USE

®
We adapt. You succeed.

Overview of Memory Reclaim in the
Current Upstream Kernel

Vlastimil Babka

Linux Kernel Developer, SUSE Labs
vbabka@suse.cz

LPC 2021, 21 September 2021 (r2)

Introduction

* Unused memory is wasted memory — the kernel will keep cached everything that
userspace touches, so eventually the RAM will get (almost) full

Memory reclaim evicts the existing data to make room for new data

Two distinct types of userspace pages

— Anonymous pages allocated by mmap (MAP_PRIVATE) and populated by page fault,
must be swapped out first (if at all possible) to reclaim

— File pages (a.k.a. page cache) created by file operations or mmap (.., fd) —can be
immediately discarded when clean, or after write-out when dirty

Disk 10 is costly, so we would like to keep pages that will be accessed again

soon, and reclaim those that will not, but we cannot predict the future

— Instead we can look at the past and assume temporal locality — pages accessed recently
are more likely to be accessed again in near future

— So we put (struct) pages on Least Recently Used (LRU) list, ordered by their last access
time from most recent (head) to least recent (tail)

LRU list — ideal model

recent stale
1 2 3 4 5 6 7 8 9 10

LRU list — ideal model

recent stale
1 2 3 4 5 6 7 8 9 10

" _

Page 5 accessed

LRU list — ideal model

recent stale
1 2 3 4 5 6 10

recent Page 5 accessed l stale
5 1 2 3 4 6 10

LRU list — ideal model

recent stale
1 2 3 4 5 6 10

recent Page 5 accessed l stale
5 1 2 3 4 6 10
11 Page 11 accessed

LRU list — ideal model

recent stale
1 2 3 4 5 6 10

recent Page 5 accessed l stale
5 1 2 3 4 6 10
11 Page 11 accessed l

recent stale
11 5 1 2 3 4 9

LRU list — ideal model

recent stale
1 2 3 4 5 6 10

recent Page 5 accessed 1 stale
5 1 2 3 4 6 10
11 Page 11 accessed 1

recent stale
11 5 1 2 3 4 9

Page 10 evicted

10

LRU - anonymousl/file split

* Anonymous and file pages have distinct properties

— Clean file pages can be just evicted, anonymous have to be swapped out at least once...
— Historically, reclaim has been biased towards file pages more than anonymous

* Single list would be ineffective when reclaiming just one type
* Hence separate anon and file LRU lists
— But now we have to choose which one (or both) to reclaim, and balance their sizes

LRU - anonymousl/file split

* Anonymous and file pages have distinct properties

— Clean file pages can be just evicted, anonymous have to be swapped out at least once...
— Historically, reclaim has been biased towards file pages more than anonymous

* Single list would be ineffective when reclaiming just one type
* Hence separate anon and file LRU lists
— But now we have to choose which one (or both) to reclaim, and balance their sizes

recent stale

LRU - anonymousl/file split

* Anonymous and file pages have distinct properties

— Clean file pages can be just evicted, anonymous have to be swapped out at least once...
— Historically, reclaim has been biased towards file pages more than anonymous

* Single list would be ineffective when reclaiming just one type
* Hence separate anon and file LRU lists
— But now we have to choose which one (or both) to reclaim, and balance their sizes

recent stale

!

LRU - anonymousl/file split

* Anonymous and file pages have distinct properties

— Clean file pages can be just evicted, anonymous have to be swapped out at least once...
— Historically, reclaim has been biased towards file pages more than anonymous

* Single list would be ineffective when reclaiming just one type
* Hence separate anon and file LRU lists
— But now we have to choose which one (or both) to reclaim, and balance their sizes

recent stale

!

anon LRU file LRU
1 4 5 6 8 2 3 7 9 10

LRU - activel/inactive split

* ldeal LRU model not achievable in practice
— Capturing each memory access for precise tracking would be prohibitively slow
— Approximated by detecting if page has been accessed since last check
— More effective if we track more and less actively pages separately
* Hence separate active and inactive LRU lists for each type
— Also fifth list for unevictable pages (not relevant to reclaim)
— All together that's called lruvec

LRU - activel/inactive split

* ldeal LRU model not achievable in practice
— Capturing each memory access for precise tracking would be prohibitively slow
— Approximated by detecting if page has been accessed since last check
— More effective if we track more and less actively pages separately
* Hence separate active and inactive LRU lists for each type
— Also fifth list for unevictable pages (not relevant to reclaim)
— All together that's called lruvec

anon LRU
1 4 5 6 8

file LRU
2 3 7 9 10

LRU - activel/inactive split

* ldeal LRU model not achievable in practice
— Capturing each memory access for precise tracking would be prohibitively slow
— Approximated by detecting if page has been accessed since last check
— More effective if we track more and less actively pages separately
* Hence separate active and inactive LRU lists for each type
— Also fifth list for unevictable pages (not relevant to reclaim)
— All together that's called lruvec

anon LRU
1 4 5 6 8

2 3 7 9 10

LRU - activel/inactive split

* ldeal LRU model not achievable in practice
— Capturing each memory access for precise tracking would be prohibitively slow
— Approximated by detecting if page has been accessed since last check
— More effective if we track more and less actively pages separately

* Hence separate active and inactive LRU lists for each type
— Also fifth list for unevictable pages (not relevant to reclaim)

— All together that's called lruvec

anon active 1 4 5

anon inactive 6

anon LRU
1 A 5 6 3 file active 2 3 7

fle LRU ‘ file inactive 9 10

2 3 7 9 10 unevictable | 11 12

lruvec

LRU - node/memcg Iruvecs

* Four reclaimable LRU lists per Iruvec
— Large part of reclaim magic is to decide how many pages to scan and try to reclaim in
each one (shrink the list)

* Pages are taken from the tail of each list, can be moved to the head of another list
(activated/deactivated), back to head of the same list (kept), or evicted entirely (reclaimed)

LRU - node/memcg Iruvecs

* Four reclaimable LRU lists per Iruvec

— Large part of reclaim magic is to decide how many pages to scan and try to reclaim in
each one (shrink the list)

* Pages are taken from the tail of each list, can be moved to the head of another list
(activated/deactivated), back to head of the same list (kept), or evicted entirely (reclaimed)

* In practice, there are many Ilruvecs
— Different memory cgroups have distinct Iruvecs, for memcg reclaim
* Global memory reclaim has to iterate over all memcgs
— Different NUMA nodes have distinct Iruvecs, as nodes are reclaimed separately
* Each node has own kswapd daemon, memory pressure can differ due to e.g. mempolicies

LRU - node/memcg Iruvecs

* Four reclaimable LRU lists per Iruvec

— Large part of reclaim magic is to decide how many pages to scan and try to reclaim in
each one (shrink the list)

* Pages are taken from the tail of each list, can be moved to the head of another list
(activated/deactivated), back to head of the same list (kept), or evicted entirely (reclaimed)

* In practice, there are many Ilruvecs
— Different memory cgroups have distinct Iruvecs, for memcg reclaim
* Global memory reclaim has to iterate over all memcgs
— Different NUMA nodes have distinct Iruvecs, as nodes are reclaimed separately
* Each node has own kswapd daemon, memory pressure can differ due to e.g. mempolicies

* Summary: each userspace page placed on a LRU list in one of many Iruvecs:

LRU - node/memcg Iruvecs

* Four reclaimable LRU lists per Iruvec

— Large part of reclaim magic is to decide how many pages to scan and try to reclaim in
each one (shrink the list)

* Pages are taken from the tail of each list, can be moved to the head of another list
(activated/deactivated), back to head of the same list (kept), or evicted entirely (reclaimed)

* In practice, there are many Ilruvecs
— Different memory cgroups have distinct Iruvecs, for memcg reclaim
* Global memory reclaim has to iterate over all memcgs
— Different NUMA nodes have distinct Iruvecs, as nodes are reclaimed separately
* Each node has own kswapd daemon, memory pressure can differ due to e.g. mempolicies

* Summary: each userspace page placed on a LRU list in one of many Iruvecs:

Root memcg Memcgl Memcg2 Memcg3 Memcg4 Memcgb
Node O lruvec lruvec lruvec lruvec lruvec lruvec
Node 1 lruvec lruvec lruvec lruvec lruvec lruvec

@

Page States Relevant to Reclaim

* Determined by page flags, mainly the following:
— LRU —page is on any LRU list, Active — page is on active list
— Referenced — inactive page has been accessed “recently”
— Workingset — page is considered part of active userspace’s workingset
* Affected by Accessed bit in page tables entries (PTE’s) that map this page
— page_referenced() counts them (via a rmap walk) and resets them to zero

Page States Relevant to Reclaim

* Determined by page flags, mainly the following:
— LRU —page is on any LRU list, Active — page is on active list
— Referenced — inactive page has been accessed “recently”
— Workingset — page is considered part of active userspace’s workingset
* Affected by Accessed bit in page tables entries (PTE’s) that map this page
— page_referenced() counts them (via a rmap walk) and resets them to zero

struct page

Page flags
LRU | Active | Referenced | Workingset

Page States Relevant to Reclaim

* Determined by page flags, mainly the following:
— LRU —page is on any LRU list, Active — page is on active list
— Referenced — inactive page has been accessed “recently”
— Workingset — page is considered part of active userspace’s workingset
* Affected by Accessed bit in page tables entries (PTE’s) that map this page
— page_referenced() counts them (via a rmap walk) and resets them to zero

Page table entry

struct page
Page flags « | © 5 413 2 1 |0
LRU | Active | Referenced | Workingset Dirty [Accessed | ... | ... | UIS | RIW

Page States Relevant to Reclaim

* Determined by page flags, mainly the following:
— LRU —page is on any LRU list, Active — page is on active list
— Referenced — inactive page has been accessed “recently”
— Workingset — page is considered part of active userspace’s workingset

* Affected by Accessed bit in page tables entries (PTE’s) that map this page
— page_referenced() counts them (via a rmap walk) and resets them to zero

Page table entry
6 5 413 | 2 1 |0

Dirty | Accessed | ... | ... |U/S | RIW

struct page
Page flags «—>
LRU | Active | Referenced | Workingset

\ Page table entry
6 5 413 2 1 |0
P

Dirty | Accessed | ... | ... [UIS | RIW

Page States Relevant to Reclaim

* Determined by page flags, mainly the following:
— LRU —page is on any LRU list, Active — page is on active list
— Referenced — inactive page has been accessed “recently”
— Workingset — page is considered part of active userspace’s workingset

* Affected by Accessed bit in page tables entries (PTE’s) that map this page
— page_referenced() counts them (via a rmap walk) and resets them to zero

Page table entry
6 5 413 | 2 1 |0

Dirty | Accessed | ... | ... |U/S | RIW

struct page
Page flags «—>
LRU | Active | Referenced | Workingset

\ Page table entry
6 5 41 3| 2 1 0
P

PTE PTE Dirty | Accessed | ... | ... | UIS | RIW

Not present

initial page fault Not present

lactive
Ireferenced

kern/usr

access

initial page fault Not present

lactive
Ireferenced

kern/usr

access

initial page fault Not present

lactive

#PTE.A=0

lactive
Ireferenced

reclai
kern/usr m

access keeps

initial page fault Not present

lactive

#PTE.A=0

lactive
Ireferenced

reclai
kern/usr m

access keeps

initial page fault Not present

lactive

#PTE.A=0

userspace
lactive v
Ireferenced lactive

reclai
kern/usr m

access keeps

initial page fault Not present

lactive

#PTE.A=0

userspace
lactive v
Ireferenced lactive

reclai
kern/usr m

access keeps

initial page fault Not present

lactive
#PTE.A=0 H#PTE.A=0
userspace

lactive v

Ireferenced lactive

kern/usr reclai reclaim

—_— >
access keeps promotes Q

initial page fault Not present

lactive
#PTE.A=0 H#PTE.A=0
userspace

lactive v

Ireferenced lactive

kern/usr reclai reclaim

—_— >
access keeps promotes g

initial page fault Not present

|

lactive

#PTE.A=0

userspace
lactive v
Ireferenced lactive

' i reclaim
kern/usr reclaim . reclai .
access demotes keeps promotes @

initial page fault Not present

|

lactive
#PTE.A=0 H#PTE.A=0
userspace

lactive v

Ireferenced lactive

kern/usr recla|m> reclalm> reclaim N
accessdemotes keeps ~ promotes g

initial page fault Not present

I
\
/ #PTE.A=0

lactive <« |
kern/usr reclaim> reclalm> reclaim N
accessdemotes keeps ~ promotes g

Ireferenced
#PTE.A=0

lactive
Ireferenced

lactive

initial page fault Not present

I

lactive « | T

Ireferenced lactive

#PTE.A=0 referenced
#PTE.A=0 #PTE.A=0
userspace /

lactive v

Ireferenced lactive

kern/usr recla|m> reclalm> reclaim N
accessdemotes keeps ~ promotes g

Not present

I

lactive “« |
Ireferenced lactive

#PTE.A=0 HPTEA=O
userspace
userspace
lactive v

Ireferenced lactive

initial page fault

kern/usr recla|m> reclalm> reclaim N
accessdemotes keeps ~ promotes g

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

initial page fault

Not present

o

lactive

#PTE.A=0

userspace
v

lactive

—

#PTE.A=0

' ' reclaim
kern/usr reclaim . reclai N
accessdemotes keeps ~ promotes g

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

initial page fault

Not present

<«

lactive

#PTE.A=0

userspace
v

lactive

—

#PTE.A=0

lUSF

' ' reclaim
kern/usr reclaim . reclai N
accessdemotes keeps ~ promotes g

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

initial page fault

Not present

<«

lactive

#PTE.A=0

—

#PTE.A=0

I exec.

' ' reclaim
kern/usr reclaim . reclai N
accessdemotes keeps ~ promotes g

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

initial page fault

Not present

<«

lactive

#PTE.A=0

userspace
v

lactive

—

#PTE.A=0

exec.
usr | file
only

' ' reclaim
kern/usr reclaim . reclai N
accessdemotes keeps ~ promotes g

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

Not present

initial page fault
A

—

lactive

#PTE.A=0

userspace
v

lactive

—_

#PTE.A=0

exec.
usr | file
only

' ' reclaim
kern/usr reclaim . reclai N
accessdemotes keeps ~ promotes g

Not present

initial page fault
A

lactive — \

Ireferenced lactive
#PTE.A=O referenced
#PTE.A=0 #PTE.A=0
userspace exec
userspace usr file
lactive v only
Ireferenced lactive

%c. file only

kern/usr recla|m> reclalm> reclaim N
accessdemotes keeps ~ promotes g

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

initial page fault
A

Not present

—

e

%c. file only

lactive

#PTE.A=0

userspace
v

lactive

—_

#PTE.A=0

exec.
usr | file
only

' ' reclaim
kern/usr reclaim . reclai N
accessdemotes keeps ~ promotes g

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

l usr (diff.

process)

lactive

Ireferenced

initial page fault
A

Not present

—

exec. file only

lactive

#PTE.A=0

userspace
v

lactive

kern/usr
access

—_

#PTE.A=0

exec.
usr | file
only

reclaim

. reclai N
demotes keeps promotes g

reclaim

lactive

Ireferenced
#PTE.A=0

l userspace

lactive

Ireferenced

l usr (diff.

process)

lactive

Ireferenced

initial page fault
A

Not present

—

exec. file only

lactive

#PTE.A=0

userspace
v

lactive

kern/usr _reclaim
—_— <
access demotes

—_

#PTE.A=0

exec.
usr | file
only

keeps

romotes
P @

Not present

initial page fault
A

lactive — \

Ireferenced lactive
#PTE.A=O referenced
#PTE.A=0 #PTE.A=0
userspace exec
userspace usr file
lactive v only
Ireferenced lactive

l usr (diff. *\ exec. file only
process)

lactive

Ireferenced kern/usr _reclaim ~ reclaim reclaim

—_— > >
_ access demotes keeps promotes g

Not present

initial page fault
A

lactive —

Ireferenced — | lactive

#PTE.A=0 H#PTE.A=0

exec.
usr | file
only

userspace

lactive

usr (diff. exec. file only

l

> >
_ access demotes keeps promotes g

process)
lactive
Ireferenced reclaim reclai reclaim
kern/usr m_

Not present

initial page fault
A

lactive — \

Ireferenced — | lactive
#PTE.A=O referenced
#PTE.A=0 #PTE.A=0
userspace exec
userspace usr file
lactive v only
Ireferenced lactive

l usr (diff. *\ exec. file only
process)

lactive

Ireferenced kern/usr _reclaim ~ reclaim reclaim

—_— > >
_ access demotes keeps promotes g

Not present

initial page fault
A

lactive ‘(k I
Ireferenced ermel lactive
#PTE.A=O referenced
#PTE.A=0
userspace exec
userspace usr file
lactive v only
Ireferenced kernel lactive kernel

PTEASL B
l usr (diff. \ ayec. file only
process)

lactive

Ireferenced kern/usr _reclaim ~ reclaim reclaim

—_— > >
_ access demotes keeps promotes g

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

l usr (diff.

process)

lactive

Ireferenced

initial page fault
A

Not present

——
kernel — | lactive
#PTE.A=0
userspace
A 4
lactive
kernel o

exec. file only

/

W

kern/usr

exec.
usr | file
only

reclaim

reclai

reclaim

access

demotes keeps promoteE g

Workingset Detection

* Premise: transitioning workloads might be thrashing if pages are not accessed often
enough while on inactive list to have chance to be promoted
— Inactive list is intentionally small, the active working set might be just larger
— If the reclaimed page is refaulted, we don’t know if it's new or thrashing
— Meanwhile the pages on active list might be idle, but we won’t know

* Example: Workload accesses pages 7891011789 1011 ...
— The access distance is 5 (4 different pages between two accesses to the same page)
— Inactive list only has 4 pages, thus each access is a fault
— Pages 1 — 6 might be actually idle

* ldea: determine this access distance, even for pages that have been evicted
— Use shadow entries of radix tree/XArray for evicted pages
— Precise tracking again impossible, need to approximate

active inactive evicted
1 2 3 4 5 6 11 10 9 8 7

Approximating Access Distance

* Observation: Access that causes fault places page to inactive list head, slides all towards
tail, evicts tail page

* Observation: Access on inactive list results in activation, also slides all pages previously
ahead of the page on the inactive list towards tail

* Thus: we can approximate inactive page accesses as sum of evictions and activations
* And: N of these accesses slide an inactive page N slots towards tail
* Eviction means NR_inactive pages were accessed while page was in memory

* If we note sum of evictions + activations at the moment of eviction (E), and at the moment of
refault (R), the difference (R-E) approximates number of accesses while the page was
evicted — called refault distance

* Complete access distance: NR_inactive + (R-E)
* Page would not be evicted if: NR_inactive + (R-E) <= NR_active + NR_inactive
e Simplified: (R-E) <= NR_active

— When this inequality holds on refault, activate page immediately

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

l usr (diff.

process)

lactive

Ireferenced

initial page fault
A

Not present

——
kernel — | lactive
#PTE.A=0
userspace
A 4
lactive
kernel o

exec. file only

/

W

kern/usr

exec.
usr | file
only

reclaim

reclai

reclaim

access

demotes keeps promoteE ’

initial page fault
A

Not present

workingset
refault
activation

lactive TI N
Ireferenced eme » | lactive kernel . active
#PTE.A=0 referenced
#PTE.A=0
userspace
luserspace
lactive
Ireferenced kernel lactive kernel //
#PTE.A=1 referenced
usr (diff. \ gxec. file only #PTE.A>0 #PTE.A>0
process)
/
lactive
kernel . : :
Ireferenced kern/usr_reclaim reclai reclaim
#PTE.A>1 accessdemotes keeps ~ promotes

Workingset Detection Implementation

* Initially implemented for file pages only, recently also for anonymous pages
* Counter of evictions plus activations in Lruvec->nonresident_age
* Refault distance is compared to workingset size

— Sum of all LRU sizes except inactive list of page’s type

— File page refault distance compared to NR_active_file + NR_active_anon +
NR_inactive_anon

— Anon page refault distance compared to NR_active_anon + NR_active_file +
NR_inactive_file

— But if swap is not available, anon list sizes are not included in the sums
When page is deactivated, its Workingset flag is set

— The flag is recorded in shadow entry, and set again upon refault, never cleared (i.e. only when
stale shadow entries are reclaimed)

— Refaults with Workingset flag restored play role in reclaim cost model

— But frequent refaults with workingset flag mean the active list itself is thrashing; workload is
not changing, but does not fit and we could OOM (with PSI)

Global Reclaim Algorithm

* Per-node kswapd or direct reclaim when a node is below watermarks — both
eventually call shrink_node()

* Decide if anon and/or file pages should be deactivated — active/inactive balancing

— Goal: large active list with low amount of reclaim work, small inactive list as a busy
“proving ground”, except when the workload is transitioning

— Formula in inactive_is_Tlow(), based on sqrt of the active+inactive list sizes
* 1:1 up to 100MB worth of memory on the LRU lists
* 3:1 (active:inactive) at 1:GB memory — 25% pages should be on inactive list
* 320:1 at 10TB memory
* Consequence: memcg reclaim changes the ratio towards smaller active lists

— Deactivation allowed when inactive list size is below the target ratio

— Or when workingset refaults are happening, based on a rather coarse check (the counter
of file workingset refaults changed since last reclaim)

Global Reclaim Algorithm #2

Anon/file balancing — decide how much to shrink from each type’s LRU

* Some corner case decisions first

— “Many” (based on reclaim priority) inactive file pages and we do not deactivate file pages,
prioritize file reclaim — “cache trim mode”

— Too few file pages (active+inactive) with “many” inactive anon pages and we do not
deactivate anon pages, prioritize anon reclaim — “file is tiny”

* Tries to prevent runaway feedback loop where small file LRU means no chance to get pages
promoted

* Iterate over all memcgs, calling shrink_1lruvec()
* Determine how much to scan in each LRU list by get_scan_count()
— Consider only file LRUs — swapping not possible or cache trim mode enabled

— Consider only anon LRUs — “file is tiny”
— Scan both equally — close to OOM (but swappiness is not 0) - no time for fine balancing

— Balance anon and file LRUs according to Fractional Cost Model

Global Reclaim Algorithm #3

Anon/file fractional cost model

* ldea: if reclaim causes more 1O for file pages than anon pages, put more pressure on
anon pages, and vice versa — pressure is inversely proportional to to cost

* We count workingset refaults that restore Workingset flag (which means a formerly
active page was reclaimed), and dirty page write-outs, as the reclaim cost
— To soften corner cases, soften the resulting pressure between 0 and 1 to between 1/3 and 2/3

* This is also weighted by vim. swappiness sysctl, with range from O to 200 (default 60)
— vm.swappiness=0 - anon reclaim has infinite cost, reclaim only file pages
— vm.swappiness=100 - anon and file pages have same IO cost
— vm.swappiness=200 - file reclaim has infinite cost, reclaim only anon pages

* The result is fraction between 0 and 1 for anon, and for file, both add up to 1

* Calculate how many pages to scan from each LRU list - target
— NR_pages >> reclaim_prio (prio starts at 12 — 1/4096 of the list, prio decreased each round)
— Apply calculated fraction, or set to O if we are not reclaiming the particular type

Global Reclaim Algorithm #4

* The LRU list shrinking itself
— Call shrink_1list() in aloop, scan up to 32 pages (SWAP_CLUSTER_MAX) in iteration
* Skip active list if deactivation is not allowed
— Isolate pages from tail of list, then deactivate, keep or reclaim according to their flags and
page table entries with active bit set
— Terminate when budget (initialized by get_scan_count () targets) is exhausted for all lists

— After having reclaimed the target number of pages (SWAP_CLUSTER_MAX or high
watermark), keep scanning to deplete the rest of the budget, but:
* Stop scanning the file/anon type with lower remaining budget
* For the other type, adjust the budget to keep the original anon/file ratio

* Example: target was 64 file, 32 anon pages, after scanning and reclaiming 16 from each, scan additional
16 file pages (so the result is 32 file, 16 anon)

— Finally, scan 32 pages from active anon list
* If swap is available and inactive anon is low
* Ignores prior decision whether to deactivate anon

madvise(2) - reclaim related flags

* MADV_DONTNEED - throw away private anonymous pages, unmap file pages
— might be reclaimed later due to memory pressure, no explicit reclaim action
* MADV_FREE — private anon only — clear page dirty, referenced flags, move it to

Inactive file list
— pages will be discarded (destructive, no swap-out) soon in case of memory pressure

* MADV_COLD — deactivate pages (move to inactive list, clear referenced flags)
— swap-out or dirty page writeback will happen during reclaim (non-destructive)
— only pages not mapped by multiple processes

* MADV_RECLAIM — immediately reclaim pages

— including swap-out or dirty page writeback
— only pages not mapped by multiple processes

Conclusion

* This was an overview, implementation has even more details and special cases

* Some topics omitted completely

— Writeback, swapping, dirty throttling, memcg reclaim, slab reclaim (shrinkers),
watermarks handling, kswapd vs direct reclaim, reclaim/compaction, OOM, PSI...

* Complex system, results of years of evolution, including big recent changes

— No overall documentation (perhaps getting there? :)
* Many moving parts, hard to predict behavior, hard to evaluate patches!

— Elaborate cost models applied only to 1/3 of decision space

— OTOH, major decisions made by looking if a number has changed since last time

— Explicit corner case heuristics against undesired feedback loops

— Lots of suspicious details to look at in my TODO

— We've seen issues (in older kernel) e.g. with file pages thrashing and anon not reclaimed
* How to get better insight? A simulation model?

Recent patch series related to reclaim

Migrating pages to slower memory instead of reclaim — merged for 5.15

By Dave Hansen and Huang Ying (Intel)

Such as persistent memory, when used as a NUMA node

Has to be enabled by /sys/kernel/mm/numa/demotion_enabled

For now, does not promote pages back to faster DRAM/closer node based on usage

Another patchset by Huang towards “memory tiering system” does that based on NUMA
balancing code

Another patchset by Tim Chen (Intel) improves admin control of DRAM usage based on
memcg and soft limits

Multigenerational LRU Framework

* Patchset from Yu Zhao (Google), v1 in March, v4 in August 2021

* Multiple generations (at least 3) instead of active/inactive lists — separate lists
(per file/anon and zone), generation number in page flags word
— Faults go to youngest generation, buffered file accessed to oldest
— Accessed bit (found during scan) moves page to youngest generation

* Generations also divided to tiers for more fine-grained mark _page accessed()
counting, tier also part of page flags, but not separate lists
— Balancing tiers using workingset refault info, PID controller-like feedback loop

* Scanning for accessed bits through page table walks, not Iru lists (as was in past)
— Attempts to exploit spatial locality, avoid expensive rmap walks, fallback on sparse maps

— Lists of mm structs per memcgs, skipping of sleeping processes, inactive PMDs, no
page level zigzag between vma’s

* Eviction processes oldest generation, balances between file and anon by refaults

Multigenerational LRU Framework

* Optional, run-time enable, aging, protection, monitoring sysfs knobs

* Pros:
— Kswapd reduced rmap walk CPU usage, reduced direct reclaim latency
— Tools for workload scheduling decisions, proactive reclaim
— Some success stories — reduced swap storms, improved throughputs...
* Cons:
— Changes many things at once, kernel development prefers incremental improvements
— Additional to existing mechanism, not replacement — maintenance burden
— Adds user space knobs (but not mandatory to use)

Thank you.

	Slide: 1
	Slide: 2
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 3 (3)
	Slide: 3 (4)
	Slide: 3 (5)
	Slide: 3 (6)
	Slide: 4 (1)
	Slide: 4 (2)
	Slide: 4 (3)
	Slide: 4 (4)
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 5 (3)
	Slide: 5 (4)
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 6 (4)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 7 (4)
	Slide: 7 (5)
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 8 (3)
	Slide: 8 (4)
	Slide: 8 (5)
	Slide: 8 (6)
	Slide: 8 (7)
	Slide: 8 (8)
	Slide: 8 (9)
	Slide: 8 (10)
	Slide: 8 (11)
	Slide: 8 (12)
	Slide: 8 (13)
	Slide: 8 (14)
	Slide: 8 (15)
	Slide: 8 (16)
	Slide: 8 (17)
	Slide: 8 (18)
	Slide: 8 (19)
	Slide: 8 (20)
	Slide: 8 (21)
	Slide: 8 (22)
	Slide: 8 (23)
	Slide: 8 (24)
	Slide: 8 (25)
	Slide: 8 (26)
	Slide: 8 (27)
	Slide: 8 (28)
	Slide: 9
	Slide: 10
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 12
	Slide: 13
	Slide: 14
	Slide: 15
	Slide: 16
	Slide: 17
	Slide: 18
	Slide: 19
	Slide: 20
	Slide: 21
	Slide: 22

