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Syntax and Semantics [3, Sec. 2, Tbl. 1]

Name Syntax Semantics HL EL EL+

Top ⊤ ∆I • • •
Conjunction C ⊓ D CI ∩ DI • • •
Existential Restr. ∃r.C ∗ • •
GCI1 C ⊑ D CI ⊆ DI • • •
Concept Definition C ≡ D CI = DI • • •
Role Inclusion r1 ◦ · · · ◦ rn ⊑ s rI1 ◦ · · · ◦ rIn ⊆ sI •

∗: {x ∈ ∆I | there exists y ∈ ∆I s.t. (x, y) ∈ rI and y ∈ CI}

• Concept Descriptions C,D (inductively)
• Role Names r1, . . . , rn, s
• Classical Interpretation I = (∆I, ·I)

1General Concept Inclusion
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Example: HL and Horn Logic Programming (cf. [3, Sec. 2])

woman ⊑ person person :- woman.
man ⊑ person person :- man.

parent ⊓ woman ⊑ mother mother :- parent, woman.
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TBoxes and Concept Subsumption

• We consider knowledge bases that are finite sets of
axioms, called TBoxes, denoted T .

• Key questions wrt. TBoxes are satisfiability and concept
subsumption.

Definition (Concept Subsumption, cf. [4, Def. 1])

Given two concept descriptions C,D and a TBox T , C is
subsumed by D wrt. T (written C ⊑T D) if for every
interpretation I that satisfies T we have CI ⊆ DI.
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Motivation for Pinpointing

Given a TBox …
Human ⊑ ∃parent.Human Humans have a human parent. (a1)
Human ⊑ Monkey Humans are monkeys. (a2)

∃parent.Monkey ⊑ Animal Monkey parent? It’s an animal. (a3)
Monkey ⊑ Animal Monkeys are animals. (a4)

Fish ⊑ Animal Fish are animals. (a5)

We observe that …

Human ⊑ Animal

And ask ourselves: Why?
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Motivation for Pinpointing

Formalization of our question yields Pinpointing, a process
that results in minimal axiom sets:

Definition (MinA, cf. [4, Def. 2 without partitioning T ])

Let T be a TBox and A,B concept names occurring in it such
that A ⊑T B. Then a minimal axiom set (MinA) for T
wr.t. A ⊑ B is a subset S ⊆ T such that

A ⊑S B

and for all S ′ ⊂ S we have

A ̸⊑S′ B
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Motivation for Pinpointing

Human ⊑ ∃parent.Human Humans have a human parent. (a1)
Human ⊑ Monkey Humans are monkeys. (a2)

∃parent.Monkey ⊑ Animal Monkey parent? It’s an animal. (a3)
Monkey ⊑ Animal Monkeys are animals. (a4)

Fish ⊑ Animal Fish are animals. (a5)

Human ⊑ Animal

Minimal Axiom Sets (MinAs): {a2,a4}, {a1,a2,a3}
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Example: Snomed CT [8, Fig. 6.8, p. 128]

direct-procedure-site ⊑procedure-site
AmputationOfFinger ⊑AmputationOfFingerNotThumb

AmputationOfFingerNotThumb ≡HandExcision⊓
∃roleGroup.(

∃direct-procedure-site.FingerS⊓
∃method.Amputation)

AmputationOfHand ≡HandExcision⊓
∃roleGroup.(

∃direct-procedure-site.FingerS⊓
∃method.Amputation)

FingerS ⊑DigitOfHandS ⊓ HandP
HandP ⊑HandS ⊓ UpperExtremityP
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White-Box vs. Black-Box Algorithms

White-Box Inspects syntax of axioms, more “low-level”.

Black-Box Relies on reasoning services (subsumption) only.
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Subsumption Algorithm for EL+

Based on following completion rules2 wrt. a TBox T . Rule i is
applicable if ai ∈ T and Pi ⊆ T ′ \ T . If rule i is applied, then qi
is added to T ′.

Applicability Result
i ai (axiom) Pi (set of T -seq) qi (T -seq)
1 A1 ⊓ · · · ⊓ An ⊑ B X ⊑ A1, . . . , X ⊑ An X ⊑ B
2 A ⊑ ∃r.B X ⊑ A X ⊑ ∃r.B
3 ∃r.A ⊑ B X ⊑ ∃r.Y, Y ⊑ A X ⊑ B
4 r ⊑ s X ⊑ ∃r.Y X ⊑ ∃s.Y
5 r ◦ r′ ⊑ s X ⊑ ∃r.Y, Y ⊑ ∃r′.Z X ⊑ ∃s.Z

2adapted from [4, 3, Fig. 1], see also [8, Fig. 5.2, p. 104]
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Algorithm 1: Subsumption(T , A, B)
Input: An EL+ TBox T in normal form over NC and A,B ∈ NC.
Output: “yes” if A ⊑T B holds, “no” otherwise.

1 T ′ := {A ⊑ A,A ⊑ ⊤ | A ∈ NC}
2 while there is a rule i s.t. 1 ≤ i ≤ 5, ai ∈ T and Pi ⊆ T ′ do
3 T ′ := T ′ ∪ {qi}
4 end
5 return “yes” if A ⊑ B ∈ T ′ otherwise “no”
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Subsumption Algorithm for EL+

The algorithm …

• requires a normalized TBox. Normalization is always
possible and can be computed in linear time3.

• restricts to concept names. We may introduce new
concept names A ⊑ C,D ⊑ B for any concepts C,D.

• is correct4: A ⊑T B iff A ⊑ B ∈ T ′

• runs in time polynomial in the size of the input TBox4.
• actually computes all concept subsumptions. This is
easily extended to a classification algorithm.

3proof for EL in [2, Lemma 6.2] and EL++ in [1, Lemma 1]
4 [3, Thm. 1]
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Pinpointing Formula

Human ⊑ ∃parent.Human Humans have a human parent. (a1)
Human ⊑ Monkey Humans are monkeys. (a2)

∃parent.Monkey ⊑ Animal Monkey parent? It’s an animal. (a3)
Monkey ⊑ Animal Monkeys are animals. (a4)

Fish ⊑ Animal Fish are animals. (a5)

Human ⊑ Animal

Pinpointing Formula: a2 ∧ (a4 ∨ (a1 ∧ a3))
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Pinpointing Formula

• Let lab(T ) be the set of labels of all axioms in T .
• Let V ⊆ lab(T ) be a valuation wrt. T .
• Let TV = {a ∈ T | lab(a) ∈ V} be the selection of axioms
with a label that is true under V .

Definition (Pinpointing Formula [4, Def. 3])
Given an EL+ TBox T and concept names A,B occurring in it,
a monotone Boolean formula ψ over lab(T ) is a pinpointing
formula for T wrt. A ⊑ B if for every valuation V ⊆ lab(T ) it
holds that A ⊑TV B iff V satisfies ψ.

• Given a pinpointing formula ψ, we can construct
corresponding MinAs [3, Prop. 1]:

{TV | V |= ψ and V is ⊆-minimal} 17



Algorithm 2: AllMinAs(T )
Input: An EL+ TBox T in normal form over NC.
Output: A TBox T ′ and a labeling function.

1 Assign T ′ := {A ⊑ A,A ⊑ ⊤ | A ∈ NC} and lab(a) := true f. a. a ∈ T ′

2 while there is a rule i s.t. 1 ≤ i ≤ 5, ai ∈ T and Pi ⊆ T ′ do
3 ϕ = lab(ai) ∧

∧
p∈Pi lab(p)

4 if qi ̸∈ T ′ then
5 T ′ := T ′ ∪ {qi}
6 lab(qi) := ϕ

7 else
8 ψ = lab(qi)
9 if ψ ∨ ϕ ̸≡ ψ then
10 lab(qi) := ψ ∨ ϕ
11 end
12 end
13 end
14 return (T ′, lab)
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Labeling Algorithm

• We obtain T ′ like before, but additionally a labeling lab.
• All ⊆-minimal valuations that satisfy lab(A ⊑ B)
correspond to a MinA for T wrt. A ⊑ B [3, Thm. 2].

• The algorithm runs in time exponential in the size of the
input TBox5, exhibited by

Tn :=
{
Bi−1 ⊑ Pi ⊓ Qi, Pi ⊑ Bi, Qi ⊑ Bi | 1 ≥ i ≥ n

}
which yields 2n MinAs for Tn wrt. B0 ⊑ Bn 6.

5direct argumentation in [3, Sec. 3]
6cf. [3, Example 1]
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Pinpointing via Subsumption as Black-Box



Algorithm 3: LinOneMinA(T , A, B) (cf. [3, 5, Alg. 1], [8, Alg. 7, p. 97])
Input: A TBox T = {a1, . . . ,an} over NC and A,B ∈ NC.
Output: If A ⊑T B holds, one MinA for T wrt. A ⊑ B, else ∅.

1 if A ̸⊑T B then
2 return ∅
3 end
4 S := T
5 foreach ai ∈ T do
6 if A ⊑S\{ai} B then
7 S := S \ {ai}
8 end
9 end
10 return S
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Pinpointing via Subsumption as Black-Box

• Linearily scans T with one call to subsumption per axiom.
Thus, runs in polynomial time overall. [3, Thm. 6]

• “… did not terminate on Snomed CT in 48hrs …” [8, p. 97].
• Can be improved by using a “sliding window” approach or
binary search.

• Black-Box algorithms that compute all MinAs are certainly
possible.
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Complexity

1. Computing all MinAs takes exponential time.
Is there an output polynomial algorithm?

2. Computing one MinA takes polynomial time.
This is still bad for large knowledge bases.
Can we make trade-offs to be faster in practice?

22



All MinAs

An output polynomial algorithm?

• [3, Thm. 5] shows this is not possible for the case of a TBox
with non-refutable part (unless P = NP).

• In [7, Thm. 2] computing all MinAs is established to be as
least as hard as computing the set of all minimal
transversals of a hypergraph, which is in coNP and no
output polynomial alorithm is known (cf. [6]).

Also, computing properties wrt. all MinAs cannot be achieved
in polynomial time (unless P = NP) [3, Sec. 4].
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One MinA

Polynomial, but still too slow in practice.

1. Let’s take some T ′ ⊂ T with A ⊑T ′ B and run the
algorithm on that!

2. To get T ′, take the labeling algorithm and drop the
re-labeling branch.

3. Other greedy algorithms might perform well/better.

Results: 10min vs. 7hrs with just 2.59% difference in size.7

7simplified, cf. [3, Sec. 5]

24



Recap

Introduction

Syntax and Semantics

TBoxes and Concept Subsumption

Pinpointing

Algorithms

Pinpointing via Labeling

Pinpointing via Subsumption as Black-Box

Complexity and Tradeoffs in Practice

25



Questions, please!
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