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Abstract
We derive here compact formulas for the Zhang-Zhang (ZZ) poly-

nomials of two classes of finite open-ended carbon nanotubes: zigzag
nanotubes (n, 0) of length d and armchair nanotubes (n, n) of length
d. For zigzag nanotubes, the underlying Clar cover theory is triv-
ial; in contrast, for armchair nanotubes, the Clar theory is complex
and abundant in results. The ZZ polynomial formulas have been
obtained using the interface theory of benzenoids and the transfer
matrix methodology.

1 Introduction

The mathematical Clar theory of open-ended carbon nanotubes (aka tubu-
lenes) received little attention in the literature [1, 25, 58, 91]. In most
cases, Clar theory was used as a tool for defining small primitive unit
cells used for quantum chemical modeling of metallic character and chem-
ical reactivity of nanotubes [3–5, 52, 63–67, 74, 80, 97], the characteriza-
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tion, distribution and visualization of the Kekulé and Clar regions in nan-
otubes [59, 62, 63], and the analysis of aromaticity patterns [55, 60, 61].
In contrast, the Clar theory of capped nanotubes (formally belonging to
spherical carbon nanostructures, i.e., fullerenes) attracted more attention,
focusing predominantly on the determination of the Clar number [22, 68],
and on the enumeration and characterization of the nanotube caps [7,23].
From the practical viewpoint, the most convenient way to construct and
enumerate Clar covers is associated with the concept of the Zhang-Zhang
(ZZ) polynomial [1,9,92–94], which can be useful for various chemical ap-
plications [21,28,77,90]. Note that the ZZ polynomial theory of open-ended
carbon nanotubes has been never developed up-to-date.

The mathematical Kekulé theory of carbon nanotubes is well-developed
for all types of carbon nanotubes: zigzag, armchair, chiral, capped, and
toroidal [38, 40, 54, 56, 76, 78, 79, 82, 83]. As mentioned earlier, rather little
is known about the Clar theory of nanotubes. The most effort was in-
vested in the determination of the Clar number Cl of open-ended carbon
nanotubes, i.e., the maximal number of Clar sextets [17] that can be simul-
taneously placed in the hexagonal network of nanotubes without violating
the chemical bonding principles. The k-resonance theory of open-ended
nanotubes initiated by Zhang and Wang [91] and further developed by
Guo [25] demonstrated that the Clar number of zigzag nanotubes have
Cl = 0, while for the armchair nanotubes, one has Cl > 0. The aro-
maticity of various open-ended nanotubes was studied by Lukovits and
collaborators [54,56–58].

In the current paper, we attempt to fill the gap in the literature by
developing the theory of Clar covers for two classes of carbon nanotubes,
zigzag nanotubes (n, 0)d and armchair nanotubes (n, n)d. The Clar theory
of chiral nanotubes (n, m)d with n > m > 0 seems to be considerably more
complicated and we do not attempt to explicate it in the current study.
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a) b) 

c) 

d) 

Figure 1. Examples of a) zigzag nanotube (n, 0)d (here n = 20 and d =
6) and b) armchair nanotube (n, n)d (here n = 10 and d =
5). The dotted (red) line symbolizes a scission line allowing
us to represent (n, 0)d and (n, n)d as planar structures shown
in c) and d), respectively. Within these flat representations,
pairs of edges that the scission line intersects are considered
equivalent and thus should be identified with each other.

2 Clar covers and ZZ polynomials of carbon
nanotubes

Open-ended carbon nanotubes are tubular aromatic hydrocarbons con-
sisting of fused benzene rings arranged on the surface of a cylinder. (For
examples of such systems, see Figs. 1 and 3.) Each carbon atom has three
carbon neighbors, except for the carbon atoms located at the ends of the
nanotube; those are bonded to two other carbons and a hydrogen to sat-
isfy the chemical bonding principles of aromatic hydrocarbons. The cor-
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responding molecular graph G, whose vertices represent the carbon atoms
and whose edges represent the carbon-carbon bonds, is part of some reg-
ular hexagonal tessellation of a cylinder. A spanning subgraph K of G
is called a Kekulé structure, if every component of K is K2 (a complete
graph on two vertices). Similarly, a spanning subgraph C of G is called a
Clar cover, if every component of C is K2 or C6 (a cycle of girth 6). The
number K ≡ K(G) of distinct Kekulé structures that can be constructed
for G is called the Kekulé count; similarly, the number C ≡ C(G) of dis-
tinct Clar covers that can be constructed for G is called the Clar count.
The number of the C6 components in C is called the order of C and is
denoted as ord(C). Clearly, every Kekulé structure of G is a Clar cover
of G of order 0. The maximal number of the C6 components that can be
simultaneously accommodated in G is called the Clar number of G and is
denoted as Cl ≡ Cl(G). The Clar covers of order Cl are referred to as the
Clar structures of G [17].

The presented graph-theoretical terminology has lexical equivalents in
the language of chemistry. This relationship is briefly explained in this
paragraph. K2 is referred to as the double bond; it is depicted as a dou-
ble line segment located over a selected molecular graph edge. C6 is
referred to as the aromatic sextet or the Clar sextet [17]; it is depicted as
a circle located in the center of a selected hexagon. Similarly, a Kekulé
structure K is referred to as a resonance structure of G, and a Clar cover
C, as a generalized resonance structure of G. While the content of the
current work is presented predominantly in the graph-theoretical language,
we find it convenient at times to resort to chemical notation, particularly
in the graphical representations of Clar covers.

The problem of enumeration of Clar covers of aromatic hydrocarbons
received considerable attention in the literature. Probably the most com-
prehensive approach to Clar theory of benzenoids was introduced almost
30 years ago by Zhang and Zhang [92–94], who defined the so-called Clar
covering polynomial

ZZ (G, x) =
∑

C

xord(C) (1)
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where the summation runs over all conceivable Clar covers C of G. This
polynomial, from the names of its inventors most often referred to in the
literature as the Zhang-Zhang polynomial [1] or briefly as the ZZ polyno-
mial [9], formally constitutes the generating function

ZZ (G, x) =
Cl∑

k=0
ckxk (2)

for the sequence (c0, c1, . . . , cCl), where ck denotes the number of distinct
Clar covers of order k that can be constructed for G. The ZZ polyno-
mial conveniently summarizes (see Theorem 2 of [92]) the most important
topological invariants of G

K = c0 = ZZ (G, x)
∣∣∣
x=0

(3)

C = c0 + c1 + · · · + cCl = ZZ (G, x)
∣∣∣
x=1

(4)

Cl = degree (ZZ (G, x)) (5)

h1 = c1 = d ZZ (G, x)
dx

∣∣∣
x=0

(6)

where h1 is the first Herndon number of G [36]. The main advantage of
using the ZZ polynomials lies in the underlying recurrence relations [92] al-
lowing one for efficient computation of ZZ polynomials using partial cover-
ing decomposition algorithms [1,9,12]. Such calculations can be performed
much faster than the determination of a single topological invariant. In
particular, the recently reported ZZPolyCalc software [75] can be used for
very robust determination of ZZ polynomials of large molecular graphs
(planar, tubular, spherical, or toroidal), which may contain even thou-
sands of vertices (atoms); the efficiency of the implementation relies on
a hash-indexed library of repeated subgraph motifs occurring during the
recursive decomposition. These codes has been used for tabulation of the
ZZ polynomials for all the isomers of (5,6)-fullerenes containing up to 70
carbon atoms [84]. Interestingly, all these 30579 ZZ polynomials are dis-
tinct and can be readily used as a unique label for differentiating between
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various isomer cages. Despite of the fact that some of these fullerenes had
tubular, ellipsoidal shapes, the current study seems to be the first applica-
tion of the ZZ polynomial theory to tubular benzenoids, as the previously
studied capped nanotubes formally belong to spherical benzenoids.

An interesting alternative to brute-force computation of ZZ polynomi-
als using partial covering decomposition algorithms is the determination
of closed formulas valid for the whole families of isostructural hydrocar-
bons indexed either by one, two, or three structural parameters n, m, and
k. Various classes of catacondensed and pericondensed benzenoids have
been treated that way, which resulted in the reported ZZ polynomials for
polyacenes L(n) [9, 92, 93], single armchair chains N(n) [9, 34, 48, 49, 51],
polyphenylenes P (n) [9], multiple segment polyacenes [10, 12, 92, 93], cy-
clophenacenes [11, 24], hammers H(n) [10], starphenes St(n, m, k) [10],
tripods T (n, m, k) [10,13], zigzag coronoids ZC(n, m, k) [10,12,15,24], fen-
estrenes F (n, m) [10,12,15,24,43], parallelograms M(m, n) [9,12,14,26,34],
hexagons O(n, m, k) [10,13,32,89], chevrons Ch(n, m, k) [10,14], multiple
zigzag chains Z(n, m) [8, 10, 13, 34, 50, 88], ribbons Rb(n, m, k) [10, 31],
oblate rectangles Or(n, m) [10, 13, 29, 32, 95], prolate rectangles Pr(n, m)
[10, 16, 92, 94], and many other benzenoids with more complex structure
[9, 10,13,16,30,33,34,85,92,95].

ZZ polynomials stimulated many interesting mathematical associations,
including the connections to sextet polynomials [1,2,27,37,92–94], to cube
polynomials [6, 96], and to tiling polynomials [51]. The connection to
cube polynomials allowed to investigate the distribution of zeros of ZZ
polynomials [53]. An interesting direction of research in the theory of
ZZ polynomials is related to expressing the ZZ polynomials as determi-
nants of some structured sparse matrices [31–34,88]. This bears a striking
similarity to the celebrated John-Sachs theorem stating that the number
of Kekulé structures of some benzenoid B can be compactly expressed
as the determinant of the John-Sachs matrix P(B) [34, 35, 39]. The in-
vestigation of symmetries present in the ZZ polynomials of regular n-tier
strips [86,87] allowed to discover [45] an equivalence of ZZ polynomials to
the extended strict order polynomials [44], demonstrating that the prob-
lem of enumeration of Clar covers for regular n-tier strip benzenoids is
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equivalent to the problem of enumeration of linear extensions for partially
ordered sets [46, 47]. Finally, various generalization of the ZZ polynomi-
als has been reported, including various other cycles (C4, C8, C10) as the
covering components [20,81,98].

The current study relies on the recursive covering character assign-
ment decomposition algorithm [9,12,29], the interface theory of benzenoids
[31,42,43,48,49], and the transfer matrix technique [41,56,95] to construct
and enumerate Clar covers for two classes of carbon nanotubes: zigzag and
armchair nanotubes. Formal mathematical definition of these structures,
usually obtained by folding appropriate patches of graphene sheet, is not
discussed here; instead, we resort to implicit definitions given via the il-
lustrations in Figs. 1 and 3 and we refer the interested readers to the
abundant literature on the topic [18,19,55,78,79,91].

3 Clar cover theory of zigzag nanotubes

Consider a zigzag nanotube (n, 0) of length d. We denote it briefly here
as (n, 0)d. An example of such a nanotube is shown in Fig. 1a, and its
planar representation in Fig. 1c. To construct a Clar cover C of (n, 0)d,
we consider an arbitrary edge ab located at the zigzag border (n, 0)d and
assign to it single (S), double (D), or aromatic (A) covering character
using the usual decomposition algorithm [1, 9, 92] used for constructing
Clar covers. In the language of graph theory we say that

ab has character D ⇐⇒ ∃ K2 ∈ C : ab ∈ E (K2) (7)

ab has character A ⇐⇒ ∃ C6 ∈ C : ab ∈ E (C6) (8)

ab has character S ⇐⇒ ab is not covered in C (9)

where E(G) represents the set of edges of a graph G. This threefold way
of assigning a definite covering character to ab, represented graphically in
Fig. 2, has the following consequences:

• In case, when the edge ab is assigned the covering character S, the
only way to construct a Clar cover proceeds via assigning character
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 
 

Figure 2. Threefold way of assigning a definite covering character S,
D, or A to the edge ab located at the first layer of (n, 0)d

results in two distinct Kekulé-like coverings of the whole first
zigzag layer in (n, 0)d; for details, see text. Note that assign-
ing aromatic character (A) to the edge ab cannot produce
any Clar cover, as one edge (denoted by asterisks) in the
first layer of (n, 0)d has simultaneously characters S and D,
which is a contradiction.

D to the edge e1 adjacent to ab to the right, which is turn mandates
allocating single character S to the two next edges adjacent to e1,
i.e., the edge f1 pointing down and the edge g1 pointing to the right
and parallel to ab. This patterns continues: The consecutive edges
e2, e3, e4, etc., are assigned character D, while single character S is
assigned to the consecutive edges f2, f3, f4, . . ., (vertical edges) and
the consecutive edges g2, g3, g4, . . ., (edges parallel to ab).

 

An extension of this pattern, after reaching the scission line and
continuing through it, returns to the edge ab from the left side, as
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shown on the diagram above. The resulting sequence of the coverings
of the edges ab, e1, g1, e2, g2, e3, g3, e4, etc., is purely Kekuléan
...SDSDSDSD..., with the S covering of the edge ab. Note that all
the pointing down edges fi are assigned the covering character S,
which means that the covering of the next zigzag layer of (n, 0)d is
independent of the covering of the current zigzag layers, as zigzag
layers of a zigzag nanotube are essentially disconnected from each
other.

• In case, when the edge ab is assigned character D, the recursive
assignment procedure described above is almost identical, but now
one needs to proceed to the left instead to the right of the edge ab.
The resulting sequence of the edge coverings is again purely Kekuléan
...DSDSDSDS..., with the D covering of the edge ab. (For details,
see the branch D in Fig. 2.) Again, all the pointing down edges fi

are assigned the covering character S, which means that the covering
of the next zigzag layer of (n, 0)d is independent of the covering of
the current zigzag layers, as both layers are essentially disconnected.

• In case, when the edge ab is assigned the covering character A, the
hexagon containing the edge ab is flanked on each side by alternating
sequences of singly and doubly covered zigzag edges; the resulting
sequence of the edge coverings is ...SDSDSAASDSDS... The edge
crossed by the scission line is simultaneously assigned the covering
character S (on the left side) and the covering character D (on the
right side). (For details, see the two asterisks in the branch A of
Fig. 2.) This conflicting double assignment of the same edge is a
clear contradiction, which shows that the assignment of A to the
edge ab cannot produce any valid Clar cover of (n, 0)d.

In summary, an attempt to assign a definite covering character (S, D, or A)
to an arbitrary edge ab located in the first zigzag layer of (n, 0)d produces
two distinct coverings of the first zigzag layer, both Kekuléan in their
character and both consisting of an alternating sequences of n single and
n double covering characters, S and D. These two coverings are distinct,
as they differ by the covering character of the designated edge ab, which is
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either S or D. Note, that in both cases all the vertical edges fi, parallel to
the axis of the nanotube, are assigned character S, stipulating that each
zigzag layer of (n, 0)d is essentially disconnected from other zigzag layers.
Each zigzag layer of (n, 0)d is covered in analogous way, always producing
two distinct purely Kekuléan Clar coverings of this zigzag layer. Each
consecutive zigzag layer is covered independently of the previous one and
the next one. Consequently, the number of distinct Clar covers of (n, 0)d

is equal to 2d; all these Clar covers are Kekuléan in their character. Note
that this fact has been previously deduced by Zhang and Wang [91], who
demonstrated that zigzag nanotubes are not 1-resonant, i.e., they do not
permit any Clar sextet in their coverings. Consequently, the Zhang-Zhang
polynomial of (n, 0)d is given trivially by the following expression

ZZ ((n, 0)d, x) = 2d (10)

4 Clar cover theory of armchair nanotubes

Consider an armchair nanotube (n, n) of length d. We will denote it briefly
as (n, n)d. An example of such a nanotube is shown in Fig. 1b, and its
planar representation in Fig. 1d. To construct a Clar cover of (n, n)d, we
could follow the same procedure as above, but it turns out that the Clar
theory of armchair nanotubes is much richer than the Clar theory of zigzag
nanotubes and we need to approach the problem in a different manner.

First, we generalize the definition of armchair carbon nanotubes (n, n)d

to integer and half-integer values of d. The graphical definition of both
these families of the (n, n)d armchair nanotubes is shown in Fig. 3 for
a few selected small values of d. We believe that it is straightforward
for the reader to envision these structures for an arbitrary value of d.
The generalization to an arbitrary value of n, considered a standard and
well-established problem in the theory of nanotubes [18, 19, 79, 91], is not
discussed here.
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Figure 3. The length parameter d can assume integer or half-integer
values for the armchair nanotubes (n, n)d, generating two
families of structures. Here, n = 6 and d = 1, 3

2 , 2, 5
2 , 3, 7

2 , 4.
The dotted lines symbolize a scission line allowing for repre-
senting (n, n)d as planar structures as shown in Fig. 4.

4.1 Fragments and their shapes

The tubular structures of nanotubes shown in Fig. 3 are somewhat cum-
bersome for further analysis. Therefore, in Fig. 4, we show planar repre-
sentations of these structures allowing us to introduce later the transfer
matrix technique. The transition from the tubular representation to the
planar representation is straightforward: A scission of the tubular struc-
tures along the red dotted lines shown in Fig. 3 produces planar patches
shown in Fig. 4. The scission line is repeated twice at the left and the right
border of each planar patch. One should be aware that the pairs of the
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Figure 4. Planar representation of the armchair nanotubes (n, n)d

shown in Fig. 3. The two copies of the dotted lines on both
sides of each planar patch symbolize the scission lines from
Fig. 3. The pairs of edges in the planar patches crossed by
the scission lines are connected with each other.

corresponding horizontal edges crossed by the scission lines at both bor-
ders of the planar structures are repeated and should be always identified
with each other.

In the next step needed to introduce the transfer matrix technique, the
planar patches need to be divided further into smaller repeated fragments.
This procedure is explained schematically in Fig. 5 on examples of four
structures from Fig. 4 with d = 5

2 , 3, 7
2 and 4. The dotted (blue) parti-

tion lines, parallel to the dotted (red) scission lines, divide the patches
into smaller pieces referred to as fragments. For each value of d and n,
only two distinct fragments are produced. For integer values of d, the
fragments are abbreviated as dUd and dDd, where U stands for ‘up’ and D

stands for ‘down’. For half-integer values of d, the fragments are abbre-
viated as ⌈d⌉N⌊d⌋ and ⌊d⌋W⌈d⌉, where N stands for ‘narrow’ and W stands for
‘wide’. The subscripts denote the number of horizontal edges crossed by
the partition lines of the left and right borders of each fragment; these sets
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Figure 5. The planar representation of an armchair nanotube (n, n)d

can be divided further into smaller fragments using dotted
(blue) partition lines parallel to the dotted (red) scission
lines. The resulting fragments, depending on their shape,
are referred to as D (down), U (up), N (narrow), and W (wide).

of edges will be referred to in the following as the left and right interfaces,
respectively, of each fragment. Analogously, the left and right subscripts
in dUd, dDd, ⌈d⌉N⌊d⌋, and ⌊d⌋W⌈d⌉ will be referred to as the lengths of the
interfaces in each fragment. Note that every armchair nanotube (n, n)d

can be unambiguously represented as a cyclic sequence of 2n fragments

(n, n)d =


(dUd, dDd, . . . , dUd, dDd︸ ︷︷ ︸

2n

) for integer d

(⌈d⌉N⌊d⌋, ⌊d⌋W⌈d⌉, . . . , ⌈d⌉N⌊d⌋, ⌊d⌋W⌈d⌉︸ ︷︷ ︸
2n

) for half-integer d
(11)

We show in the following that Clar covers of (n, n)d can be conveniently
constructed from coverings of the fragments dUd, dDd, ⌈d⌉N⌊d⌋, and ⌊d⌋W⌈d⌉.
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4.2 Interface theory of benzenoids

A detailed discussion of fragments and fragment coverings, with coherent
definitions of these quantities and a rigorous discussion of their properties,
was presented before as the interface theory of benzenoids [42, 43]. The
exposition was quite lengthy, therefore we do not repeat it here and the
reader is referred to the original paper. All the definitions, lemmas, and
theorems of the interface theory of benzenoids [42] can be applied directly
to the nanotube fragments introduced in the previous Section. The reader
should be aware that the fragments U and D appeared as R and L in the
original formulation [42], due to a different orientation of the fragments.
Similarly, for the same reason, the upper and lower interfaces from [42]
appear here as the left and right interfaces.

Let us briefly summarize the most important tenets of the interface the-
ory of benzenoids, adapted here to the fragments of armchair nanotubes.
Each fragment F possesses two interfaces, left |F⟩ and right ⟨F|, consisting

 

of all horizontal edges of the fragment, labelled as ei from top to bottom.
In this way, the left interface of 4U4, denoted as |4U4⟩ = |e2, e4, e6, e8⟩, and
the right interface of 4U4, denoted as ⟨4U4| = ⟨e1, e3, e5, e7|, both consist
of four edges. Similarly, for 4N3, the interfaces (of length 4 and 3, re-
spectively) are given by |4N3⟩ = |e1, e3, e5, e7⟩ and ⟨4N3| = ⟨e2, e4, e6|. In
addition to the d1 + d2 interface edges e1, e2, . . . , ed1+d2 , a fragment d1Fd2

contains also d1+d2−1 spine edges s1, s2, . . . , sd1+d2−1 and d1+d2 vertices
(aka atoms) v1, v2, . . . , vd1+d2 , numbered from top to bottom.

Each of the edges g ∈ {e1, . . . , ed1+d2 , s1, . . . , sd1+d2−1} of d1Fd2 can be
assigned a definite covering character: single (S), double (D), or aromatic
(A). We associate with each of these covering types a definite edge order
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(aka bond order)

ord (g) =


1 if g has covering type D

1/2 if g has covering type A
0 if g has covering type S

(12)

It is convenient to define edge covering function; we have

cov (g) =


D if ord (g) = 1
A if ord (g) = 1/2

S if ord (g) = 0
(13)

The notion of covering order can be immediately extended to vertices

ord (vj) = ord (sj−1) + ord (ej) + ord (sj) (14)

where we set ord (s−1) = ord (sd1+d2) ≡ 0, and to interfaces

ord (i) = ord (ej1) + ord (ej2) + · · · + ord (ejd
) (15)

where i = |F⟩ = |ej1 , ej2 , . . . , ejd
⟩ or i = ⟨F| = ⟨ej1 , ej2 , . . . , ejd

| is an
interface of length d. Similarly, the value of the interface covering function
cov is defined as a d-letter word

cov (i) = cov (ej1) cov (ej2) cov (ej3) · · · cov (ejd
) (16)

obtained by concatenating covering characters of consecutive interface
edges ej1 , ej2 , . . . , ejd

. The interface i = |F⟩ together with its covering
will be denoted as |cov (i)⟩ and the interface i = ⟨F| together with its
covering will be denoted as ⟨cov (i)|.

Obviously, not every covering character assignment described above
results in a valid covering of a fragment that can be used for construct-
ing Clar covers. (For example, assigning the covering character A to ej

necessarily implies that either

ord (sj) = ord (sj+1) = ord (ej+2) = 1/2 and ord (ej+1) = 0
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or

ord (sj − 1) = ord (sj−2) = ord (ej−2) = 1/2 and ord (ej−1) = 0

All assignments that do not comply with one of these requirements can-
not possibly constitute a valid fragment covering, as they do not satisfy
Eq. (8).) Sufficient and necessary conditions for a covering of F to be
valid have been given in [42] as the three rules of the interface theory of
benzenoids. We reproduce them here (without proofs) adapted to the cur-
rent discussion. Theorems 1 and 2 give necessary conditions that need to
be satisfied by the covering characters of interface edges of each fragment
within a given Clar cover C. Theorem 3 gives a sufficient condition for a
collection of covering characters of all interface edges in (n, n)d to define
a Clar cover of (n, n)d. Later, Theorem 3 is reformulated as a practical
recipe for constructing all Clar covers of (n, n)d.

Theorem 1 (First rule of interface theory, Theorem 11 of [42]). Let C
be a Clar cover of (n, n)d. Let F be a fragment of (n, n)d, with covering
characters decided by C, and let |F⟩ and ⟨F| be the left and right interfaces
of F, respectively. The following conditions are always satisfied:

(a) If F = ⌊d⌋W⌈d⌉, then ord (⟨F|) = ord (|F⟩) + 1.

(b) If F = ⌈d⌉N⌊d⌋, then ord (⟨F|) = ord (|F⟩) − 1.

(c) If F = dUd or F = dDd, then ord (⟨F|) = ord (|F⟩).

Theorem 2 (Second rule of interface theory, Theorem 16 of [42]). Let C
be a Clar cover of (n, n)d. Let d1Fd2 be a fragment of (n, n)d with covering
characters decided by C. The covering characters D and A are distributed
over |d1Fd2⟩ and ⟨d1Fd2 | as follows:

(a) The first occurrence of D or A in the interface edges e1, e2, . . . , ed1+d2

happens for ej with an odd value of j.

(b) The last occurrence of D or A in the interface edges e1, e2, . . . , ed1+d2

happens for ej with an odd value of d1 + d2 − j.
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(c) If ej and ej′ (with j′ > j) are two consecutive interface edges with
covering characters A or D (i.e., ord (ek) = 0 for j < k < j′), then
either:

(c’) j′ − j is odd, which signifies that one of the pair (ej , ej′) is in
|d1Fd2⟩, and the other one in ⟨d1Fd2 |,

or

(c”) j′ − j = 2, which signifies that both ej and ej′ are located in
the same interface, |d1Fd2⟩ or ⟨d1Fd2 |, being a part of the same
aromatic sextet C6, ej , ej′ ∈ E (C6) .

NOTE The condition (c”) implies that ord (ej) = ord (ej′) = 1/2, and
also that ord (sj) = ord (sj+1) = 1/2.

Theorem 3 (Third rule of interface theory, Theorem 21 of [42]). Let us
assume that the covering characters S, D, and A have been assigned to all
interface edges in (n, n)d in such a way that:

(a) The set of edges with the covering character A can be written as a
union of disjoint pairs (ej , ej+2). Moreover, for each pair (ej , ej+2),
the condition ord (ej+1) = 0 is also satisfied.

(b) The orders of all interfaces in (n, n)d satisfy the conditions (a), (b),
and (c) of Theorem 1.

(c) The orders of all interface edges in (n, n)d satisfy the conditions (a)
and (b) of Theorem 2.

(d) If ej and ej′ (with j′ > j) are two consecutive interface edges with
covering characters A or D (for details, see the condition (c) of
Theorem 2), then either:

(d’) j′ − j is odd,

or

(d”) j′ − j = 2 and (ej , ej′) is one of the pairs of edges with covering
characters A specified in the condition (a) of Theorem 3.
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Then, there is exactly one Clar cover C of (n, n)d with the specified col-
lection of covering characters of interface edges.

Theorem 3 shows that all Clar covers of (n, n)d can be generated by con-
sidering all possible covering assignments of the interface edges in (n, n)d,
which satisfy the conditions (a), (b), (c), and (d) of Theorem 3. Lemma 5
of [42] shows that for every Clar cover C (i.e., for a spanning subgraph
of (n, n)d), every vertex (atom) v in (n, n)d has order one, ord (v) = 1,
independently of the choice of C. Similarly, Lemma 8 of [42] shows that
the covering characters of interface edges in a Clar cover C uniquely de-
fine the orders (and hence: covering characters) of all the spine edges in
(n, n)d. In other words, in order to generate all Clar covers of (n, n)d, we
need to concern ourselves here only with all possible choice of the covering
characters for the interface edges in (n, n)d, as all other components of
each C can be determined from these quantities.

The conditions (a), (b), (c), and (d) of Theorem 3 have local charac-
ters, i.e., they are always concerning either one interface (located between
two consecutive fragments) or one fragment (located between two consec-
utive interfaces) of (n, n)d. The following obvious Lemma simplifies this
situation and focuses our attention solely on single fragments of (n, n)d.

Lemma 4. Let F1 and F2 be two consecutive fragments of (n, n)d such
that the right interface i1 = ⟨F1| of F1 is identical with the left interface
i2 = |F2⟩ of F2. Then the covering characters of both interfaces induced
by C are identical

cov (i1) = cov (i2)

This Lemma has quite far-reaching consequences: it is sufficient to
construct all the possible valid coverings of unique fragments of (n, n)d

by assigning covering characters to both interfaces of each fragment in
agreement with conditions (a), (b), (c), and (d) of Theorem 3. Fragment
coverings constructed in this way can be subsequently used to construct
Clar covers of (n, n)d by connecting them like jig-saw puzzles in the way
stipulated by Lemma 4. We show below that an efficient tool for perform-
ing this operation is provided by the transfer matrix methodology.
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Figure 6. There are 7 distinct coverings of the fragment 2D2 and 13 dis-
tinct coverings of the fragment 2W3 constructed in agreement
with conditions (a), (b), (c), and (d) of Theorem 3. The
coverings can be grouped together into classes with identical
orders of the fragment‘s interfaces. (For details, see text.)
Each covering can be uniquely and conveniently represented
by specifying the covering characters of the fragment’s left
and right interfaces (e.g., |AA⟩⟨SD| or |DD⟩⟨DD| for the frag-
ment 2D2, and |DS⟩⟨DAA| or |AA⟩⟨DSD| for the fragment
2W3). Note that the coverings of the fragment 2U2 are mirror
images of those for 2D2, and the coverings of the fragment
3N2 are mirror images of those for 2W3.
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4.3 Fragment coverings

Consider a fragment F having one of the following shapes: dUd, dDd, ⌈d⌉N⌊d⌋,
or ⌊d⌋W⌈d⌉. Each of the interface edges of F can be assigned a definite
covering character: single (S), double (D), or aromatic (A), in agreement
with the conditions (a), (b), (c), and (d) of Theorem 3. Lemmas 5 and 8
of [42] stipulate that the covering characters of remaining (spine) edges
of F are uniquely defined by the specification of the covering character
of the interface edges of F. Fig. 6 gives an example of all the possible
coverings that can be constructed for the fragments 2D2 and 2W3; there are
7 coverings for 2D2 and 13 coverings for 2W3. Note that since the fragments
2U2 and 3N2 are mirror images of 2D2 and 2W3, respectively, the mirror
image of Fig. 6 effectively shows also all the possible coverings of 2U2 and
3N2; this mirror image symmetry immediately generalizes to the dDd ↔ dUd

and ⌊d⌋W⌈d⌉ ↔ ⌈d⌉N⌊d⌋ pairs.
A covering of F can be conveniently referred to by providing two strings

of covering characters for the edges in the left and right interfaces of F.
For example, any covering of 2D2 is given by the symbol

cov (2D2) =
∣∣∣ cov(e1) cov(e3)

〉〈
cov(e2) cov(e4)

∣∣∣
while a covering of 2W3 is given by the symbol

cov (2W3) =
∣∣∣ cov(e2) cov(e4)

〉〈
cov(e1) cov(e3) cov(e5)

∣∣∣
The notion of fragment covering can be immediately generalized to an
arbitrary fragment dDd and ⌊d⌋W⌈d⌉; we have

cov (dDd) =
∣∣∣ cov(e1) · · · cov(e2d−1)

〉〈
cov(e2) · · · cov(e2d)

∣∣∣ (17)

cov
(

⌊d⌋W⌈d⌉
)

=
∣∣∣ cov(e2) · · · cov(e2d−1)

〉〈
cov(e1) · · · cov(e2d)

∣∣∣ (18)

The Dirac bra-ket notation, borrowed from physics and adapted here for
the alphanumeric representation of interface coverings, has several advan-
tages. For example, the mirror symmetry dDd ↔ dUd and ⌊d⌋W⌈d⌉ ↔ ⌈d⌉N⌊d⌋

is readily expressed in this notation by the usual “Hermitian conjugation”
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operation; we have

cov (dUd) = cov (dDd)†

=
∣∣∣ cov(e2) · · · cov(e2d)

〉〈
cov(e1) · · · cov(e2d−1)

∣∣∣ (19)

cov
(

⌈d⌉N⌊d⌋
)

= cov
(

⌊d⌋W⌈d⌉
)†

=
∣∣∣ cov(e1) · · · cov(e2d)

〉〈
cov(e2) · · · cov(e2d−1)

∣∣∣ (20)

Other advantages will be discussed later in connection with the transfer
matrices.

Denoting by covs (F) the set of all coverings of the fragment F, we see
immediately from Fig. 6 that

covs (2D2) =
{∣∣DD

〉〈
DD

∣∣ ,
∣∣DS

〉〈
DS

∣∣ ,
∣∣DS

〉〈
SD

∣∣ ,
∣∣SD

〉〈
SD

∣∣ ,∣∣AA
〉〈

SD
∣∣ ,

∣∣DS
〉〈

AA
∣∣ ,

∣∣SS
〉〈

SS
∣∣} (21)

covs (2W3) =
{∣∣DD

〉〈
DDD

∣∣ ,
∣∣SD

〉〈
SDD

∣∣ ,
∣∣DS

〉〈
DAA

∣∣ ,
∣∣AA

〉〈
DSD

∣∣ ,∣∣SD
〉〈

AAD
∣∣ ,

∣∣DS
〉〈

DDS
∣∣ ,

∣∣DS
〉〈

DSD
∣∣ ,

∣∣SD
〉〈

DSD
∣∣ ,∣∣SS

〉〈
DSS

∣∣ ,
∣∣SS

〉〈
SDS

∣∣ ,
∣∣SS

〉〈
SSD

∣∣ ,
∣∣SS

〉〈
AAS

∣∣ ,∣∣SS
〉〈

SAA
∣∣} (22)

The mirror symmetry dDd ↔ dUd and ⌊d⌋W⌈d⌉ ↔ ⌈d⌉N⌊d⌋, expressed via
the conjugation operation ( )† introduced above, leads immediately to the
following general expressions

covs (dUd) =
{

c† | c ∈ covs (dDd)
}

(23)

covs
(

⌈d⌉N⌊d⌋
)

=
{

c† | c ∈ covs
(

⌊d⌋W⌈d⌉
)}

(24)
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which specialize for d = 2 and d = 5/2, respectively, to

covs (2U2) =
{∣∣DD

〉〈
DD

∣∣ ,
∣∣DS

〉〈
DS

∣∣ ,
∣∣SD

〉〈
DS

∣∣ ,
∣∣SD

〉〈
SD

∣∣ ,∣∣AA
〉〈

DS
∣∣ ,

∣∣SD
〉〈

AA
∣∣ ,

∣∣SS
〉〈

SS
∣∣} (25)

covs (3N2) =
{∣∣DDD

〉〈
DD

∣∣ ,
∣∣SDD

〉〈
SD

∣∣ ,
∣∣DAA

〉〈
DS

∣∣ ,
∣∣DSD

〉〈
AA

∣∣ ,∣∣AAD
〉〈

SD
∣∣ ,

∣∣DDS
〉〈

DS
∣∣ ,

∣∣DSD
〉〈

DS
∣∣ ,

∣∣DSD
〉〈

SD
∣∣ ,∣∣DSS

〉〈
SS

∣∣ ,
∣∣SDS

〉〈
SS

∣∣ ,
∣∣SSD

〉〈
SS

∣∣ ,
∣∣AAS

〉〈
SS

∣∣ ,∣∣SAA
〉〈

SS
∣∣} (26)

Note that Eqs. (23) and (24) allow us to focus only on the cover-
ings of fragments dDd and ⌊d⌋W⌈d⌉, because the corresponding expressions
for covs (dUd) and covs

(
⌈d⌉N⌊d⌋

)
can be always obtained from Eqs. (23)

and (24). In the next section, we show that covs (dDd) and covs
(

⌊d⌋W⌈d⌉
)

can be easily constructed using certain recurrence relations.

4.4 Recurrence relations for coverings of fragments

All coverings of the fragments ⌈d⌉N⌊d⌋, ⌊d⌋W⌈d⌉, dUd, and dDd can be con-
structed recursively in the up-to-down manner by assigning a single (S),
a double (D), or an aromatic (A) character to the top interface edge in
a given fragment. This operation results in a partially covered fragment,
where the not-yet-covered part has again one of the possible fragment
shapes (N, W, U, and D), but with shorter left and/or right interfaces. For
k ≥ 3, the following recurrence relations can be inferred

kNk−1 → k−1Nk−2 + k−1Uk−1 + k−2Uk−2 (27)

kWk+1 → k−1Wk + kDk + k−1Dk−1 (28)

kUk → k−1Uk−1 + kNk−1 + k−1Nk−2 (29)

kDk → k−1Dk−1︸ ︷︷ ︸
S

+ k−1Wk︸ ︷︷ ︸
D

+ k−2Wk−1︸ ︷︷ ︸
A

(30)
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where the letter under the brace indicates which covering character has
been used in the current recursive assignment step. A graphical proof

 

(31)

of one of these relations suggests how to derive the remaining formulas.
Consecutive application of the recurrence relations (27)–(30) until all the
interface edges of a given fragment has been assigned a definite character
produces all possible coverings of each fragment. Note that the recurrence
relations (27)–(30) are not applicable to fragments with small values of k;
coverings of these fragments need to be treated separately. The coverings
for 2D2, 3N2, 2U2, and 2W3 have been given by Eqs. (21), (22), (25), and
(26), respectively. The remaining sets are readily constructed:

covs (1U1) = covs (1D1) =
{∣∣D〉〈

D
∣∣ ,

∣∣S〉〈
S
∣∣} (32)

covs (2N1) =
{∣∣DD

〉〈
D

∣∣ ,
∣∣DS

〉〈
S
∣∣ ,

∣∣AA
〉〈

S
∣∣ ,

∣∣SD
〉〈

S
∣∣} (33)

covs (1W2) =
{∣∣D〉〈

DD
∣∣ ,

∣∣S〉〈
DS

∣∣ ,
∣∣S〉〈

AA
∣∣ ,

∣∣S〉〈
SD

∣∣} (34)

The number of coverings for the fragments kDk and kUk with k ≡
d = 0, 1, 2, 3, . . . forms the sequence (1, 2, 7, 24, 81, 274, . . .), identical (up
to an offset) with the sequence A099463 in OEIS [73]. (To allow for this
identification, we have implicitly assumed that for empty interfaces 0U0

and 0D0, we have
∣∣ covs (0U0)

∣∣ =
∣∣ covs (0D0)

∣∣ =
∣∣{∣∣ 〉〈 ∣∣}∣∣ = 1.) Similarly,

the number of coverings for the fragments kWk+1 and k+1Nk with k ≡
⌊d⌋ = 0, 1, 2, 3, . . . forms the sequence (1, 4, 13, 44, 149, 504, . . .), identical
(up to an offset) with the sequence A073717 in OEIS [72]. (Again, we have
implicitly assumed that for the partially empty interfaces 0W1 and 1N0, we
have

∣∣ covs (1N0)
∣∣ =

∣∣{∣∣D〉〈 ∣∣}∣∣ = 1 and
∣∣ covs (0W1)

∣∣ =
∣∣{∣∣ 〉〈

D
∣∣}∣∣ = 1.)
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Figure 7. An algorithm based on consecutive application of the re-
currence relations (27)–(30) to the fragment 2D2 until all its
interface edges has been assigned a definite covering charac-
ter produces all possible coverings of 2D2. The coverings of
2D2, shown in shadowed frames, are identical to those shown
in the upper panel of Fig. 6, and to those listed in Eq. (21).
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The generating functions for these sequences are

GD(t) =
∞∑

k=0

∣∣ covs (kDk)
∣∣ tk

GU(t) =
∞∑

k=0

∣∣ covs (kUk)
∣∣ tk


= 1 − t

1 − 3t − t2 − t3 (35)

GN(t) =
∞∑

k=0

∣∣ covs (k+1Nk)
∣∣ tk

GW(t) =
∞∑

k=0

∣∣ covs (kWk+1)
∣∣ tk


= 1 + t

1 − 3t − t2 − t3 (36)

Expansions of these functions in t and rearrangements of the resulting
sums produces closed-form formulas for the number of coverings of the
analyzed fragments∣∣∣ covs (kDk)

∣∣∣∣∣∣ covs (kUk)
∣∣∣
 =

⌊ k
3 ⌋∑

i=0

⌊ k−3i
2 ⌋∑

j=0

(
4− i+j

k−2i−j

)(
k−2i−j

i+j

)(
i+j

j

)
3k−1−2j−3i (37)

∣∣∣ covs (k+1Nk)
∣∣∣∣∣∣ covs (kWk+1)
∣∣∣
 =

⌊ k
3 ⌋∑

i=0

⌊ k−3i
2 ⌋∑

j=0

(
2+ i+j

k−2i−j

)(
k−2i−j

i+j

)(
i+j

j

)
3k−1−2j−3i (38)

These formulas are too complicated to be interpreted combinatorically. A
slightly less complicated formula can be derived by the following observa-
tion. The sequence

(
0, 1

2 , 1, 3
2 , 2, 5

2 , . . .
)
, formed from all possible values of

d, corresponds to the sequence (1, 1, 2, 4, 7, 13, 24, 44, 81, . . .), which can be
generated by interleaving the sequences

(∣∣ covs (kDk)
∣∣) and

(∣∣ covs (kWk+1)
∣∣),

and which is identical (up to offset) with the sequence A000073 in OEIS
[69]. A000073 is a sequence of tribonacci numbers generated by the recur-
rence an = an−1 + an−2 + an−3 and initial conditions a0 = a1 = 0 and
a2 = 1. The generating function for this sequence (with the offset adjusted
to our case) is given by

(
1 − t − t2 − t3)−1, which after expansion gives the

following general expression for the cardinalities of the fragment covering
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sets: ∣∣ covs (dDd)
∣∣∣∣ covs (dUd)
∣∣∣∣ covs

(
⌊d⌋W⌈d⌉

)∣∣∣∣ covs
(

⌈d⌉N⌊d⌋
)∣∣


=

⌊ 2d
3 ⌋∑

i=0

⌊d− 3i
2 ⌋∑

j=0

(2d−2i−j
i+j

)(
i+j

j

)
(39)

where one should remember that armchair nanotubes (n, n)d with integer
values of d contain only fragments dUd and dDd, while (n, n)d with half-
integer values of d contain only fragments ⌊d⌋W⌈d⌉ and ⌈d⌉N⌊d⌋.

4.5 Fragment coverings as transfer matrices
There exists a much simpler and more transparent representation of the
fragment coverings for dUd, dDd, ⌊d⌋W⌈d⌉, and ⌈d⌉N⌊d⌋. This representation is
introduced most conveniently on an example. Let us consider again the
set covs (2D2){∣∣DD

〉〈
DD

∣∣, ∣∣DS
〉〈

DS
∣∣, ∣∣DS

〉〈
SD

∣∣, ∣∣SD
〉〈

SD
∣∣, ∣∣DS

〉〈
AA

∣∣, ∣∣AA
〉〈

SD
∣∣, ∣∣SS

〉〈
SS

∣∣}
introduced previously in Eq. (21). These fragment coverings can be rep-

resented by the following transfer matrix

(40)

The rows of the transfer matrix are indexed by unique labels consisting of
covering characters for the left interface of the analyzed fragment, and the
columns of the transfer matrix, by the corresponding labels for the right
interface. The elements of the transfer matrix can assume only two values,
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0 and 1, where 1 indicates that
∣∣XY

〉〈
ZV

∣∣, formed by combining the left
interface covering

∣∣XY
〉

≡
∣∣ cov (e1) cov (e3)

〉
with the right interface cov-

ering
〈
ZV

∣∣ ≡
〈

cov (e2) cov (e4)
∣∣, belongs to covs (2D2), while 0 indicates

that
∣∣XY

〉〈
ZV

∣∣ corresponds to no valid covering of the fragment 2D2.
Similar transfer matrices can be introduced for any fragment F. For

example, for 1D1 and 1W2 the corresponding transfer matrices 1D1 and 1W2

are given by

(41)

while for the fragment 2W3, the transfer matrix 2W3 is given by

(42)

Note that there is no need to consider separately the matrices k+1Nk and
kUk. Owing to the mirror symmetry kDk ↔ kUk and kWk+1 ↔ k+1Nk

discussed above, we can write

kUk = kD†
k (43)

k+1Nk = kW†
k+1 (44)

where the conjugation ( )† corresponds to a standard matrix transposition.
Note also that non-zero values can appear only in the diagonal blocks of
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the transfer matrices kDk and kWk+1

kDk =



0
kD0

k O . . . O

O 1
kD1

k

. . . ...
... . . . . . . O

O . . . O k
kDk

k

 (45)

kWk+1 =


O 0

kW1
k+1 O . . . O

... . . . 1
kW2

k+1
. . . ...

... . . . . . . O

O . . . . . . O k
kW

k+1
k+1

 (46)

which is a direct consequence of Theorem 1. The diagonal blocks j
kD

j
k and

j
kW

j+1
k+1 are indexed by the order j = ord (|F⟩) determined by the labels

of the covering characters of the left interface |F⟩ for a given block of the
analyzed fragment F = kDk or F = kWk+1. A recursive algorithm for
constructing j

kD
j
k and j

kW
j+1
k+1 is discussed below.

4.6 Dimensions of transfer matrices

The dimensions of transfer matrices kDk and kWk+1 are determined by
the number of valid interface coverings. According to Theorem 3(a), a
valid covering of an interface of length k is represented by a k-letter word
(a label) formed from the double letter AA and/or the letters D and S,
concatenated in any order.

Let us denote by Ik the set of all possible valid labels of length k. By
inspection of Eqs. (40), (41), and (42), we have

I1 =
{

S, D
}

I2 =
{

SS, SD, AA, DS, DD
}

I3 =
{

SSS, SSD, SAA, SDS, AAS, DSS, SDD, AAD, DSD, DAA, DDS, DDD
}
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Any set Ik with k ≥ 3 can be generated recursively by concatenation

Ik =
{

S t | t ∈ Ik−1
}

∪
{

AA t | t ∈ Ik−2
}

∪
{

D t | t ∈ Ik−1
}

(47)

The three subsets in Eq. (47) are disjoint, because the first letter in the
labels is different for each subset. Consequently we obtain a recursive
formula for the cardinality of Ik

|Ik| = 2|Ik−1| + |Ik−2| (48)

with the initial conditions |I1| = 2 and |I2| = 5. It is convenient to extend
this formula to k = 0, where we interpret I0 as a set containing one empty
label. Clearly, |I0| = 1. The resulting sequence

(
|Ik| : k ∈ N0

)
= (1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, . . .) (49)

usually referred to as Pell numbers Pk, is identical (up to the offset) to
the sequence A000129 in OEIS [70]. The generating function for |Ik| is(
1 − 2t − t2)−1 and an explicit expression for |Ik| is given by [70]

|Ik| = Pk+1 =
⌊ k

2 ⌋∑
j=0

(
k+1
2j+1

)
2j (50)

The dimensions of transfer matrices are readily expressed via Pell num-
bers. We have

kDk ∈ M|Ik|×|Ik| k+1Nk ∈ M|Ik+1|×|Ik|

kUk ∈ M|Ik|×|Ik| kWk+1 ∈ M|Ik|×|Ik+1|

(51)

4.6.1 Delannoy numbers

A valid label t ∈ Ik assigns definite covering characters to all edges of some
interface i of length k. Hence, via Eqs. (12) and (15), we can attribute a
definite order ord (t) to every label t. For a label of length k, the mini-
mal order (generated by the label SS. . .SS) is 0, and the maximal order
(generated by the label DD. . .DD) is k.
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Let us denote by Ij
k the set of all valid labels of length k and order j.

Clearly, the family
{

Ij
k : j = 0, . . . , k

}
is a partition of Ik, so we have

|Ik| =
k∑

j=0

∣∣∣Ij
k

∣∣∣ (52)

By inspection of Eqs. (40), (41), and (42), we have

I0
1 =

{
S
}

I1
1 =

{
D

}
I0

2 =
{

SS
}

I1
2 =

{
SD, AA, DS

}
I2

2 =
{

DD
}

I0
3 =

{
SSS

}
I3

3 =
{

DDD
}

I1
3 =

{
SSD, SAA, SDS, AAS, DSS

}
I2

3 =
{

SDD, AAD, DSD, DAA, DDS
}

Any set Ij
k with k ≥ 3 and 0 ≤ j ≤ k can be generated recursively as

Ij
k =

{
S t | t ∈ Ij

k−1

}
∪

{
AA t | t ∈ Ij−1

k−2

}
∪

{
D t | t ∈ Ij−1

k−1

}
(53)

where the extraneous sets Ij
k with j < 0 or j > k are considered to be

empty. For convenience of the exposition, we define also the set I0
0 con-

taining one empty label of order 0. Again, in analogy with Eqs. (47)
and (48), we obtain from Eq. (53) a recurrence relation for

∣∣∣Ij
k

∣∣∣ given by

∣∣∣Ij
k

∣∣∣ =
∣∣∣Ij

k−1

∣∣∣ +
∣∣∣Ij−1

k−2

∣∣∣ +
∣∣∣Ij−1

k−1

∣∣∣ (54)

with the initial conditions
∣∣I0

0
∣∣ =

∣∣I0
1
∣∣ =

∣∣I1
1
∣∣ = 1 and

∣∣∣Ij
k

∣∣∣ = 0 for j < 0 or
j > k. The triangle generated by this recurrence, which begins as

1
1 1

1 3 1
1 5 5 1

1 7 13 7 1
1 9 25 25 9 1

(55)

can be identified as a triangle of Delannoy numbers T (k, j) ≡ D(k−j, j) ap-
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pearing as the sequence A008288 in OEIS [71]. Delannoy numbers D(m, n)
have various combinatorial interpretations, including, among others, the
number of paths from (0, 0) in a rectangular grid to the point (m, n), using
only single steps (1, 0), (0, 1), and (1, 1). This particular interpretation is
closely related to our problem. If we represent a label of length k and
order j as a point (k − j, j) in a rectangular grid, and the covering charac-
ters S, D, and AA as the steps (1, 0), (0, 1), and (1, 1), respectively, then
the number

∣∣∣Ij
k

∣∣∣ of different labels of length k and order j is equal to the
number D(k − j, j) of paths from (0, 0) (i.e., from an empty label) to the
point (k − j, j) using only the steps (1, 0), (0, 1), and (1, 1).

The corresponding generating function obtained readily from Eq. (54)

∞∑
k=0

k∑
j=0

∣∣∣Ij
k

∣∣∣ tj zk = 1
1 − z − tz − tz2 (56)

can be expanded in z and t to produce closed-form formulas [71]∣∣∣Ij
k

∣∣∣ = T (k, j) = D(k − j, j) (57)

=
min(k−j,j)∑

i=0

(
k − i

j

)(
j

i

)
=

min(k−j,j)∑
i=0

(
k − j

i

)(
j

i

)
2i

The dimensions of the diagonal blocks j
kD

j
k and j

kW
j+1
k+1 of the transfer

matrices kDk and kWk+1 are readily expressed via Dellanoy numbers. We
have

j
kD

j
k ∈ M|Ij

k|×|Ij
k|

j
kW

j+1
k+1 ∈ M|Ij

k|×|Ij+1
k+1|

j
kU

j
k ∈ M|Ij

k|×|Ij
k|

j+1
k+1N

j
k ∈ M|Ij+1

k+1|×|Ij
k|

(58)

4.7 Lexicographic order for interface coverings

Consider the function π : {S, A, D} → {0, 1, 2} defined as follows

π (S) = 0 π (A) = 1 π (D) = 2 (59)
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and its extensions πk : Ik → N defined for each k-letter label Ik ∋ t =
Lk . . . L3L2L1 with Li ∈ {S, D, A} as follows

πk(t) = π (Lk) . . . π (L3) π (L2) π (L1)(3) (60)

=
k∑

i=1
π (Li) · 3i−1 (61)

where Eq. (60) gives the representation of the integer πk(t) in base 3,
and Eq. (61) gives the usual decimal representation. It is clear that if
t1, t2 ∈ Ik are different, then the integers πk(t1) and πk(t2) assigned to
them are also different, since they differ in their base 3 representation in
at least one digit. This property, along with the well-ordering of N, allows
us to introduce a lexicographic order ≺ on the set Ik of interface coverings

∀ t1, t2 ∈ Ik : t1 ≺ t2 ⇐⇒ πk(t1) < πk(t2) (62)

For example, for the two labels SDAADDS and DSSAADS from I7, we
have SDAADDS ≺ DSSAADS because π7(SDAADDS) = 0211220(3) =
618 < π7(DSSAADS) = 2001120(3) = 1500.

The lexicographic order ≺ allows us to sort the labels in Ik in increasing
order. The lexicographic order imposed in this way on I1, I2, and I3 is

I1 : S≺D (63)

I2 : SS≺SD≺AA≺DS≺DD (64)

I3 : SSS≺SSD≺SAA≺SDS≺SDD≺AAS≺AAD≺DSS≺DSD, (65)

DSD≺DAA≺DDS≺DDD

Since Ij
k ⊂ Ik, the lexicographic order in Ik is naturally inherited by every

Ij
k. In the following sections, we assume that labels in every Ik and Ij

k are
always sorted in the lexicographic order.

In practice, it is easier to generate immediately the labels for each
Ik and Ij

k in the lexicographic order rather than sort them. In fact, the
recursive algorithm based on Eq. (47) generates each Ik for k ≥ 3 in
lexicographic order if I1 and I2 are taken in lexicographic order given by
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Eqs. (63) and (64), respectively. Similarly, the recursive algorithm based
on Eq. (53) generates each Ij

k for k ≥ 3 and 0 ≤ j ≤ k in lexicographic
order if I1

2 = {SD≺AA≺DS} is taken in lexicographic order.

4.8 Recursive generation of transfer matrices

We have shown in Eqs. (43), (44), (45), and (46) that the only quantities
needed to determine the transfer matrices kUk, kDk, k+1Nk, and kWk+1

are the submatrices j
kD

j
k and j

kW
j+1
k+1, whose dimensions have been given by

Eq. (58). Every matrix j
kD

j
k with k ≥ 3 and 0 < j < k can be conveniently

formed by arranging together smaller size matrices

(66)

while every matrix j
kW

j+1
k+1 with k ≥ 3 and 0 < j < k can be formed as

(67)

These two formulas are simple consequences of the partial assignment step
analogous to that shown in Eq. (31); details are explained in the next few
paragraphs. Eqs. (66) and (67) are not applicable when k = 1, 2 and when



448

j = 0 or j = k; in these special cases we have

0
kD0

k = k
kDk

k = k
kW

k+1
k+1 =

[
1

]
(68)

0
kW1

k+1 =
[

1 1 1 · · · 1
]

∈ M1×(2k+1) (69)

1
2D1

2 =

 1 0 0
1 0 0
1 1 1

 1
2W2

3 =

 1 1 1 0 0
0 0 1 0 0
0 0 1 1 1

 (70)

In a sense, Eqs. (66) and (67) can be considered as recurrence relations
for j

kD
j
k and j

kW
j+1
k+1 with the boundary conditions given by Eqs. (68)–(70).

These formulas allow one to generate the explicit form of j
kD

j
k and j

kW
j+1
k+1

for arbitrary values of k and j that may be needed in practical applications.
Solutions of these recurrence relations, i.e., closed-form explicit formulas
for arbitrary j

kD
j
k and j

kW
j+1
k+1, remain unknown at present.

The recursive algorithm given by Eqs. (66)–(70) for generating j
kD

j
k and

j
kW

j+1
k+1 is based on the observation that all the labels in Ij

k and Ij+1
k+1 with

S in the first position precede those with A in the first position, and those
in turn precede those with D in the first position. This feature allows to
partition j

kD
j
k and j

kW
j+1
k+1 into nine blocks each

(71)

where the first subscript X ∈ {S, A, D} denotes row labels starting with
X, and the second subscript Y ∈ {S, A, D} denotes column labels start-
ing with Y. Dimensions and the structure of the block matrices MXY are
shown in Fig. 8. The partition is a direct consequence of the recurrence
relations (27)–(30). The structure of the block matrices MXY can be prob-
ably best understood on an example discussed in the next paragraphs.

Let us determine the explicit structure of the matrix 1
4D1

4. The analysis
is based on the graphical proof of Eq. (30) given by Eq. (31) for the partial
covering character assignment to the interface edges of the fragment 4D4.
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Figure 8. Graphical representation of the block structure of the ma-
trices j

k
Dj

k
(left panel) and j

k
Wj+1

k+1 (right panel) allow us to
design a recursive algorithm generating both set of matrices
for arbitrary values of k and j.

From Eq. (58) we know that 1
4D1

4 ∈ M7×7 because according to Eq. (57)
there exist 7 labels of length 4 and of order 1

I1
4 =

{
S t | t ∈ I1

3
}

∪
{

AA t | t ∈ I0
2
}

∪
{

D t | t ∈ I0
3
}

= {SSSD ≺ SSAA ≺ SSDS ≺ SAAS ≺ SDSS ≺ AASS ≺ DSSS}

that can be generated in this form by Eq. (53). Since the ordered set I1
4

is used to index both rows and columns of 1
4D1

4, we see that

(72)

because there are 5 labels starting with S, 1 label starting with A, and
1 label starting with D. The structure of the blocks MXY with X,Y ∈
{S, A, D} follows directly from Eq. (31), which shows—among other facts—
that if the first interface edge e1 in 4D4 has the covering character S assigned
to it, then the second interface edge e2 in 4D4 also has S assigned to it. This
immediately leads to a conclusion that all the coverings of the fragment
4D4 with cov (e1) = S and cov (e2) ∈ {D,A} are not valid. Consequently,
all entries of the transfer matrix 1

4D1
4 indexed by row labels starting with
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S and by column labels starting with D or A are 0. This, in turn, leads
to the observation that both MSA and MSD are null matrices, MSA =
MSD = O5×1. The validity of the coverings of the fragment 4D4 with
cov (e1) = S and cov (e2) = S depends whether the covering characters
for the remaining interface edges e3, . . . , ek form a valid covering for the
smaller subfragment 3D3, which, in turn, can be expressed as the transfer
matrix 1

3D1
3, owing to the fact that the partial assignment cov (e1) = S

and cov (e2) = S does not contribute to the order of neither left nor right
interface of 4D4. We have then MSS = 1

3D1
3.

Similar reasoning based on Eq. (31) for cov (e1) = A shows that MAA =
MAD = O1×1, because cov (e1) = A and cov (e2) ∈ {D,A} cannot represent
a valid covering of the fragment 4D4. On the other hand, MAS = 0

2W1
3,

because valid coverings of the fragment 4D4 with cov (e1) = A necessarily
induce also cov (e2) = S and cov (e3) = A, while the covering characters
for the remaining interface edges e4, . . . , ek need to form a valid covering
of the subfragment 2W3. Since cov (e1) = cov (e3) = A contributes 1 to
the order of the left interface of 4D4, and cov (e2) = S contributes 0 to the
order of the right interface of 4D4, we are interested in valid coverings of
the fragment 2W3 with the left interface order of 1 − 1 = 0 and the right
interface order of 1 − 0 = 1, which can be expressed as the transfer matrix
0
2W1

3.
The situation is simpler for cov (e1) = D. Eq. (31) shows that select-

ing the covering character D for e1 contributes 1 to the order of the left
interface of 4D4, but it does not influence the choice of covering characters
for other interface edges in 4D4. Consequently, valid coverings of 4D4 with
cov (e1) = D are obtained by choosing valid coverings of the subfragment
3W4 with the left interface order of 1 − 1 = 0 and the right interface order
of 1 − 0 = 1, a process which can be controlled using the transfer matrix
0
3W1

4. We have then

and the matrix 1
4D1

4 can be conveniently formed by arranging together
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smaller size matrices 1
3D1

3, 0
2W1

3, 0
3W1

4, and O = O6×2

(73)

Similar reasoning for the fragment 3W4, based on Eq. (28) and a partial as-
signment step analogous to that shown in Eq. (31), shows that the transfer
matrix 2

3W3
4 of size 5×7 can be conveniently formed by arranging together

smaller size matrices 2
2W3

3, 2
2D2

2, 2
3D2

3, and O = O4×2

(74)

The construction process explained here for the transfer matrices 1
4D1

4 and
2
3W3

4 can be applied to arbitrary size k and arbitrary order j transfer
matrices j

kD
j
k and j

kW
j+1
k+1, using the same block submatrix structure as

derived here and generalized to an arbitrary value of k and j in Fig. 8 and
in Eqs. (68), (69), and (70).

4.9 Enumeration of Clar covers

Eq. (11) shows that every armchair nanotube (n, n)d can be represented
as a cyclic sequence of 2n fragments. Consequently, every Clar cover of
(n, n)d can be specified as a sequence of 2n fragment coverings, in such a
way that the right interface covering of the previous fragment is equal to
the left interface covering of the next fragment in agreement with Lemma 4.
Algebraically, enumeration of such coverings corresponds to the product of
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a train of transfer matrices. The last matrix contraction—performed over
the column index of the last matrix in the train and the row index of the
first matrix in the train—corresponds to closing the planar patch into a
tubular nanotube along the scission line, and can be formally represented
as the trace of the entire matrix train product. Consequently, for integer
values of d, the number Cn,d of Clar covers of (n, n)d is given by the
following expressions

Cn,d = Tr
[(

dDd dUd

)n]
= Tr

[(
dUd dDd

)n]
(75)

=
d∑

j=0
Tr

[(
j
dD

j
d

j
dU

j
d

)n]
=

d∑
j=0

Tr
[(

j
dU

j
d

j
dD

j
d

)n]
while for half-integer values of d, the corresponding expressions are

Cn,d = Tr
[(

⌈d⌉N⌊d⌋ ⌊d⌋W⌈d⌉

)n]
= Tr

[(
⌊d⌋W⌈d⌉ ⌈d⌉N⌊d⌋

)n]
(76)

=
⌊d⌋∑
j=0

Tr
[(

j+1
⌈d⌉N

j
⌊d⌋

j
⌊d⌋W

j+1
⌈d⌉

)n]
=

⌊d⌋∑
j=0

Tr
[(

j
⌊d⌋W

j+1
⌈d⌉

j+1
⌈d⌉N

j
⌊d⌋

)n]

4.10 Zhang-Zhang polynomial

Eqs. (75) and (76) enumerate Clar covers of (n, n)d, but they are not able
to discriminate between Clar covers with different order (i.e., Clar covers
containing a different number of aromatic sextets C6). Fortunately, a slight
modification of Eqs. (75) and (76) can resolve this shortcoming.

Let us first consider the function σ : {S, A, D} → {0, 1/2} defined as
follows

σ (S) = 0 σ (A) = 1/2 σ (D) = 0 (77)

and its extensions σk : Ik → N defined for each k-letter label Ik ∋ t =
Lk . . . L3L2L1 with Li ∈ {S, D, A} as follows

σk(t) =
k∑

i=1
σ (Li) (78)
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Plainly speaking, the integer σk(t) denotes the number of pairs AA in
t ∈ Ik and could possibly be referred to as the Clar number of the interface
covering determined by the label t.

Let Xj
d denote a square matrix with dimensions |Ij

d |×|Ij
d |. Let the rows

and columns of Xj
d be indexed by the labels tm ∈ Ij

d sorted in lexicographic
order, t1 ≺ t2 ≺ . . . ≺ t|Ij

d
|. The entries of Xj

d are defined as follows

[
Xj

d

]
ml

=
{

x σd(tm) for m = l

0 for m ̸= l
(79)

With the initial conditions given by the following expressions

X0
d = Xd

d =
[

1
]

X1
2 =

 1 0 0
0 x 0
0 0 1

 (80)

the matrices Xj
d can be constructed in a recursive fashion induced by

Eq. (53) as follows

(81)

Now we are sufficiently equipped to define the ZZ polynomial of (n, n)d,
which is given by equations analogous to the previously derived Eqs. (75)
and (76). We have

ZZ ((n, n)d, x) =
d∑

j=0
Tr

[(
Xj

d
j
dD

j
d Xj

d
j
dU

j
d

)n]
(82)

=
d∑

j=0
Tr

[(
Xj

d
j
dU

j
d Xj

d
j
dD

j
d

)n]
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while for half-integer values of d, the corresponding expressions are

ZZ ((n, n)d, x) =
⌊d⌋∑
j=0

Tr
[(

Xj+1
⌈d⌉

j+1
⌈d⌉N

j
⌊d⌋ Xj

⌊d⌋
j

⌊d⌋W
j+1

⌈d⌉

)n]
(83)

=
⌊d⌋∑
j=0

Tr
[(

Xj
⌊d⌋

j
⌊d⌋W

j+1
⌈d⌉ Xj+1

⌈d⌉
j+1
⌈d⌉N

j
⌊d⌋

)n]

5 Conclusions

The current study reports closed form formulas allowing one to deter-
mine the Zhang-Zhang polynomials—and consequently: the most impor-
tant topological invariants—of zigzag nanotubes (n, 0)d and armchair nan-
otubes (n, n)d with arbitrary diameter n and arbitrary length d. The ZZ
polynomial of (n, 0)d, given by Eq. (10), is equal to 2d. The derived for-
mula shows that zigzag nanotubes permit only Kekulé structures and that
their Clar number Cl = 0 in agreement with the previous result of Zhang
and Wang [91]. Another interesting observation is that the number of
Kekulé structures for zigzag nanotubes, K = 2d, does not depend on the
diameter of the nanotube n but only on its length d.

To derive the ZZ polynomial formula for armchair nanotubes (n, n)d, we
have resorted to the recently developed interface theory of benzenoids [42],
tailored here to the current problem. Five types of transfer matrices have
been derived, constituting sufficient tools for computing ZZ polynomials
for arbitrary armchair nanotubes (n, n)d using Eqs. (82) and (83). The de-
veloped transfer matrix technique seems to constitute a promising method-
ology for computing ZZ polynomials of various classes of aromatic hydro-
carbons.
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