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ABSTRACT 

This expository paper is a general introduction to the theory of chromatic pol- 
ynomials. Chromatic polynomials are defined, their salient properties are derived, and 
some practicaI methods for computing them are given. A brief mention is made of 
the connection between the theory of chromatic polynomials and map coloring 
problems. The paper concludes with some unsolved problems relating to chromatic 
polynomials and to applications of the theory to practical problems in operations 
research. 

1. INTRODUCTION 

There are many  interesting problems which arise when one considers 
the ways of  coloring the nodes o f  a graph subject to certain restrictions. 
The  object o f  this paper is to give a brief account  of  the fundamentals  
o f  this branch of  graph theory. 

A coloring of  a graph is the result of  giving to each node of  the graph 
one of  a specified set of  colors. In  more mathematical  terms it is a mapping 
o f  the nodes into (or onto)  a specified finite set C (the set o f  colors). 
We shall leave for the momen t  the question o f  whether the mapping  is 
to  be into or onto. 

By a proper coloring of  a graph will be meant  a coloring which satisfies 
the restriction that  adjacent nodes are not  given (i.e., mapped  onto) the 
same color  (element) o f  C. A coloring for  which this is not  true will be 
called an improper coloring. 

These are the definitions; but  it so happens that  we shall nearly always 
be concerned with proper  colorings only, and it will therefore be con- 
venient to drop the term "p rope r "  and agree that  by "color ings"  of  a 
graph  we mean "proper  colorings" unless the contrary  is stated. 

* This work was supported in part by a National Science Foundation Grant 
(GN-2544) from the Chemical Information Program, which is jointly supported by 
the Department of Defense, the National Institutes of Health, and the National Science 
Foundation. 
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Of particular interest is the function, associated with a given graph G, 
which expresses the number of different ways of coloring G as a function 
of the number of specified colors. The number of colors is, for some 
obscure reason, usually denoted by )t, and the function will be written as 
Ma()0. Before we can define it we must decide, among other things, 
whether the mappings are to be into or onto the color set. It turns out to 
be more convenient, algebraically, to work with "into" mappings, and 
this is what we shall do. Thus Mc0~) is the number of ways of coloring 
the Graph G with 2~ colors, with no stipulation that all the )t colors are 
in fact used. If we wish to make this stipulation (as we shall later on) 
we can describe the colorings as being in "exactly )t colors." 

Two other questions must be settled before the meaning of Ma(A) is 
dear. First, are we regarding the nodes as fixed, or can we permute them ? 
For example, do we regard the colorings 

~ _  and ~ �9 black 
o white 
| red 

of the triangle as being the same or different ? Insofar as they differ only 
by a cyclic permutation of the nodes (which leaves the graph unchanged) 
it might be felt that they should be regarded as equivalent, but we shall 
not take this view. Instead we shall regard our graphs as if their nodes 
were points fixed in space, so that, for example, a triangle whose apex 
(as we look at it) is colored white will be differently colored from one 
whose apex has some other colors. 

Second, we shall agree that the actual colors used (or rather the distinc- 
tions between them) are important. There are two ways of looking at 
this. One can think of the allocation of colors to the nodes merely as a 
convenient means of partitioning the nodes into a number of disjoint sets. 
Thus the colorings of the triangle given above have the effect of dividing 
the set of nodes into three subsets, each having one node. If this were the 
only purpose that the coloring had to serve, then permuting the colors 
would give an equivalent coloring. There would, for example, be no point 
in making a distinction between the colorings 
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since they give the same partition of the nodes. Colorings counted in 
this way will be called "colorings with color indifference," but we shall 
not usually count them in this way. Instead we shall take account of 
different colors, and hence regard the two colorings of the graph just 
given as being distinct. 

2. SOME ILLUSTRATIONS 

By way of illustration let us calculate the function Me(A) for some 
simple graphs. Take first the graph 

as the graph G. We can color the centre node in any of the A colors. 
When this has been done, this color is no longer available for coloring the 
outer nodes, by the condition for a proper coloring. Hence the outer nodes 
can be colored independently each in A -- 1 ways. Thus 

Mo(A) = A(A -- 1) 2. 

Next let us take the triangle 

as G. There are A ways of coloring, say, the top node. There are then A -- 1 
ways of coloring an adjacent node, and A - - 2  ways of coloring the 
remaining node, since no two nodes may be given the same color. Thus 

M c ( ~ )  = A(~ - -  1 ) (~  - -  2) .  

This can clearly be generalized. Suppose G is the complete graph on n 
nodes. We choose a node and color it; this is possible in A ways. Picking 
another node we have A -- I colors with which it can be colored, since it is 
adjacent to the first node. Pick another node; it is adjacent to both nodes 
already colored, and can therefore be colored in A --  2 ways. We continue 
in this way; the last node can be given any of the remaining h -- (n --  1) 
colors. Hence 

Mc(A) = A(A -- I ) 0  --  2). . .  (a --  n + 1). 

We shall use the notation 2~(") for this factorial expression. 
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Finally let G be the empty graph on n nodes, i.e., the graph having no 
edges. Its n isolated nodes can be colored independently, each in A ways. 
Hence for this graph 

md~)  = A-. 

It will be seen that, in each of the above examples, Ma(2t) is a polynomial 
in t. This is always so, as we shall shortly prove. The function Mc()t) is 
called the "chromatic polynomial" of the graph G. 

3. A FUNDAMENTAL THEOREM 

Let us consider a particular graph G, such as that in figure 1, and 
concentrate on a particular pair of non-adjacent nodes, for example those 
marked A and B in the figure. Now the colorings of G in A colors are of 
two types: 

(i) those in which A and B are given different colors, and 
(ii) those in which A and B are given the same color. 

AQ 
FIGURE 1 FIGURE 2 

G, 

A coloring of G of type (i) will be a coloring of the graph G' obtained 
from G by adding the edge AB (see Fig. 2), since the addition of this edge 
does not infringe the requirements for a proper coloring. Conversely, to 
any coloring of G' corresponds a type (i) coloring of G. 

Further, a coloring of G of type (ii) will be a coloring of the graph G" 
obtained from G by identifying the nodes A and B (see Fig. 3). (Note that 
we can replace multiple edges, if any arise, by single edges, since a multiple 
edge represents exactly the same restriction on the colors as does a single 
edge joining the same nodes). Conversely, any coloring of G" corresponds 
to a type (ii) coloring of  G. 

FIGURE 3 
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From these two results we derive 

THEOREM 1. MoO0 = Ma'()t) + Mo"(A) 
--a theorem of fundamental importance. 

By way of example, if we take G to be 

then G' and G" are 

d ~  and I 
A/XB 

respectively. We have already seen that 

My(A) = )~()~ - -  1) ~ 

and 

Mo,(A) = A(A --  1)(A --  2), 

while it is easy to see that 

Ma.(A) = a(~ - -  1). 

Thus the theorem is verified in this particular case. 

By means of Theorem 1 the chromatic polynomial of  a graph can be 
expressed in terms of the chromatic polynomials of  a graph with an extra 
edge, and another with one fewer nodes. The theorem can then be applied 
again to these graphs, and so on, the process terminating (as it must do) 
when none of these graphs has a pair of non-adjacent nodes. The chromatic 
polynomial of  the given graph will then have been expressed as the sum 
of the chromatic polynomials of  complete graphs; and these, as we have 
seen, are known. 

To do this in practice it is convenient to adopt  a convention whereby 
the actual picture of  a graph serves to denote its chromatic polynomial 
(with A understood)3 Thus instead of writing Ma(A) = Ma,(~) q- M~-(A), 
and having to explain what G, G', and G" stand for, we can simply write 

Applying Theorem 1 repeatedly to this graph, and indicating by A and B 
the nodes being considered at each stage, we have 

1 This useful notational device was introduced by Zykov [9]. 
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" -  - I -  

l l  

A 

Hence 
Me(l) = 1 ~5~ -k 4t  t4~ + 3t 13~. 

It can be seen that the chromatic polynomial of any graph can be reduced 
to the sum of a number of factorials, and hence is indeed a polynomial. 
When a chromatic polynomial is expressed in this way we shall say that 
it is in "factorial form." If  the factorial form is known the polynomial 
itself is readily found. (Tables of Stirling's numbers which, in effect, 
give the t ~n> as polynomials in t ,  come in handy here.) For the above 
graph we have 

M~(I) = 1 ~ --  614 q- 141 a --  152t ~ q- 6h. 

Theorem 1 can also be used round the other way, id the form 

Mo,(~) = M~(a) --  Mo,,(~). 

Here the process is that of removing edges, and we end up with our 
chromatic polynomial expressed in terms of the chromatic polynomials 
of empty graphs. 
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Thus 
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D ~ I o - - o  - - 2  + 

~  - 3 0  + 3  

0 

OOo) (o o 
- -  - - 3  - + 3  - o 

0 0 0 0 

o o o o 

= - - 4  o + 6  - 3  ~ 

0 0 0 0 

so that 

MG(~ ) : A 4 - -  4 h  3 -~- 6,~ 2 - -  3A. 

We shall call this process of expressing chromatic polynomials in terms 
of chromatic polynomials of complete or empty graphs "chromatic 
reduction." 

4 .  S O M E  S H O R T  C U T S  

Various short cuts are available whereby the calculation of chromatic 
polynomials by this sort of method can be facilitated. Some of these are 
contained in the following theorems. 
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THEOREM 2. 

~en 
If  a graph G has connected components Ga, G2 ..... Gk, 

Ma(A) = Ma~(A) �9 Mc~(A) "" Ma,(A). 

PROOF. Since the components are disjoint, the coloring of each is 
quite independent of the coloring of the others. Hence the number of 
ways of coloring the whole graph is simply the product of the numbers of 
colorings of the separate components. 

THEOREM 3. I f  tWO graphs X and Y "overlap" in a complete graph on k 
nodes then the chromatic polynomial of the graph formed by X and Y 
together is 

Mx(A) "Mr(h) 
A(k) 

(By "overlapping" is meant the following: The node sets of X and Y 
are not disjoint, but have k nodes in common, and every pair of these 
k nodes is joined both in X and in Y. As an example take the graph 

for which 

X = ~ and Y =  

having the triangle (k = 3) in common:) 

PROOF. The number of ways of coloring the common part is A (k). If 
we fix the colors of these k nodes there will be Mx(A)/A (k) ways of coloring 
the remaining nodes of X, and Mr(A)/A (k) ways of coloring the remaining 
nodes of Y. Hence the total number of colorings is 

A(k) Mx(A) Mr(h) _ Mx(A)" Mr(h) 
A(k) A(k) A(k) 

THEOREM 4. The chromatic polynomial of the product of two graphs 
X and Y is Mx(A) (2) Mr(A) where �9 denotes a type of multiplication in 
which factorials are treated as powers (further explained below). 
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(By the product of two (disjoint) graphs X and Y is meant the graph 
obtained by adding to X and Y in all possible ways, edges joining a node 
of  X to a node of Y. Thus the product of 

I and is 

PROOF. Let us apply chromatic reduction to X and Y separately. If  
they have m and n nodes, respectively, we shall end up with 

Mx(it) = Mar,,~(it) -1- aiMKm_~(it) q- a2Mxm_2(it) -t- "'" (1) 

when Mx(it) has been expressed in terms of the chromatic polynomials 
of the complete graphs K~ ,  K~_I, Kin_2 .... on m, m -- 1, m -- 2 .... nodes. 
Similarly 

Mr(it) = Mr,~(it) -q- bxMK,~_l(it) q- b2MK,~_2(h) --k "". (2) 

If  we now perform the chromatic reduction of the product of X and Y, 
then the X and Y portions of the product graph will be reduced in exactly 
the above way. Moreover, at every stage, every node of each graph 
obtained in the reduction of X will be joined to every node of each graph 
in the reduction of Y. Hence we shall finish by expressing the chromatic 
polynomial of the product in terms of  all possible products of a complete 
graph from (1) and a complete graph from (2). But the product of a 
complete graph on (say) p nodes and one on q nodes is itself a complete 
graph, onp  q- q nodes. Hence to a term )t(~) in the factorial form of Mx(it), 
and a term it(q) in the factorial form of Mr(it), there will be a term in 
it(v+~) in the factorial form of the chromatic polynomial of the product 
graph. 

It follows that this chromatic polynomial can be found in its factorial 
form by taking the factorial forms of  Mx(it) and Mr(it) and multiplying 
them as if the factorials were powers. This is the process that we denoted 
symbolically by Mx(it) �9 Mr(it) in the statement of the theorem. 

By way of example, if 

X = 
I and Y : t 

then Mx(h) = A(2) and Mr(A) = h (3) -t- A ~). 
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Mx(A) (3 Mr(A) = 1 (2) (3 (1 (a) q- ),(21) 
= 1(5~ + am. 
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5. ILLUS TRATIONS  

To illustrate the use of these theorems let us calculate a few chromatic 
polynomials, beginning with two that have already been found. 

O O 

First, ~ = X i s t h e p r o d u c t o f  and 
O O 

o 
chromatic polynomial of is A3= 1 <2~ §  Therefore, 

o 

rem 4, 
= (1 (2) 2 I- 1 (1)) @ (I ($) -~- I(1)) 

= 14 -- 420 + 612 -- 3t. 

, and the 

by Theo- 

Second, by Theorem 3, with k = 2, 

A(A - -  1 ) ( A  - -  2 ) ( A  a - -  4 1  a q -  6 1  z - -  3t) 
= 1(1 -- 1) 

= t  5 - 6 1 4 §  141 a - 1 5 1  ~ + 6 t .  

Finally we have two general results: 

THEOREM 5. The chromatic polynomial of  any tree having n nodes is 
~(a  - 1) - -1 .  

PROOF. We can build up any tree by starting with a single edge and 
adding edges one by one, each added edge having one node in common 
with the tree so far constructed. For example 

~ / P  and I give \ 
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H e n c e  b y  T h e o r e m  3 w i th  k ---- 1, the  c h r o m a t i c  p o l y n o m i a l  o f  the  new 
t ree  (hav ing  the  a d d e d  edge)  is o b t a i n e d  f r o m  tha t  o f  the  o ld  t ree  b y  
m u l t i p l y i n g  by  the  c h r o m a t i c  p o l y n o m i a l  o f  the  edge,  viz.,  A(?, - -  1), a n d  
d iv id ing  b y  ?,(1), i.e., A. H e n c e  the  a d d i t i o n  o f  each  edge  mu l t i p l i e s  the  
c h r o m a t i c  p o l y n o m i a l  b y  ) ~ -  1. Since we s t a r t ed  wi th  a s ingle  edge 
( c h r o m a t i c  p o l y n o m i a l  )~()~ - -  1)) the  t h e o r e m  fol lows.  

THEOREM 6. The chromatic polynomial of  an n-gon is 

(A - -  1)" + ( - - 1 ) " 0 t  - -  1). 

PROOF. Le t  Pn(?,) d e n o t e  the  c h r o m a t i c  p o l y n o m i a l  o f  a n  n-gon.  Then  
by  T h e o r e m  1 we have  

# % % 

n-gon tree (n--, 1)-gon 

b y  de le t ing  an  edge.  H e n c e  we have  

P~(A) = )t()~ - -  1) "-1 - -  P,_I(A) 

b y  T h e o r e m  5. Th i s  can  be  wr i t t en  

P~(A) - -  (A - -  1) ~ = (A - -  1) n-x - -  Pn-I(A), 

f r o m  which  i t  fo l lows  t h a t  (--1)n{P,,(A) - -  (A - -  1) ~} is a c o n s t a n t ,  which  
can  be  f o u n d  b y  p u t t i n g  n - -  3. F o r  

--{Pa(,~) - -  (A - -  1) a} = --{A(A - -  1)(A - -  2) - -  (A - -  1) 3} 

~ A - - 1 .  

Thus  

i.e., 
P,,(A) - - ( A  - -  I)"  = (--1)~(A - -  1), 

P~(A) = (A - -  1) ~ + ( - -1 )" (A - -  1). 

6. PROPERTIES OF CHROMATIC POLYNOMIALS 

W e  shal l  n o w  list  a n d  p r o v e  s o m e  p r o p e r t i e s  o f  the  c h r o m a t i c  p o l y -  
n o m i a l  M~()0  o f  a g r a p h  G. W e  let  n d e n o t e  the  n u m b e r  o f  n o d e s  of  G. 
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THEOREM 7. The degree o f  Me(A) is n. 

PROOF: By the nature of the reduction process there is, at each stage, 
exactly one graph having n nodes. This is therefore true at the final stage, 
and from this the result follows. From the fact that there is exactly one 
such graph we also have 

THEOREM 8. The coefficient o f  A ~ in Ma(A) is 1. 

THEOREM 9. MG(A) has no constant term. 

PROOF: I f  not, then M(0) :/: 0, whereas ctearly the number of  ways of 
coloring a graph in no colors must be zero! 

THEOREM 10. The terms in Me(A) alternate in sign. 

PROOV. (It is worth remarking here that many properties of chromatic 
polynomials can be found by the use of  the very elegant theory of MObius 
functions developed recently by Gian-Carlo Rota [5]. From the standpoint 
of this theory the theorem we are now considering is almost trivially 
true; but in the absence of this background we shall work from first 
principles. The proof  is by two-way mathematical induction.) 

It  is easily verified that the theorem is true for all graphs having 1, 2, 
3 nodes. Let n be any integer such that the theorem is true for all graphs 
on n nodes or less. Consider graphs on n + 1 nodes. 

The empty graph on n -5 1 nodes certainly satisfies the theorem. Let 
k be any integer such that the theorem is true for all graphs on n + 1 nodes 
and k or fewer edges. Consider any graph G' with n § 1 nodes and k + 1 
edges. By Theorem 1 we have 

Ma,(A) = Me(A) --  MG-(A), 

where G has n + 1 nodes and k edges, and G" has n nodes. Since the 
theorem is therefore true for G and G" we can write 

MG(A) = A n + l  __ a l  An + a2A n-1 _ aaAn-2 q-  . . .  

and 

Ma"(A) = A" - -  bl  An-1 -[- b2A n-2 -~- . . .  

with every a i ,  bi positive. Hence 

M~'(A) = A n + l  - -  ( a  1 - ~  1 )  A "a' -~- ( a  2 Jr-  b0 A "+J . . . . . . .  

in which the coefficients alternate in sign. 

(3) 
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By mathematical induction on k the theorem is true for all graphs on 
n q- 1 nodes; and by mathematical induction on n it is true for all graphs. 

By observing that, in this proof,  every deletion of an edge added 1 to 
the absolute value of the coefficient of  the second term of the chromatic 
polynomial we derive 

THEOREM 11. The absolute value of  the second coefficient of  Me(A) is 
the number o f  edges in G. 

THEOREM 12. For a connected graph, M~(A) <~ A(A -- 1) '~-1 (A a positive 
integer). 

PROOF: Consider any spanning tree T of G. Its nodes can be colored in 
A(h - -  1) "-1 ways. Now every coloring of G is a coloring of T, but in 
general some colorings of T will not be colorings of  G. Hence 

Me(A) ~< A(A --  1) '*-1. 

We have already seen that equality holds if G is a tree. The converse 
also holds, and we can state 

THEOREM 13. A necessary and sufficient condition for a graph G on n 
nodes to be a tree is that Me(A) --= A(A --  1) "-1. 

PROOF: The necessary part  has already been proved. Let G be a graph 
whose chromatic polynomial is A(A --  1) n-1. Then G is connected, for 
otherwise its chromatic polynomial would be the product of  those of  its 
components (Theorem 2), each of which has a factor A (Theorem 9). 
Hence M~(A) would have a factor A 2 at least, which it has not. 

The coefficient ofA n-1 in Mo(A) is --(n - -  1); hence G has n --  1 edges. 
Since G is connected, has n nodes and n - -  1 edges it must be a tree. 

The method of considering a spanning tree of  a connected graph also 
gives us the following theorem: 

THEOREM 14. I f  G is connected then the absolute value of  the coefficient 
of  A ~ in MG(A) is not less than ('~-~). 

PROOF. Let T be a spanning tree of G. From equation (3) it follows 
that the addition of an edge to a graph cannot decrease the absolute value 
of any coefficient. But G can be obtained by adding suitable edges to T. 
Hence, since 

Mr(A)----= A ( A -  1)n-1 = ~ (--1) n-r-1 ( n -  111A~ 
r m l  
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it follows that the absolute value of the coefficient of A ~ in Me(A) is not 
n--1 less than (~-1). In particular, the coefficient of  A for a connected graph 

cannot be zero (its absolute value must be ~1).  From this result, and 
Theorem 2 we deduced the following corollary: 

COROLLARY. The smallest number r such that A ~ has a nonzero coefficient 
in Me(A) is the number of components of  G. 

7. INTERPRETATION OF THE COEFFICIENTS 

It  is possible to give an interpretation of the coefficients in the chromatic 
polynomial, both in its usual form and in its factorial form. We shall 
take the factorial form first. 

Let Pc(r) denote the number of  ways of coloring a graph G with exactly 
r colors, with color indifference (as explained in Section I). This is then 
the number of  ways of partitioning the set of nodes into r disjoint subsets 
such that no two nodes of  the same subset are joined. To take account of 
of  the differences between the colors we must allot a color to each subset, 
and this is possible in r! ways. Thus the number of colorings of  G in 
exactly r colors, but recognizing the different colors is r lPe(r). 

Let us now reconstruct Me(A). This is the number  of  ways of coloring 
G in ;~ colors, but not necessarily using all )~ of them. Consider those 
colorings in which exactly r colors are used. Their number is (~)r !Pc(r), 
since there are (~) ways of choosing which r colors are to be used. Summing 
over all r, we have 

h 

~-- ~] A (r) Po(r). 
r=l  

The right-hand side is now the chromatic polynomial in its factorial 
form, and we therefore have 

THEOREM 15. The coefficient of  A (r) in the factorial form of  Me(A) is 
the number of  ways of  coloring G in exactly r colors with color indifference. 

The interpretation of the coefficients in the usual form of the chromatic 
polynomial is rather less obvious, and requires the use of the principle of 
inclusion and exclusion, well known in combinatorial analysis (see, for 
example, Riordan [6]). We shall attempt to find the chromatic polynomial 

582141x-5 
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of a graph G b y  starting with the total number of colorings, both proper 
and improper, and subtracting the improper colorings. 

The total number of colorings in A colors, including improper colorings, 
is clearly/I' ~, where n is the number of nodes. Let us consider such a coloring 
of G, and let us delete any edge of G which joins nodes of different colors. 
We shall get a subgraph of G having the property that adjacent nodes are 
always colored alike (what one might call a "highly improper" coloring !). 
There is a single color associated with each connected component of this 
subgraph, and thus if the subgraph has p components there are A~ of 
these highly improper colorings. We observe that to every coloring (proper 
or improper) of G there is a highly improper coloring of some subgraph 
of G. For proper colorings of G this subgraph is the empty graph. Let 
N(p, r) denote the number of subgraphs of G which have p components 
and r edges. 

We first subtract from the total ~ the number of highly improper 
colorings of those subgraphs having just one edge. If we subtract 
Z~ N(p, 1)A~ we shall have subtracted these, but much more besides. 
For, if AB and CD are edges of G, then the contribution from the subgraph 
consisting of the edge AB alone will include colorings in which C and D 
are given the same colors, and this will be a highly improper coloring of 
the subgraph consisting of AB and CD. Moreover it will have been 
subtracted twice, once for AB and once for CD. Similarly colorings for 
subgraphs of 3, 4 and more edges will also have been subtracted an 
appropriate number of times. 

To redress the balance we can add the term ~ N(p, 2)AL This will 
compensate for the double subtraction of the colorings of the two-edge 
subgraphs, but will now necessitate a compensation for the three-edge 
subgraphs, and so on. We obtain, for the number of proper colorings of G, 

A s -- ~ N(p, 1)A ~ + ~] N(p, 2 ) ~  -- ~ N(p, 3) ~ ~ + ..-. 

Since N(n, 0) is dearly = 1 (the empty graph), we can write this expres- 
sion as 

Mo(A) = ~ ~ (--1) r N(p,r)A" 
r  ~0=1 

(4) 

From this we obtain 

k l r  THEOREM 16. The coefficient of )~ in Mo(A) is ~=o(--  )N(p,  r), 
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where N(p, r) is the number of subgraphs of G with p components and r edges, 
and k is the number of edges in G. 

Many results concerning chromatic polynomials, including our 
Theorems 7, 8, 9, 11, follow readily from the above form for the 
coefficients. 

To calculate a chromatic polynomial by means of Theorem 16 would 
entail examining all the 2 k subgraphs of G (spanning subgraphs to be 
quite unambiguous--they have all n nodes but only some subset of the 
edges of G). It was shown by Whitney [7], however, that one need only 
consider a comparatively small number of these subgraphs. Let us list 
all the circuits in the graph G, and from each circuit remove one edge. 
To do this systematically, we can imagine the edges to have been numbered 
in some arbitrary fashion; then from each circuit we remove the edge with 
highest number. We obtain a set of what are called "broken circuits." 

THEOREM 17. Equation (4) still holds if, in finding N(p,r) we consider 
only those subgraphs of G which do not contain any broken circuits. 

PROOF: The full proof of this is contained in the paper [7] by Whitney, 
and we shall not give it here, but  merely indicate the lines on which it 
proceeds. Briefly, the method is to show that those subgraphs which 
contain a broken circuit can be paired off so that the contributions to 
Ma(A) from the subgraphs of a pair will cancel. 

If a subgraph H of G contains a broken circuit B, but does not contain 
the edge (b say) that was deleted to form B, then there is also a subgraph H* 
which is H augmented by the edge b. Now H and H* have the same 
number of components, since the two nodes of  H* joined by b were 
already joined in H by the broken circuit. Therefore since H* has one 
more edge than H, the contributions of these two subgraphs to Mc(A) 
(in equation 4) will cancel. 

In general there may be several possible companions for a given 
subgraph (if it contains more than one broken circuit) and the part of the 
proof that we have omitted is that which ensures that all the subgraphs 
which contain some broken circuit can be paired so that their contributions 
vanish. It then follows that only the other subgraphs need be considered. 

8. MAP COLORING PROBLEMS 

Problems concerning the coloring of the regions of a map are special 
cases of graph coloring problems. For we can take a point in the interior 
of each region, call these points the nodes of a graph G, and join two of 
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these nodes if and only if the regions to which they belong have a boundary 
in common. The condition for a map coloring, viz., that two regions 
with a common boundary must be given different colors, becomes the 
condition that two adjacent nodes must be colored differently, that is, 
the condition for a proper coloring of the resultant graph G. If the map is 
drawn on a plane, then G will be a planar graph. 

Map coloring problems are therefore equivalent to problems in the 
coloring of planar graphs. In particular, the famous four-color conjecture, 
that any planar map can be colored in four colors, becomes 

"Ma(4) 3& 0, if G is planar" 

since Ma(4) ----- 0 means that G cannot be colored in four colors. 
For a discussion of various results concerning chromatic polynomials 

of maps, and other applications to specific map coloring problems see 
Birkhoff [2-4] and Whitney [7, 8]. 

9. UNSOLVED PROBLEMS 

There are many unsolved problems in connection with graph colorings; 
we shall mention only a few. First and foremost is the question "What  
makes a polynomial chromatic?" We have derived various necessary 
conditions for a polynomial to be the chromatic polynomial of some 
graph (Theorems 7, 8, 9, 10, 12) but none of them is sufficient. For  
example, the polynomial 

A4 _ 3A3 + 3A ~ 

satisfies these conditions but is not the chromatic polynomial of any graph. 
The problem of characterizing chromatic polynomials is unsolved. 
Another unsolved problem in a similar vein is that of determining what 
numbers can be roots of some chromatic polynomial. 

A property that is very noticeable when one has calculated a few 
chromatic polynomials is that the coefficients first increase in absolute 
magnitude, and then decrease; two successive coefficients may be equal, 
but it seems that one never finds a coefficient flanked by larger coefficients, 
and it is natural to conjecture that the coefficients always behave in this 
way. It is fairly easy to show that the coefficients are bounded in absolute 
magnitude by the corresponding coefficients in the chromatic polynomial 
of the complete graph on the same number of nodes (the proof of this 
will be left as an exercise for the reader); and certainly these upper bounds 
first increase and then decrease. But whether this is true for all chromatic 
polynomials is, as far as I know, still an open question. 
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Again, this increase and decrease in the coefficients suggest that for 
large values of  n the coefficients in the chromatic polynomials of "mos t"  
graphs on n nodes might approximate to some well-known unimodal 
statistical distribution. Several unsolved problems can be formulated 
along these lines. 

It  is clear that distinct graphs may have the same chromatic polynomial. 
For  example, all trees with n nodes have the same chromatic polynomial. 
Less trivially, the following distinct graphs have the same chromatic 
polynomial: 

This prompts  the question "What  is a necessary and sufficient condition 
for two graphs to have the same chromatic polynomial ?" This question 
also is unsolved. 

10. Two  APPLICATIONS 

This introduction may well have left the reader with the impression 
that chromatic polynomials are not of any particular practical importance. 
To show that this is not necessarily the case, we give two possible applica- 
tions: 

APPLICATION 1. Allocation o f  channels to television stations. 

Assume that there are k possible channels (frequencies) available for 
use by the n television stations in a certain country. As is well known, 
stations that are near to each other cannot  use the same channel without 
causing interference. Thus, given any two stations, it may or may not be 
the case that they can use the same channel. The problem is to allocate 
a channel to each station in such a way that any two stations which need 
to have different channels get different channels. 

Let us construct a graph G whose nodes represent the stations. We join 
two nodes by an edge if and only if the corresponding stations cannot use 
the same channel. Then any allocation of channels is, effectively, a coloring 
of G in k colors, and if  it is proper then the condition about  nearby stations 
being given different channels is satisfied. Thus the problem reduces to 
that of coloring a graph, and the chromatic polynomial will give the number 
of  ways of allocating the k channels. 
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The chromatic number x(G) of a graph G is the smallest number of  colors 
with which G can be properly colored; that  is, it is the smallest integer h 
for which Me(A) =~50. In the above example it is the minimum number of  
channels that will suffice to satisfy the allocation conditions. 

APPLICATION 2. Construction of timetables. 

Let us formulate the problem of  constructing a timetable, say the 
weekly schedule of lectures for courses at a university. 

We have a list of  lectures to be given in the various subjects. Certain 
of  these lectures must not be given at the same time as certain others, 
however, since there are students who wish to attend both. Therefore we 
have also a list of  pairs of  lectures that must not clash. We now construct 
a graph L in the following way. For  each lecture that has to be given 
there is a node of  L;  and two nodes of  L are joined by an edge if and 
only if the lectures they represent may not be given at the same time. 

There will be a set of  periods during the week, probably seven or eight 
per day, when lectures may be given. We shall take these as constituting 
our set of  colors. I f  we can construct a proper coloring of L with these 
"colors" we shall have a timetable; for lectures corresponding to nodes 
allocated a certain color will be given during the period represented by that 
color; and lectures that may not clash will not be scheduled for the same 
period, since the nodes that represent them, being joined, will not have 
been given the same color. I f  it should happen that the chromatic number 
of  L is greater than the total number of available periods, then no time- 
table is possible with the given restrictions. 

For  an actual timetable the graph L would have a l a rge  number of  
nodes, and it would be impracticable to compute its chromatic polynomial. 
(The same remark applies to Application 1.) However, what is needed is 
not the number of  ways of coloring L but, first of all, the value of x(L) 
(in case the construction of a timetable should turn out to be impossible), 
and one (at least) actual coloring. This is a practical possibility; in fact the 
problem can be stated as a special kind of linear programming problem. 

We define a "maximal  independent set" of nodes of  a graph G as a set 
of  nodes no two of which are joined by an edge, and which is maximal 
for this property. Let the maximal independent sets of  G be M1, Mz ..... Ms. 
The union of  these sets is clearly the set of  nodes of  G. In general two of  
these sets will have non-empty intersection. 

To find a coloring of  G in k colors it is sufficient to select k of these 
maximal independent sets of  nodes whose union is the set of all nodes 
of  G. For then we can allocate one color to the nodes of  each set. Nodes 
belonging to more than one set may be given the color associated with any 
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o f  the sets to which they  belong.  Fur ther ,  the color ing will be proper ,  
since nodes  o f  the same set are not  jo ined.  

Let  x~ = 1 i f  M~ is chosen in the select ion of  maximal  independen t  sets, 
and  xi = 0 if  it  is not.  Let  a~ be 1 i f  node  i belongs to M s , and  0 i f  it  
does not.  Then  for  a co lor ing  of  G we mus t  have 

a~x~ > 0 (5) 

since node  i mus t  be long to at  least  one o f  the  sets, and  

}-'. xi = number  o f  sets (6) 
i 

should  be a min imum,  for  the color ing in the  fewest colors.  
The minimiz ing  of  (6) subject  to the  const ra ints  (5) is a p rob l e m in 

integer p rog ramming .  I t  is o f  a ra ther  special  k ind  in tha t  all coefficients 
are  O's or  l ' s .  Insofar  as methods  are k n o w n  [1] for  the so lu t ion  of  such 
prob lems ,  and  are well adap ted  to c o m p u t a t i o n  by  electronic  means,  
the hand l ing  of  p rob lems  such as the channel  a l loca t ion  p r o b l e m  and the 
cons t ruc t ion  of  t imetables  shou ld  be feasible,  even when the graphs  in 
ques t ion are quite large. 
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