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Abstract. We present a high-level survey of state-of-the-art alias analy-
ses for object-oriented programs, based on a years-long effort developing
industrial-strength static analyses for Java. We first present common
variants of points-to analysis, including a discussion of key implemen-
tation techniques. We then describe flow-sensitive techniques based on
tracking of access paths, which can yield greater precision for certain
clients. We also discuss how whole-program alias analysis has become
less useful for modern Java programs, due to increasing use of reflection
in libraries and frameworks. We have found that for real-world programs,
an under-approximate alias analysis based on access-path tracking often
provides the best results for a variety of practical clients.

1 Introduction

Effective analysis of pointer aliasing plays an essential role in nearly all non-
trivial program analyses for object-oriented programs. For example, computing
a precise inter-procedural control-flow graph, a necessity for many program anal-
yses, often requires significant pointer reasoning to resolve virtual dispatch. Fur-
thermore, any program analysis attempting to discover non-trivial properties of
an object must reason about mutations to that object through pointer aliases.

Building alias analyses that simultaneously scale to realistic object-oriented
programs and libraries while providing sufficient precision has been a longstand-
ing challenge for the program analysis community. The twin goals of scalability
and precision often conflict with each other, leading to subtle tradeoffs that
make choosing the right alias analysis for a task non-obvious. Moreover, as large
object-oriented frameworks (e.g., Eclipse3 for desktop applications or Spring4

for server-side code) have proliferated, achieving scalability and precision has
become increasingly difficult.

In this work, we give a high-level survey of the alias-analysis techniques
that we have found most useful during a years-long effort developing industrial-
strength analyses for Java programs. We focus on two main techniques:

3 http://www.eclipse.org
4 http://www.springsource.org



1. Points-to analysis, specifically variants of Andersen’s analysis [3] for Java.
A points-to analysis result can be used to determine may-alias information,
i.e., whether it is possible for two pointers to be aliased during program
execution.

2. Flow-sensitive tracking of the access paths that name an object, where an
access path is a variable and a (possibly empty) sequence of field names
(see Section 5 for details). Access-path tracking enables determination of
must-alias information, i.e., whether two pointers must be aliased at some
program point.

We also aim to explain particular challenges we have encountered in building
analyses that scale to modern Java programs. We have found that as standard
libraries and frameworks have grown, difficulties in handling reflection have led
us to reduce or eliminate our reliance on traditional points-to analysis. Instead,
we have developed an under-approximate approach to alias analysis based on
on type-based call graph construction and tracking of access paths. We have
found this approach to be more effective for analyzing large Java programs,
though traditional points-to analysis remains relevant in other scenarios. Our
experiences may shed light on issues in designing analyses for other languages,
and in designing future languages to be more analyzable.

This chapter is not intended to be an exhaustive survey of alias analysis. Over
the past few decades, computer scientists have published hundreds of papers
on alias-analysis techniques. The techniques vary widely depending on myriad
analysis details, such as policies for flow sensitivity, context sensitivity, demand-
driven computation, and optimization tradeoffs. We cannot hope to adequately
cover this vast space, and the literature grows each year. Here we focus on alias
analyses that we have significant experience implementing and applying to real
programs. To the best of our knowledge, the presented alias analyses are the
state-of-the-art for our desired analysis clients and target programs. For many
of the analyses described here, a corresponding implementation is available as
part of the open-source Watson Libraries for Analysis (WALA) [69].

Organization This chapter is organized as follows. In Section 2, we motivate the
alias-analysis problem by showing the importance of precise aliasing information
for analysis clients. Then, we discuss points-to analysis for Java-like languages:
Section 3 gives formulations of several variants of Andersen’s analysis [3], and
Section 4 discusses key implementation techniques. Section 5 discusses must-alias
analysis based on access-path tracking, which provides greater precision than a
typical points-to analysis. In Section 6, we describe challenges in applying points-
to analysis to modern Java programs and how under-approximate techniques can
be used instead. Finally, Section 7 concludes and suggests directions for future
work. Some of the material presented here has appeared in previous work by the
authors [20, 62, 67].



2 Motivating Analyses

Many program analyses for object-oriented languages rely on an effective alias
analysis. Here we illustrate a number of alias analysis concerns in the context of
an analysis for detecting resource leaks in Java programs, and discuss how these
concerns also pertain to other analyses.

2.1 Resource Leaks

1 public void test(File file, String enc) throws IOException {

2 PrintWriter out = null;

3 try {

4 try {

5 out = new PrintWriter(

6 new OutputStreamWriter(

7 new FileOutputStream(file), enc));

8 } catch (UnsupportedEncodingException ue) {

9 out = new PrintWriter(new FileWriter(file));

10 }

11 out.append(’c’);

12 } catch (IOException e) {

13 } finally {

14 if (out != null) {

15 out.close();

16 }

17 }

18 }

Fig. 1. Example of a resource leak.

While garbage collection frees the programmer from the responsibility of
memory management, it does not help with the management of finite system
resources, such as sockets or database connections. When a program written in
a Java-like language acquires an instance of a finite system resource, it must
release that instance by explicitly calling a dispose or close method. Letting the
last handle to an unreleased resource go out of scope leaks the resource. Leaks can
gradually deplete the finite supply of system resources, leading to performance
degradation and system crashes. Ensuring that resources are always released,
however, is tricky and error-prone.

As an example, consider the Java program in Fig. 1, adapted from code
in Apache Ant.5 The allocation of a FileOutputStream on line 7 acquires
a stream, which is a system resource that needs to be released by call-
ing close() on the stream handle. The acquired stream object then passes

5 http://ant.apache.org



into the constructor of OutputStreamWriter, which remembers it in a pri-
vate field. The OutputStreamWriter object, in turn, passes into the construc-
tor of PrintWriter. In the finally block, the programmer calls close()

on the PrintWriter object. This close() method calls close() on the
“nested” OutputStreamWriter object, which in turn calls close() on the nested
FileOutputStream object. By using finally, it would appear that the program
closes the stream, even in the event of an exception.

However, a potential resource leak lurks in this code. The constructor of
OutputStreamWriter might throw an exception: notice that the programmer
anticipates the possibility that an UnsupportedEncodingException may occur.
If it does, the assignment to the variable out on line 5 will not execute, and
consequently the stream allocated on line 7 is never closed. A resource leak
analysis aims to statically detect leaks like this one.

2.2 Role of alias analysis

A resource leak analysis should report a potential leak of the stream allocated at
line 7 of Fig. 1. But a bug finding client should not trivially report all resource
acquisitions as potentially leaking, as that would generate too many false pos-
itives. Hence, the key challenge of resource leak analysis is in reasoning that a
resource in fact does not leak, and it is this reasoning that requires effective alias
analysis. Here we will consider what it takes to prove that the resource allocated
at line 7 does not leak along the exception-free path.

Figure 2 shows the relevant parts of the CFG for Fig. 1, along with the CFGs
of some of the called methods. We introduced temporary variables t1 and t2

when constructing the CFG (a).

Consider the program path 7-6-5-11-14-15 (the exception-free path), starting
with the resource allocation on line 7. The constructor on line 6 stores its argu-
ment into an instance field a; see CFG (b). Likewise, the constructor on line 5
stores its argument into an instance field b; see CFG (c). The call out.close()
on line 15 transitively calls close() on expressions out.b and out.b.a (notice
that this in CFGs (d) and (e) would be bound appropriately), the last one
releasing the tracked resource as it is equal to t1. At this point, the (same)
resource referred to by the expressions t1, t2.a, and out.b.a is released.

What reasoning is needed for an analysis to prove that the resource allocated
on line 7 is definitely released along the path 7-6-5-11-14-15?

1. Data flow must be tracked inter-procedurally, as the call to the close()

method of the FileOutputStream occurs in a callee. For this reason, an
accurate call graph must be built.

2. The analysis must establish that this.a in CFG (e), when encountered along
this path must refer to the same object assigned to t1 in CFG (a).

Both cases demand effective alias analysis.



out = null

t1 = new FileOutputStream(file)

t2 = new OutputStreamWriter(t1, enc)

out = new PrintWriter(t2)

catch UnsupportedEncodingException

t3 = new FileWriter(file)
out = new PrintWriter(t3)

out.append()

out != null

out.close()

exit

entry
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(c) CFG of PrintWriter.<init>(w)

this.b = w

exit

entry

(b) CFG of OutputStreamWriter.<init>(os)

this.a = os

exit

entry

(e) CFG of OutputStreamWriter.close()

this.a.close()

exit

entry

(d) CFG of PrintWriter.close()

this.b.close()

exit

entry

(a) CFG of test

Fig. 2. Control-flow graph of the procedure shown in Fig. 1. Numbers to the left are
line numbers. Dotted edges represent inter-procedural control transfers.

Call Graph Construction A call graph indicates the possibly-invoked meth-
ods at each call site in a program. In object-oriented languages, virtual calls
make building a call graph non-trivial. Consider CFG (d). Say the field b in
class PrintWriter has declared type Writer, which has a number of differ-
ent subtypes, one of which is OutputStreamWriter. A call graph based solely
on the program’s class hierarchy (a class hierarchy analysis [13]) allows imple-
mentations of close() in all possible Writer subtypes to be potential targets
of the call this.b.close(). In principle, some subtype of Writer other than
OutputStreamWriter could implement close() in a way that does not close the
resource, causing a false positive here.6

A points-to analysis (see Section 3) creates an over-approximation of all
the heap values that can possibly flow into each reference by tracing data flow
through assignments. In this program, the only heap values that flow into field

6 Rapid type analysis (RTA) [4], which only considers allocated types, is generally
more accurate than class hierarchy analysis [66], but it would still cause a false
positive if the bad Writer subtype were allocated anywhere in the program. We
have found that the difference between RTA and class hierarchy analysis tends to
vanish in large framework-dependent programs.



b of PrintWriter are of type OutputStreamWriter (via the call at line 5) or
FileWriter (via line 9). The class FileWriter inherits its close() method from
OutputStreamWriter. Thus, a call graph based on points-to analysis can cor-
rectly narrow down the call target of this.b.close() to the close() method
in the class OutputStreamWriter, as shown in edges from CFG (d) to CFG (e),
yielding greater precision in the resource leak analysis.

Note that call graph construction and alias analysis are often inter-dependent.
In our example, the assignment to the b field of PrintWriter occurs in a callee
(the constructor <init>) via the calls at lines 5 and 9. Hence, the points-to
analysis must know that this <init> method is in the call graph to properly
trace the flow of an OutputStreamWriter into the b field, which in turn implies
that OutputStreamWriter.close() can be called from in CFG (d). Multiple
approaches exist to address this inter-dependency, to be discussed in Section 3.

Equality Recall that to prove leak freedom for the path of interest, the analysis
needs to show that the object referenced by this.a in CFG (e) refers to the
same object pointed by t1 is CFG (a), to ensure that the resource is released.
However, this fact cannot be proved using points-to analysis alone, as it only
provides may-alias information, i.e., it can only state that this.a may refer
to the same object as t1. Given may-alias information alone, the analysis must
consider a case where this.a does not alias t1 on the path, and a false leak will
be reported.

To avoid this false report, must-alias information is needed, indicating alias
relationships that must hold at a program point. This reasoning can be ac-
complished by tracking must access paths naming the resource as part of the
resource-leak analysis. Much as in the informal reasoning described previously,
must access paths are expressions of the form t1, t2.a, and out.b.a, with the
property that in the current program state, they must equal the tracked resource.
By tracking access paths along the control-flow path of interest, the equality of
this.a and t1 in our example can be established, and the false leak report is
avoided. As we shall show in Section 5, access-path tracking can provide useful
aliasing information for a number of important client analyses.

2.3 Other Analysis Clients

Many client analyses share some or all of the alias analysis needs shown for the
resource leak analysis above. Any static analysis performing significant reasoning
across procedure boundaries (quite a large set) is likely to benefit from a precise
call graph produced via alias analysis, due to the pervasiveness of method calls
and virtual dispatch in Java-like languages. Other analyses can be rather directly
formulated in terms of possible heap data flow and aliasing, for example, static
race detection [43] and taint analysis [68]. Access-path tracking is most often
used for analyses that need to track changing properties of objects, like resource
leak analysis or typestate verification [12, 20], but other analyses may also benefit
from the additional precision.



3 Formulating Points-To Analysis

Here we formulate several common variants of Andersen’s points-to analysis [3]
for Java-like object-oriented languages; implementation techniques will be dis-
cussed in Section 4. We begin with a standard formulation of context-insensitive
Andersen’s analysis that captures its essential points. Then, we extend the for-
mulation with a generic template for context sensitivity, and we present various
context-sensitive analyses in the literature as instantiations of the template.

3.1 Context-Insensitive Formulation

A points-to analysis computes an over-approximation of the heap locations that
each program pointer may point to. Pointers include program variables and also
pointers within heap-allocated objects, e.g., instance fields. The result of the
analysis is a points-to relation pt, with pt(p) representing the points-to set of
a pointer p. For decidability and scalability, points-to analyses must employ
abstraction to finitize the possibly-infinite set of pointers and heap locations
arising at runtime. In particular, a heap abstraction represents dynamic heap
locations with a finite set of abstract locations.

Andersen’s points-to analysis [3] has the following properties:

– Flow insensitive: The analysis assumes statements can execute in any order
and any number of times.

– Subset based : The analysis models directionality of assignments, i.e., a state-
ment x = y implies pt(y) ⊆ pt(x). In contrast, an equality-based analysis
(e.g., that of Steensgaard [65]) would require pt(y) = pt(x) for the same
statement, a coarser approximation.

As is typical for Java points-to analyses, we also desire field sensitivity, which
requires separate reasoning about each instance field of each abstract location.
Field-based analyses for Java, in which instance field values are merged across
abstract locations, may provide sufficient precision for certain clients [32, 64].
However, field sensitivity typically adds little expense to a context-insensitive
analysis [32], and for context-sensitive analyses (to be discussed in Section 3.2),
field sensitivity is essential for precision.

Table 1 gives a standard formulation of context-insensitive, field-sensitive
Andersen’s analysis for Java, equivalent to those appearing elsewhere in the
literature [32, 52, 64, 72].7 Canonical statements for the analysis are given in the
first column. In order, the four statement types enable object allocation, copying
pointers, and reading and writing instance fields. More complex memory-access
statements (e.g., x.f = y.g.h) are handled through suitable introduction of

7 Points-to analysis has also been formulated as an abstract interpretation [11] (e.g.,
by Might et al. [41]), yielding a systematic characterization of the analysis result in
terms of the target program’s concrete semantics. See Might et al. [41] for details of
such a formulation and a discussion the relationship of context-sensitive points-to
analysis to control-flow analysis for functional languages [56].



Statement Constraint

i: x = new T() {oi} ⊆ pt(x) [New]

x = y pt(y) ⊆ pt(x) [Assign]

x = y.f
oi ∈ pt(y)

pt(oi.f) ⊆ pt(x)
[Load]

x.f = y
oi ∈ pt(x)

pt(y) ⊆ pt(oi.f)
[Store]

Table 1. Canonical statements for context-insensitive Java points-to analysis and the
corresponding points-to set constraints.

temporary variables. Array objects are modeled as having a single field arr that
may point to any value stored in the array (so, x[i] = y is modeled as x.arr

= y). Section 3.2 discusses handling of method calls.

The inference rules in Table 1 describe how each statement type affects the
corresponding points-to sets. Note that since the analysis is field sensitive, points-
to sets are maintained both for variables (e.g., pt(x)) and for instance fields of
abstract locations (e.g., pt(oi.f)). Also note that in the New rule, the abstract
location oi is named based on the statement label i, the standard heap abstrac-
tion used in Andersen’s analysis.

Example Consider the following program (assume type T has a field f):

1 a = new T();

2 b = new T();

3 a.f = b;

4 c = a.f;

The following is a derivation of of o2 ∈ pt(c) according to the rules of Table 1,
with rule applications labeled by the corresponding program statement’s line
number:

o2 ∈ pt(b)
l2

o1 ∈ pt(a)
l1

pt(b) ⊆ pt(o1.f)
l3

o2 ∈ pt(o1.f)

o1 ∈ pt(a)
l1

pt(o1.f) ⊆ pt(c)
l4

o2 ∈ pt(c)

3.2 Context Sensitivity

We now extend our points-to analysis formulation to incorporate context-sensitive
handling of method calls. We formulate context sensitivity in a generic manner



and then show how to instantiate the formulation to derive standard analysis
variants.

A context-sensitive points-to analysis separately analyzes a method m for
each calling context that arises at call sites of m. A calling context (or, simply,
a context) is some abstraction of the program states that may arise at a call
site. Separately analyzing a method for each context removes imprecision due to
conflation of analysis results across its invocations.

For example, consider the following program:

1 id(p) { return p; }

2 x = new Object(); // o1

3 y = new Object(); // o2

4 a = id(x);

5 b = id(y);

A context-insensitive analysis conflates the effects of all calls to id, in effect
assuming that either object o1 or o2 may be passed as the parameter at the
calls on lines 4 and 5. This assumption leads to the imprecise conclusions that a
may point to o2 and b to o1. Now, consider a context-sensitive points-to analysis
that uses a distinct context for each method call site. This analysis will process
id separately for its two call sites, thereby precisely concluding that a may only
point to o1 and b only to o2.

Formulation Our generic formulation of context-sensitive points-to analysis
appears in Table 2. Compared to Table 1, the two additional statement types
respectively allow for invoking and returning from procedures. We assume that
a method m has formal parameters mthis for the receiver and mp1 , . . . ,mpn for
the remaining parameters, and we use a pseudo-variable mret to hold its return
value.8

The analysis formulated in Table 2 maintains a set contexts(m) of the con-
texts that have arisen at call sites of each method m. For each local pointer
variable x, the analysis maintains a separate abstract pointer 〈x, c〉 to represent
x’s possible values when its enclosing method is invoked in context c. Abstract
locations 〈oi, c〉 are similarly parameterized by a context. Finally, note that each
constraint in the second column of Table 1 is written under the assumption that
the corresponding statement in the first column is from method m.

Our formulation is parameterized by two key functions, which together spec-
ify a context-sensitivity policy :

– The selector function, which determines what context to use for a callee at
some call site, and

– The heapSelector function, which determines what context c to use in an
abstract location 〈oi, c〉 at allocation site i.

8 We elide static fields (global variables) and static methods from our formulation, as
their handling is straightforward. Since method contexts cannot be applied to global
variables, their usage may blunt precision gains from context sensitivity.



Statement in method m Constraint

i: x = new T()
c ∈ contexts(m)

〈oi, heapSelector(c)〉 ∈ pt(〈x, c〉)
[New]

x = y
c ∈ contexts(m)

pt(〈y, c〉) ⊆ pt(〈x, c〉)
[Assign]

x = y.f
c ∈ contexts(m) 〈oi, c′〉 ∈ pt(〈y, c〉)

pt(〈oi, c′〉.f) ⊆ pt(〈x, c〉)
[Load]

x.f = y
c ∈ contexts(m) 〈oi, c′〉 ∈ pt(〈x, c〉)

pt(〈y, c〉) ⊆ pt(〈oi, c′〉.f)
[Store]

j: x = r.g(a 1,...,a n)

c ∈ contexts(m) 〈oi, c′〉 ∈ pt(〈r, c〉)
m′ = dispatch(〈oi, c′〉, g)

argvals = [{〈oi, c′〉}, pt(〈a1, c〉), . . . , pt(〈an, c〉)]
c′′ ∈ selector(m′, c, j, argvals)

c′′ ∈ contexts(m′)
〈oi, c′〉 ∈ pt(〈m′

this , c
′′〉)

pt(〈ak, c〉) ⊆ pt(〈m′
pk , c

′′〉), 1 ≤ k ≤ n
pt(〈m′

ret , c
′′〉) ⊆ pt(〈x, c〉)

[Invoke]

return x
c ∈ contexts(m)

pt(〈x, c〉) ⊆ pt(〈mret , c〉)
[Return]

Table 2. Inference rules for context-sensitive points-to analysis.

We first present the inference rules for the analysis without specifying these
functions. Then, we show how standard variants of context-sensitive points-to
analysis can be expressed by instantiating selector and heapSelector appropri-
ately.

Inference Rules For the first four statement types, the inference rules in Table 2
are modified from those in Table 1 to include appropriate parameterization with
contexts. In each rule, a pre-condition chooses a context c from those that have
been created for the enclosing method m, and c is used in the rule’s conclusions.
The heapSelector function from the context-sensitivity policy is used in the New
rule to obtain contexts for abstract locations. The final Return rule in Table 2
models return statements by simulating a copy from the returned variable x
to the pseudo-variable mret for the method. So, pt(〈mret , c〉) will include all
abstract objects possibly returned by m in context c.

By far, the Invoke rule is the most complex. The first two lines of the rule
model reasoning about virtual dispatch. Given a location 〈oi, c′〉 that the receiver
argument 〈r, c〉 may point to, a dispatch function is invoked to resolve the virtual



dispatch of g on 〈oi, c′〉 to a target method m′. (For Java, dispatch would be
implemented based on the type hierarchy and the concrete type of 〈oi, c′〉.) This
direct reasoning about virtual dispatch implies that the analysis computes its call
graph on-the-fly [32, 52, 72], rather than relying on a call graph computed with
some less precise analysis (recall the inter-dependence of points-to analysis and
call graph construction, discussed in Section 2). The tradeoffs between on-the-fly
call graph construction and using a pre-computed call graph have been explored
extensively in the literature [21, 32]; we have found that on-the-fly call graph
construction usually improves both precision and performance (see Section 4.4).

Once the target m′ of the virtual call is discovered, the analysis uses the
selector function from the context-sensitivity policy to determine which con-
text(s) to use for this call of m′. selector can discriminate contexts for the target
method m′ based on the caller’s context c, the call site id j, and a list of possi-
ble parameter values argvals. Given a context c′′ returned by selector , the first
conclusion of the Invoke rule ensures that c′′ is in the set of observed contexts
for m′. The final three conclusions of the rule model parameter passing and
return-value copying for the call.

Entrypoints Points-to analyses with on-the-fly call graph construction must be
provided with a set of entrypoint methods E that may be invoked by the envi-
ronment to begin execution (e.g., a main method for a standard Java program);
these methods are assumed to be reachable by the analysis. Given E, the contexts
sets referenced in Table 1 should be initialized as follows:

– If m ∈ E, then contexts(m) = {Default}, where Default is a special dummy
context value.

– If m 6∈ E, then contexts(m) = ∅.

With these initial conditions, results will only be computed for methods deemed
reachable by the analysis itself, as desired.

Note that an entrypoint method may rely on initialization being performed
before it is invoked, e.g., the creation of the String[] array parameter for a
main method. In WALA [69], such behavior is modeled in a synthetic “fake root
method” that serves as a single root for the call graph and contains invocations
of the real entrypoints. The fake root method includes code to pass objects to
entrypoint parameters based on customizable heuristics (e.g., passing an object
whose concrete type matches the parameter’s declared type). In general, pre-
cisely modeling how an environment initializes objects before executing an en-
trypoint can be quite difficult (e.g., for framework-based applications [59]), and
this modeling can be critical to getting useful results from a points-to analysis.

Context Sensitivity Variants In this section, we discuss several standard
variants of context-sensitive Andersen’s-style points-to analysis, and we show
how the analyses can be expressed by instantiating the selector and heapSelector
functions used in Table 2. Note that a context-insensitive analysis (with on-the-
fly call graph construction) can be expressed using the dummy Default context



(we use ’ ’ for an unused argument):

selector( , , , ) = {Default}
heapSelector( ) = Default

Call Strings A standard technique to distinguish contexts is via call strings [55],
which abstract the possible call stacks under which a method may be invoked.
Call strings are typically represented as a sequence of call site identifiers, corre-
sponding to a (partial) call stack. The following selector function gives a call-
string-sensitive context for a callee at site j, given the caller context [j0, . . . , jn]:

selector( , [j0, j1, . . . , jn], j, ) = {[j, j0, j1, . . . , jn]} (1)

For full precision, the heapSelector function should simply re-use the contexts
provided by selector , i.e., heapSelector(c) = c. This choice of heapSelector yields
a context-sensitive heap abstraction.

As a simple example, consider the following program.

1 Object f1(T x) { return x.f; }

2 Object f2(T x) { return f1(x); }

3 ...

4 p = f2(q);

5 r = f2(s);

Given selector as defined above, method f2() will be analyzed in contexts [s4]
and [s5] (we write si for the call site on line i), and f1() will be analyzed in
contexts [s2, s4] and [s2, s5].

Unfortunately, the näıve selector function above could cause non-termination
in the presence of method recursion, as call strings may grow without bound.
Even without recursion, analysis time grows exponentially in the number of
methods in the worst case, as the worst-case number of paths in a program’s
call graph is exponential in the number of methods. In practice, over 1014 pos-
sible call strings have been observed for a medium-sized program [72], making
straightforward use of long call strings intractable.

A standard method for improving scalability of the call-string approach in
practice is k-limiting [55], where the maximum call-string length is bounded by a
small constant k. This approach has been employed in various previous systems,
though the consensus seems to be that bounded object sensitivity (discussed
below) provides greater precision for the same or less cost [34]. Instead of using
k-limiting in selector , Whaley and Lam [72] achieve scalability by using compact
BDD data structures (see Section 4) and a context-insensitive heap abstraction,
i.e., with heapSelector(c) = Default. (In essence, k-limiting is performed in the
heap selector, with k = 0.) While the scalability of their analysis was impressive,
later work showed that its precision was lacking for typical clients due to the
coarse heap abstraction [34].

For certain classes of program analyses, a result equivalent to using arbitrary-
length call strings can be computed efficiently, for example, so-called IFDS prob-



lems [51].9 For this level of precision, the analysis result is typically computed
using a summary-based approach [51, 55] that is not directly expressible in the
formulation of Table 2. However, Reps has shown that full context sensitivity
for a field-sensitive analysis is undecidable [50]. While summary-based points-to
analyses have been developed [73, 74], we are unaware of any such analysis that
scales to large Java programs.

Object Sensitivity Rather than distinguishing a method’s invocations based on
call strings, an object-sensitive analysis [42]10 uses the (abstract) objects passed
as the receiver argument to the method. The intuition behind object sensitiv-
ity is that in typical object-oriented design, the state of an object is accessed
or mutated via its instance methods (e.g., “setter” and “getter” methods for
instance fields). Hence, by using receiver objects to distinguish contexts, an
object-sensitive analysis can avoid conflation of operations performed on dis-
tinct objects.

In terms of our Table 2 formulation, object-sensitive analysis and more recent
variants [58] can be expressed via the following selector function:

selector( , , , argvals) =
⋃

〈o,c〉∈argvals[0]

locToContext(〈o, c〉) (2)

locToContext converts an abstract location (which includes context information)
into a context. For standard object sensitivity [42],11 a context is a list of allo-
cation sites, and locToContext simply adds to that list:

locToContext(〈oi, l〉) = cons(oi, l) (3)

(As in Lisp, cons(oi, [o1, o2, . . .]) = [oi, o1, o2, . . .].) As discussed previously, using
heapSelector(c) = c yields a context-sensitive heap abstraction.

To illustrate object sensitivity, consider the following example:

1 class A { B makeB() { return new B(); } }

2 class B { Object makeObj() { return new Object(); } }

3 ...

4 A a1 = new A();

5 A a2 = new A();

6 B b1 = a1.makeB();

7 B b2 = a2.makeB();

8 Object p1 = b1.makeObj();

9 Object p2 = b2.makeObj();

9 In the literature, an analysis computing such a result is often termed “context-
sensitive,” but we avoid that usage, as we consider contexts other than call strings.

10 While Milanova’s work [42] introduced the term “object sensitivity,” similar ideas
were employed in earlier work on object-oriented type inference [1, 45].

11 While alternate object-sensitivity definitions have appeared [35], Smaragdakis et
al. [58] showed that Milanova’s definition [42] is most effective.



With object-sensitive analysis defined by the selector and heapSelector function
above, makeB() will be analyzed in contexts [o4] and [o5] (with abstract objects
labeled by allocating line number), and we have pt(b1) = {〈o1, [o4]〉} and pt(b2) =
{〈o1, [o5]〉} due to the context-sensitive heap abstraction. Similarly, makeObj()
is analyzed in contexts [o1, o4] and [o1, o5], pt(p1) = {〈o2, [o1, o4]〉}, and pt(p2) =
{〈o2, [o1, o5]〉}.

As with call-string sensitivity, k-limiting, either in selector or heapSelector ,
is necessary to achieve scalability to realistic programs. The literature contains
inconsistent definitions of what exactly it means to limit object-sensitive con-
texts with a particular value of k; see Smaragdakis et al. [58] for an extended
discussion.

In general, the precision of an object-sensitive analysis is incomparable to
that of a call-string-sensitive analysis [42]. Object sensitivity can lose precision
compared to call-string sensitivity by merging across call sites that pass the
same receiver object, but it may gain precision by using multiple contexts at a
single call site (when multiple receiver objects are possible). Work by Lhoták and
Hendren [34] has shown that for small values of k, object-sensitive analysis yields
more precise results for common clients than a call-string-sensitive analysis. In
practice, a mix of object- and call-string sensitivity is often used, e.g., with call-
string sensitivity being employed only for static methods (which have no receiver
argument).

Recently, Smaragdakis et al. [58] have identified type sensitivity as a useful
technique for obtaining much of the precision of object sensitivity with greater
scalability. In one variant of type sensitivity, a context is a list of types rather
than allocation sites, and locToContext converts the allocation site from the
abstract location into a type:

locToContext(〈oi, l〉) = cons(enclosingClass(oi), l) (4)

Rather than using the concrete type of oi in the context, the concrete type of
the enclosing class for the allocation site is used, yielding greater precision in
practice [58]. Another variant of type sensitivity allows for one abstract location
to remain in the context:

locToContext(〈oi, cons(oj , l)〉) = cons(oi, cons(enclosingClass(oj), l)) (5)

Again, k-limiting is required for scalability of either of these schemes. Smarag-
dakis et al. [58] show how k-limited versions of these type-sensitive analyses
provide much of the precision of standard object-sensitive analysis with signifi-
cantly less cost.

Rather than limiting attention to the receiver argument, the cartesian product
algorithm (CPA) [1] distinguishes contexts based on the objects passed in all



argument positions. We can define the selector function for CPA as follows:

cartProd(argvals) =

n∏
i=0

argvals[i]

selector( , , , argvals) =
⋃

l∈cartProd(argvals)

locListToContext(l) (6)

The cartProd function computes the (generalized) cartesian product of all entries
in argvals, yielding a set of lists of abstract locations. Each such list l is converted
to a context using locListToContext , analogous to the use of locToContext for
object sensitivity. In fact, the object-sensitive analysis variants described above
can also be formulated as a special case of CPA, by only using values for the
receiver argument in locListToContext . The locToContext used in Equation 3 for
standard object sensitivity can be generalized to handle all argument positions:

locListToContext([〈oi0 , c0〉, . . . , 〈oin , cn〉]) = (cons(oi0 , c0), . . . , cons(oin , cn)) (7)

As formulated above, CPA creates many more contexts per method than the
equivalent object-sensitive analysis, a significant scalability barrier. In its original
formulation [1], CPA was used for type inference, and the heap abstraction
consisted of types rather than allocation sites, making scalability more feasible.
While full CPA based on allocation sites may not scale, we believe that contexts
based on arguments other than the receiver may still prove useful.

Unification-Based Approaches Some previous approaches to context-sensitive
points-to analysis have employed equality constraints for assignments [16, 31, 44],
which cannot be expressed as a context-sensitivity policy in the formulation of
Table 2.12 In this approach, statement x = y is modeled with constraint pt(y) =
pt(x) instead of pt(y) ⊆ pt(x), enabling the use of fast union-find data structures
to represent equal points-to sets. While this approach has been shown to scale for
C++ programs [31], we are unaware of a scalable implementation for Java-like
languages. In particular, the increased use of virtual dispatch in Java negatively
affects the scalability of the equality-based approach [44].

4 Implementing Points-To Analysis

Here we present techniques for efficiently implementing the points-to analyses
formulated in Section 3. Over the past two decades, advances in implementation
techniques (and hardware advances) have shown that some of these variants can
scale to relatively large programs (papers reporting analysis of millions of lines
of code are now commonplace). We present basic techniques for implementing an

12 For languages like Java and C#, a context-insensitive equality-based approach like
Steensgaard’s analysis [65] does not work—since all objects are passed as the this

parameter to the constructor of the root object type, the analysis would conclude
that all points-to sets are equal.



Andersen’s-style analysis, and then briefly review some of the most prominent
advanced techniques which have appeared in the literature.

Unfortunately, the pointer analysis literature contains several different for-
malisms for describing analyses and implementations. Presentations use various
mathematical frameworks, including set constraints [17], context-free-language
reachability [49], and Datalog [72]. Each framework elucidates certain issues
most clearly, and the choice of framework depends on the best match between
the input language, the analysis variant, and the author’s taste.

This section discusses implementation techniques based on old-fashioned al-
gorithmic description of imperative code based on fixed-point iteration. A previ-
ous paper [62] presented an algorithmic analysis of this algorithm, which sheds
some light on the performance issues which arise in practice. We restate some
of the key points from that work [62] here. The WALA pointer analysis imple-
mentation [69] follows this algorithm directly.

4.1 Algorithm

Here we present an algorithm for Andersen’s analysis for Java, as specified in Ta-
ble 1 in Section 3. The algorithm is most similar to Pearce et al.’s algorithm for
C [47] and also resembles existing algorithms for Java (e.g., that of Lhoták and
Hendren [32]). We do not give detailed pseudocode for implementing a context-
sensitive analysis with on-the-fly call-graph construction, as formulated in Ta-
ble 2, but we discuss some of the key implementation issues later in the section.

The algorithm constructs a flow graph G representing the pointer flow for
a program and computes its (partial) transitive closure, a standard points-to
analysis technique (e.g., see [17, 25, 27]). G has nodes for variables, abstract
locations, and fields of abstract locations. At algorithm termination, G has an
edge n→ n′ iff one of the following two conditions holds:

1. n is an abstract location oi representing a statement x = new T(), and n′

is x.
2. pt(n) ⊆ pt(n′) according to some rule in Table 1.

Given a graph G satisfying these conditions, it is clear that oi ∈ pt(x) iff x is
reachable from oi in G. Hence, the transitive closure of G—where only abstract
location nodes are considered sources—yields the desired points-to analysis re-
sult. Since flow relationships for abstract-location fields depend on the points-to
sets of base pointers for the corresponding field accesses (see the Load and
Store rules referencing pt(oi.f) in Table 1), certain edges in G can only be in-
serted after some reachability has been determined, yielding a dynamic transitive
closure (DTC) problem.

Pseudocode for the analysis algorithm appears in Figure 3. The DoAnalysis
routine takes a set of program statements of the forms shown in Table 1 as in-
put. (We assume suitable data structures that, given a variable x, yield all load
statements y = x.f and store statements x.f = y in constant time per state-
ment.) The algorithm maintains a flow graph G as just described and computes



DoAnalysis()

1 for each statement i: x = new T() do
2 pt∆(x)← pt∆(x) ∪ {oi}, oi fresh
3 add x to worklist
4 for each statement x = y do
5 add edge y → x to G
6 while worklist 6= ∅ do
7 remove n from worklist
8 for each edge n→ n′ ∈ G do
9 DiffProp(pt∆(n), n′)

10 if n represents a local x
11 then for each statement x.f = y do
12 for each oi ∈ pt∆(n) do
13 if y → oi.f 6∈ G
14 then add edge y → oi.f to G
15 DiffProp(pt(y), oi.f)
16 for each statement y = x.f do
17 for each oi ∈ pt∆(n) do
18 if oi.f → y 6∈ G
19 then add edge oi.f → y to G
20 DiffProp(pt(oi.f), y)
21 pt(n)← pt(n) ∪ pt∆(n)
22 pt∆(n)← ∅

DiffProp(srcSet ,n)

1 pt∆(n)← pt∆(n) ∪ (srcSet −pt(n))
2 if pt∆(n) changed then add n to worklist

Fig. 3. Pseudocode for the points-to analysis algorithm.

a points-to set pt(x) for each variable x, representing the transitive closure in
G from abstract locations. Note that abstract location nodes are eschewed, and
instead the relevant points-to sets are initialized appropriately (line 2).

The algorithm employs difference propagation [18, 32, 47] to reduce the work
of propagating reachability facts. For each node n in G, pt∆(n) holds those
abstract locations oi such that (1) the algorithm has discovered that n is reach-
able from oi and (2) this reachability information has not yet propagated to
n’s successors in G. pt(n) holds those abstract locations for which (1) holds
and propagation to successors of n is complete. The DiffProp routine updates
a difference set pt∆(n) with those values from srcSet not already contained in
pt(n). After a node n has been removed from the worklist and processed, all cur-
rent reachability information has been propagated to n’s successors, so pt∆(n)
is added to pt(n) and emptied (lines 21 and 22).



Theorem 1 DoAnalysis terminates and computes the points-to analysis result
specified in Table 1.

Proof. (Sketch) DoAnalysis terminates since (1) the constructed graph is finite
and (2) a node n is only added to the worklist when pt∆(n) changes (line 2 of
DiffProp), which can only occur a finite number of times. For the most part, the
correspondence of the computed result to the rules of Table 1 is straightforward.
One subtlety is the handling of the addition of new graph edges due to field
accesses. When an edge y → oi.f is added to G to handle a putfield statement
(line 14), only pt(y) is propagated across the edge, not pt∆(y) (line 15). This
operation is correct because if pt∆(y) 6= ∅, then y must be on the worklist, and
hence pt∆(y) will be propagated across the edge when y is removed from the
worklist. A similar argument holds for the propagation of pt(oi.f) at line 20. ut

4.2 Complexity

A simple algorithmic analysis shows that the algorithm in Figure 3 has worst-
case cubic complexity. Note that difference propagation is required to ensure the
cubic complexity bound for this worklist-style algorithm [46].

In practice, many papers have reported scaling behavior significantly better
than cubic. Two of the authors have published an analysis [62] that explains why
this pointer analysis usually runs in quadratic time on strongly-typed languages
such as Java. The key insight is that Java’s strong type system restricts the
structure of the graph G to be relatively sparse for most pointer assignments.
By bounding the sparsity of this graph, we can show that the algorithm usually
runs in quadratic time. We refer the reader to the previous paper [62] for more
details.

The previous work [62] also compares the expected behavior with the ob-
served behavior in the WALA pointer analysis implementation. The paper re-
ports results that show that the WALA implementation scales roughly quadrat-
ically with program size on Java programs, as predicted. As a rough character-
ization of overall scalability, [62] reports that the WALA implementation can
usually perform this analysis on programs with a few hundred thousand lines of
code in a few minutes. However, this scalability can vary widely, in particular
depending on implementation details inside the standard library, to be discussed
further in Section 6.

4.3 Optimizations

In practice, an implementation can use several techniques in conjunction with
the code in Figure 3 to improve performance by significant constant factors.

Type Filters In strongly-typed languages, type filters provide a simple but
highly effective optimization which improves both precision and (usually) per-
formance [21, 32].

Consider, for example, the following Java code:



Integer i = new Integer(0);

Double d = new Double(0.0);

Object o = new Random().nextBoolean() ? i : d;

Object p = (o instanceof Integer) ? (Integer)o : null;

o.toString();

The basic algorithm of Figure 3, which ignores the cast statement, would
conclude imprecisely that p may alias d.

Slightly less obviously, consider the alias relation for the receiver (this point-
ers) in the methods Integer.toString() and Double.toString(). Due to the
o.toString() invocation, the basic algorithm would conclude that since o may
alias either i or d, then so may the receiver for each toString() method. How-
ever, this is imprecise, since the semantics of virtual dispatch ensure that the
receiver of Integer.toString() cannot point to an object of type Double.

Type filters provide a simple technique to build these language constraints
into the points-to analysis, in order to improve precision. We describe the tech-
nique informally as follows. In Figure 3, we add labels to the edges in the graph
G. Each label represents a type in the source language – a label T can indi-
cate either a “cone type” (any subtype of T ) or a “point type” (only objects of
concrete type T ).

We modify the algorithm to add labels to the graph based on the source
code. For example, for an assignment x = (T) y, we label the edge y → x with
(cone type) T . We add similar labels for edges that arise from assignments from
actual parameters to formal parameters, to capture type constraints imposed by
virtual dispatch. Finally, we would modify the DiffProp routine to only add
appropriately typed objects to points-to sets. This can be accomplished with a
bit-vector intersection, updating the bit vector for each type as allocation sites
are discovered.

Cycle elimination Consider the following Java code snippet:

Object a = ...

Object b = ...

Object c = ...

while (...) {

if (?) a = b;

else if (?) b = c;

else c = b;

}

It should be clear that a points-to-analysis will compute the same points-to-
set for a, b, and c. This arises from a cycle in the flow graph.

Cycles arise relatively frequently in flow graphs for flow-insensitive points-to
analysis, especially for weakly-typed languages like C. When a cycle arises in the
flow graph, a points-to analysis implementation can collapse the cycle in the flow
graph and use a single representative points-to set for all variables in the cycle.
This optimization can drastically reduce both space consumption (fewer points-
to sets and constraints), and also time (less propagation to a fixed point). A key



challenge with cycle elimination is identifying cycles as they arise dynamically
(due to flow graph edge additions), and a large body of work studies efficient
cycle detection for C points-to analysis [17, 23, 27].

To our knowledge, the results with cycle elimination for Java points-to anal-
ysis have been much less impressive than those for C. We personally experi-
mented with implementing cycle elimination in WALA and found it to provide
little benefit. Paradoxically, cycle elimination works best for cases where the
points-to analysis is often unable to distinguish between related points-to-sets.
Recall that when analyzing Java, we can use type filters to achieve a more precise
solution than typical for untyped C programs. Effectively, type filters “break cy-
cles,” since a labeled edge breaks the invariant that all variables in a cycle have
the same points-to-set. It seems that for analyses with richer abstractions, cycle
elimination becomes less effective, since the existence of huge cycles relies on a
coarse abstraction that fails to distinguish locations.

Method-Local State In WALA, if a variable’s points-to set is determined
entirely by statements in the enclosing method, the points-to set is computed
on-demand rather than via the global constraint system. Consider the following
example:

void m(T x) {

Object y = new Object();

Object z = y;

Object w = x.f;

}

For this case, pt(y) and pt(z) would be computed only when required, while the
constraint system would be used to compute pt(w) (since it depends on a field
of parameter x). Though it complicates the implementation, we have found this
optimization to yield significant space savings in practice. Separate handling of
local state has been employed in other previous work [71, 73].

4.4 Handling Method Calls

On-the-fly call-graph construction (see discussion in Section 3.2) has a significant
impact on real-world points-to analysis performance. If constraint generation
costs are ignored, on-the-fly call graph reasoning can slow down analysis, as
more iterations are required to reach a fixed point [72]. However, if the costs of
constraint generation are considered (which we believe is a more realistic model),
on-the-fly call graph building improves performance, since constraints need not
be generated for unreachable library code. Also, on-the-fly call graph reasoning
can make the flow graph for a program more sparse, improving performance.

As discussed in Section 3.2, context-sensitive points-to analysis can often give
much more precise results for object-oriented programs than context-insensitive
analysis. The most straightforward strategy for implementing context sensitivity
is via cloning. Recall from Section 3.2 that context-sensitive analysis computes a
different solution (points-to set) for local variables that arise in different contexts.



With cloning, the implementation simply creates a distinct copy of the relevant
program structures for each context distinguished.

For example, consider a context-sensitivity policy employing k-limited call-
string contexts with k = 1. For this policy, a cloning-based analysis would clone
each method for each possible call site, and compute a separate solution for each
clone. Intuitively, this can effectively blow up the program size by a quadratic
factor — if there are N methods, each might be cloned N times, resulting in N2

clones.

Data structures Cloning for context-sensitivity exacerbates the demand for both
time and space. Much work over the last decade has improved techniques to
exploit redundancy in the pointer analysis structures to mitigate these factors.
The algorithm of Figure 3 must maintain two data structures, each of which
grows super-linearly with program size:

– the set of constraints that represent the flow graph (G), and
– the points-to sets for each program variable.

A straightforward analysis implementation would represent the points-to sets
using bit vectors, as commonly presented in textbooks for dataflow analysis [2].
The implementation can map each abstract object (e.g. allocation site) to a natu-
ral number, and then use these as identifiers in bit vector indices. At first glance,
this seems like a compact representation, since it appears to devote roughly one
bit of space to each unique piece of information in the output.

However, better solutions have been developed. Several key advances in
pointer analysis implementation have relied on clever data structures to reduce
the space costs of constraints and points-to sets by exploiting redundancy. The
key insight is that many points-to sets are similar, due to the patterns by which
values flow between variables in real programs. So, several works have proposed
data structures to exploit these redundancies.

The WALA implementation uses a clever “shared-bit vector” representation
presented by Heintze [24]. This implementation exploits the commonalities in bit
vector contents, resulting in a bit vector representation that shares large common
subsets. Each bit vector is represented as the union of a shared common base
and a relatively small delta.

In our experience, the Heintze shared bit vectors can dramatically reduce the
space costs of a cloning-based pointer analysis implementation, and allows some
limited context sensitivity policies to scale to relatively large programs. However,
these techniques cannot suffice for aggressive context-sensitivity policies, such as
full call-string context sensitivity for variables [72]. For these policies, the number
of clones grows exponentially with program size, to the point where even one bit
per clone would demand more memory than there are flip-flops in the universe.

Several groups have presented solutions based on exploiting binary decision
diagrams (BDDs), which potentially allow a system to explore an exponential
space using a tractable implicit representation. This technique has been used ex-
tensively in explicit-state model checking [10], and several papers indicate that



similar techniques can work for certain flavors of context-sensitive pointer analy-
sis [6, 7, 33, 72, 76]. Compared with shared-bit vectors, BDDs have the advantage
of employing the same compact representation for both input constraints and the
output points-to relation. Compact constraint representation makes aggressive
policies like full call-string sensitivity for variables possible [72]. On the other
hand, performance of BDD-based analyses can be fragile with respect to variable
orderings [70], and using BDDs requires representing all relevant analysis state
in BDD relations, making integration with other systems more difficult (though
work has been done to ease this integration [35]).

Employing difference propagation exhaustively as in Figure 3 may double
space requirements and hence represent an unattractive space-time tradeoff. A
set implementation that enables propagation of abstract locations in parallel,
like shared-bit vectors, lessens the need for exhaustive difference propagation
in practice. In our experience, the key benefit of difference propagation lies in
operations performed for each abstract location in a points-to set, e.g., edge
adding (see lines 12 and 17 in Figure 3). To save space, WALA [69] only uses
difference propagation for edge adding and for handling virtual call receivers
(since with on-the-fly call graph construction, each receiver abstract location
may yield a new call target). Also note that the best data structure for the
pt∆(x) sets may differ from the pt(x) sets to support smaller sets and iteration
efficiently; see [32, 46] for further discussion.

4.5 Demand-Driven Analysis

The previous discussion focused on computing an exhaustive points-to analysis
solution, i.e., computing all points-to sets for a program. However, recall that the
primary motivation for pointer analysis is to enable some client, which performs
some higher-level analysis such as for program understanding, verification, or
optimization. For many such clients, computing the full solution is not required.
The client will demand information for only a few program variables, and so it
makes sense to compute the information requested on-demand.13

Heintze and Tardieu presented a highly influential paper describing a demand-
driven version of context-insensitive Andersen’s analysis, showing performance
benefits for a client resolving C function pointers [26]. A demand-driven analysis
formulation can also be obtained from a context-free-language reachability for-
mulation of Andersen’s analysis [49, 64] via the magic-sets transformation [48].14

Additional precision benefits can be obtained via refinement of the analysis
abstraction where relevant to client queries. Guyer and Lin [22] showed the
benefits of such an approach for various C points-to analysis clients. Sridharan
et al. [60, 64] gave a refinement-based points-to analysis that exhibited significant
precision and scalability improvements for several Java points-to analysis clients.

13 On-demand computation of purely-local points-to sets was discussed in Section 4.3;
here we extend the discussion to on-demand computation of any points-to set.

14 For C, applying the magic-sets transformation to the Melski-Reps formulation [49]
yields an equivalent analysis to that of Heintze and Tardieu [26].



Finally, recent work by Liang et al. [36, 37, 38] has shown that precision for clients
can be improved with local improvements to the heap abstraction of a points-to
analysis.

5 Must-Alias Analysis

Heretofore, we have concentrated on flow-insensitive alias analyses. These anal-
yses produce a statically bounded (abstract) representation of the program’s
runtime heap. The pointer analysis solution indicates which abstract objects
each pointer-valued expression in the program may denote.

Unfortunately, these scalable analyses have serious disadvantage when used
for verification: they can answer only may-alias questions, that is, whether two
variable may potentially refer to the same object. They cannot in general answer
must-alias questions, that is, whether to two variables must always refer to the
same object.

May-alias information requires a verifier to model any operation performed
through a pointer dereference as an operation that may or may not be performed
on the possible target abstract objects identified by the pointer analysis – this
is popularly known as a “weak update” as opposed to a “strong update” [8].

In this section, we present a flow-sensitive must-alias analysis that is based
on dynamic partition of the heap, and show how its greater precision is used to
verify typestate properties.

5.1 On the Importance of Strong Updates

1 File makeFile {

2 return new File(); // 〈o1, init〉, 〈o2, init〉
3 }

4 File f = makeFile(); // 〈o1, init〉, 〈o2, init〉
5 File g = makeFile(); // 〈o1, init〉, 〈o2, init〉
6 if(?)

7 f.open(); // 〈o1, open〉, 〈o2, init〉
8 else

9 g.open();

10 f.read(); // 〈o1, open〉, 〈o2, init〉
11 g.read(); // 〈o1, open〉, 〈o2, err〉
12 }

Fig. 4. Concrete states for a program reading from two File objects allocated at the
same allocation site. The example shows states for an execution in which the condition
evaluates to true.

Consider a File type which requires invoking open() on a File object before
invoking read(), and consider the simple example program of Fig. 4. The allo-



1 File makeFile {

2 return new File(); // 〈A, init〉
3 }

4 File f = makeFile(); // 〈A, init〉
5 File g = makeFile(); // 〈A, init〉
6 if(?)

7 f.open(); // 〈A, open〉
8 else

9 g.open(); // 〈A, open〉
10 f.read(); // 〈A, open〉
11 g.read(); // 〈A, open〉
12 }

Fig. 5. Unsound update of abstract states for the example of Fig. 4.

cation statement in Line 2 allocates two File objects in some initial state init.
In the figure, we write 〈o, st〉 to denote that an object o is in state st.

In this example, a typical points-to analysis will represent both objects al-
located at Line 2 by a single abstract object A. The abstract state at Line 2
would therefore be 〈A, init〉, representing an arbitrary number of File objects
that have been allocated at this point, all of which are in their initial state.

Now, consider the operation f.open invoked on the abstract object 〈A, init〉.
What should be the effect of this operation? The abstract object 〈A, init〉 rep-
resents all objects allocated at Line 2. Assuming that the invocation of f.open
yields the state 〈A, open〉 is equivalent to assuming that the state of all files
represented by A has turned to open, which is unsound in general. For example,
Fig. 5 shows the unsoundness of this scheme for the example from Fig. 4—the
possible err state at Line 11 is not represented by the abstract states.

To guarantee soundness, the effect of f.open() would have to represent
the possibility that some concrete objects represented by A remain in their
initial state. As a result, the abstract state after f.open() should reflect both
possibilities: 〈A, open〉, where the object is in its open state, and 〈A, init〉 where
the object remains in its initial state. Such an update is referred to as a weak
update, as it maintains the old state (〈A, init〉) as part of the updated state.
Using weak updates, however, would fail to verify even a simple program such
the one shown in Fig. 6.

Addressing this issue requires knowing must-alias information. For Fig. 6,
the analysis must prove that at Line 2, f must point to the object allocated by
Line 1; with this knowledge, the analysis can show that the object can only be in
the open state after the call, enabling verification. While computing this must-
alias information would be straightforward for Fig. 6, in general the problem is
much more challenging, due to language features like loops and method calls.

The literature contains many approaches for must-alias analysis, ranging
from relatively simple abstractions such as the recency abstraction [5] and ran-
dom isolation [29], to full-fledged shape analysis [53]. We next review a particular



1 File f = new File(); // 〈A, init〉
2 f.open(); // 〈A, init〉, 〈A, open〉
3 f.read(); // 〈A, err〉, 〈A, open〉

Fig. 6. Simple correct example that cannot be verified directly using weak updates.

abstraction framework to combine may and must-alias analysis information, de-
veloped for typestate verification [20, 40, 57, 75]. The framework is based on
maintaining must and must-not points-to information based on access paths.

5.2 Access Paths

Abstractions based on allocation sites impose a fixed partition on memory loca-
tions. We next present an abstraction to allow the name of an abstract object
to change dynamically based on the program variables (and paths) that point to
it. Specifically, we define the notion of an access path, a sequence of references
that points to a heap allocated object, and name an abstract object by the set
of access paths that may/must refer to it.

Concrete Semantics We assume a standard concrete semantics which defines a
program state and evaluation of an expression in a program state. The semantic
domains are defined in a standard way as follows:

L\ ∈ 2objects\

v\ ∈ Val = objects\ ∪ {null}
ρ\ ∈ Env = VarId→ Val

h\ ∈ Heap = objects\ × FieldId→ Val

σ\ = 〈L\, ρ\, h\〉 ∈ States = 2objects\

× Env×Heap

where objects\ is an unbounded set of dynamically allocated objects, VarId is
a set of local variable identifiers, and FieldId is a set of field identifiers. We
generally use the \ superscript to denote concrete entities.

A program state keeps track of the set of allocated objects (L\), an envi-
ronment mapping local variables to values (ρ\), and a mapping from fields of
allocated objects to values (h\).

We also define the notion of an access path as follows: A pointer path γ ∈ Γ =
FieldId∗ is a (possibly empty) sequence of field identifiers. The empty sequence
is denoted by ε. We use the shorthand fk where f ∈ FieldId to mean a sequence
of length k of accesses along a field f . An access path p ≡ x.γ ∈ VarId× Γ is a
pair consisting of a local variable x and a pointer path γ.

We denote by APs all possible access paths in a program. The l-value of
access path p, denote by σ\[p], is recursively defined using the environment and
heap mappings, in the standard manner. Given a concrete object o\ in a state
σ\, we denote by AP \(o\) the set of access paths that point to o .



Maintaining Must Points-to Information To describe our abstraction, we first as-
sume that a preliminary flow-insensitive points-to analysis has run. This analysis
generates an abstract points-to graph based on a static set of abstract memory
locations. For this discussion, we call each abstract memory location from the
preliminary points-to analysis an instance key.

The more precise analysis performs a flow-sensitive, context-sensitive inter-
procedural propagation of abstract states. Each abstract state represents a set
of concrete states that may arise during execution, and encodes information re-
garding certain aliasing relationships which these concrete states share. We rep-
resent aliasing relationships with tuples of the form 〈o, unique,APm,May ,APmn〉
where:

– o is an instance key.
– unique indicates whether the corresponding allocation site has a single con-

crete live object.
– APm is a set of access paths that must point-to o.
– May is a boolean that indicates whether there are access paths (not in the

must set) that may point to o.
– APmn is a set of access paths that do not point-to o.

This parameterized abstract representation has four dimensions, for the length
and width of each access path set (must and must-not). The length of an access
path set indicates the maximal length of an access path in the set, similar to
the parameter k in k-limited context-sensitivity policies. The width of an access
path set limits the number of access paths in this set.

An abstract state is a set of tuples. We observe that a conservative represen-
tation of the concrete program state must obey the following properties:

1. An instance key can be indicated as unique if it represents a single object
for this program state.

2. The access path sets (the must and the must-not) do not need to be com-
plete. This does not compromise the soundness of the abstraction, since other
elements in the tuple can indicate the existence of other possible aliases.

3. The must and must-not access path sets can be regarded as another heap
partitioning which partitions an instance key into the two sets of access
paths: those that a) must alias this abstract object, and b) definitely do not
alias this abstract object. If the must-alias set is non-empty, the must-alias
partition represents a single concrete object.

4. If May = false, the must access path is complete; it contains all access paths
to this object.

This can be formally stated as follows:

Definition 1 A tuple 〈o, unique,APm,May,APmn〉 is a sound representation of
object o\ at program state σ\ when the following conditions hold:
– o = ik(o\)
– unique⇒ {x\ ∈ live(σ\) | ik(x\) = o} = {o\}
– APm ⊆ AP\(o\)



– (¬May ⇒ (APm = AP\(o\)))
– APmn ∩AP\(o\) = ∅

where ik is an abstraction mapping a concrete object to the instance key that
represents it, and live(σ\) is defined to be {x\ | AP\(x\) 6= ∅}.

Definition 2 An abstract state σ is a sound representation of a concrete state
σ\ = 〈L\, ρ\, h\〉 if for every object o\ ∈ L\ there exists a tuple in σ that provides
a sound representation of o\.

Abstract Transformers Table 3 shows how a tuple is transformed by the in-
terpretation of various statements. The effect of a transfer function on a given
abstract state is defined by taking the union of applying the tuple transfer func-
tions of Table 3 to each tuple in the abstract state.

The interpretation of an allocation statement “v = new T()” with instance
key o will generate a tuple 〈o, true, {v}, false, ∅〉 representing the newly allo-
cated object. When May is false, the APmn component is redundant and, hence,
initialized to be empty.

When a tuple reaches the allocation site that created it, we generate two
tuples, one representing the newly created object, and one representing the in-
coming tuple. We change the uniqueness flag to false for reasons explained earlier.
For assignment statements, we update the APm and APmn as appropriate.

Note that since we place a finite bound on access path lengths, there are a
finite number of possible abstract states, so fixed-point iteration terminates. The
number of possible abstract states is exponential in the access path bound.

To use this aliasing information in a client analysis, we can extend the ab-
stract transformers of Table 3 to also maintain the abstract state of an object
being tracked.

For example, consider a simple typestate analysis to verify that only open
files are read. We extend the tuple to track the abstract state of a File object,
which can be init (just initialized), open, or closed.

1 Collection files = ...

2 while (...) {

3 File f = new File(); // (〈A, true, {f}, false, ∅〉, init), (〈A, false, ∅, true, {f}〉, open)
4 files.add(f); // (〈A, true, {f}, true, ∅〉, init), (〈A, false, ∅, true, {f}〉, open)
5 f.open(); // (〈A, true, {f}, true, ∅〉, open), (〈A, false, ∅, true, {f}〉, open)
6 f.read(); // (〈A, true, {f}, true, ∅〉, open), (〈A, false, ∅, true, {f}〉, open)
7 }

Fig. 7. Illustration of a strong update to the state of a File object using access paths.

Consider the example of Fig. 7. In this example, the abstraction is able to
capture the fact that at Line 5, f must point to the object allocated by the most



Stmt S Resulting abstract tuples

v = new T() 〈o, false,APm \ startsWith(v,APm),May ,APmn ∪ {v}〉
where o = Stmt S 〈o, true, {v}, false, ∅〉
v = null 〈o, unique,AP ′

m,May,AP ′
mn〉

AP ′
m := APm \ startsWith(v,APm)

APmn := APmn ∪ {v}
v.f = null 〈o, unique,AP ′

m,May,AP ′
mn〉

AP ′
m := APm \ {e′.f.γ | mayAlias(e′, v), γ ∈ Γ}

AP ′
mn := APmn ∪ {v.f}

v = e 〈o, unique,AP ′
m,May,AP ′

mn〉
AP ′

m := APm ∪ {v.γ | e.γ ∈ APm}
AP ′

mn := APmn \ {v|e 6∈ APmn}
v.f = e 〈o, unique,AP ′

m,May′,AP ′
mn〉

AP ′
m := APm ∪ {v.f.γ | e.γ ∈ APm}

May′ := May ∨ ∃v.f.γ ∈ AP ′
m.∃p ∈ AP .mayAlias(v, p) ∧ p.f.γ 6∈ AP ′

m

AP ′
mn := APmn \ {v.f |e 6∈ APmn}

startsWith(v, P ) = {v.γ | γ ∈ P}

Table 3. Transfer functions for statements indicating how an incoming tuple
〈o, unique,APm,May ,APmn〉 is transformed, where pt(e) is the set of instance keys
pointed-to by e in the flow-insensitive solution, v ∈ VarId. mayAlias(e1, e2) iff pointer
analysis indicates e1 and e2 may point to the same instance key.

recent execution of line 3, and its state can be therefore update to open. This
means that read() can be safely invoked on the object pointed to by f at Line 6.

When a typestate method is invoked, we can (1) use the APmn information
to avoid changing the typestate of the tuple where possible, (2) use the APm

information to perform strong updates on the tuple where possible, and (3) use
the uniqueness information also to perform strong updates where possible.

There are several more powerful tricks which can use this information to
improve precision – notably a focus operation which performs a limited form of
case splitting to improve abstraction precision. We refer the reader to [20] for
further discussion of techniques using these abstractions.

As explained earlier, we enforce limits on the length and the number of ac-
cess paths allowed in the APm and APmn components to keep the number of
tuples generated finite. We designed this abstract domain specifically to discard
access-path information soundly, allowing heuristics that trade precision for per-
formance but do not sacrifice soundness. This feature is crucial for scalability;
the analysis would suffer an unreasonable explosion of dataflow facts if it soundly
tracked every possible access path, as in much prior work [9, 14, 15, 30].

However, the abstraction just presented still relies on a preliminary sound
points-to analysis. The abstraction introduces machinery designed to exploit the
points-to analysis, in order to maintain a sound (over-approximate) representa-
tion of the set of possible concrete states.

In practice, modern large Java programs introduce substantial barriers to
this style of sound verification. As we discuss next, certain features of these
programs introduce prohibitive obstacles to running a preliminary, sound points-



to analysis. However, we show that access-path tracking in the style described
here is still useful in the context of under-approximate analyses, which do not
guarantee coverage of all program states.

6 Analyzing Modern Java Programs

In our most recent work, we have found that large libraries and reflection usage in
modern Java programs and libraries have made points-to analysis (as described
in Sections 3 and 4) a poor basis for alias reasoning. In this section, we describe in
more detail why points-to analysis does not work well for modern Java programs
and libraries, and how we have worked around this issue with under-approximate
techniques based on type-based call graph construction and access-path tracking.

We note that though we have not found points-to analysis to work well for
modern desktop and server Java applications, it remains relevant in other do-
mains. Scalability issues with points-to analysis may be less severe in cases where
applications tend to have less code and use smaller libraries, e.g., mobile phone
applications. Furthermore, for languages where a type-based approach does not
yield a reasonable call graph (e.g., JavaScript), points-to analysis remains the
most scalable technique for reasoning about indirect function calls [61].

6.1 Points-to Analysis Difficulties

In Java-like languages, reflection allows for meta-programming based on string
names of program constructs like classes or methods. For example, the following
code reflectively allocates an object of the type named by x:

class Factory {

Object make(String x) {

return Class.forName(x).newInstance();

}

}

Analyzing this code with the assumption that x may name any type yields
extremely imprecise results, as is most cases only a few types may be allocated
by code like the above. In some cases, tracking string constants flowing into
x and only considering those types can help. However, many common idioms
make this difficult or ineffective, such as use of string concatenation or reading
the string from a configuration file.

Previous work has suggested handling code like the above by exploiting uses
of the allocated object [7, 39], since the object is often cast to a more specific
type before it is used. By tracking data flow of reflectively-created objects to
casts and optimistically assuming that the casts succeed, the set of allocated
types can often be narrowed significantly. For example, consider the following
use of the previously-shown Factory class:

Factory f = new Factory();

String widgetClass = properties.get("widgetClassName");

IWidget w = (IWidget) f.make(widgetClass);



In this case, the analysis treats the reflective code as allocating any subtype of
IWidget.

Unfortunately, techniques like the above cannot save points-to analysis from
reflection in general. Sometimes, reflective creations can flow to interfaces like
java.io.Serializable, which is implemented by many types. In other cases,
reflection is used without any downcasts, e.g., reflective method calls via Java’s
Method.invoke(). As standard libraries and frameworks have grown, the cost
of imprecise reflection handling has increased dramatically, since many more
types and methods may be (imprecisely) deemed reachable. In some cases, cer-
tain parts of libraries may be manually excluded based on knowledge of the
application; e.g., GUI libraries can be excluded when analyzing a program with
no graphical interface (this approach is used when running WALA regression
tests). However, for cases like server applications that are themselves packaged
with many libraries (we have observed more than 75 .jar files in some cases),
manual exclusions are not suitable. We are unaware of any automatic technique
that is able to handle reflection across large Java applications with sufficient
precision, and others have also observed this problem [58, Section 5.1].

6.2 Under-Approximate Techniques

Given the aforementioned difficulties with over-approximate alias analysis, under-
approximate techniques present an attractive alternative in cases where sound
analysis is not required (e.g., in a bug detection tool). When first exploring
this area, we tried to base our approach on a points-to analysis modified to
be under-approximate, either via reduced reflection handling or use of a par-
tial result computed in some time bound. However, we found this approach to
be unsatisfactory: ignoring reflection often led to missed, important behaviors
(particularly in framework-based applications [59]), and time bounds required
complex heuristics to ensure that the points-to analysis explored desired parts of
the program early. Instead, we have turned to an approach of (i) using a variant
of the access-path tracking described in Section 5 to track must-alias information
under-approximately, and (ii) employing domain-specific modeling of reflection
as needed. We describe these techniques in turn.

Under-Approximation by using Only Must Information Section 5 de-
scribed an access-path analysis based on states of 〈o, unique,APm,May ,APmn〉
tuples, designed to achieve high precision while relying on a pre-computed points-
to analysis for soundness. In the under-approximate setting, we can define a
simpler analysis with tuples of the form 〈o,APm〉, carrying only must-alias in-
formation. As earlier, each time the transformation of must-access-paths set is
computed, we must limit the size of the resulting set. It is necessary to do so for
two reasons: (i) in the presence of loops (or recursion), it is possible for access
paths to grow without a bound (ii) even loop free code might inflate the sets to
needlessly large sizes, compromising efficiency. The transformers over 〈o,APm〉
tuples follow the update for APm as described in Table 3.



In the following examples, we demonstrate how this abstraction can be used
for identifying resource leaks (see Section 2), and consider tuples of the form
〈o, R,APm〉 where R is a resource type. R can be acquired via statement type
p = acquire R and released via release R r (where r points to the resource).
At a high level, we use the must-alias access-path abstraction to detect resource
leaks as follows (see Torlak and Chandra [67] for full details):

– At statement p = acquire R, the analysis generates tuple 〈p,R, {p}〉 (we
name resource objects by the variable to which they are first assigned).

– Must aliases are updated as shown in Table 3.
– If statement release R r is reached with tuple t = 〈p,R, a〉 and r ∈ a, then

the analysis kills t.
– If method exit is reached with a tuple 〈p,R, {}〉, then a leak is reported, as

no aliases exist to release the resource.
– For additional precision, conditionals performing null checks are interpreted.

If a conditional checking v = null is reached with tuple t = 〈p,R, a〉 and
v ∈ a, t is killed on the true branch, as a must-alias for a resource cannot be
null. v 6= null is handled similarly.

Example 1 Consider the code fragment shown below. We show the facts accu-
mulated by our analysis after each statement to the right.

p = acquire R 〈p,R, {p}〉
q.f = p 〈p,R, {p, q.f}〉
r = q.f 〈p,R, {r, p, q.f}〉
branch (r == null) L1 T: none, F: 〈p,R, {r, p, q.f}〉
release R r none
L1: none

At the branch statement, the analysis concludes that only the fall-through
successor is feasible: r, being a must-alias to a resource, cannot be a null pointer.
At the release statement, the analysis uses the APm set to establish that r
must-alias the resource. Consequently, no fact makes it to L1, and no error is
reported.

Had the analysis not interpreted the branch statement, fact 〈p,R, {r, p, q.f}〉
would have reached L1. Local variables p, q, and r would then be dropped from
the state, giving the fact 〈p,R, {}〉 at the exit. This fact would lead the analysis
to conclude that resource p is unreachable at exit, resulting in a false positive.

Example 2 Consider the leaky code fragment shown below. It allocates a resource
in a loop, but frees only the last allocated instance. The branch * L2 has a non-
deterministic condition which cannot be interpreted by the analysis.



p1 = null

L1 〈p3, R, {p3}〉, 〈p3, R, {p2}〉
p2 = φ(p1,p3) 〈p3, R, {p2, p3}〉, 〈p3, R, {}〉
branch * L2

p3 = acquire R 〈p3, R, {p3}〉, 〈p3, R, {p2}〉
branch true L1

L2 〈p3, R, {p2, p3}〉, 〈p3, R, {}〉
release R p2 〈p3, R, {}〉

This fragment also illustrates the treatment of φ nodes. Consider the path
taken through the loop two times and then exiting to L2. The analysis generates
〈p3, R, {p3}〉 after the acquire. The generated fact flows to L1, and the analysis
generates 〈p3, R, {p2, p3}〉 after the φ, using the effect of p2 = p3. This, in turn,
flows out to L2 via the branch, where it is killed by the release.

In the next loop iteration, the acquire statement overwrites p3, so the anal-
ysis kills the occurrence of p3 in {p2, p3}, generating the new fact 〈p3, R, {p2}〉.
After propagation on the back edge, this last fact is transformed by the φ state-
ment to 〈p3, R, {}〉. Finally, when the transformed fact flows out to L2, it cannot
be killed by release since the must-alias set is empty. The fact reaches method
exit, and a leak is reported.

Method calls We have not yet addressed how an under-approximate analysis like
the resource leak detector reasons about method calls; as discussed in Sections 2
and 3, call graph construction and alias analysis are inter-dependent. We have
found that an under-approximate call graph based on the class hierarchy is
sufficient for bug-finding tools like the leak detector. In using the class hierarchy,
all available code is considered, so certain issues related to insufficient reflection
handling are avoided. For call sites with a very large number of possible targets,
a subset is chosen heuristically, with the heuristics tunable by the client analysis.
For example, in the leak detector [67], the heuristics were tuned to prefer code
performing resource allocation.

Domain-specific Reflection Modeling In certain cases, key application be-
haviors are implemented using reflection, necessitating modeling of those re-
flective behaviors. For example, server-side web applications written in Java are
typically built atop Java EE15 and other frameworks, and the application code is
only invoked via reflective calls from the framework. To effectively detect security
vulnerabilities in such applications using taint analysis [68], the analysis must
have visibility into how these reflective calls invoke application code (e.g., to see
how untrusted data is passed). For taint analysis of web applications, recent work
describes Framework for Frameworks (F4F) [59], a system that eases modeling
the security-relevant behaviors of web-application frameworks. We expect sim-
ilar modeling to be required in other domains where complex, reflection-heavy
frameworks are employed.

15 http://www.oracle.com/technetwork/java/javaee/index.html



7 Conclusions and Future Work

We have presented a high-level overview of state-of-the-art may- and must-alias
analyses for object-oriented programs, based on our experiences implementing
production-quality static analyses for Java. The sound alias-analysis techniques
presented here work well for medium-sized programs, while for large-scale Java
programs, an under-approximate alias analysis based on access-path tracking
currently yields the most useful results.

We see several potentially fruitful directions for future work, for example:

Reflection Improved reflection handling could significantly increase the effec-
tiveness of various alias-analysis techniques. Approaches based on analyzing
non-code artifacts like configuration files [59] or introducing more analyzable
language constructs [28] seem particularly promising.

Dynamically-Typed Languages As scripting languages like JavaScript gain
in popularity, there is an increasing need for effective alias analyses for such
languages. Analyzing such languages poses significant challenges, as use of
reflective code constructs is even more pervasive than in Java, and optimiza-
tions based on the type system (see Section 4.3) may no longer be effective
in improving scalability [61].

Developer Tool Integration Some initial work has been done on developer
tools that make significant use of alias analysis [19, 54, 63], but we believe
there is significant further scope for tools to help developers reason about
data flow and aliasing in their programs. Better tools for reasoning about
aliasing are particularly important since trends indicate increasing usage
of dynamically-typed languages and large frameworks, both of which can
obscure aliasing relationships in programs.
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Tip. Tool-supported refactoring for JavaScript. In Proceedings of the 2011
ACM international conference on Object oriented programming systems lan-
guages and applications, OOPSLA ’11, pages 119–138, New York, NY, USA,
2011. ACM.

[20] Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel
Geay. Effective typestate verification in the presence of aliasing. ACM
Transactions on Software Engineering and Methodology, 17(2):1–34, 2008.

[21] David Grove and Craig Chambers. A framework for call graph construction
algorithms. ACM Trans. Program. Lang. Syst., 23(6):685–746, 2001.

[22] Samuel Z. Guyer and Calvin Lin. Client-driven pointer analysis. In Inter-
national Static Analysis Symposium (SAS), San Diego, CA, June 2003.

[23] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: fast and
accurate pointer analysis for millions of lines of code. In PLDI, pages 290–
299, 2007.

[24] Nevin Heintze. Analysis of Large Code Bases: The Compile-Link-Analyze
Model. Draft of November 12, 1999.

[25] Nevin Heintze and David McAllester. Linear-time subtransitive control flow
analysis. SIGPLAN Not., 32(5):261–272, 1997.

[26] Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis. In
Conference on Programming Language Design and Implementation (PLDI),
Snowbird, Utah, June 2001.

[27] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using CLA:
A million lines of C code in a second. In Conference on Programming
Language Design and Implementation (PLDI), June 2001.

[28] Shan Shan Huang and Yannis Smaragdakis. Morphing: Structurally shaping
a class by reflecting on others. ACM Trans. Program. Lang. Syst., 33:6:1–
6:44, February 2011.

[29] Nicholas Kidd, Thomas W. Reps, Julian Dolby, and Mandana Vaziri. Find-
ing concurrency-related bugs using random isolation. STTT, 13(6):495–518,
2011.



[30] William Landi and Barbara G. Ryder. A safe approximate algorithm
for interprocedural aliasing. In PLDI ’92: Proceedings of the ACM SIG-
PLAN 1992 conference on Programming language design and implementa-
tion, pages 235–248, New York, NY, USA, 1992. ACM Press.

[31] Chris Lattner, Andrew Lenharth, and Vikram Adve. Making context-
sensitive points-to analysis with heap cloning practical for the real world.
In Proceedings of the 2007 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’07, pages 278–289, New York,
NY, USA, 2007. ACM.
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