
man7.org
Training and Consulting

Linux/UNIX System Programming Essentials
Course code: M7D-SPESS01

This one-day course provides an introduction to the low-level interfaces
that are used to build system-level applications on Linux and UNIX
systems. Topics covered include file I/O using system calls, signals,
processes, and process lifecycle (fork(), execve(), wait(), exit()).

Audience and prerequisites
The audience for this course includes programmers devel-
oping and porting system-level applications for Linux and
UNIX systems, embedded application developers, security
engineers, site reliability engineers, and DevOps engineers.

To get the most out of the course, participants should
have:

• Good reading knowledge of the C programming language
• Solid programming experience in a language suitable for

completing the course exercises (e.g., C, C++, D, Go,
Rust, or Python)

• Knowledge of basic UNIX/Linux shell commands

Previous system programming experience is not required.

Related courses
This course provides the background necessary for a number
of other courses:

• Linux Security and Isolation APIs, M7D-SECISOL02

• Linux/UNIX Threads and IPC Programming, M7D-
TIPC01

• Linux/UNIX IPC Programming, M7D-IPC02

The Linux/UNIX System Programming Fundamentals
(M7D-SPINTRO01) course covers the same topics, but in
greater depth.

Course duration and format
One day, with up to 40% devoted to practical sessions.

Course materials
• Course books (written by the trainer) that include all slides

and exercises presented in the course
• An electronic copy of the trainer’s book, The Linux Pro-

gramming Interface
• Numerous example programs written by the course trainer

Course inquiries and bookings
For inquiries about courses and consulting, you can contact
us in the following ways:

• Email: training@man7.org
• Phone: +49 (89) 2155 2990 (German landline)

Prices and further details
For course prices and further information, please visit the
course web page, http://man7.org/training/spess/.

About the trainer

Michael Kerrisk has a unique set of qualifications
and experience that ensure that course partici-
pants receive training of a very high standard:

• He has been programming on UNIX systems
since 1987 and began teaching UNIX system
programming courses in 1989.

• He is the author of The Linux Programming
Interface, a 1550-page book acclaimed as the
definitive work on Linux system programming.

• He has been actively involved in Linux de-
velopment, working with kernel developers
on testing, review, and design of new Linux
kernel–user-space APIs.

• Since 2000, he has been the involved in the
Linux man-pages project, which provides the
manual pages documenting Linux system calls
and C library APIs, and was the project main-
tainer from 2004 to 2021.

http://man7.org/training/ k training@man7.org (v2024-01-27 #0fadcc6c) Page 1

http://man7.org/training/spess/
http://man7.org/training/


Linux/UNIX System Programming Essentials: course contents in detail

Topics marked with an asterisk (*) are optional, and will be covered as time permits

1. Course Introduction
2. Fundamental Concepts

• Error handling
• System data types
• Notes on code examples

3. File I/O

• File I/O overview
• open(), read(), write(), and close()

4. Processes

• Process IDs
• Process memory layout
• Command-line arguments
• The environment list
• The /proc filesystem

5. Signals

• Overview of signals
• Signal dispositions
• Useful signal-related functions
• Signal handlers
• Designing signal handlers

6. Process Lifecycle

• Creating a new process: fork()
• Process termination
• Monitoring child processes
• Orphans and zombies
• The SIGCHLD signal
• Executing programs: execve()

7. System Call Tracing with strace (*)

• Getting started
• Tracing child processes
• Filtering strace output

The following are a few of the other courses taught by Michael Kerrisk. Custom courses are also available upon request.
Further details on these and other courses can be found at http://man7.org/training/. For course inquiries please email
training@man7.org or phone +49 (89) 2155 2990 (German landline).

Linux/UNIX System Programming
Course code: M7D-LUSP01 (5 days)

Intended for a wide audience, including system
programmers, embedded developers, devops engineers, and
security engineers, this course provides a deep understanding
of the operating system architecture and low-level interfaces
required to build system-level applications on Linux and
UNIX systems ranging from embedded processors to
enterprise servers. Detailed presentations coupled with
many carefully designed practical exercises provide
participants with the knowledge needed to write complex
system, network, and multithreaded applications.
Topics covered include file I/O; files, directories, and links;
signals; processes; process creation and termination;
program execution. multithreaded programming with
POSIX threads; IPC (pipes, FIFOs, shared memory,
semaphores, local and network IPC with sockets); and I/O
multiplexing (poll(), select(), and epoll).

Linux Security and Isolation APIs
Course code: M7D-SECISOL02 (4 days)

Covering topics including control cgroups (cgroups v1 and
v2), namespaces (with a deep dive into user namespaces),
capabilities, and seccomp (secure computing), this course

provides a deep understanding of the low-level Linux
features used to design, build, and troubleshoot container,
virtualization, and sandboxing frameworks.

Building and Using Shared Libraries on Linux
Course code: M7D-SHLIB04 (2.5 days)

This course provides a thorough understanding of the
process of designing, building, and using shared libraries on
Linux. Topics covered include: fundamentals of library
creation and use; shared library versioning; symbol
resolution; library search order; executable and linking
format (ELF); dynamically loaded libraries; controlling
symbol visibility; and symbol versioning.

Linux/UNIX IPC Programming
Course code: M7D-IPC02 (3 days)

This course provides a thorough introduction to the
interprocess (IPC) techniques that Linux and UNIX systems
provide for use by user-space programs. Using these
techniques (pipes, FIFOs, shared memory, semaphores, local
and network IPC with sockets, and I/O multiplexing) allows
the creation of complex multiprocess applications that
coordinate their actions and exchange information with each
other.

http://man7.org/training/ k training@man7.org (v2024-01-27 #0fadcc6c) Page 2

http://man7.org/training/

	Audience and prerequisites
	Related courses
	Course duration and format
	Course materials
	Course inquiries and bookings
	Prices and further details
	toAbout the trainer

