
Overview of Memory Reclaim in the
Current Upstream Kernel

Vlastimil Babka

Linux Kernel Developer, SUSE Labs

vbabka@suse.cz

LPC 2021, 21 September 2021 (r2)

Introduction

• Unused memory is wasted memory – the kernel will keep cached everything that
userspace touches, so eventually the RAM will get (almost) full

• Memory reclaim evicts the existing data to make room for new data
• Two distinct types of userspace pages

– Anonymous pages allocated by mmap(MAP_PRIVATE) and populated by page fault,
must be swapped out first (if at all possible) to reclaim

– File pages (a.k.a. page cache) created by file operations or mmap(…, fd) – can be
immediately discarded when clean, or after write-out when dirty

• Disk IO is costly, so we would like to keep pages that will be accessed again
soon, and reclaim those that will not, but we cannot predict the future
– Instead we can look at the past and assume temporal locality – pages accessed recently

are more likely to be accessed again in near future

– So we put (struct) pages on Least Recently Used (LRU) list, ordered by their last access
time from most recent (head) to least recent (tail)

2 /
22

LRU list – ideal model

recent stale

1 2 3 4 5 6 7 8 9 10

3 /
22

LRU list – ideal model

recent stale

1 2 3 4 5 6 7 8 9 10

Page 5 accessed

3 /
22

LRU list – ideal model

recent stale

1 2 3 4 5 6 7 8 9 10

Page 5 accessed
recent stale

5 1 2 3 4 6 7 8 9 10

3 /
22

LRU list – ideal model

recent stale

1 2 3 4 5 6 7 8 9 10

Page 5 accessed
recent stale

5 1 2 3 4 6 7 8 9 10

11 Page 11 accessed

3 /
22

LRU list – ideal model

recent stale

1 2 3 4 5 6 7 8 9 10

Page 5 accessed
recent stale

5 1 2 3 4 6 7 8 9 10

11 Page 11 accessed

recent stale

11 5 1 2 3 4 6 7 8 9

3 /
22

LRU list – ideal model

recent stale

1 2 3 4 5 6 7 8 9 10

Page 5 accessed
recent stale

5 1 2 3 4 6 7 8 9 10

11 Page 11 accessed

recent stale

11 5 1 2 3 4 6 7 8 9

10Page 10 evicted 3 /
22

LRU – anonymous/file split

• Anonymous and file pages have distinct properties
– Clean file pages can be just evicted, anonymous have to be swapped out at least once...

– Historically, reclaim has been biased towards file pages more than anonymous

• Single list would be ineffective when reclaiming just one type
• Hence separate anon and file LRU lists

– But now we have to choose which one (or both) to reclaim, and balance their sizes

4 /
22

LRU – anonymous/file split

• Anonymous and file pages have distinct properties
– Clean file pages can be just evicted, anonymous have to be swapped out at least once...

– Historically, reclaim has been biased towards file pages more than anonymous

• Single list would be ineffective when reclaiming just one type
• Hence separate anon and file LRU lists

– But now we have to choose which one (or both) to reclaim, and balance their sizes

recent stale

1 2 3 4 5 6 7 8 9 10

4 /
22

LRU – anonymous/file split

• Anonymous and file pages have distinct properties
– Clean file pages can be just evicted, anonymous have to be swapped out at least once...

– Historically, reclaim has been biased towards file pages more than anonymous

• Single list would be ineffective when reclaiming just one type
• Hence separate anon and file LRU lists

– But now we have to choose which one (or both) to reclaim, and balance their sizes

recent stale

1 2 3 4 5 6 7 8 9 10

4 /
22

LRU – anonymous/file split

• Anonymous and file pages have distinct properties
– Clean file pages can be just evicted, anonymous have to be swapped out at least once...

– Historically, reclaim has been biased towards file pages more than anonymous

• Single list would be ineffective when reclaiming just one type
• Hence separate anon and file LRU lists

– But now we have to choose which one (or both) to reclaim, and balance their sizes

recent stale

1 2 3 4 5 6 7 8 9 10

anon LRU

1 4 5 6 8

file LRU

2 3 7 9 10
4 /
22

LRU – active/inactive split

• Ideal LRU model not achievable in practice
– Capturing each memory access for precise tracking would be prohibitively slow

– Approximated by detecting if page has been accessed since last check

– More effective if we track more and less actively pages separately

• Hence separate active and inactive LRU lists for each type
– Also fifth list for unevictable pages (not relevant to reclaim)

– All together that’s called lruvec

5 /
22

LRU – active/inactive split

• Ideal LRU model not achievable in practice
– Capturing each memory access for precise tracking would be prohibitively slow

– Approximated by detecting if page has been accessed since last check

– More effective if we track more and less actively pages separately

• Hence separate active and inactive LRU lists for each type
– Also fifth list for unevictable pages (not relevant to reclaim)

– All together that’s called lruvec

anon LRU

1 4 5 6 8

file LRU

2 3 7 9 10

5 /
22

LRU – active/inactive split

• Ideal LRU model not achievable in practice
– Capturing each memory access for precise tracking would be prohibitively slow

– Approximated by detecting if page has been accessed since last check

– More effective if we track more and less actively pages separately

• Hence separate active and inactive LRU lists for each type
– Also fifth list for unevictable pages (not relevant to reclaim)

– All together that’s called lruvec

anon LRU

1 4 5 6 8

file LRU

2 3 7 9 10

5 /
22

LRU – active/inactive split

• Ideal LRU model not achievable in practice
– Capturing each memory access for precise tracking would be prohibitively slow

– Approximated by detecting if page has been accessed since last check

– More effective if we track more and less actively pages separately

• Hence separate active and inactive LRU lists for each type
– Also fifth list for unevictable pages (not relevant to reclaim)

– All together that’s called lruvec

anon LRU

1 4 5 6 8

file LRU

2 3 7 9 10

anon active 1 4 5

anon inactive 6 8

file active 2 3 7

file inactive 9 10

unevictable 11 12
lruvec 5 /

22

LRU – node/memcg lruvecs

• Four reclaimable LRU lists per lruvec
– Large part of reclaim magic is to decide how many pages to scan and try to reclaim in

each one (shrink the list)
• Pages are taken from the tail of each list, can be moved to the head of another list

(activated/deactivated), back to head of the same list (kept), or evicted entirely (reclaimed)

6 /
22

LRU – node/memcg lruvecs

• Four reclaimable LRU lists per lruvec
– Large part of reclaim magic is to decide how many pages to scan and try to reclaim in

each one (shrink the list)
• Pages are taken from the tail of each list, can be moved to the head of another list

(activated/deactivated), back to head of the same list (kept), or evicted entirely (reclaimed)

• In practice, there are many lruvecs
– Different memory cgroups have distinct lruvecs, for memcg reclaim

• Global memory reclaim has to iterate over all memcgs

– Different NUMA nodes have distinct lruvecs, as nodes are reclaimed separately
• Each node has own kswapd daemon, memory pressure can differ due to e.g. mempolicies

6 /
22

LRU – node/memcg lruvecs

• Four reclaimable LRU lists per lruvec
– Large part of reclaim magic is to decide how many pages to scan and try to reclaim in

each one (shrink the list)
• Pages are taken from the tail of each list, can be moved to the head of another list

(activated/deactivated), back to head of the same list (kept), or evicted entirely (reclaimed)

• In practice, there are many lruvecs
– Different memory cgroups have distinct lruvecs, for memcg reclaim

• Global memory reclaim has to iterate over all memcgs

– Different NUMA nodes have distinct lruvecs, as nodes are reclaimed separately
• Each node has own kswapd daemon, memory pressure can differ due to e.g. mempolicies

• Summary: each userspace page placed on a LRU list in one of many lruvecs:

6 /
22

LRU – node/memcg lruvecs

• Four reclaimable LRU lists per lruvec
– Large part of reclaim magic is to decide how many pages to scan and try to reclaim in

each one (shrink the list)
• Pages are taken from the tail of each list, can be moved to the head of another list

(activated/deactivated), back to head of the same list (kept), or evicted entirely (reclaimed)

• In practice, there are many lruvecs
– Different memory cgroups have distinct lruvecs, for memcg reclaim

• Global memory reclaim has to iterate over all memcgs

– Different NUMA nodes have distinct lruvecs, as nodes are reclaimed separately
• Each node has own kswapd daemon, memory pressure can differ due to e.g. mempolicies

• Summary: each userspace page placed on a LRU list in one of many lruvecs:

Root memcg Memcg1 Memcg2 Memcg3 Memcg4 Memcg5

Node 0 lruvec lruvec lruvec lruvec lruvec lruvec

Node 1 lruvec lruvec lruvec lruvec lruvec lruvec 6 /
22

Page States Relevant to Reclaim
• Determined by page flags, mainly the following:

– LRU – page is on any LRU list, Active – page is on active list

– Referenced – inactive page has been accessed “recently”

– Workingset – page is considered part of active userspace’s workingset

• Affected by Accessed bit in page tables entries (PTE’s) that map this page

– page_referenced() counts them (via a rmap walk) and resets them to zero

7 /
22

Page States Relevant to Reclaim

Page flags

LRU Active Referenced Workingset

struct page

• Determined by page flags, mainly the following:
– LRU – page is on any LRU list, Active – page is on active list

– Referenced – inactive page has been accessed “recently”

– Workingset – page is considered part of active userspace’s workingset

• Affected by Accessed bit in page tables entries (PTE’s) that map this page

– page_referenced() counts them (via a rmap walk) and resets them to zero

7 /
22

Page States Relevant to Reclaim

Page flags

LRU Active Referenced Workingset

struct page

6 5 4 3 2 1 0

Dirty Accessed U/S R/W P

Page table entry

• Determined by page flags, mainly the following:
– LRU – page is on any LRU list, Active – page is on active list

– Referenced – inactive page has been accessed “recently”

– Workingset – page is considered part of active userspace’s workingset

• Affected by Accessed bit in page tables entries (PTE’s) that map this page

– page_referenced() counts them (via a rmap walk) and resets them to zero

7 /
22

Page States Relevant to Reclaim

Page flags

LRU Active Referenced Workingset

struct page

6 5 4 3 2 1 0

Dirty Accessed U/S R/W P

Page table entry

• Determined by page flags, mainly the following:
– LRU – page is on any LRU list, Active – page is on active list

– Referenced – inactive page has been accessed “recently”

– Workingset – page is considered part of active userspace’s workingset

• Affected by Accessed bit in page tables entries (PTE’s) that map this page

– page_referenced() counts them (via a rmap walk) and resets them to zero

6 5 4 3 2 1 0

Dirty Accessed U/S R/W P

Page table entry

7 /
22

Page States Relevant to Reclaim

Page flags

LRU Active Referenced Workingset

struct page

6 5 4 3 2 1 0

Dirty Accessed U/S R/W P

Page table entry

• Determined by page flags, mainly the following:
– LRU – page is on any LRU list, Active – page is on active list

– Referenced – inactive page has been accessed “recently”

– Workingset – page is considered part of active userspace’s workingset

• Affected by Accessed bit in page tables entries (PTE’s) that map this page

– page_referenced() counts them (via a rmap walk) and resets them to zero

6 5 4 3 2 1 0

Dirty Accessed U/S R/W P

Page table entry

PTE PTE
7 /
22

Not present

8 /
22

After fault is handled,
the userspace access
is restarted and sets

PTE Accessed
bit immediately

!active

!referenced

#PTE.A=1

Not present

kern/usr
access

initial page fault

8 /
22

!active

!referenced

#PTE.A=1

Not present

kern/usr
access

initial page fault

8 /
22

Reclaim filters out the
initial access by only

setting the referenced
Page flag, but keeping
Page on inactive list

!active

referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

Not present

kern/usr
access

reclaim
keeps

initial page fault

8 /
22

!active

referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

Not present

kern/usr
access

reclaim
keeps

initial page fault

8 /
22

Another access sets
PTE active bit

!active

referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
keeps

initial page fault

8 /
22

!active

referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
keeps

initial page fault

8 /
22

Reclaim sees both
referenced flag

and PTE active, so
page was accessed

multiple times,
activate it

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
keeps

initial page fault

reclaim
promotes

8 /
22

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
keeps

initial page fault

reclaim
promotes

8 /
22

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

Reclaim sees no
active bit PTEs,
page was not

accessed, evict it

8 /
22

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

8 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

Active list reclaim
(deactivation)

referenced flag
doesn’t matter

8 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

8 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

userspace

8 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

userspace

8 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

userspace

8 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec.
file
only

userspace
Executable file pages
are kept on active list
as long as they are

accessed

8 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec.
file
only

userspace

8 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec.
file
only

userspace

8 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

userspace

Executable file pages
are also immediately

activated 8 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

userspace

8 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

!referenced

#PTE.A>1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

usr (diff.
process)

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

userspace

8 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

!referenced

#PTE.A>1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

usr (diff.
process)

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

userspace

Pages accessed from
multiple processes

are also immediately
activated

8 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

!referenced

#PTE.A>1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

usr (diff.
process)

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

userspace

8 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

!referenced

#PTE.A>1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

kernel

usr (diff.
process)

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

kernel

userspace
Access by kernel such as
by get_user_pages()

is handled by
mark_page_accessed()

8 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

!referenced

#PTE.A>1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

kernel

usr (diff.
process)

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

kernel

userspace

8 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

!referenced

#PTE.A>1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

kernel

kernel

usr (diff.
process)

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

kernel

kernel

userspace

8 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

!referenced

#PTE.A>1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

kernel

kernel

usr (diff.
process)

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

kernel

kernel

kernel

userspace

8 /
22

Workingset Detection

• Premise: transitioning workloads might be thrashing if pages are not accessed often
enough while on inactive list to have chance to be promoted
– Inactive list is intentionally small, the active working set might be just larger

– If the reclaimed page is refaulted, we don’t know if it’s new or thrashing

– Meanwhile the pages on active list might be idle, but we won’t know

• Example: Workload accesses pages 7 8 9 10 11 7 8 9 10 11 ...
– The access distance is 5 (4 different pages between two accesses to the same page)

– Inactive list only has 4 pages, thus each access is a fault

– Pages 1 – 6 might be actually idle

• Idea: determine this access distance, even for pages that have been evicted
– Use shadow entries of radix tree/XArray for evicted pages

– Precise tracking again impossible, need to approximate

active inactive evicted

1 2 3 4 5 6 11 10 9 8 7
9 /
22

Approximating Access Distance

• Observation: Access that causes fault places page to inactive list head, slides all towards
tail, evicts tail page

• Observation: Access on inactive list results in activation, also slides all pages previously
ahead of the page on the inactive list towards tail

• Thus: we can approximate inactive page accesses as sum of evictions and activations
• And: N of these accesses slide an inactive page N slots towards tail

• Eviction means NR_inactive pages were accessed while page was in memory

• If we note sum of evictions + activations at the moment of eviction (E), and at the moment of
refault (R), the difference (R-E) approximates number of accesses while the page was
evicted – called refault distance

• Complete access distance: NR_inactive + (R–E)

• Page would not be evicted if: NR_inactive + (R–E) <= NR_active + NR_inactive

• Simplified: (R–E) <= NR_active

– When this inequality holds on refault, activate page immediately

10 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

!referenced

#PTE.A>1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

kernel

kernel

usr (diff.
process)

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

kernel

kernel

kernel

userspace

11 /
22

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

!referenced

#PTE.A>1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

kernel

kernel

usr (diff.
process)

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

kernel

kernel

kernel

userspace

workingset
refault

activation

11 /
22

Workingset Detection Implementation

• Initially implemented for file pages only, recently also for anonymous pages

• Counter of evictions plus activations in lruvec->nonresident_age

• Refault distance is compared to workingset size
– Sum of all LRU sizes except inactive list of page’s type

– File page refault distance compared to NR_active_file + NR_active_anon +
NR_inactive_anon

– Anon page refault distance compared to NR_active_anon + NR_active_file +
NR_inactive_file

– But if swap is not available, anon list sizes are not included in the sums

• When page is deactivated, its Workingset flag is set

– The flag is recorded in shadow entry, and set again upon refault, never cleared (i.e. only when
stale shadow entries are reclaimed)

– Refaults with Workingset flag restored play role in reclaim cost model

– But frequent refaults with workingset flag mean the active list itself is thrashing; workload is
not changing, but does not fit and we could OOM (with PSI)

12 /
22

Global Reclaim Algorithm

• Per-node kswapd or direct reclaim when a node is below watermarks – both
eventually call shrink_node()

• Decide if anon and/or file pages should be deactivated – active/inactive balancing
– Goal: large active list with low amount of reclaim work, small inactive list as a busy

“proving ground”, except when the workload is transitioning

– Formula in inactive_is_low(), based on sqrt of the active+inactive list sizes
• 1:1 up to 100MB worth of memory on the LRU lists

• 3:1 (active:inactive) at 1GB memory – 25% pages should be on inactive list

• 320:1 at 10TB memory

• Consequence: memcg reclaim changes the ratio towards smaller active lists

– Deactivation allowed when inactive list size is below the target ratio

– Or when workingset refaults are happening, based on a rather coarse check (the counter
of file workingset refaults changed since last reclaim)

13 /
22

Global Reclaim Algorithm #2

Anon/file balancing – decide how much to shrink from each type’s LRU
• Some corner case decisions first

– “Many” (based on reclaim priority) inactive file pages and we do not deactivate file pages,
prioritize file reclaim – “cache trim mode”

– Too few file pages (active+inactive) with “many” inactive anon pages and we do not
deactivate anon pages, prioritize anon reclaim – “file is tiny”
• Tries to prevent runaway feedback loop where small file LRU means no chance to get pages

promoted

• Iterate over all memcgs, calling shrink_lruvec()

• Determine how much to scan in each LRU list by get_scan_count()

– Consider only file LRUs – swapping not possible or cache trim mode enabled

– Consider only anon LRUs – “file is tiny”

– Scan both equally – close to OOM (but swappiness is not 0) - no time for fine balancing

– Balance anon and file LRUs according to Fractional Cost Model
14 /
22

Global Reclaim Algorithm #3

Anon/file fractional cost model
• Idea: if reclaim causes more IO for file pages than anon pages, put more pressure on

anon pages, and vice versa – pressure is inversely proportional to to cost

• We count workingset refaults that restore Workingset flag (which means a formerly
active page was reclaimed), and dirty page write-outs, as the reclaim cost
– To soften corner cases, soften the resulting pressure between 0 and 1 to between 1/3 and 2/3

• This is also weighted by vm.swappiness sysctl, with range from 0 to 200 (default 60)

– vm.swappiness=0 – anon reclaim has infinite cost, reclaim only file pages

– vm.swappiness=100 – anon and file pages have same IO cost

– vm.swappiness=200 – file reclaim has infinite cost, reclaim only anon pages

• The result is fraction between 0 and 1 for anon, and for file, both add up to 1
• Calculate how many pages to scan from each LRU list - target

– NR_pages >> reclaim_prio (prio starts at 12 – 1/4096 of the list, prio decreased each round)

– Apply calculated fraction, or set to 0 if we are not reclaiming the particular type

15 /
22

Global Reclaim Algorithm #4

• The LRU list shrinking itself

– Call shrink_list() in a loop, scan up to 32 pages (SWAP_CLUSTER_MAX) in iteration
• Skip active list if deactivation is not allowed

– Isolate pages from tail of list, then deactivate, keep or reclaim according to their flags and
page table entries with active bit set

– Terminate when budget (initialized by get_scan_count() targets) is exhausted for all lists

– After having reclaimed the target number of pages (SWAP_CLUSTER_MAX or high
watermark), keep scanning to deplete the rest of the budget, but:
• Stop scanning the file/anon type with lower remaining budget

• For the other type, adjust the budget to keep the original anon/file ratio

• Example: target was 64 file, 32 anon pages, after scanning and reclaiming 16 from each, scan additional
16 file pages (so the result is 32 file, 16 anon)

– Finally, scan 32 pages from active anon list
• If swap is available and inactive anon is low

• Ignores prior decision whether to deactivate anon

16 /
22

madvise(2) - reclaim related flags

• MADV_DONTNEED – throw away private anonymous pages, unmap file pages

– might be reclaimed later due to memory pressure, no explicit reclaim action

• MADV_FREE – private anon only – clear page dirty, referenced flags, move it to
inactive file list
– pages will be discarded (destructive, no swap-out) soon in case of memory pressure

• MADV_COLD – deactivate pages (move to inactive list, clear referenced flags)

– swap-out or dirty page writeback will happen during reclaim (non-destructive)

– only pages not mapped by multiple processes

• MADV_RECLAIM – immediately reclaim pages

– including swap-out or dirty page writeback

– only pages not mapped by multiple processes

17 /
22

Conclusion

• This was an overview, implementation has even more details and special cases
• Some topics omitted completely

– Writeback, swapping, dirty throttling, memcg reclaim, slab reclaim (shrinkers),
watermarks handling, kswapd vs direct reclaim, reclaim/compaction, OOM, PSI…

• Complex system, results of years of evolution, including big recent changes
– No overall documentation (perhaps getting there? :)

• Many moving parts, hard to predict behavior, hard to evaluate patches!
– Elaborate cost models applied only to 1/3 of decision space

– OTOH, major decisions made by looking if a number has changed since last time

– Explicit corner case heuristics against undesired feedback loops

– Lots of suspicious details to look at in my TODO

– We’ve seen issues (in older kernel) e.g. with file pages thrashing and anon not reclaimed

• How to get better insight? A simulation model?

18 /
22

Recent patch series related to reclaim

• Migrating pages to slower memory instead of reclaim – merged for 5.15
– By Dave Hansen and Huang Ying (Intel)

– Such as persistent memory, when used as a NUMA node

– Has to be enabled by /sys/kernel/mm/numa/demotion_enabled

– For now, does not promote pages back to faster DRAM/closer node based on usage

– Another patchset by Huang towards “memory tiering system” does that based on NUMA
balancing code

– Another patchset by Tim Chen (Intel) improves admin control of DRAM usage based on
memcg and soft limits

19 /
22

Multigenerational LRU Framework

• Patchset from Yu Zhao (Google), v1 in March, v4 in August 2021
• Multiple generations (at least 3) instead of active/inactive lists – separate lists

(per file/anon and zone), generation number in page flags word
– Faults go to youngest generation, buffered file accessed to oldest

– Accessed bit (found during scan) moves page to youngest generation

• Generations also divided to tiers for more fine-grained mark_page_accessed()
counting, tier also part of page flags, but not separate lists
– Balancing tiers using workingset refault info, PID controller-like feedback loop

• Scanning for accessed bits through page table walks, not lru lists (as was in past)
– Attempts to exploit spatial locality, avoid expensive rmap walks, fallback on sparse maps

– Lists of mm structs per memcgs, skipping of sleeping processes, inactive PMDs, no
page level zigzag between vma’s

• Eviction processes oldest generation, balances between file and anon by refaults

20 /
22

Multigenerational LRU Framework

• Optional, run-time enable, aging, protection, monitoring sysfs knobs
• Pros:

– Kswapd reduced rmap walk CPU usage, reduced direct reclaim latency

– Tools for workload scheduling decisions, proactive reclaim

– Some success stories – reduced swap storms, improved throughputs…

• Cons:
– Changes many things at once, kernel development prefers incremental improvements

– Additional to existing mechanism, not replacement →maintenance burden

– Adds user space knobs (but not mandatory to use)

21 /
22

Thank you.

22 /
22

	Slide: 1
	Slide: 2
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 3 (3)
	Slide: 3 (4)
	Slide: 3 (5)
	Slide: 3 (6)
	Slide: 4 (1)
	Slide: 4 (2)
	Slide: 4 (3)
	Slide: 4 (4)
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 5 (3)
	Slide: 5 (4)
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 6 (4)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 7 (4)
	Slide: 7 (5)
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 8 (3)
	Slide: 8 (4)
	Slide: 8 (5)
	Slide: 8 (6)
	Slide: 8 (7)
	Slide: 8 (8)
	Slide: 8 (9)
	Slide: 8 (10)
	Slide: 8 (11)
	Slide: 8 (12)
	Slide: 8 (13)
	Slide: 8 (14)
	Slide: 8 (15)
	Slide: 8 (16)
	Slide: 8 (17)
	Slide: 8 (18)
	Slide: 8 (19)
	Slide: 8 (20)
	Slide: 8 (21)
	Slide: 8 (22)
	Slide: 8 (23)
	Slide: 8 (24)
	Slide: 8 (25)
	Slide: 8 (26)
	Slide: 8 (27)
	Slide: 8 (28)
	Slide: 9
	Slide: 10
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 12
	Slide: 13
	Slide: 14
	Slide: 15
	Slide: 16
	Slide: 17
	Slide: 18
	Slide: 19
	Slide: 20
	Slide: 21
	Slide: 22

