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Introduction

• Unused memory is wasted memory – the kernel will keep cached everything that 
userspace touches, so eventually the RAM will get (almost) full

• Memory reclaim evicts the existing data to make room for new data
• Two distinct types of userspace pages

– Anonymous pages allocated by mmap(MAP_PRIVATE) and populated by page fault, 
must be swapped out first (if at all possible) to reclaim

– File pages (a.k.a. page cache) created by file operations or mmap(…, fd) – can be 
immediately discarded when clean, or after write-out when dirty

• Disk IO is costly, so we would like to keep pages that will be accessed again 
soon, and reclaim those that will not, but we cannot predict the future
– Instead we can look at the past and assume temporal locality – pages accessed recently 

are more likely to be accessed again in near future

– So we put (struct) pages on Least Recently Used (LRU) list, ordered by their last access 
time from most recent (head) to least recent (tail)
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LRU list – ideal model
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LRU – anonymous/file split

• Anonymous and file pages have distinct properties
– Clean file pages can be just evicted, anonymous have to be swapped out at least once...

– Historically, reclaim has been biased towards file pages more than anonymous 

• Single list would be ineffective when reclaiming just one type
• Hence separate anon and file LRU lists

– But now we have to choose which one (or both) to reclaim, and balance their sizes
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LRU – active/inactive split

• Ideal LRU model not achievable in practice
– Capturing each memory access for precise tracking would be prohibitively slow

– Approximated by detecting if page has been accessed since last check

– More effective if we track more and less actively pages separately

• Hence separate active and inactive LRU lists for each type
– Also fifth list for unevictable pages (not relevant to reclaim)

– All together that’s called lruvec

5 / 
22



LRU – active/inactive split

• Ideal LRU model not achievable in practice
– Capturing each memory access for precise tracking would be prohibitively slow

– Approximated by detecting if page has been accessed since last check

– More effective if we track more and less actively pages separately

• Hence separate active and inactive LRU lists for each type
– Also fifth list for unevictable pages (not relevant to reclaim)

– All together that’s called lruvec

anon LRU

1 4 5 6 8

file LRU

2 3 7 9 10

5 / 
22



LRU – active/inactive split

• Ideal LRU model not achievable in practice
– Capturing each memory access for precise tracking would be prohibitively slow

– Approximated by detecting if page has been accessed since last check

– More effective if we track more and less actively pages separately

• Hence separate active and inactive LRU lists for each type
– Also fifth list for unevictable pages (not relevant to reclaim)

– All together that’s called lruvec

anon LRU

1 4 5 6 8

file LRU

2 3 7 9 10

5 / 
22



LRU – active/inactive split

• Ideal LRU model not achievable in practice
– Capturing each memory access for precise tracking would be prohibitively slow

– Approximated by detecting if page has been accessed since last check

– More effective if we track more and less actively pages separately

• Hence separate active and inactive LRU lists for each type
– Also fifth list for unevictable pages (not relevant to reclaim)

– All together that’s called lruvec

anon LRU

1 4 5 6 8

file LRU

2 3 7 9 10

anon active 1 4 5

anon inactive 6 8

file active 2 3 7

file inactive 9 10

unevictable 11 12
lruvec 5 / 

22



LRU – node/memcg lruvecs

• Four reclaimable LRU lists per lruvec
– Large part of reclaim magic is to decide how many pages to scan and try to reclaim in 

each one (shrink the list)
• Pages are taken from the tail of each list, can be moved to the head of another list 

(activated/deactivated), back to head of the same list (kept), or evicted entirely (reclaimed)
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Page States Relevant to Reclaim
• Determined by page flags, mainly the following:

– LRU – page is on any LRU list, Active – page is on active list

– Referenced – inactive page has been accessed “recently”

– Workingset – page is considered part of active userspace’s workingset

• Affected by Accessed bit in page tables entries (PTE’s) that map this page

– page_referenced() counts them (via a rmap walk) and resets them to zero
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Not present
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After fault is handled,
the userspace access
is restarted and sets

PTE Accessed
bit immediately

!active

!referenced

#PTE.A=1

Not present

kern/usr
access

initial page fault
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Reclaim filters out the
initial access by only

setting the referenced
Page flag, but keeping
Page on inactive list
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Another access sets
PTE active bit
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Reclaim sees both
referenced flag

and PTE active, so
page was accessed

multiple times,
activate it
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Workingset Detection

• Premise: transitioning workloads might be thrashing if pages are not accessed often 
enough while on inactive list to have chance to be promoted
– Inactive list is intentionally small, the active working set might be just larger

– If the reclaimed page is refaulted, we don’t know if it’s new or thrashing

– Meanwhile the pages on active list might be idle, but we won’t know

• Example: Workload accesses pages 7 8 9 10 11 7 8 9 10 11 ...
– The access distance is 5 (4 different pages between two accesses to the same page)

– Inactive list only has 4 pages, thus each access is a fault

– Pages 1 – 6 might be actually idle

• Idea: determine this access distance, even for pages that have been evicted
– Use shadow entries of radix tree/XArray for evicted pages

– Precise tracking again impossible, need to approximate

active inactive evicted

1 2 3 4 5 6 11 10 9 8 7
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Approximating Access Distance

• Observation: Access that causes fault places page to inactive list head, slides all towards 
tail, evicts tail page

• Observation: Access on inactive list results in activation, also slides all pages previously 
ahead of the page on the inactive list towards tail

• Thus: we can approximate inactive page accesses as sum of evictions and activations
• And: N of these accesses slide an inactive page N slots towards tail

• Eviction means NR_inactive pages were accessed while page was in memory

• If we note sum of evictions + activations at the moment of eviction (E), and at the moment of 
refault (R), the difference (R-E) approximates number of accesses while the page was 
evicted – called refault distance

• Complete access distance: NR_inactive + (R–E)

• Page would not be evicted if: NR_inactive + (R–E) <= NR_active + NR_inactive

• Simplified: (R–E) <= NR_active

– When this inequality holds on refault, activate page immediately
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Workingset Detection Implementation

• Initially implemented for file pages only, recently also for anonymous pages

• Counter of evictions plus activations in lruvec->nonresident_age

• Refault distance is compared to workingset size
– Sum of all LRU sizes except inactive list of page’s type

– File page refault distance compared to NR_active_file + NR_active_anon + 
NR_inactive_anon

– Anon page refault distance compared to NR_active_anon + NR_active_file + 
NR_inactive_file

– But if swap is not available, anon list sizes are not included in the sums

• When page is deactivated, its Workingset flag is set

– The flag is recorded in shadow entry, and set again upon refault, never cleared (i.e. only when 
stale shadow entries are reclaimed)

– Refaults with Workingset flag restored play role in reclaim cost model

– But frequent refaults with workingset flag mean the active list itself is thrashing; workload is 
not changing, but does not fit and we could OOM (with PSI)
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Global Reclaim Algorithm

• Per-node kswapd or direct reclaim when a node is below watermarks – both 
eventually call shrink_node()

• Decide if anon and/or file pages should be deactivated – active/inactive balancing
– Goal: large active list with low amount of reclaim work, small inactive list as a busy 

“proving ground”, except when the workload is transitioning

– Formula in inactive_is_low(), based on sqrt of the active+inactive list sizes
• 1:1 up to 100MB worth of memory on the LRU lists

• 3:1 (active:inactive) at 1GB memory – 25% pages should be on inactive list

• 320:1 at 10TB memory

• Consequence: memcg reclaim changes the ratio towards smaller active lists

– Deactivation allowed when inactive list size is below the target ratio

– Or when workingset refaults are happening, based on a rather coarse check (the counter 
of file workingset refaults changed since last reclaim)
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Global Reclaim Algorithm #2

Anon/file balancing – decide how much to shrink from each type’s LRU
• Some corner case decisions first

– “Many” (based on reclaim priority) inactive file pages and we do not deactivate file pages, 
prioritize file reclaim – “cache trim mode”

– Too few file pages (active+inactive) with “many” inactive anon pages and we do not 
deactivate anon pages, prioritize anon reclaim – “file is tiny”
• Tries to prevent runaway feedback loop where small file LRU means no chance to get pages 

promoted

• Iterate over all memcgs, calling shrink_lruvec()

• Determine how much to scan in each LRU list by get_scan_count()

– Consider only file LRUs – swapping not possible or cache trim mode enabled

– Consider only anon LRUs – “file is tiny”

– Scan both equally – close to OOM (but swappiness is not 0) - no time for fine balancing

– Balance anon and file LRUs according to Fractional Cost Model
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Global Reclaim Algorithm #3

Anon/file fractional cost model
• Idea: if reclaim causes more IO for file pages than anon pages, put more pressure on 

anon pages, and vice versa – pressure is inversely proportional to to cost

• We count workingset refaults that restore Workingset flag (which means a formerly 
active page was reclaimed), and dirty page write-outs, as the reclaim cost
– To soften corner cases, soften the resulting pressure between 0 and 1 to between 1/3 and 2/3

• This is also weighted by vm.swappiness sysctl, with range from 0 to 200 (default 60)

– vm.swappiness=0   – anon reclaim has infinite cost, reclaim only file pages

– vm.swappiness=100 – anon and file pages have same IO cost

– vm.swappiness=200 – file reclaim has infinite cost, reclaim only anon pages

• The result is fraction between 0 and 1 for anon, and for file, both add up to 1
• Calculate how many pages to scan from each LRU list - target

– NR_pages >> reclaim_prio (prio starts at 12 – 1/4096 of the list, prio decreased each round)

– Apply calculated fraction, or set to 0 if we are not reclaiming the particular type
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Global Reclaim Algorithm #4

• The LRU list shrinking itself

– Call shrink_list() in a loop, scan up to 32 pages (SWAP_CLUSTER_MAX) in iteration
• Skip active list if deactivation is not allowed

– Isolate pages from tail of list, then deactivate, keep or reclaim according to their flags and 
page table entries with active bit set

– Terminate when budget (initialized by get_scan_count() targets) is exhausted for all lists

– After having reclaimed the target number of pages (SWAP_CLUSTER_MAX or high 
watermark), keep scanning to deplete the rest of the budget, but:
• Stop scanning the file/anon type with lower remaining budget

• For the other type, adjust the budget to keep the original anon/file ratio

• Example: target was 64 file, 32 anon pages, after scanning and reclaiming 16 from each, scan additional 
16 file pages (so the result is 32 file, 16 anon)

– Finally, scan 32 pages from active anon list
• If swap is available and inactive anon is low

• Ignores prior decision whether to deactivate anon
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madvise(2) - reclaim related flags

• MADV_DONTNEED – throw away private anonymous pages, unmap file pages

– might be reclaimed later due to memory pressure, no explicit reclaim action

• MADV_FREE – private anon only – clear page dirty, referenced flags, move it to 
inactive file list
– pages will be discarded (destructive, no swap-out) soon in case of memory pressure

• MADV_COLD – deactivate pages (move to inactive list, clear referenced flags)

– swap-out or dirty page writeback will happen during reclaim (non-destructive)

– only pages not mapped by multiple processes

• MADV_RECLAIM – immediately reclaim pages

– including swap-out or dirty page writeback

– only pages not mapped by multiple processes

17 / 
22



Conclusion 

• This was an overview, implementation has even more details and special cases
• Some topics omitted completely

– Writeback, swapping, dirty throttling, memcg reclaim, slab reclaim (shrinkers),  
watermarks handling, kswapd vs direct reclaim, reclaim/compaction, OOM, PSI…

• Complex system, results of years of evolution, including big recent changes
– No overall documentation (perhaps getting there? :)

• Many moving parts, hard to predict behavior, hard to evaluate patches!
– Elaborate cost models applied only to 1/3 of decision space

– OTOH, major decisions made by looking if a number has changed since last time

– Explicit corner case heuristics against undesired feedback loops

– Lots of suspicious details to look at in my TODO

– We’ve seen issues (in older kernel) e.g. with file pages thrashing and anon not reclaimed

• How to get better insight? A simulation model?
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Recent patch series related to reclaim

• Migrating pages to slower memory instead of reclaim – merged for 5.15
– By Dave Hansen and Huang Ying (Intel)

– Such as persistent memory, when used as a NUMA node

– Has to be enabled by /sys/kernel/mm/numa/demotion_enabled

– For now, does not promote pages back to faster DRAM/closer node based on usage

– Another patchset by Huang towards “memory tiering system” does that based on NUMA 
balancing code

– Another patchset by Tim Chen (Intel) improves admin control of DRAM usage based on 
memcg and soft limits
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Multigenerational LRU Framework

• Patchset from Yu Zhao (Google), v1 in March, v4 in August 2021 
• Multiple generations (at least 3) instead of active/inactive lists – separate lists 

(per file/anon and zone), generation number in page flags word
– Faults go to youngest generation, buffered file accessed to oldest

– Accessed bit (found during scan) moves page to youngest generation

• Generations also divided to tiers for more fine-grained mark_page_accessed() 
counting, tier also part of page flags, but not separate lists
– Balancing tiers using workingset refault info, PID controller-like feedback loop

• Scanning for accessed bits through page table walks, not lru lists (as was in past)
– Attempts to exploit spatial locality, avoid expensive rmap walks, fallback on sparse maps

– Lists of mm structs per memcgs, skipping of sleeping processes, inactive PMDs, no 
page level zigzag between vma’s

• Eviction processes oldest generation, balances between file and anon by refaults
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Multigenerational LRU Framework

• Optional, run-time enable, aging, protection, monitoring sysfs knobs
• Pros:

– Kswapd reduced rmap walk CPU usage, reduced direct reclaim latency

– Tools for workload scheduling decisions, proactive reclaim

– Some success stories – reduced swap storms, improved throughputs…

• Cons:
– Changes many things at once, kernel development prefers incremental improvements

– Additional to existing mechanism, not replacement →maintenance burden

– Adds user space knobs (but not mandatory to use)
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Thank you.
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