkm = Pr[Ci = km], relate to the
probability of strata defined by combinations of instruments and
treatments, fd1d2|z1z2 = Pr[Di = (d1, d2)|Zi = (z1, z2)], under
Assumptions 1 and 2. For instance, one strata of subjects were
never contacted and so have Di = (0, 0), but were random-
ized to receive both forms of contact and so have Zi = (1, 1).
These respondents are uniquely identified as never-takers on
both treatments:

f00|11 = Pr[Di = (0, 0)|Zi = (1, 1)]
= Pr[Di1(1) = 0,Di2(1) = 0|Zi = (1, 1)] (3)
= Pr[Di1(1) = 0,Di2(1) = 0] = ρnn (4)

The first equality comes from consistency, the second from ran-
domization, and the last can be established by noting that nn
is the only compliance type in Table 1 that has Di j(1) = 0 for
all j. Other observed strata are a mixture over several com-
pliance types. We can use similar ideas to connect observed-
outcome means to the means of the potential outcomes within
principal strata, E[Yi(d1, d2)|Ci = km]. Theorem 1 combines
these ideas to identify the basic LACEs.

Theorem 1. Under Assumptions 1 and 2, all of the basic LACEs
in Table 1 are nonparametrically identified as:

τcc,1(0) =
S10|10 − S10|11 − S10|00 + S10|01

f11|11 − f11|01 − f11|10 + f11|00

τcc,1(1) =
S11|11 − S11|10 − S11|01 + S11|00

f11|11 − f11|01 − f11|10 + f11|00

τcn,1(0) =
S10|11 − S10|01
f10|11 − f10|01

τca,1(1) =
S11|10 − S11|00
f11|10 − f11|00

τcc,2(0) =
S20|01 − S20|11 − S20|00 + S20|10

f11|11 − f11|01 − f11|10 + f11|00

Table . Relationship between observed strata probabilities, fd1d2|z1z2
= Pr[Di =

(d1, d2)|Zi = (z1, z2)], and compliance types probabilities, ρkm = Pr[Ci = km],
under Assumptions  and .

f11|11 = ρcc + ρaa + ρac + ρca f11|10 = ρaa + ρca
f10|11 = ρcn + ρan f10|10 = ρcc + ρan + ρac + ρcn
f01|11 = ρnc + ρna f01|10 = ρna
f00|11 = ρnn f00|10 = ρnc + ρnn
f11|01 = ρaa + ρac f11|00 = ρaa
f10|01 = ρan f10|00 = ρan + ρac
f01|01 = ρcc + ρnc + ρna + ρca f01|00 = ρna + ρca
f00|01 = ρcn + ρnn f00|00 = ρcc + ρcn + ρnc + ρnn

τcc,2(1) =
S21|11 − S21|10 − S21|01 + S21|00

f11|11 − f11|01 − f11|10 + f11|00

τnc,2(0) =
S20|11 − S20|10
f01|11 − f01|10

τac,2(1) =
S21|01 − S21|00
f11|01 − f11|00

,

where S j
d|z1z2 = E[YiI(Di,− j = d)|Zi = (z1, z2)], and I(·) is an

indicator function.

The proof for Theorem 1 is given in the supplementalmateri-
als, which follows a similar strategy to Abadie (2003). The quan-
tities in the numerator for the LACEs of treatment j, S j

d|z1z2 , are
expectations of the outcome multiplied by an indicator for the
other instrument, which helps select out the appropriate com-
pliance types. Thus, the numerators in these results represent
ITT effects of the phone-call and door-to-door randomizations
on transformations of the outcome. The denominators repre-
sent the estimated probability of being in a particular joint com-
pliance stratum. Theorem 1 implies that the LAIE, LAJE, and
aggregated LACEs are also identified, since they are simple com-
binations of the LACEs. The LAIE in particular has an inter-
pretable form. Letting Sz1z2 = E[Y |Zi = (z1, z2)], we have:

τLAIE = (S11 − S01) − (S01 − S00)
( f11|11 − f11|01) − ( f11|10 − f11|00)

(5)

Thus, the LAIE is the ratio of the ITT interaction for Zi and Yi
and an ITT interaction between Zi and Di.

All of these identification results have a similar structure: a
function of reduced-form relationships divided by a probabil-
ity of various compliance strata. One potential concern for all
of these results is that of weak instruments, where the relation-
ship between the instrument and the treatment is weak (Bound,
Jaeger, and Baker 1995). In the case of a binary instrument and a
binary treatment, this is equivalent to low probability of compli-
ance. Thus, estimates of the basic LACEsmight have higher vari-
ance than the LATE for either of the two treatments separately.
This is one reason to focus on the aggregated LACEs compared
to ones that focus only a single compliance class. This problem
is especially salient in the New Haven experiment below.

Theorem 1 not only identifies the LACEs, the LAJE, and the
LAIE, but it also suggests an estimation strategy. With a ran-
dom sample of N units, (Yi,Di1,Di2,Zi1,Zi2), from an infinite
superpopulation, it is possible to estimate each of the expecta-
tions above. For example, we replace the quantity S1d|z1z2 , with its
sample analogue,

Ŝ1d|z1z2 =
∑N

i=1YiI(Di2 = d)I(Zi1 = z1)I(Zi2 = z2)∑N
i=1 I(Zi1 = z1)I(Zi2 = z2)

.

If we replace all expectations in Theorem 1 with their sample
quantities, we obtain plug-in estimators for all of the quantities
of interest. In the supplemental materials, I show that, under
mild regularity conditions, these estimators are consistent and
asymptotically normal and derive a closed-form expression for
their asymptotic variance. If the randomization assumption
only holds conditional on covariates, it is necessary to modify
these estimators to include the covariates. For a set of discrete
covariates, Xi, it is possible to calculate each of the above
expectations conditional on levels of Xi and then average these
stratum-specific effects over the distribution of Xi. I take this
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approach in the second experiment below, where randomiza-
tion was stratified by site.With continuous covariates, one could
replace the expectations with parametric models and average
the estimates over the empirical distribution of Xi.

3.1. Two-Stage Least Squares

In the original analyses of these GOTV experiments, the authors
relied on two-stage least squares (TSLS) to estimate the separate
effects of both forms ofGOTVcontact. This approach is justified
by Imbens and Angrist (1994), Angrist and Imbens (1995), and
Abadie (2003) who document the relationship between TSLS
and the LATE. These studies have shown that the TSLS estimand
is the LATE when the TSLS model includes no covariates and
the instrument and treatment are binary. Unfortunately, these
results are not immediately applicable to questions of causal
interaction between phone and in-person contact. I extend
TSLS to allow for interactions and investigate what local condi-
tional or interactive effects it can estimate in the two-treatment
setting.

Let D and Z be N × 4 design matrices that contain a con-
stant, each instrument or treatment, and their interaction.
That is, let Di = (1, Di1, Di2, Di1Di2) be a generic row of D,
and (Zi = 1, Zi1, Zi2, Zi1Zi2) be a generic row of Z Let Yᵀ =
(Y1, Y2, . . . , YN ) be the vector of outcomes. With these defini-
tions in hand, it is possible to define the interacted TSLS estima-
tor (iTSLS), which is simply the application of TSLS to the above
designmatrices: δ̂ = (DᵀZ)−1ZᵀY. This estimator allows for an
interaction between the two treatments and is fully saturated in
both stages. Under standard regularity conditions, this estimator
will converge to δ = (E[Dᵀ

i Zi])−1E[Zi
ᵀYi]. Finally, let the lim-

iting coefficient vector be labeled as δᵀ = (δ0, δ1, δ2, δ3).
How does δ map onto the estimands defined above? The fol-

lowing theorem shows this connection in the case, where the
instruments are independent.

Theorem 2. Suppose that Assumptions 1 and 2 hold and that
Zi1 ⊥⊥ Zi2 and let ωck,1 = ρck/(ρcc + ρcn + ρca) and ωkc,2 =
ρkc/(ρcc + ρnc + ρac) for k ∈ {c, a, n}. Then,

δ1 = ωcc,1τcc,1(0) + ωcn,1τcn,1(0) + ωca,1[τca,1(1) − τLAIE] (6)
δ2 = ωcc,2τcc,2(0) + ωnc,2τnc,2(0) + ωac,2[τac,2(1) − τLAIE] (7)
δ3 = τcc,1(1) − τcc,1(0) = τLAIE. (8)

In the supplemental materials, a proof and a simulation exer-
cise are provided that confirms the divergence between the plug-
in estimators and the TSLS approach. The coefficient on the
interaction between the two treatments is indeed the interaction
effect for joint compliers, τLAIE. The lower order terms are more
complicated. The coefficient on Di1, for instance, is a mixture of
three different effects, weighted by the probability of cc, cn, and
ca (respectively) conditional being a complier for Di1. The first
and second components of this mixture are the LACEs of Di1
when d2 = 0 for the joint compliers (cc) group and the complier-
never-taker group (cn), respectively. But there is no such LACE
for the ca group, so the third component of the mixture is the
LACE of Di1 when d2 = 1 for the ca group minus the interac-
tion effect for the joint compliers. Essentially, TSLS is imputing

Yi(1, 0) −Yi(0, 0) for a group that could never see this effect
(ca) by drawing information from the joint compliers about the
interaction between the two treatments. This has two ramifica-
tions. First, the lower order terms will have no direct interpre-
tation as a causal effect without further assumptions. Second,
by combining three compliance groups, TSLS estimands will be
less affected by weak instrument issues than the LACEs or LAIE
because TSLS draws on a larger group of units.

In both of the experiments I analyze here, there is one-sided
noncompliance because respondents are never contacted when
randomized to receive no contact. Under this design, there are
no always-takers, and so the coefficients on the lower order
terms will be equal to the aggregated LACEs, δ1 = τc−,1(0) and
δ2 = τ−c,2(0). With or without one-sided noncompliance, it is
not possible to take the sum of coefficients to estimate differ-
ent causal contrasts as is possible with a typical linear model.
For example, the LAJE is not equal to δ1 + δ2 + δ3 because of
treatment effect heterogeneity between compliance groups. As
is clear fromTheorem 2, each coefficientmixes over effects from
different joint compliance types, so that their sum would not
reflect an effect for the joint compliers. Overall, interpretation
of TSLS requires care in these experiments and may not accu-
rately reflect the LACEs and the LAJE. It is important to note that
Theorem 2 relies on independence of the instruments, which is
not always satisfied and is not required for the identification of
the LACEs.

4. Data Analysis of Two GOTV Experiments

4.1. NewHaven 1998GOTV Experiment

In this section, I use the above methods to analyze the New
Haven experiment, focusing on one arm of the study that was
a 2 × 2 factorial design as described above. Another arm of
the experiment sent mailers to households, but I omit this arm
since there is no measurement of compliance with the mailers
treatment. Because the phone treatment was randomized differ-
ently depending on the mailer treatment, I subset to households
that were randomized to the control condition for the mailers
arm, leaving 11,689 households. Randomization was done at the
household level and so the outcome in this case is the number
of voters in the household that turned out in the 1998 general
election. Since the sampled households had at most two resi-
dents, the treatment effects can range from −2 to 2. Imai (2005)
and Gerber and Green (2005) provided a robust discussion of
various methodological and technical issues with this particular
experiment, most of which are irrelevant to the current discus-
sion, while Hansen and Bowers (2009) analyzed this experiment
with randomization-based inference.

The New Haven experiment is a good example of a set-
ting where the above assumptions are met, but that the design
and compliance rates of the study make it difficult to draw
conclusions. Random assignment of the two forms of contact
were carried out independently, with Pr[Zi1 = 1] = 0.1 and
Pr[Zi2 = 1] = 0.2 so that the only 5% of the households were
randomly selected to receive both forms of contact. Further-
more, I estimate the compliance probabilities in this setting
are ρ̂cc = 0.117, ρ̂cn = 0.217, and ρ̂nc = 0.127, meaning that
there are very few joint compliers in this example. Thus, while
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596 M. BLACKWELL

Figure . Estimation of LACEs of phone contact (left) and in-person contact (middle), along with the LAJE and LAIE (right). Thin (thick) lines are % (%) confidence
intervals, respectively, using the proposed variance estimators proposed. Estimates using an interacted TSLS model and the overall LATE for each treatment are in red.
N = 11, 689 households.

Assumption 1(iv) is satisfied, the effect of Zi j onDi j is very weak
in this experiment. Monotonicity holds here by design since
those in the control groups are unable to receive contact and
so there are no defiers or always-takers. Finally, as discussed
above, treatment exclusion appears plausible given the design,
but could be violated if randomized assignment into in-person
(phone) contact affectedwhether phone (in-person) contact was
actually made. Because of the randomization, this can be tested.
In this case, the effect of in-person randomization on phone
contact is −0.013 (95% confidence interval: [−0.073, 0.048])
and the effect of phone randomization on in-person contact is
0.042 (95%CI: [−0.022, 0.106]). Thus, in this particular context
there appears to be little evidence of a violation of the treatment
exclusion.

Figure 1 shows the estimates of the LACEs, the LAJE, and
the LAIE using the plug-in estimators proposed in Section 3
with confidence intervals using the proposed variance estima-
tors from the supplemental materials. For both treatments, the
figure additionally shows the overall LATE and the effect esti-
mated from the iTSLS approach of Section 3.1. In the original
analysis, Gerber and Green (2000) used a standard IV ratio esti-
mator for each instrument–treatment pair separately and I find
estimated LATEs that are very similar to theirs—a positive effect
of in-person contact and no effect of phone contact. The basic
LACE estimates using the above estimators show a great deal of
variation across comparisons and across compliance types. For
example, the point estimates of the joint-complier effects of the
phone and in-person contact alone, τ̂cc,1(0) and τ̂cc,2(0), suggest
that these forms of contact decrease turnout by a large amount.
These point estimates are four to five times larger in magnitude
than the estimated effects that aggregate across different compli-
ance groups, τ̂c−,1(0) and τ̂−c,2(0). Furthermore, with in-person
contact, the effects for phone never-takers, τ̂nc,2(0) is positive
with a 95% confidence interval that excludes zero. The same
LACE for the joint compliers is strongly negative, but with a
wide confidence interval that includes zero.While is it very diffi-
cult to make inferences about the LACEs in this setting, there is

suggestive evidence that there is strong heterogeneity in treat-
ment effects by compliance type.

What about the relationship between the plug-in and iTSLS
estimates? Given the one-sided noncompliance and the results
of Theorem 2, it is unsurprising that the aggregated LACEs
are almost identical to the lower-order term estimates of the
iTSLS model. On the other hand, the point estimates τ̂cc,1(1)
and τ̂cc,2(1), which are the effects of each contact when a
household has been contacted by the other method, show
stark contrasts with the iTSLS approach. The iTSLS estimates
are obtained by adding the lower-order and interaction terms.
But as discussed above, this combines effect estimates from
different subpopulations and therefore will be biased for the
τcc, j(1). In addition to differences in the point estimates, the
iTSLS confidence intervals are also narrower than the plug-
in estimators since they draw on more compliance groups for
estimation.

Shifting to combinations of the basic LACEs, the plug-in
estimator and iTSLS produce almost identical estimates for the
LAIE, which is expected given Theorem 2. While the point
estimates are in favor of the synergistic hypothesis, the uncer-
tainty is far too large in this experiment to learn much of any-
thing about the interaction. With joint effects, there are more
striking differences between the proposed estimators and the
iTSLS approach. The plug-in LAJE estimate is strongly nega-
tive,−0.613, though with high uncertainty, while the joint effect
from the iTSLS model finds a joint effect of 0.563 and is sta-
tistically significant at the typical levels. Thus, the iTSLS and
the LAJE have similar magnitudes but in the opposite direction.
Once again, though, the uncertainty is far lower using iTSLS.
Overall, the results of the New Haven experiment are muddled
by massive uncertainty caused by the experimental design and
the low rates of compliance.

One concern that we might have in this setting is that
the low rates of compliance are driving significant biases or
causing our confidence intervals to have poor performance.
To assess this possibility, I simulated data from a one-sided
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noncompliance design with similar compliance rates, sample
size, and assignment probabilities to this experiment. In these
simulations, presented in supplemental materials, I find that
the plug-in estimators to have a bias of roughly 12% of the
true parameter value but also have confidence intervals with
close to nominal coverage or perhaps slight overcoverage. Thus,
while the point estimates here may be suspect due to bias from
the weak instrument problem, the confidence intervals should
accurately reflect the uncertainty due to low compliance.

4.2. 2004 Youth Vote Coalition Experiment

To overcome the issues of low compliance rates in the last exper-
iment, I now turn to an even larger field experiment. Nickerson
(2007) reported the results of a multi-site experiment con-
ducted through the Youth Vote Coalition (YVC), a nonpartisan
organization dedicated to GOTV efforts for citizens under the
age of 30. In each of the 17 counties that served as experimental
sites, individual registered voters were randomly assigned in
a 2 × 2 design to receive a call from a volunteer phone bank
(Zi1), a professional phone bank (Zi2), both, or neither. Previous
research had shown that volunteer phone banks were effective
at voter mobilization, but that professional phone banks (like
those used in the New Haven experiment) had less efficacy. The
outcome of this study was turnout in the 2004 presidential elec-
tion, as measured by the public voter file. The YVC experiment
was designed to compare these two types of calls in the same
populations at the same time. For similar reasons to the New
Haven experiment, there was noncompliance on calls from both
types of phone banks. In the original analysis, Nickerson (2007)
used TSLS with no interaction to estimate the LATE for each
type of contact separately, but did not consider the potential
interaction between the two types of calls. This interaction is
important as it could tell us whether multiple forms of GOTV
contact are synergistic or whether there are diminishing returns
to additional instances of contact.

To explore these issues, I reanalyze this experiment and focus
on college-age respondents (ages 17–22 at the time of the call),
who are often the subject of these interventions. As with the
New Haven experiment, many of the assumptions here are

satisfied by the design of the experiment. In analyzing the data,
I found treatment exclusion violations in 3 of the experimen-
tal sites and 3 that had effectively assigned only one form of
contact. I excluded one other site because it had a joint compli-
ance rate of just 2%, though this has little effect on the estimates
below. This left 26,974 respondents spread over 10 experimental
sites. In a test of treatment exclusion in this group, the effect of
volunteer-bank randomization on professional-bank contact is
0.001 (95% confidence interval: [−0.015, 0.017]) and the effect
of professional-bank randomization on volunteer-bank contact
is −0.006 (95% CI: [−0.021, 0.009]). Thus, in the remaining
experimental sites, there appears to be little evidence of a vio-
lation of the treatment exclusion.

Two additional features make the YVC experiment appeal-
ing compared to the New Haven experiment. First, each type of
phone bank was randomized with probability 0.5 so that each
of the four possible assignment vectors had equal probability of
occurring. Second, the compliance types are more evenly bal-
anced in this setting, with ρ̂cc = 0.23, ρ̂cn = 0.29, ρ̂nc = 0.15,
and ρ̂nn = 0.33. Thus, the probability of joint compliance in this
experiment is double that of the New Haven experiment. Both
of these features should lead to much lower uncertainty com-
pared to the previous experiment. Figure 2 shows the results of
this experiment for the joint compliers. Because of the strati-
fied random sampling by site, these results are the averages of
the site-specific LACE and LAIE plug-in estimators, weighted by
the sample size of site. The confidence intervals are based on the
standard combined variance calculation from a stratified ran-
domized experiment (see, e.g., Imbens and Rubin 2015, p. 204),
using the variance estimator from the supplemental materials
for the within-site variance estimates.

It is possible to learn much more about the joint effective-
ness of GOTV efforts in this experiment. The results show that
both the volunteer and professional phone bank calls had a large
positive impact on turnout among respondents, at least when
they only received one call (τcc,1(0) and τcc,2(0)). Then, a sin-
gle professional phone call, for instance, had a 20 percentage-
point effect on turnout. The effects of one phone-bank contact
when paired with the other phone bank (τcc,1(1) and τcc,2(1)),
on the other hand, were estimated to be negative but not

Figure . Combined LACE and LAIE estimates among joint compliers across experimental sites from the Nickerson () youth GOTV experiment. Thin (thick) lines are %
(%) confidence intervals based on pooled variance across the sites. N = 26, 974 registered voters aged –.
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statistically significant. And, in fact, there is a large, negative
interaction between these effects as indicated by the LAIE. Thus,
there appear to be rather severe diminishing returns to addi-
tional instances of GOTV contact in this study, a finding that
is in support of the diminishing returns hypothesis and in con-
trast with much of the previous literature either which has not
investigated interactions such as these or have found very small
or null ITT interactions. This novel result tells us that in settings
like this, it is muchmore valuable to reach a larger group of indi-
viduals rather than concentratemultiple phone calls on a smaller
group. It is not clear if these diminishing returns results are due
to the two forms of contact being similar (both phone calls) and
whether we would see diminishing returns in a properly pow-
ered study of other forms of contact.

Finally, these results can be used by campaigns to evaluate
the cost-effectiveness of second contact attempts. For instance,
the LACE of volunteer contact among noncompliers for pro-
fessional contact is negative and very close to zero (̂τcn,1(0) =
−0.007, 95% CI: [−0.053, 0.039]), whereas the same effect for
joint compliers is large and positive as shown in Figure 2. Thus,
if a campaign hasmade a professional phone bank call and failed
to reach a respondent, they can predict that a volunteer call
will produce very little effect on turnout. Thus, in future GOTV
efforts, the results of these analyses could provide valuable infor-
mation for campaigns attempting to maximize voter outreach.

5. Conclusion

Causal interaction between different forms of GOTV contact
has been understudied in part due to a lack of statistical tools
to do so. This article extends the single-treatment IV frame-
work to allow for the estimation of conditional and interaction
effects in factorial experiments with noncompliance. With this
framework in hand, the article was able to provide evidence for
the diminishing returns hypothesis inGOTV contact, which has
large ramifications for how campaigns should attempt to max-
imize voter turnout. In another experiment, inference is much
more difficult due to the weak instrument problem and a sub-
optimal experimental design.

The statistical framework here is applicable far beyond
GOTV studies—it can be applied to any 2 × 2 factorial design
with noncompliance on each factor. The assumptions needed
are a combination of the single-treatment IV assumptions and a
treatment exclusion restriction, which helps with identification
by limiting the number of principal strata. This article provides
plug-in estimators for the LACEs, which are average compar-
isons between levels of treatment conditional on compliance
types. I show that TSLS can be used to estimate the local average
interaction effect and, in experiments with one-sided noncom-
pliance, can also be used to estimate aggregated version of the
LACEs.

There are several ways in which this statistical framework
could be extended. Most obviously, it would be straightforward
to allow for K > 2 factors in the framework, though the statis-
tical power to estimate LACEs and LAIEs in that setting may be
low. It is also important to develop a theoretical understanding
of how to bound treatment effects when the treatment exclu-
sion restriction is violated. Another obvious direction for future
research is to develop a similar set of results and estimators for

situations with nonbinary treatments and instruments and with
continuous covariates. For instance, one could extend the local
average response function approach of Abadie (2003) to a set-
ting with multiple treatments and multiple instruments.

Supplementary Materials

The supplementary materials contain the asymptotic properties of the
plug-in estimators, simulation study, and proofs. Additionally, repli-
cation code and data for all results in this paper can be found at
http://dx.doi.org/10.7910/DVN/CUBQSN (Blackwell 2017).
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