
Proprietary + Confidential

LTO, PGO, and
AutoFDO

Linux Plumbers Conf 2020 - LLVM MC
Sami Tolvanen, Bill Wendling, Nick Desaulniers

Proprietary + ConfidentialProprietary + Confidential

Google is shipping all of the following in downstream kernels but…

Unless these are repeatable processes for upstream, then they are not solutions, they are technical debt.

But there are implications for CI; added build durations, stale profile data, ...

Upstreaming

Proprietary + ConfidentialProprietary + Confidential

What is LTO?

C code is compiled into LLVM IR. LLVM’s integrated assembler is used for inline assembly.

Bitcode is compiled and optimized into native code at link time. Objtool etc. must be delayed until after linking.

Build times are tolerable with ThinLTO. Full LTO produces faster code, but is very resource-intensive.

In addition to better runtime performance, enables Clang’s forward-edge Control-Flow Integrity (CFI) checking.

Google has shipped LTO+CFI kernels on Pixel phones since 2018.

Patches for x86 and arm64 are available in GitHub. Upstreaming in progress.

https://clang.llvm.org/docs/ThinLTO.html
https://github.com/samitolvanen/linux/commits/clang-lto

Proprietary + ConfidentialProprietary + Confidential

Build times with LTO

make -j72 # 2x Xeon Gold 6154

x86_64 defconfig Clang w/o LTO ThinLTO Full LTO

Time 51s 1min 5min 10s

Memory 240 MiB 1.7 GiB 2.8 GiB

arm64 defconfig Clang w/o LTO ThinLTO Full LTO

Time 2min 6s 2min 14s 10min

Memory 1.6 GiB 3.5 GiB 20.3 GiB

Proprietary + ConfidentialProprietary + Confidential

LTO is more akin to “whole program optimization.”
It’s run just prior to link of the final executable; program semantics are fully retained.
“Post Link Optimization” (ie. Bolt, Propeller) tries to recreate program semantics from disassembly.
For PLO, what does that mean for inline asm; kernel specific sections?

LTO != PLO

Proprietary + ConfidentialProprietary + Confidential

Adding profiling data into the mix

● The compiler can improve code layout (function or even basic block placement) and spend time optimizing hot
code only, if it has a better sense how hot/unlikely sections of code are.

● We can statically provide these via __builtin_expect(), and refute stale hints by providing profile data to
clang-misexpect.
○ We can also collect information at runtime.

● Exporting this information from the kernel can be a challenge (PGO).
● Measuring what’s important can become a double edged sword.

https://reviews.llvm.org/D66324

Proprietary + ConfidentialProprietary + Confidential

PGO a.k.a. FDO for Clang

Clang has two types of profiling:

IR instrumentation: -fprofile-generate
Front-end instrumentation: -fprofile-instr-generate

● Front-end instrumentation is done by the clang front-end, while IR instrumentation is done by an IR pass
in LLVM. IR instrumentation is done after some limited early inlining, which makes profiling more context
sensitive and instrumented binaries faster to run.

TL;DR: Use -fprofile-generate.

Proprietary + ConfidentialProprietary + Confidential

PGO Example Workflow

Instrument the kernel
$ clang -fexperimental-new-pass-manager -fprofile-generate ...

Profile data collection
$ echo 1 > /sys/kernel/debug/pgo/reset
 ... run load tests ...
$ cp /sys/kernel/debug/pgo/profraw vmlinux.profraw
$ llvm-profdata merge --output vmlinux.profdata vmlinux.profraw

Using PGO
$ clang -fexperimental-new-pass-manager -fprofile-use=vmlinux.profdata ...

Using PGO with LTO
$ ld.lld -lto-cs-profile-file=vmlinux.profdata ...

Proprietary + ConfidentialProprietary + Confidential

PGO by Numbers

Netperf: TCP STREAM Throughput with PGO
106 bits/sec

Throughput without PGO
106 bits/sec

-m 4096 -s 128K -S 128K 15994.01 15223.10

-m 8192 -s 128K -S 128K 16058.02 15713.99

-m 32768 -s 128K -S 128K 16246.86 16189.35

-m 4096 -s 57344 -S 57344 8937.68 8781.61

-m 8192 -s 57344 -S 57344 8773.22 8666.66

-m 32768 -s 57344 -S 57344 8823.13 8743.46

Proprietary + ConfidentialProprietary + Confidential

AutoFDO

By using sampling rather than instrumentation, we can feed sample based profiles back into compilation.
Pros: no separate profile/release builds, better layout == improved performances.
Cons: not all architectures have hardware counters, the samples after inlining has been performed are hard to match
up.
KBUILD_CFLAGS += -fdebug-info-for-profiling -fprofile-sample-use=

https://clang.llvm.org/docs/UsersManual.html#using-sampling-profilers

https://clang.llvm.org/docs/UsersManual.html#using-sampling-profilers

Proprietary + ConfidentialProprietary + Confidential

AutoFDO

On systems we deployed AutoFDO built kernels,
we observed up to a 12% reduction in cycles spent in the kernel. But:
● Different micro architectures gave differing results. (None were worse, just not as good).
● Profiles from ETM on ARM weren’t as profitable as using LBR on x86 (potential problem with data? Still

looking).
● It’s possible to use profiles from x86 when targeting ARM. Miss out on optimizing arch specifics.

Proprietary + ConfidentialProprietary + Confidential

Tradeoffs between AutoFDO and PGO

Separate Training vs Release builds (PGO).
Different levels of precision.

Proprietary + ConfidentialProprietary + Confidential

Upstream profile data

Profile data has to be processed before fed back into compiler.
Would we check in preprocessed profiles, or post processed?
Profile data needs to be periodically refreshed.
(Rough analogy to transfer learning).

