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Divisors of the middle binomial coefficient
Carl Pomerance

Abstract. We study some old and new problems involving divisors of the middle binomial
coefficient

(
2n
n

)
.

1. INTRODUCTION. In the center of the 2nth row of Pascal’s triangle we meet the
maximal entry,

(
2n
n

)
. These middle binomial coefficients have a rich history. For ex-

ample, the fact that
(
2n
n

)
is divisible by the product of the primes in the interval (n, 2n)

was exploited by Chebyshev in 1850 to obtain upper bounds and lower bounds for the
distribution of primes. These bounds were so good that it seemed a promising path to
the prime number theorem, but eventually that goal was reached by other methods.

The central binomial coefficient
(
2n
n

)
also figures prominently in the definition of

the Catalan numbers:

C(n) =
1

n+ 1

(
2n

n

)
. (1)

They too have a rich history with many combinatorial applications (see Stanley [11]).
Note that C(n) is an integer; that is, n+ 1 divides

(
2n
n

)
.

This paper originated with the naive question: Is there some number k other than 1
such that n+ k always divides

(
2n
n

)
?

It turns out that the short answer is “no”. For each k 6= 1, there are infinitely many
n with n+ k not dividing

(
2n
n

)
. However, if k ≥ 2, n+ k “usually” divides

(
2n
n

)
(in

a way that we will make precise). On the other hand, we show that if k ≤ 0, n + k
divides

(
2n
n

)
less frequently than not, leaving unresolved the precise nature of this

frequency. While not particularly deep, these results appear to be new. The proofs stem
from a number-theoretic (as opposed to combinatorial) proof that C(n) is integral.

Along the way we shall meet the notorious problem of Ron Graham (which has a
cash prize attached) on whether there are infinitely many numbers n with

(
2n
n

)
rela-

tively prime to 105.
But let us begin at the very beginning, taking nothing for granted.

2. WHY ARE THE BINOMIAL COEFFICIENTS INTEGERS? The binomial
coefficient

(
m
k

)
, defined as

m!

k!(m− k)!
,

is integral. Really? Perhaps it is not so obvious that the denominator divides the nu-
merator. There are numerous proofs of course, for example one can use induction and
Pascal’s rule: (

m+ 1

k

)
=

(
m

k

)
+

(
m

k − 1

)
.

Or one can argue combinatorially that
(
m
k

)
counts the number of k-element subsets of

an m-element set.
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Instead of looking at the shortest proof, let’s instead consider a more complicated
proof, one that allows us to introduce some useful notation and also prove other results.

For a prime p and a positive integer m, let vp(m) denote the number of factors of p
in the prime factorization of m. For example, v2(10) = 1, v2(11) = 0, and v2(12) =
2. This function can be extended to positive rational numbers via vp(a/b) = vp(a)−
vp(b). Thus, a/b is integral if and only if vp(a/b) ≥ 0 for all primes p.

The power of p in m! is given by

vp(m!) =
m∑
k=1

vp(k) =
m∑
k=1

vp(k)∑
j=1

1 =
∑
j≥1

m∑
k=1
pj |k

1 =
∑
j≥1

⌊
m

pj

⌋
,

the last step using that bm/pjc is the number of multiples of pj in {1, 2, . . . ,m}.
This result, sometimes referred to as Legendre’s formula, is well known in elementary
number theory. We also have the almost trivial inequality

bx+ yc ≥ bxc+ byc (2)

for all real numbers x, y. From these two results, it is immediate that
(
m
k

)
is an integer.

Indeed, for each prime p we have

vp

((
m

k

))
=
∑
j≥1

(⌊
m

pj

⌋
−
⌊
k

pj

⌋
−
⌊
m− k
pj

⌋)
≥
∑
j≥1

0 = 0. (3)

3. KUMMER’S THEOREM AND CATALAN NUMBERS. There is another con-
sequence of this line of thinking. For a real number x let {x} = x− bxc, the fractional
part of x. The inequality (2) can be improved to an equation:

bx+ yc − bxc − byc = {x}+ {y} − {x+ y} =
{
1, if {x}+ {y} ≥ 1,

0, if {x}+ {y} < 1.

So by (3), vp(
(
m
k

)
) is the number of values of j such that {k/pj}+ {(m− k)/pj} is

at least 1.
Let’s write k and m− k in the base p, so that

k = a0 + a1p+ . . . , m− k = b0 + b1p+ . . . ,

where the “digits” ai, bi are integers in the range 0 to p− 1. For j ≥ 1,{
k

pj

}
=
a0 + a1p+ · · ·+ aj−1p

j−1

pj
,

{
m− k
pj

}
=
b0 + b1p+ · · ·+ bj−1p

j−1

pj
,

and so we see that {k/pj} + {(m − k)/pj} ≥ 1 if and only if in the addition of k
and m− k in the base p there is a carry into place j caused by the earlier digits.

This implies the remarkable result of Kummer from 1852: For each prime p and
integers 0 ≤ k ≤ m, vp

((
m
k

))
is the number of carries in the addition k+ (m− k) =

m when done in the base p.
Recall the definition (1) of the Catalan number C(n). Any of the numerous com-

binatorial applications of the Catalan numbers lead to a proof that C(n) is an integer,
being the solution to a counting problem. From a number-theoretic perspective, one
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can ask for a direct proof of the integrality of C(n). This is not difficult, perhaps the
easiest way to see it is via the identity

C(n) =

(
2n

n

)
−
(

2n

n− 1

)
.

It also follows from Kummer’s theorem. Indeed, say p is a prime and vp(n+ 1) =
j. Then the least significant j digits in base p of n+ 1 are all 0, so the least significant
j digits in base p of n are all p− 1. Thus, in the addition n+ n = 2n performed in
the base p, we have j carries from the least significant j digits, and perhaps some other
carries as well. So we have vp(

(
2n
n

)
) ≥ j. Since this is true for all primes p, we have

n+ 1 |
(
2n
n

)
and so C(n) =

(
2n
n

)
/(n+ 1) is an integer.

It may seem that the path of this paper is to give difficult proofs of easy theorems!
However we shall see that this proof of the integrality of C(n) “has legs” and can
be used to also prove some perhaps surprising new results. But first we take a not-
unrelated detour to view the notorious 105 problem.

4. WHEN IS
(
2n
n

)
RELATIVELY PRIME TO 105? The numbers n = 1, 10, and

756 have
(
2n
n

)
relatively prime to 105. Are there infinitely many others? This problem

is due to Ron Graham, and according to [2, 4], Graham offers a prize of $1,000 to
settle it.

What’s the deal with 105? It is 3× 5× 7, the product of the first three odd primes.
More generally, one can ask for any fixed number m divisible by at least three distinct
odd primes, if

(
2n
n

)
is relatively prime to m for infinitely many n. In the case when

m = pq, the product of just two odd primes, we do know that
(
2n
n

)
is relatively prime

to m for infinitely many n, a result of Erdős, Graham, Ruzsa, and Straus, see [3].
These problems and results stem from the point of view taken in Kummer’s theo-

rem, discussed in the previous section. We can use Kummer’s theorem to show that(
2n
n

)
is usually divisible by all small primes p. This is obvious for p = 2 since in the

base 2, the number 2n has one more digit than n so there is at least one carry in the
addition n+ n; that is,

(
2n
n

)
is always even.

For an odd prime p, let

Rp = {0, 1, . . . , 12(p− 1)}, rp = #Rp =
1
2
(p+ 1), θp =

log rp
log p

.

We see that p does not divide
(
2n
n

)
precisely when all of the base-p digits of n come

from Rp. We show this is an unusual event.

Lemma 1. For each odd prime p and all real numbers x ≥ 2, the number of integers
1 ≤ n ≤ x with p -

(
2n
n

)
is at most pxθp .

Proof. If p -
(
2n
n

)
, then by Kummer’s theorem, every base-p digit of n is in Rp. Let

D = b1 + log x/ log pc, so that if 1 ≤ n ≤ x is an integer, then n has at most D
base-p digits. If we restrict these digits so that they are in Rp, we would have at most
rp choices in each place. Thus, the number of choices for n is at most rDp . It remains
to note that

rDp < prlog x/ log pp = pxθp ,

so concluding the proof.
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For example, there are at most 3xθ3 integers n ≤ x with
(
2n
n

)
not divisible by 3.

Since the exponent θ3 = log 2/ log 3 = 0.6309 . . . is smaller than 1, we see that the
vast majority of integers n up to x have

(
2n
n

)
divisible by 3.

Here is a heuristic argument for why there are infinitely many n with
(
2n
n

)
relatively

prime to 105. The idea is to view Lemma 1 as an assertion about the probability that
p does not divide

(
2n
n

)
when n is randomly chosen in [1, x]. When x is an integer,

this probability is at most pxθp−1. The exponents θp − 1 for p = 3, 5, 7 are greater
than −0.37, −0.32, −0.29, respectively. If these events are independent, as would
seem only just (why would the base-p expansion of n have anything to do with the
base-q expansion when p and q are different primes?), then the probability that

(
2n
n

)
is

relatively prime to 105, where n ≤ x, exceeds x−0.98 when x is large. Thus, we expect
at least x0.02 examples, and this expression tends to infinity when x→∞, albeit fairly
slowly.

It is interesting to note that if one redoes this heuristic for the four primes 3, 5, 7, 11,
then it suggests that there are at most finitely many numbers, such as n = 3160, where(
2n
n

)
is relatively prime to 1155. No example larger than 3160 is known, though they

have been searched for up to 1010
4
, see [7].

5. HOW FREQUENTLY DOES n + k DIVIDE
(
2n
n

)
? We have seen that n + 1

divides
(
2n
n

)
for all n. We now ask what happens with n+ k when k 6= 1. Is there a

value of k where n+ k divides
(
2n
n

)
for all n or for all sufficiently large n?

We prove the following results which show an important cleavage between the cases
when k ≥ 2 and the cases when k ≤ 0. However, we first state a universal result.

Theorem 1. For each integer k 6= 1 there are infinitely many positive integers n with
n+ k -

(
2n
n

)
.

Thus, the case k = 1 of Catalan numbers is indeed special. However, the set of
numbers n satisfying the condition of Theorem 1 when k ≥ 2 is rather sparse. To
measure how dense or sparse a set S of positive integers is, let S(x) denote the number
of members of S in [1, x]. Then the “asymptotic density” of S is limx→∞ S(x)/x
if this limit exists. In general, the limsup gives the upper asymptotic density of S
and the liminf the lower asymptotic density. For example, the set of odd numbers has
asymptotic density 1

2
, the set of prime numbers has asymptotic density 0, and the set of

numbers which have an even number of decimal digits has upper asymptotic density
10/11 and lower asymptotic density 1/11.

Theorem 2. For each positive integer k, the set of positive integers n with

n+ k
∣∣∣ (2n

n

)

has asymptotic density 1.

So it is common for n+ k to divide
(
2n
n

)
, but what about n− k?

Theorem 3. For each integer k ≥ 0 the set of integers n > k with n − k |
(
2n
n

)
is

infinite, but has upper asymptotic density smaller than 1
3
.

A remark: That there are infinitely many integers n with n |
(
2n
n

)
and also infinitely

many with n -
(
2n
n

)
follow from Theorems 3.2 and 3.4 in the recent paper of Ulas [13].
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6. THE PROOFS OF THEOREMS 1, 2, 3. There is a quick proof of Theorem 1.
First assume that k ≥ 2. Let p be a prime factor of k and let n = pj − k where j is
large enough so that n > 0. In base p, n has at most j digits, with the least significant
digit being 0. Hence, there are at most j − 1 carries when adding n to n and hence
n+ k = pj -

(
2n
n

)
. For k ≤ 0, let p > 2|k| be an odd prime number. For n = p+ |k|,

we have that there are no carries when n is added to itself in the base p, so that p -
(
2n
n

)
.

But p = n+ k, so we are done.
The proof of Theorem 2 is a bit more difficult. We begin with a lemma that extends

Lemma 1 to prime powers.

Lemma 2. Let p be an arbitrary prime, let x ≥ p be a real number, and let D =
b1 + log x/ log pc. The number of integers 1 ≤ n ≤ x with vp(

(
2n
n

)
) ≤ D/(5 logD)

is at most 3px1−1/(5 log p).

Proof. The calculation here is similar to the one in probability where you compute
the chance that a coin flipped D times lands heads fairly frequently. We consider the
number of assignments ofD base-p digits where all but at mostB := bD/(5 logD)c
of them are smaller than p/2. Since there are dp/2e integers in [0, p/2), the number
of assignments is at most

B∑
j=0

(
D

j

)(
dp/2e

)D−j(
p− dp/2e

)j
=

B∑
j=0

(
D

J

)(
dp/2e

)D (p− dp/2e
dp/2e

)j

≤
(
dp/2e

)D B∑
j=0

(
D

j

)
.

A crude estimation using D ≥ 2 gets us

B∑
j=0

(
D

j

)
≤

B∑
j=0

Dj < 2DB,

so the number of n ≤ x with vp(
(
2n
n

)
) ≤ B is at most 2(dp/2e)DDB . Now

2DB = 2eB logD ≤ 2eD/5 ≤ 2e1/5x1/(5 log p),

dp/2e ≤ 2
3
p, ( 2

3
)D ≤ x− log(3/2)/ log p, and pD ≤ px. We conclude that the number of

n ≤ x with vp(
(
2n
n

)
) ≤ B is at most

2
(
dp/2e

)D
DB ≤ 2DB( 2

3
p)D ≤ 2e1/5px1−log(3/2)/ log p+1/(5 log p).

Since 2e1/5 < 3 and log(3/2) > 2/5, the lemma follows at once.

We are now ready to prove Theorem 2. Fix a value of k ≥ 1. First we claim that for
p ≥ 2k,

vp

((
2n

n

))
≥ vp(n+ k). (4)

Indeed, if vp(n + k) = j > 0, then the j least significant digits of n + k in base p
are 0, so the j least significant digits of n are at least p − k ≥ p/2. By Kummer’s
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theorem, (4) holds. (Note that this argument is essentially a reprise of the proof given
in Section 3 that Catalan numbers are integers.)

It remains to show that for “most” integers n, (4) holds for all primes p < 2k.
Let x ≥ 2k + 1 be a real number and assume that we are considering values of
n ≤ x. With D as in Lemma 2, we consider two cases: those n with vp(n + k) ≤
D/(5 logD) and those n with vp(n + k) > D/(5 logD). In the first case, if (4)
fails, we would have vp(

(
2n
n

)
) < D/(5 logD), so by Lemma 2, the number of n be-

ing considered is at most 3px1−1/(5 log p). Summing this expression for primes p < 2k
gives a quantity smaller than 6k2x1−1/(5 log(2k)). Divided by x, this expression tends
to 0 as x → ∞, so we are left with the second case: those n with vp(n + k) >
D/(5 logD). We shall show in this case that there are very few values of n ≤ x
to consider, regardless if (4) holds. In fact, the number of choices for n is at most
(x+ k)/pdD/(5 logD)e < 2x/pD/(5 logD). Since pD > plog x/ log p = x, we thus have
that the number of choices for n in the second case corresponding to the prime p < 2k
is at most 2x1−1/(5 logD). We have logD ≤ log(1 + log x/ log 2) < 1 + log log x
(using log(a+ b) < a/b+ log b when 0 < a < b), so that if we sum for p < 2k, we
get that the number of choices for n is at most 2kx1−1/(5+5 log log x). When divided by
x, this too goes to 0 as x→∞, which completes the proof of Theorem 2.

It is not difficult to amend the proof to show that for each fixed positive integer k,
the set of integers n with

(n+ 1)(n+ 2) . . . (n+ k)
∣∣∣ (2n

n

)
(5)

has asymptotic density 1. In addition, the proof allows for k to tend to infinity, provided
it does not do so too quickly in comparison with x. The result (5) might be compared
with Harborth [6] where it is shown that for any fixed positive integer k, “almost all”
entries

(
m
j

)
in Pascal’s triangle are divisible by m(m− 1) . . . (m− k + 1). Also see

http://oeis.org, sequences A065344–9.
We now proceed to the proof of Theorem 3, starting with the second assertion.

Suppose that k ≥ 0, n > 2k2, and m = n − k has a prime factor p >
√
2n. Then

p > 2k and writing m = cp, we have

c <
m√
2n
≤ n√

2n
=

1

2

√
2n <

1

2
p.

We see that both base-p digits of n = cp+ k, namely c and k, are smaller than 1
2
p,

and so there are no carries when adding n to itself in base p. By Kummer’s theorem,
we have p -

(
2n
n

)
, so that n− k -

(
2n
n

)
.

Suppose that x > 2k4. To show the second assertion in the theorem, it will suffice to
show that when x is sufficiently large, at least 2

3
x integers n ∈ (2k2, x] havem = n−

k divisible by a prime p >
√
2x. For each prime p satisfying this inequality, we count

numbers n in (2k2, x] with p | n− k, and this is at least b(x− 2k2)/pc > x/p− 2.
No choice of n corresponds to two different values of p, since their product would be
too large to have n ≤ x. Thus, the number of choices for n is at least∑

√
2x<p≤x

(
x

p
− 2

)
= x

∑
√
2x<p≤x

1

p
− 2π(x),

where π(x) denotes the number of primes in [1, x]. Euler proved long ago in 1737
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that the sum of the reciprocals of the primes diverges to infinity like the double-log
function, and using a finer estimation (such as the theorem of Mertens from 1874), we
have ∑

√
2x<p≤x

1

p
= log log x− log log(

√
2x) + E(x),

where E(x)→ 0 as x→∞, see [8, 9]. The difference of double logs simplifies to

log 2 + log

(
log x

log(2x)

)
,

which tends to log 2 as x→∞. As mentioned before, the set of primes has asymptotic
density 0, in fact π(x)/x goes to 0 like 1/ log x by Chebyshev’s estimates or the prime
number theorem. Putting these thoughts together, it follows that for each ε > 0 and x
sufficiently large, there are more than (log 2− ε)x values of n ∈ (2k2, x] with n− k
divisible by a prime p >

√
2x. We have seen that for each such number n, we have

n− k -
(
2n
n

)
. Since log 2 > 0.6931 > 2

3
, the second part of Theorem 3 follows.

To complete the proof, we wish to show there are infinitely many values of n where
n − k |

(
2n
n

)
. We leave the few details for the reader, but using Kummer’s theorem,

we have that if n = pq + k where p, q are primes with k < p and 3
2
p < q < 2p, then

n− k |
(
2n
n

)
. The number of such numbers n ≤ x is greater than a positive constant

times x/(log x)2.

7. THE “GOVERNOR SET”. For each integer k, let

Dk =

{
n : n+ k

∣∣∣ (2n
n

)}
.

We call D0 the governor set for a reason that will soon be clear.
Say two sets A,B of positive integers are asymptotically equivalent if the sym-

metric difference (A ∪B) \ (A ∩B) has asymptotic density 0. In this case, we write
A ' B. For example, ifA is the set of all positive integers exceeding a googol (10100)
and B is the set of all composite positive integers, then A ' B. In particular, any
two sets of asymptotic density 1 are asymptotically equivalent, as are any two sets of
asymptotic density 0.

If A is a set of positive integers and n is a positive integer, we let

A+ n := {a+ n : a ∈ A}.

Theorem 4. For each positive integer k we have D0 + k ' D−k.

We sketch the proof. Suppose that p is a prime with p | n and p > 2k. Then, as in
the proof of Theorem 2, vp(

(
2n
n

)
) = vp(

(
2(n+k)
n+k

)
). And for primes p at most 2k, again

following the argument for Theorem 2, for most numbers n, the power of p in both(
2n
n

)
and in

(
2(n+k)
n+k

)
is higher than the power of p in n. Thus, most of the time, the

condition n ∈ D0 (that is, n |
(
2n
n

)
) is equivalent to the condition n+ k ∈ D−k (that

is, n |
(
2(n+k)
n+k

)
).

It is not clear if the governor set D0 has positive lower asymptotic density, though I
conjecture this the case. In Theorem 3 we essentially learned that the upper asymptotic
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density is at most 1 − log 2, and perhaps some improvement can be made. It also
would be highly interesting to investigate the problem numerically. The numbers n
which divide

(
2n
n

)
are 1, 2, 6, 15, 20, 28, 42, 45, 66, 77, 88, 91, . . . . What are these

numbers trying to tell us? A census to higher levels may be illuminating. Note that D0

may also be described as the set of n with n | C(n), and in this guise there is some
information to be found at http://oeis.org, sequence A014847.

To cement the role of the governor set D0, let

D
(2)
k =

{
n : (n+ k)2

∣∣∣ (2n
n

)}
.

Then for each positive integer k we have D(2)
k + k ' D0. The proof is similar to

that of Theorem 4. So you’d like to know how often the nth Catalan number C(n)
is divisible by n + 1? You are again led back to the governor set D0. See too [1]
and http://oeis.org, sequence A002503. (Notice that n+ 1 | C(n) if and only if
n+ 1 |

(
2n+1
n

)
. This latter condition is considered in [13], where in Question 2.8 (a),

the author asks about the distribution of such n. Our Theorem 3 in the case k = 0 is
thus relevant to this query.)

You may have noticed that any Dk with k ≤ 0 could have played the special role
of the governor set, but surely D0 is the most pleasing.

8. OTHER BINOMIAL COEFFICIENTS. One might wonder what the fuss is
about the middle entry

(
2n
n

)
in the 2nth row of Pascal’s triangle. What about odd-

numbered rows, where there are the twin peaks
(
2n+1
n

)
=
(
2n+1
n+1

)
? It is possible to

prove corresponding results on divisibility here. For example, for k ≥ 2, (n+ 2)(n+
3) . . . (n + k) usually divides

(
2n+1
n

)
. If you are interested, you should try to prove

this.
Looking at just the case k = 2, we have a near miss for n + 2 always dividing(

2n+1
n

)
. In fact, unless n+ 2 is a power of 2, it divides, and even in this case, it divides

2
(
2n+1
n

)
. Since there is a tie for the maximum entry in this row of Pascal’s triangle, it

makes sense to include both of them, and as mentioned we always have

n+ 2
∣∣∣ 2(2n+ 1

n

)
.

Thus, we might wonder, as with Catalan numbers, if the integer

2

n+ 2

(
2n+ 1

n

)
(6)

has combinatorial significance. Indeed it does. We know that the Catalan numberC(n)
counts the number of paths from (0, 0) to (n, n) that do not cross below the line y = x,
and where each step of the path is one unit to the right or one unit up. The number in
(6) is similar, but now we are counting paths from (0, 0) to (n, n + 1), a so-called
ballot number.

In [12], Sun has the following generalization of the fact that n+ 1 always divides(
2n
n

)
. If k, ` are positive integers and every prime dividing k also divides `, then

`n+ 1
∣∣∣ ((`+ k)n

kn

)
for every positive integer n. (7)
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The case k = ` = 1 is the situation with Catalan numbers. Sun asks if the condition
that every prime factor of k divides ` is necessary for (7) to hold.

For other problems and results concerning divisibility properties of binomial coef-
ficients, the reader is referred to [3, 5, 10].
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