
Three Watched Literals
Efficient Propagation for Lazy-Grounding

Answer Set Programming Systems

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Software & Information Engineering

eingereicht von

Lorenz Leutgeb
Matrikelnummer 1127842

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Prof. Dr. Thomas Eiter
Mitwirkung: Dr. Antonius Weinzierl

Wien, 20. September 2017
Lorenz Leutgeb Thomas Eiter

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Three Watched Literals
Efficient Propagation for Lazy-Grounding

Answer Set Programming Systems

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software & Information Engineering

by

Lorenz Leutgeb
Registration Number 1127842

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Dr. Thomas Eiter
Assistance: Dr. Antonius Weinzierl

Vienna, 20th September, 2017
Lorenz Leutgeb Thomas Eiter

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Lorenz Leutgeb
Engilgasse 3a, 1160 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit – einschließlich Tabellen und Abbildungen –, die anderen Werken oder dem
Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe
der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. September 2017
Lorenz Leutgeb

v

Acknowledgements

I would like to thank Antonius Weinzierl for his consistent and continuous efforts in
supporting me writing this thesis through numerous meetings, openness in discussion
and acceptance of my contributions to the Alpha system.

vii

Kurzfassung

Answer Set Programming (ASP) ist ein deklaratives Programmierparadigma in An-
lehnung an Prädikatenlogik erster Stufe. ASP-Programme werden üblicherweise durch
ASP-Systeme evaluiert, deren Design stark durch Löser (engl. „solver“) für das Erfüll-
barkeitsproblem der Aussagenlogik (SAT, von engl. „satisfiability“) inspiriert ist. Ein
zentrales Verfahren in diesen Systemen ist die sogenannte Einheitsresolution (engl. „unit
propagation“), wodurch aus bekannten Wahrheitswerten für Konstanten und der Struktur
der Formel neue Wahrheitswerte ableitet werden können.

Im Unterschied zu SAT-Formeln enthalten ASP-Programme jedoch Variablen, wodurch
sich das sogenannte grounding bottleneck ergibt, welches die praktische Verwendbarkeit
von ASP-Systemen einschränkt. An der Entwicklung sogenannter lazy-grounding ASP-
Systeme wird aktiv geforscht. Durch die Einführung eines dritten Wahrheitswerts must-
be-true (neben den zwei Boolschen Werten true und false) kann die Suche nach Lösungen
beschleunigt werden. Diese Optimierung hat sich für lazy-grounding ASP-Systeme als
besonders wirkungsvoll herausgestellt, sie ist allerdings mit den bewährten Varianten der
Einheitsresolution nicht kompatibel, da diese nur die zwei Booleschen Wahrheitswerte
berücksichtigen.

Der Hauptteil der Arbeit beschreibt einen möglichen Lösungsansätz der effizienten
Einheitsresolution mit drei Wahrheitswerten, insbesondere für lazy-grounding ASP-
Systeme, aufbauend auf der Two Watched Literals (2WL) Methode. Die neue Methode
nennt sich Three Watched Literals (3WL).

Die Korrektheit des Algorithmus wird gezeigt. Die erste bekannte Implementierung des
Verfahrens – Teil des lazy-grounding ASP-Systems „Alpha“ – wurde zu einer Evaluation
anhand von verfügbaren Eingabeprogrammen herangezogen, deren Ergebnisse diskutiert
werden.

ix

Abstract

Answer Set Programming (ASP) is a declarative programming paradigm based on first
order logic. ASP programs are usually evaluated by ASP systems, whose design is strongly
inspired by solvers for the boolean satisfiability problem (SAT). A central method in
these systems is unit propagation, enabling to derive new truth assignments for constants
from known truth assignments, using the structure of the input formula.

Contrary to SAT formulas, ASP programs contain variables, leading to the so-called
grounding bottleneck, which limits the practical applicability of ASP systems. The
development of lazy-grounding ASP systems to overcome the grounding bottleneck is an
active area of research. By introducing a third truth value must-be-true (in addition to
the two boolean truth values true and false) search for solutions can be improved. This
optimization was shown to be especially effective in lazy-grounding ASP systems, but
it is not compatible with established variants of unit propagation, because they only
consider the boolean truth values.

The main part of this work describes an approach for efficient unit propagation with
three truth values, especially considering lazy-grounding ASP systems, based on the Two
Watched Literals (2WL) method. The new approach is called Three Watched Literals
(3WL).

Soundness of the new algorithm is shown. The first known implementation – part of
the lazy-grounding ASP system “Alpha” – was used to evaluate performance with freely
available input programs. Results are discussed.

xi

Contents

1 Introduction 1
1.1 Motivation . 4
1.2 Structure of the Work . 6

2 Preliminaries 7
2.1 Answer Set Programming . 7
2.2 State-of-the-art ASP Systems . 11
2.3 Two Watched Literals . 14

3 Three Watched Literals 19
3.1 Extended Notions for Lazy-Grounding . 20
3.2 Watch Structures . 23
3.3 Unit Propagation . 25

4 Evaluation 35

5 Conclusion 41
5.1 Related Work . 41
5.2 Open Questions and Further Work . 41

xiii

CHAPTER 1
Introduction

Since the inception of computer programming, different ways of encoding algorithms,
structuring data and modeling the real world in computer programs have led to the devel-
opment of various conceptually diverse programming languages. Families of programming
languages that share some properties are usually grouped into so called “programming
paradigms”. Such paradigms describe the common, most important concepts and lay a
framework for a family of languages.

The languages most widely used in industry follow the imperative programming paradigm
(some more strict, some less), which revolves around instructing the computer step by
step. In this work, in contrast to mainstream software engineering, the main focus is
Answer Set Programming (ASP, [15]), a declarative programming paradigm that roots in
first order logic.

A key difference between declarative and imperative programming is that in the former
the focus is explaining the problem to be solved and what a solution should look like,
while for the latter, programmers write code that specifies how the problem is to be
solved.

Without going into further details about how ASP works internally, consider the following
example for an intuition.

Example 1.1. Suppose one needs to decide what to wear. The following program narrows
down the selection of garments in the wardrobe by checking whether specific pieces are
designed to be worn in the current season. For the sake of the example we assume that it

1

1. Introduction

is summer.

garment(winterjacket)← . (f1)
garment(jeans)← . (f2)
garment(tshirt)← . (f3)
garment(shorts)← . (f4)

warm(winterjacket)← . (f5)
light(shorts)← . (f6)

summer ← . (f7)
inseason(G)← winter, garment(G), not light(G). (r1)
inseason(G)← summer, garment(G), not warm(G). (r2)

wear(G)← garment(G), inseason(G). (r3)
← winter, summer. (c1)

The program is made up of eleven rules: f1 . . . f4 list the four pieces we have in the
wardrobe (a winter jacket, a pair of jeans, a t-shirt and shorts). As these rules have no
premises, they are also called facts. Rules f5 and f6 qualify garments that are light or
warm. The current season is encoded in f7. Through r1 and r2 we define when a garment
is “in season”, i.e. whether a piece is not light (resp. not warm) which means it should be
worn in winter (resp. summer). Finally, we express that a garment can be worn in case
it is in season in rule r3. The last rule c1 models a constraint: It is unreasonable that it
is both winter and summer for one evaluation of the program.

The evaluation of an ASP program is done by an ASP system, which may be comprised
of further components. For user and programmer, no detailed knowledge about the
system is required. The abstract input/output behaviour of these systems is enough to
use them in most cases: Given an input program (and sometimes a few options on which
algorithms or data structures to employ) it computes the answer sets. Loosely speaking,
answer sets are possible combinations of values that satisfy all requirements that are
stated in the program.

Many ASP system implementations use solving algorithms closely related to those found
in boolean satisfiability (SAT, [5]) solvers to search for answer sets. Finding an answer
set for a logic program, which means exploring truth assignments for atomic expressions
under the rules defined in the program, is similar to finding a satisfying assignment for a
formula, which means exploring possible truth values for constants under the structure of
the formula. Adapting SAT solvers and their methods turned out to be highly effective
for solving ASP. To keep up this close relation however, one key difference between
formulas in SAT and programs in ASP must be accounted for: formulas in SAT do not
have variables, but logic programs do. Variables such as G in the above example must
be removed. The process of substituting variables with constants, e.g. substituting G

2

with one of the four concrete garments, is referred to as grounding and the resulting
variable-free program is said to be ground.

Example 1.2. Reconsider Example 1.1, naïvely substituting all occurrences of G yields
eight instances of the rule r1 (two per garment), and four of rule r2 (one per garment).

garment(winterjacket)← . (f1)
garment(jeans)← . (f2)
garment(tshirt)← . (f3)
garment(shorts)← . (f4)

warm(winterjacket)← . (f5)
light(shorts)← . (f6)

summer ← . (f7)
inseason(winterjacket)← winter, garment(winterjacket),

not light(winterjacket). (r1,1)
inseason(jeans)← winter, garment(jeans),not light(jeans). (r1,2)
inseason(tshirt)← winter, garment(tshirt), not light(tshirt). (r1,3)
inseason(shorts)← winter, garment(shorts),not light(shorts). (r1,4)

inseason(winterjacket)← summer, garment(winterjacket),
not warm(winterjacket). (r1,5)

inseason(jeans)← summer, garment(jeans),not warm(jeans). (r1,6)
inseason(tshirt)← summer, garment(tshirt),not warm(tshirt). (r1,7)
inseason(shorts)← summer, garment(shorts),not warm(shorts). (r1,8)

wear(winterjacket)← garment(winterjacket), inseason(winterjacket). (r2,1)
wear(jeans)← garment(jeans), inseason(jeans). (r2,2)
wear(tshirt)← garment(tshirt), inseason(tshirt). (r2,3)
wear(shorts)← garment(shorts), inseason(shorts). (r2,4)

← winter, summer. (c1)

Generally, the ground program may be exponentially bigger than the input program.

3

1. Introduction

Example 1.3 ([21, Example 1]). Consider the following program P which selects at
most one element from a domain:

dom(1)← . (f1)
...

dom(n)← . (fn)
selected(X)← dom(X), not notSelected(X). (r1)

notSelected(X)← dom(X), not selected(X). (r2)
← selected(X), selected(Y), X 6= Y. (c1)

Facts f1 to fn span a domain of size n, while rules r1 and r2 together achieve that each
element from the domain is either selected or not selected, and finally the constraint c1
ensures that there are no two (or more) selected elements. The corresponding ground
program will have n2 + 2n rules. In other words, the size of the ground program is
polynomial in the size of the input program.

Adding another rule to the program will however cause the size of the ground program to
grow out of polynomial relation:

p(X1, . . . , Xk)← selected(X1), . . . , selected(Xk). (r3)

Now, the size of the ground program of P ∪ {r3} will be exponential1 in k, precisely
nk + n2 + 2n.

State-of-the-art ASP systems feature two components: the grounder takes care of
substituting all variables, i.e. generating the ground program, while the solver takes
this ground program as input and computes answer sets. Traditionally, the grounder is
invoked first, and only after it has output the ground program, the solver starts execution.
This two-phased mode of operation is referred to as ground-and-solve. With the ground
program being exponentially larger than the original input program with variables, these
systems are prone to what we call the grounding bottleneck: When the ground program
is so large that it does not fit into memory, the search for answer sets is impossible
in practice. For more examples that exhibit the grounding bottleneck, we refer to [19,
Section 1].

1.1 Motivation

The goal of solver components in ASP systems is determining which propositions (such
as wear(winterjacket), for example) are true and false respectively. In the process,
an assignment designates which propositions are true (resp. false), it allows to express

1In practice for most ASP systems. [7] shows that for programs with bounded predicate arities,
polynomial space is sufficient.

4

1.1. Motivation

statements such as “wear(winterjacket) is true”. Once an assignment is found that
associates a truth value with every proposition and does not conflict with any rule, an
answer set is derived. Assignments conflicting with rules of the program are considered
invalid. In Example 1.1, any assignment that allows stating both “summer is true” and
“winter is true” at the same time, must be avoided as it cannot represent an answer set,
because of the constraint in line c1.

Through the combination of truth values and information about conflicting truth values
of propositions, both encoded by the rules of the input program, solvers can infer truth
values of other propositions. One method to extend an assignment this way is called
unit propagation: rules are modeled as sets of literals (propositions and their negations),
called nogoods, for which not all might satisfy the assignment. From their property that
not all corresponding truth values in the assignment may conform with the nogood at
the same time, it follows that when all but one elements of the nogood agree with the
assignment (we say the nogood is unit), the truth value of the remaining proposition can
be inferred and added to the assignment.

Example 1.4. Consider Example 1.1 again, which contains the constraint c1. It can
be written as a clause winter ∧ summer that must not evaluate to true, or simply as
a nogood δ = {Tsummer,Twinter} of the two propositions that cannot conform with
the assignment at the same time. An assignment saying that “summer is true” in
combination with δ implies a new truth value, namely that “winter is false”.

In order to perform unit propagation, ground-and-solve systems commonly translate the
input program into a set of nogoods, and even more advanced algorithms have been
devised to dynamically learn new nogoods in the process of searching for answer sets.

For solvers to be efficient, it is crucial to quickly identify which nogoods are unit, even
when the assignment under which the nogoods might individually be unit changes
frequently during search. Modern solvers implement the so called Two Watched Literals
(2WL) strategy [25, 36], which describes both an algorithm and a data structure to track
nogoods and propagate as soon as they become unit.

An optimization technique to speed up the solving process, pioneered by the ground-
and-solve system dlv (cf. 2.2.1) is the introduction of a third truth value must-be-true
in addition to the two usual values true and false. Using a third truth value also is an
effective optimization in lazy-grounding systems (cf. Sections 2.2.2 and 2.2.2). However,
2WL does only account for two truth values, thus cannot be used in conjunction with
must-be-true.

Goal. The goal of this work is to combine the two improvements (2WL for propagation,
which was shown to be successfully in SAT solvers as well as ground-and-solve ASP
systems, and must-be-true as a third truth value) within one algorithmic framework, such
that it can employed in lazy-grounding ASP systems.

5

1. Introduction

Motivation for this is twofold: firstly, enabling lazy-grounding systems to profit from the
benefits of 2WL, i.e. improved propagation speeds, while still using must-be-true. Secondly,
by integrating a procedure very similar to 2WL into a lazy-grounding framework, making
it simpler to eventually re-use results that previously were exclusive to ground-and-solve
systems in lazy-grounding systems as well.

Contributions. After an analysis of 2WL, algorithms and data structures that account
for lazy-grounding are devised and their soundness is shown. We call the new approach
Three Watched Literals (3WL). It comes with a description of watch strctures, abstract
data structures that suggest a memory layout for implementations, as well as a procedural
description of the algorithm. It is an extension of 2WL but uses three instead of
two watched literals in order to account for the third truth value must-be-true. An
implementation is contributed to the Alpha system, which in turn is compared against a
naïve approach in form of a benchmark. Instances for the benchmark are taken from
previous work in the field to maximize reproducibility.

1.2 Structure of the Work
In Chapter 2 we formally introduce logic programs such as the one in the above example
(syntax and semantics) of ASP and stable models. Also, a selection of state-of-the-art
ASP systems is discussed. The main part of the work is Chapter 3 introducing Three
Watched Literals (3WL), an algorithm for efficient propagation for lazy-grounding Answer
Set solving based on Two Watched Literals. Evaluation of 3WL as implemented in the
Alpha system is evaluated in Chapter 4 and we conclude in Chapter 5.

6

CHAPTER 2
Preliminaries

This chapter revisits definitions of syntax and semantics of answer set programs. Inter-
pretations and answer sets of such programs are defined.

Apart from these formal foundations, a brief overview of state-of-the-art ASP systems is
given and systems that implement lazy-grounding are described.

2.1 Answer Set Programming

In Section 1 we presented an example program with an intuitive description. In this
section we formally define syntactic structure and variants of logic programs, and their
semantics under ASP. For a thorough introduction to ASP we refer to [8].

2.1.1 Syntax

Given a finite set of constants C, a set of variables V and a finite set P of predicate
symbols, with C, V , P pairwise disjoint, we define atoms as the “building blocks” of logic
programs.

Definition 2.1. An atom is an expression of the form p(t1, . . . , tn) where p ∈ P is a
predicate symbol of arity n ≥ 0 and {t1, . . . , tn} ⊆ V ∪ C are terms.

Note that for atoms of arity zero, parentheses usually are omitted. For simplicity, this
definition of atoms does not account for function symbols or function terms. Towards
a distinction of ground programs (cf. Example 1.2) from programs with variables, we
formally define the class of ground atoms, for which the set of terms coincides with the
set of constants.

Definition 2.2. An atom p(t1, . . . , tn) is called ground if {t1, . . . , tn} ⊆ C

7

2. Preliminaries

We structure atoms in the form of rules, which are in turn divided into a head, consisting
of at most one atom, and a body of arbitrary size.

Definition 2.3. A rule r is an expression of the form

a← b1, . . . , bm,not bm+1, . . . ,not bn.

where a, b1, . . . , bn are atoms, not is negation as failure (or default negation), {a} is
the head, denoted H(a) and {b1, . . . , bm} is the positive body, denoted B+(r), and
{bm+1, . . . , bn} is the negative body of r, denoted B−(r). Positive and negative body
together are simply the body of r i.e., B(r) = B+(r) ∪B−(r). A rule r is ground if all
atoms in H(r) ∪B(r) are.

Note that for a rule r both body and head can be empty: in case B(r) is empty, we say
r is a fact, and when H(r) is empty, we say that r is a constraint. Finally, we arrive at
the notion of a logic program.

Definition 2.4. A (logic) program P is a finite set of rules. It is ground if all r ∈ P
are ground.

For the scope of this work, the above definition of rules is sufficient. Programs consisting
only of rules of this form are called normal programs. More general, e.g. rules with
disjunctive heads a1 ∨ · · · ∨ ak ← . . . also have interesting properties, but are outside the
scope of this thesis.

In practice, many more syntactic constructs are used to ease modelling programs: arith-
metic expressions, aggregates allowing statements about sets (counting how many elements
match some criteria, summation of numeric values, etc.) and choice rules that encode
sets of atoms for which only a given number should be in an answer set, all of which
can be translated into simple rules. The core standard, widely accepted by ASP many
systems, is available from [2].

2.1.2 Semantics

An atom in the sense of ASP is a proposition with no deeper structure. It might represent
some external state of affairs, e.g. rainy to indicate whether the weather is not nice or
handsome(yue) a statement about Yue being handsome. Their granularity or level of
abstraction directly affects how detailed the world is modeled by a program, because
atoms are treated as internally consistent statements and they cannot be split further.

In order to state the truth values of atoms in a program, we define an interpretation.

Definition 2.5. An interpretation is a set of ground atoms I.

Considering Example 1.1, note that the set I1 = {wear(G)} is not an interpretation,
because the atom it contains is not ground, however I2 = {wear(winterjacket)} is an
interpretation, because winterjacket is.

8

2.1. Answer Set Programming

The truth value of an atom is defined by an interpretation I, which in turn is simply the
set of atoms that are considered true, i.e. we say that “a is true” if a ∈ I.

Interpretations and literals are related through satisfaction.

Definition 2.6. An interpretation I satisfies a positive literal l = p, if p ∈ I and a
negative literal l = not p if p 6∈ I. We denote this as I |= l .

We commonly encode the truth value of atoms through satisfaction, e.g. we say that an
atom p is true under some interpretation I if the the literal l = p is satisfied by I and
vice versa. Satisfaction of literals expands to satisfaction of rules.

Definition 2.7. An interpretation I satisfies a ground rule r, denoted I |= r if B+(r) ⊆ I
and B−(r) ∩ I = ∅ implies that H(r) ⊆ I, i.e. when the body of r is satisfied, then the
head of r is satisfied as well.

In case an interpretation satisfies all rules of a program, we call it a model thereof.

Definition 2.8. A (classical) model of a ground program P is an interpretation I that
is a model of all rules in the program, i.e. I |= r for all r ∈ P .

We use the Gelfond-Lifschitz reduct towards a definition of answer sets.

Definition 2.9 (see [15, Section 2]). Given a ground program P and an interpretation
I, the Gelfond-Lifschitz reduct (or just reduct in short) of P with respect to I, denoted
P I is defined as follows:

P I =
{
a← b1, . . . , bm | a← b1, . . . , bm, not bm+1, . . . ,not bn ∈ P

and {bm+1, . . . , bn} ∩ I = ∅
}

Finally, an answer set is a ⊂-minimal model of the corresponding reduct.

Definition 2.10. An interpretation I is an answer set of a ground program P if it is a
⊂-minimal model of P I , i.e. there is no J ⊂ I which is also a model of P I .

Note that the answer sets of some logic program P equal the answer sets of the corre-
sponding ground program.

Example 2.1 (cf. [8, Example 16]). Consider the following program P :

citizen(alice)← .

democrat(C)← citizen(C), not democrat(C).
republican(C)← citizen(C), not republican(C).

9

2. Preliminaries

The corresponding ground program is as follows:

citizen(alice)← . (f1)
democrat(alice)← citizen(alice), not republican(alice). (r1)
republican(alice)← citizen(alice), not democrat(alice). (r2)

Note that interpretations without citizen(alice) immediately conflict with f1, i.e. f1 is
not satisfied. Conceivable interpretations are:

I1 ={citizen(alice), democrat(alice)}
I2 ={citizen(alice), republican(alice)}
I3 ={citizen(alice), democrat(alice), republican(alice)}
I4 ={citizen(alice)}

Considering I1 we obtain the reduct P I1

citizen(alice)← .

democrat(alice)← citizen(alice).

The negative body of r1 is removed because democrat(alice) ∈ I1 and r2 is not in the
reduct because republican(alice) 6∈ I1. The least model of P I1 coincides with I1, so I1 is
an answer set. For the same reason (symmetric argumentation), I2 is an answer set as
well.

Considering I3 we see that P I3 is just the fact f1, but there are two more elements in I3,
so it is not an answer set.

P I4 contains the positive part of both rules, i.e. P I4 is:

citizen(alice)← .

democrat(alice)← citizen(alice).
republican(alice)← citizen(alice).

Two atoms that are in the smallest model of P I4, inferred via the two rules, are missing
from I4: {democrat(alice), republican(alice)}

In practice, interpretations cannot be guessed in their entirety but are constructed step-
by-step in a search process called solving. A distinction between an unassigned atom
and an atom that has been found to be false is not possible when directly working with
interpretations like above; partial interpretations cannot be expressed, as everything that
is not explicitly included in the interpretation is effectively assumed to be false. This is
why interpretations are commonly represented by assignments, which explicitly encode
the truth value of atoms.

10

2.2. State-of-the-art ASP Systems

Definition 2.11. An assignment A is a set of literals. Assignments are consistent, i.e.
for any literal Ta ∈ A, its negation is not contained, i.e. Fa 6∈ A.

Literals can be related with assignments similar to interpretations: A |= l if l ∈ A. We
say that an atom p is unassigned if neither A |= Tp nor A |= Fp. For the case where
there are no unassigned atoms, the interpretation that corresponds to the assignment is
the subset of all positive literals in the assignment itself.

2.2 State-of-the-art ASP Systems
In this section we survey state-of-the-art ASP systems in order to highlight similarities
and differences in their approaches. As this work is concerned with the adoption of 2WL, a
technique common in SAT solvers and ground-and-solve ASP systems, for lazy-grounding
systems, we focus on the comparison of ground-and-solve and lazy-grounding systems.

The first ASP systems developed are based on the ground-and-solve approach, as it is less
involved and can be implemented in a more straight-forward manner than lazy-grounding.
We consider clasp as it uses two-watched literals and employs nogood learning and dlv
because it introduced must-be-true as a truth value, which turns out to be very effective
in lazy-grounding as well.

Only gradually, running into grounding issues with benchmarks and in industry settings,
the grounding bottleneck was recognized, which lead to the development of lazy-grounding
systems. With lazy-grounding systems being newer, and less time spent reasoning about
their efficiency and engineering them, they often fail to achieve the performance of
ground-and-solve systems. The main culprit of early lazy-grounding systems is that
they cannot leverage state-of-the-art techniques from ground-and-solve systems: Among
others, propagation using two-watched literals and heuristics are where the performance
of ground-and-solve systems stems from.

2.2.1 Ground-and-Solve

We describe two very successful systems that follow the ground-and-solve approach.

clingo

clingo1 is a ground-and-solve ASP system, written in C++2, which combines the
grounder gringo and the solver clasp [12]. clasp uses the 2WL strategy for propaga-
tion [13, Sec. 5.3] and implements conflict-driven nogood learning (CDNL) [13, Sec. 4.1]
in analogy to conflict-driven clause learning (CDCL) in SAT solvers [32, 37]. It is among
the fastest ASP systems according to [14]3.

1https://potassco.org/clingo/
2http://www.open-std.org/jtc1/sc22/wg21/
3See http://aspcomp2015.dibris.unige.it/aspcomp2015-iclp-slides.pdf for detailed

results

11

https://potassco.org/clingo/
http://www.open-std.org/jtc1/sc22/wg21/
http://aspcomp2015.dibris.unige.it/aspcomp2015-iclp-slides.pdf

2. Preliminaries

DLV

dlv [3] is a versatile ground-and-solve ASP system divided into front-end, intelligent
grounding, model generation and model checking components. It comes with front-
ends for various applications: (Extended) Disjunctive Logic Programming [24] (similar
to DISLOG [31] and DisLoP [1]), Diagnostic Reasoning, and the Structured Query
Language4). With [10] the authors add two important features: Firstly, they introduce
a third truth value, must-be-true, to enhance propagation. It marks atoms that must
be assigned true in order to yield an answer set, but where there is no proof found in
the search process (see Section 2.2.2 and Example 2.2 as well). Secondly, heuristics that
increase the odds of choices to be correct greatly improve overall performance.

A detailed account on the development, optimization and industrial application of dlv
is available [20].

2.2.2 Lazy-Grounding

In this section we briefly describe three different ASP systems that were designed to
circumvent the grounding bottleneck. They all build on top of computations as described
in [22].

ASPeRiX

ASPeRiX is one of the first ASP systems that were designed to avoid the grounding
bottleneck. It was first prototyped in 20085 and published in [17, 18], with a detailed
explanation in [19] and a C++ implementation. Its core algorithm evolved from the
concept of computation as in [22].

In the process of finding a solution, it extends a partial interpretation [19, Def. 4] in
form of a pair 〈IN,OUT 〉 of disjoint atom sets, where the atoms in IN belong to the
answer set that is currently searched and the atoms in OUT do not. Furthermore, the
system tracks the set of ground rules, R, which is lazily extended by grounding the
input program. Rules of the program r relate to a partial interpretation and are called
supported (B+(r) ⊆ IN), blocked (B−(r) ∩ IN 6= ∅), unblocked (B−(r) ⊆ OUT), and
applicable (supported and not blocked) [19, Def. 5].

The main concept in this ASP system is an ASPeRiX computation [19, Def. 7]: It
is a sequence of pairs 〈Ri, Ii〉 that captures ground rules and a partial interpretation
Ii = 〈IN,OUT 〉. The computation starts with 〈∅, 〈∅, {⊥}〉〉 and is inductively defined
through the rules propagation (monotonic; a new rule ri 6∈ Ri−1 can be ground from
the program such that it “fires”, i.e. its head is added to IN), choice (non-monotonic;
there are no rules that propagate, but the solver guesses whether an applicable rule fires,

4[3] references the 1999 version available from https://www.iso.org/standard/26196.html
and https://www.iso.org/standard/26197.html

5According to the project’s website
http://www.info.univ-angers.fr/pub/claire/asperix/#download

12

https://www.iso.org/standard/26196.html
https://www.iso.org/standard/26197.html
http://www.info.univ-angers.fr/pub/claire/asperix/#download

2.2. State-of-the-art ASP Systems

i.e. forces or prohibits its instantiation) and stability (no rules for propagation or choice
left). Through inductive definition of computations, it is guaranteed that the sequence
converges to an answer set iff there exists one [19, Thm. 2].

The most important take-away from ASPeRiX for this work, however is the introduction
of a third truth value which allows for more efficient convergence of above computations:
The truth value must-be-true indicates that an atom that is not in already in IN must
be in IN (cannot be in OUT) in order to find an answer set. It allows to mark certain
atoms for which a “proof”, i.e. a firing rule with the atom as its head, has not yet fired,
but must, at some point in the computation.

Example 2.2 ([19, Example 7]). Let ← not b. be a constraint whose body contains only
one literal not b with b 6∈ IN ∪OUT . In order to have an answer set, b must be in IN
so that the constraint is not applicable but b is not yet proved (it is not in the head of a
fired rule). Thus, one can only conclude that b must be true.

This leads to a reduction of the search space in propagation [19, Ex. 8] and also decreases
the size set of non-monotonic candidate rules for choice [19, Ex. 9]. Partial interpretation
and computation are modified to consider must-be-true in [19, Def. 8] and [19, Def. 11]
accordingly. Again, there is a correspondence to answer sets [19, Thm. 3].

ASPeRiX shows how lazy grounding ASP systems can leverage must-be-true as a third
truth value. How unit propagation is affected by must-be-true is a central topic in
Chapter 3.

OMiGA

OMiGA6 [6], written in Java7, uses computation to explore the search space similar to
ASPeRiX. In contrast to that it uses a so called Rete network [11] as dominating data
structure: Rete is an approach to search large collections of objects for those matching
a pattern, and it was initially designed to be used in expert systems and rule based
production systems, where there are many rules to consider.

In OMiGA the network is used to: (a) store ground atoms, (b) retrieve ground atoms for
the purpose of grounding new rules, (c) find applicable non-ground rules (propagation in
ASPeRiX), and (d) find rules to guess on (corresponding to choice in ASPeRiX). While
ASPeRiX re-evaluates applicability of non-ground rules at each step in the computation,
OMiGA keeps grounded atoms and partial ground rule interpretations in the network. In
choosing a Rete network to store these data, OMiGA trades space for time, as information
retrieval from the network is faster than re-computation of applicability.

OMiGA was also extended for learning of non-ground rules in [34], analogous to conflict
driven nogood learning as in clasp and clause learning in SAT solvers.

6http://www.kr.tuwien.ac.at/research/systems/omiga/
7https://oracle.com/java/

13

http://www.kr.tuwien.ac.at/research/systems/omiga/
https://oracle.com/java/

2. Preliminaries

GASP

GASP [26, 27]8 is implemented in SICStus Prolog 49. It represents interpretations as
finite domains and uses Constraint Logic Programming.

2.3 Two Watched Literals

As briefly mentioned in Section 1.1, Two Watched Literals (also “Two Literal Watching”,
2WL, [25, 36]) is an algorithm for unit propagation commonly used in SAT solvers (cf. [16,
Section 2.2.2, p. 94]). This section is devoted to a description of the method, first in the
context of SAT, then about its application in ASP solving.

In SAT solving, formulas are typically input to solvers in conjunctive normal form (CNF),
i.e. conjunctions of disjunctive clauses of classical literals10: ψ = (l1,1 ∨ · · · ∨ l1,k1) ∧
· · · ∧ (ln,1 ∨ · · · ∨ ln,kn). As all disjunctive clauses are connected through conjunction, all
of them must evaluate to true for the formula to be satisfied. Each disjunctive clause
evaluates to true if at least one literal does. This property is exploited by SAT solvers to
infer assignments. We call a disjunctive clause unit if all but one literal in the clause
evaluate to false, and the last remaining literal has no truth value, i.e. the variable in the
literal is unassigned. In this case, we say that the clause propagates and the unassigned
varaible is assigned s.t. the disjunctive clause evaluates to true. Consider [30] for efficient
algorithms in SAT solvers.

Example 2.3. Consider the formula ψ = (a1 ∨ ¬a2 ∨ a3 ∨ ¬a4) ∧ (¬a1 ∨ ¬a2 ∨ a3 ∨ a4)
It yields two disjunctive clauses, ψ = φ1 ∧ φ2 with φ1 = a1 ∨ ¬a2 ∨ a3 ∨ ¬a4 and
φ2 = ¬a1 ∨ ¬a2 ∨ a3 ∨ a4, both of which have to be satisfied in order for ψ to be satisfied.
As the solver is evaluating ψ under different (partial) assignments for atoms a1, . . . , a4
it “watches” two literals per clause. This way it can detect whether a clause is unit.
Whenever an atom a is assigned it considers the clauses where a is a watched literal for
propagation. Conversely, all other clauses, where a is not watched, are guaranteed to not
be unit.

The concept of a nogood originates in constraint programming (CP) (cf. [13, 28, 29]),
where the goal is to find an assignment for variables such that given constraints are
satisfied. SAT and ASP can be viewed as specializations of CP. For example, in a problem
containing the variable x and the constraint x > 1 one can forbid the value x = 1. The
assignment x = 1 is a nogood. In this work, nogoods are only used as representations of
boolean constraints. Unit propagation is sometimes also referred to as boolean constraint
propagation.

8https://users.dimi.uniud.it/~agostino.dovier/GASP/ and
https://users.dimi.uniud.it/~agostino.dovier/CLPASP/

9https://sicstus.sics.se/
10The DIMACS format is commonly used to encode concrete formulas.

14

https://users.dimi.uniud.it/~agostino.dovier/GASP/
https://users.dimi.uniud.it/~agostino.dovier/CLPASP/
https://sicstus.sics.se/

2.3. Two Watched Literals

Definition 2.12 (cf. [28]). A nogood is a set {σ1, . . . , σn} of literals that cannot be
extended to a solution.

First proposed by Gebser et al. [12], in the solver components of ASP systems, nogoods
take the role of clauses in SAT solvers. Nogoods correspond to partial assignments
that cannot be extended to an answer set, and are derived from rules. clasp uses a
translation procedure based on Clark’s completion [4], described in [13, Section 3], which
requires knowledge of the full ground program. The Alpha system uses a different scheme
defined in [35, Definition 5] and other methods are conceivable.

Example 2.4. For example, given a rule r of the form a1 ← a2, a3, not a4, the nogood
δ = {Fa1,Ta2,Ta3,Fa4} excludes assignments where the body of the rule is satisfied, but
its head is not: An interpretation I that satisfies all elements of B(r) = {a2, a3,not a4}
and the negation of the only element of H(r), cannot be a model of r (Definition 2.7).

Given a nogood δ and an assignment A with δ ⊆ A, then no interpretation derived from
A can be a solution. This property allows for propagation: If A ∩ δ = {σ}, we say that δ
is unit or unit on σ. In order to obtain a solution we may extend A to A′ so that σ ∈ A′.

The number of nogoods generated from a program is proportional to the size of the
corresponding ground program (depending on the translation scheme used). Thus, one
can expect many nogoods, possibly millions, to be generated in the process. However,
after constructing nogoods from the input program (or parts thereof, as in the lazy-
grounding case) and propagating truth values, it is important to efficiently evaluate
whether there is a nogood that is unit under the extended assignment. This is where the
benefits of 2WL in SAT (over clauses) and in ASP (over nogoods) align.

For each nogood, two distinct and unassigned literals are chosen to be watched. When
one of these literals is assigned, a different literal (distinct from the second watched
literal) in the nogood is chosen as the new watched literal. This process is continued
until there are no two distinct literals available in the nogood. Then the nogood is unit
at this point and a new assignment can be generated.

Example 2.5. Consider Figure 2.1. It shows the nogood δ = {Fa1,Ta2,Fa3,Ta4}
(which might be part of the representation of a rule in an ASP program, or the nogood
corresponding to φ1 from Example 2.3) in the context of propagation using 2WL. The
watched literals are marked by arrows.

Initially, the two watched literals are selected arbitrarily. Transitioning from State 1
(empty assignment) to State 2, the solver will not check whether δ is unit, because Ta3 is
not watched. When a2 is assigned to true, the solver checks δ. As a2 is assigned, Ta2
cannot be a watched literal anymore, but δ also is not unit, because a1 is still unassigned.
The pointer that previously pointed at Ta2 is moved to Fa1. Note that this is the only
option, as the atoms of all other literals are already assigned and Ta4 is already being
pointed at.

15

2. Preliminaries

Processing the assignment of a1, again, δ is considered. Now, there is no unassigned
literal left that is not also watched. The nogood is unit. The truth value of a4 is inferred
to be false. At this point (State 5), pointer placement is largely irrelevant, because δ is
satisfied.

16

2.3. Two Watched Literals

Fa1 Ta2 Fa3 Ta4State 1

A1 = ∅

Initially, pointers are placed arbitrarily.

a3 is assigned false.

Fa1 Ta2 Fa3 Ta4State 2

A2 = {Fa3}

Pointers were not checked, as Fa3 is not
watched.

a2 is assigned true.

Fa1 Ta2 Fa3 Ta4State 3

A3 = {Fa3,Ta2}

No pointer must point at an assigned
atom, therefore it is moved.

a1 is assigned false.

Fa1 Ta2 Fa3 Ta4State 4

A4 = {Fa3,Ta2,Fa1}

Only one literal is left unassigned.

The nogood is unit, a4 is assigned false.

Fa1 Ta2 Fa3 Ta4State 5

A5 = {Fa1,Ta2,Fa3,Fa4}

a4 was assigned via propagation,
s.t. the nogood is satisfied.

Figure 2.1: Step-by-step visualization of unit propagation with Two Watched Literals.

17

CHAPTER 3
Three Watched Literals

The central idea of propagation is to infer (propagate) new truth values from known truth
values and nogoods, derived from the input program, as briefly explained in 1.1.

In this chapter we extend Two Watched Literals (2WL), and present an algorithm that
accounts for must-be-true as third truth value. We call the new algorithm Three Watched
Literals (3WL).

For the description of 3WL we will largely disregard the original structure of the input
logic program (both forms: with variables and ground), i.e. its rules. We are only
concerned with the solver component of the ASP system which deals with nogoods
that in turn represent rules. The task of translating rules to nogoods is left to the
grounder component and abstracted away for our purposes. However, we will still refer
to a set of nogoods, meaning all nogoods that were generated from the input program
by the grounder, and passed to the solver. Note that we do not require that these
nogoods represent all rules in the ground program, which would defeat the purpose of
lazy-grounding.

The propagation algorithm described here will usually be called in alternation with
the grounder component (among other procedures), searching for an assignment that
represents an answer set. Visualizing which part of the ASP system we are concerned
with in this work, we show the architecture of the Alpha system in Figure 3.1. Nogood
storage implements what we call watch structures in the following sections of the chapter,
and the assignment component directly implements assignments as defined in the next
section.

Concerning the control flow inside the solver system, we are not concerned with conflict
resolution, but propagation only. As described below, the propagation algorithms is
designed so that an implementation can stop computation as soon as a conflict is detected,
but the resolution part is delegated to other components of the system.

19

3. Three Watched Literals

Grounder

Parser

Lazy-
Grounding

Solver
Nogood
Storage

Assignment

Conflict
Resolution

Decision
Heuristic

partial Assignment Answer-Set

Nogoods

Choice
Atoms

Program

Figure 3.1: Architecture of the Alpha system [21, Figure 1]. Data flow is indicated
by arrows. Grounder (left) and CDNL-based solver (right) interact cyclically for lazy-
grounding. The components implementing Three Watched Literals (Nogood Storage and
Assignment) are highlighted in red italics and have dotted borders.

3.1 Extended Notions for Lazy-Grounding

In this section we amend the definition of literals and nogoods for the purpose of
propagation with must-be-true. Atoms remain unchanged in their definition, however we
will allow literals to not only be true and false but also must-be-true. Also, we will use
assignments as sequences (not sets) to exploit the ordering of literals in the assignment
for our method.

For the remainder of the work we consider boolean signed literals, which mean atoms
and their negations in the classical sense, and, more generally, signed literals, which also
allow for a third sign that allows modeling must-be-true.

Definition 3.1. A boolean signed literal σ is of the form Tv or Fv where v is an atom
and Tv expresses that v is true, and Fv that it is false.

Definition 3.2. A signed literal µ is of the form Tv, Fv, or Mv where v is an atom
and Tv expresses that v is true, Fv that it is false and Mv that it must-be-true.

With the introduction of literals like Mv, we also explicitly define two forms of taking
the complement of such literals.

Definition 3.3. Strong complement, denoted by µs, and weak complement, µw, mapping
Fv to Tv and Fv to Mv respectively, of a signed literal are defined by the following truth
table:

20

3.1. Extended Notions for Lazy-Grounding

µ µs µw

Tv Fv Fv
Mv Fv Fv
Fv Tv Mv

A literal does not only conflict with its strong complement but also with its weak
complement.

Definition 3.4. Two literals µ1, µ2 are said to conflict in case µ1 = µ2
w or µ1

w = µ2.

Occasionally the notation µ = Xv will be used to express that µ is a literal of v where
X ∈ {T,M,F}, i.e. µ is over the atom v, but the sign is not important.
Also, we will need to find the boolean signed literal for a given signed literal.

Definition 3.5. The boolean projection of a signed literal µ, denoted B(µ) translates a
signed literal into a boolean signed literal and is defined as follows:

µ B(µ)
Tv Tv
Mv Tv
Fv Fv

We define assignments similar to [13, Section 2, p. 3]. However, here assignments contain
not boolean signed literals, but signed literals, and the notation for expressing a partial
assignment differs.

Definition 3.6. An assignment A is a sequence (µ1, . . . , µn) of signed literals µi = Xvi
with 1 ≤ i ≤ n, or the special sequence conflict, indicating a conflict.

Below, assignments are sometimes also used as sets, in which case the set represented by
some assignment is simply the set of all signed literals contained in the sequence.
For an assignment A = (µ1, . . . , µi, . . . , µj , . . . , µn), we denote its size as |A| with |A| = n
and |conflict| = 0, and a partial assignment, which is a sub-sequence constructed from
an assignment, as A[i, j] = (µi, . . . , µj) where 1 ≤ i < j ≤ n. Furthermore, we reference
a single literal using A[i] = µi for 1 ≤ i ≤ n.
The assignment obtained by appending the literal µ to A = (µ1, . . . , µn) is denoted by

A ◦ µ =
{

conflict if {µs, µw} ∩A 6= ∅ or A = conflict
(µ1, . . . , µn, µ) otherwise

For every assignment, we can also construct a corresponding boolean assignment, which
is obtained by applying the boolean projection to all contained literals. We overload the
function B for assignments. Boolean assignments are just sets, and not sequences like
assignments are, because we do not require any ordering in this work.

21

3. Three Watched Literals

Definition 3.7. A boolean assignment is a set of boolean signed literals derived from an
assignment, denoted B(A) and defined as B(A) = {B(µ) ∈ A}, where B applied to literals
is the boolean projection.

Relating assignments with literals and atoms, we say that an atom v is assigned under
some assignment A if any literal containing it is in A, i.e. if A ∩ {Tv,Mv,Fv} 6= ∅. We
say that an atom is unassigned under A if it is not assigned under A.

Definition 3.8. A literal µ1 is said to conflict with A in case it conflicts with any
µ2 ∈ A.

We extend Definition 2.12. For propagation with must-be-true, it is important to qualify
literals in nogoods that correspond to heads of rules, as the head might only propagate
to true in case all positive literals in the body are true as well (but none of them is
must-be-true).

Definition 3.9 (cf. [21]). The head of a nogood δ, is a single literal H(δ), for which
H(δ) ∈ δ. Not every nogood must have a head.

We need two variants of a nogood being unit. One that accounts for must-be-true and
one that does not, i.e. it treats Mv the same as Tv.

Definition 3.10. A nogood δ is strongly unit under an assignment A if δ \A = H(δ).
Only nogoods with a head can be strongly unit.

Note that any nogood that is strongly unit under some assignment is also weakly unit,
but not the other way round. Below, nogoods are sometimes referred to be unit which
amounts to stating that they are weakly unit. Also, when clear from context, reference
to a particular assignment is omitted.

Violation of a nogood (signaling that the assignment under question violates a rule) does
not distinguish between true and must-be-true.

Definition 3.11. A nogood δ is violated under an assignment A if δ ⊆ B(A).

Definition 3.12. A nogood δ is satisfied under an assignment A if there is no A′ ⊇ A
s.t. δ is violated under A′.

Definition 3.13. A nogood δ is weakly unit under an assignment A if δ \ B(A) = {σ}

Example 3.1. Consider the nogoods δ1 = {Ta1,Fa2}, δ2 = {Ta3,Fa4} with the head of
δ2 being H(δ2) = Fa4 and how they relate to the following assignments:

22

3.2. Watch Structures

Assignment State of δ1 State of δ2

A1 = {Ta1,Ta3} weakly unit strongly unit
A2 = {Ma1,Ma3} weakly unit weakly unit
A3 = {Fa1,Fa3} satisfied satisfied
A4 = {Fa2,Fa4} weakly unit weakly unit
A5 = {Ta1,Fa3} violated
A6 = {Ma1,Fa3} violated
A7 = {Ta3,Fa4} violated
A8 = {Ma2,Ta4} satisfied satisfied

Note that for an assignment A, any nogood that is satisfied under A will also never be
unit, and never propagate, for any A′ ⊇ A.

Definition 3.14. A nogood δ is silent under some assignment A if δ is not violated by
A and δ is not unit wrt. A.

Note the difference between some δ being silent vs. satisfied under an assignment: With
δ being silent under A1, there might well be some A′1 ⊃ A1 under which δ is unit or
violated. However δ satisfied under A2 is stronger and implies that there is no larger
assignment A′2 ⊃ A2 such that δ is not satisfied under A′2. It follows that δ can neither
be unit nor violated under A′2.

3.2 Watch Structures
In Section 2.3 we did not detail how a data structure that stores which two literals are
watched for each nogood might look like. References to the watched literals are illustrated
in Figure 2.1 as pointers, and indeed we are suggesting some form of lookup table: As a
new literal µ is added to the assignment, the propagation algorithm will resolve the set
of nogoods containing µ as a watched literal. We define an abstract data structure for
this lookup.

Definition 3.15. A watch structure is a function that maps an atom a to a triple
containing sets of nogoods, the so called watch sets of a:

∆(a) = 〈W+,W−,Wα〉.

For some signed literal µ = Xa let

∆±(µ) =
{
W+ if µ = Ta or µ = Ma
W− if µ = Fa

}
with ∆(a) = 〈W+,W−,Wα〉.

For some signed literal µ = Xa or an atom a let

∆α(µ) = ∆α(a) = Wα with ∆(a) = 〈W+,W−,Wα〉.

23

3. Three Watched Literals

Atom
v1
v2

...

δ1 δ2 . . .

δ3 δ4 . . .

δ5 δ6 . . .

+ −
α

Figure 3.2: Example layout of a watch structure.

When we refer to the “nogoods in ∆”, we mean all nogoods in all watch sets of all atoms
that ∆ is defined for. For the remainder of the work we further assume that all known
nogoods, i.e. all those generated by the grounder, are in ∆ and only their membership in
watch sets, i.e. their watched literals, change.

The functions ∆±(µ) and ∆α(µ) can for example be implemented through table lookups
(visualized in Figure 3.2), which take constant time. When a literal Xa is appended
to the assignment, all nogoods that might have become unit can be found in the sets
∆±(Xa) and ∆α(Xa).

A crucial part of this work is the relation between watch structures and assignments: In
order to use lookups in watch structures for efficient propagation, we must define which
atoms should be considered as watched literals. We first consider single nogoods, and
then extend the definition to watch structures as sets of nogoods. Given a nogood δ and
an assignment A we call the subsets of literals in δ that might be watched the candidate
sets. For the case of 2WL, there is just one candidate set, which is the set of unassigned
literals. For ∆± we use the same definition. However, with must-be-true, we must also
consider candidates for ∆α.

Definition 3.16. The candidate sets of a nogood δ under an assignment A are subsets
of the nogood and defined as follows:

C±(δ, A) = {σ ∈ δ | σ 6∈ B(A)}

Cα(δ, A) = {Tv ∈ B(δ) | Tv 6∈ A}

Intuitively, Cα(δ, A) is the set of positive body literals in δ that are not assigned to be
true. Based on the definition of candidates, we say that a watch structure watches an
assignment if the watch sets of all nogoods contain candidates so that unit nogoods can
be detected by checking the watch sets for newly assigned atoms.

Definition 3.17. A watch structure ∆ watches an assignment A if for every nogood
δ ∈ ∆ holds:

24

3.3. Unit Propagation

1. |C±(δ, A)| ≥ 2 implies there exist σ1, σ2 ∈ C±(δ, A) such that σ1 6= σ2 and δ ∈
∆±(σ1) and δ ∈ ∆±(σ2), and

2. Cα(δ, A) 6= ∅ implies that there is exactly one σ ∈ Cα(δ, A) with δ ∈ ∆α(σ).

Given ∆ watching A and a new assignment for some atom µ, the nogoods that are
candidates for propagation are those in ∆±(µ) (in case µ 6∈ A, thus µ changes from
unassigned to true, must-be-true or false) and ∆α(µ) (in case µ ∈ A, thus µ changes from
must-be-true to true).

Note that with ∆ watching A and extending the assignment A′ = A ◦ µ, now ∆ does not
trivially watch A′.

Considering a set of nogoods and an assignment, one way to ensure that no nogood
will propagate under the assignment is to require all nogoods being silent under the
assignment. We combine this condition with a watch structure watching an assignment
and use it as the goal state for 3WL.

Definition 3.18. A watch structure ∆ silently watches assignment A in case all nogoods
δ ∈ ∆ are silent under A and ∆ watches A.

3.3 Unit Propagation
In this section we detail Three Watched Literals (3WL). The process is split into four
algorithms, varying in level of abstraction:

Algorithm 3.1 is the most high-level algorithm. Given a new literal to append to an
assignment, it first appends the literal and then applies Algorithm 3.2 repeatedly,
until no new assignments can be inferred. The input watch structure must be
silently watching the assignment.

Algorithm 3.2 is concerned with processing a single assignment. Given an index in the
assignment it calls 3.3, and in case the literal is of the form Ta also calls 3.4.

Algorithm 3.3 handles propagation or chooses a new watched literal for nogoods that
are weakly unit, based on ∆±.

Algorithm 3.4 handles propagation or chooses a new watched literal for nogoods that
are strongly unit, based on ∆α.

The solver component initially and after each decision expands its assignment by inferring
new literals through unit propagation. We define Algorithm 3.1 “exhaustively”, i.e. in
such a way that it will only terminate when no new assignments can be inferred through
unit propagation or a conflict was reached. It takes the current assignment A and a
watch structure ∆ that silently watches A, and the next literal to be appended to the

25

3. Three Watched Literals

Algorithm 3.1: UnitPropagateAll(A, ∆, µ)
Input: An assignment A, a watch structure ∆, a signed literal µ.
Output: The assignment A, extended by means of unit propagation with literal

A[j] and ∆ with updated watches.
1 〈A1,∆1〉 ← 〈A ◦ µ,∆〉
2 i← 1
3 while |Ai| ≥ |A|+ i do
4 〈Ai+1,∆i+1〉 ← UnitPropagate(Ai, ∆i, |A|+ i)
5 i← i+ 1
6 end
7 return 〈Ai,∆i〉

Algorithm 3.2: UnitPropagate(A, ∆, j)
Input: An assignment A, a watch structure ∆, an index j.
Output: The assignment A, extended by means of unit propagation and ∆ with

updated watches.
1 µ← A[j]
2 〈A′,∆′〉 ← UnitPropagateWeakly(A, ∆, µ)
3 if µ is of the form Ta then
4 〈A′′,∆′′〉 ← UnitPropagateStrongly(A′, ∆′, µ)
5 return 〈A′′,∆′′〉
6 end
7 return 〈A′,∆′〉

assignment µ. In the first line of the algorithm, A1 is generated by appending µ to A.
However, ∆, the input watch structure, equals ∆1. So while ∆ silently watches A, this
might not be the case for ∆1 and A1, because A1 contains one more literal that might
lead to some nogood in ∆1 being unit. This triggers a domino effect of unit propagation.

The loop in lines 3 to 6 will then restore ∆i+1 to silently watch Ai+1[1, |A| + 1]. At
the point where all all nogoods are silently watched again, the loop terminates because
|Ai| < |A|+ i. In case a conflict is reached in any iteration, the loop will break, because
we carefully defined |conflict| = 0 and i is at least one.

Before new assignments are resolved to the nogoods that must be checked, Algorithm
3.2 is invoked. It serves the purpose to decide which propagation algorithm(s) should be
called. Algorithm 3.3 is always called, but it is sufficient to Algorithm 3.4 only if an atom
was assigned to be true, i.e. µ is of the form Ta. This is because the relevant candidate
set C±(δ, A) changes only as atoms are assigned to true.

Algorithm 3.3 shows how unit propagation is used to infer assignments from watched
nogoods. Its input is the current assignment A, a watch structure ∆ and the literal µ
that has been newly assigned and should be processed. Tracing the invocation of the

26

3.3. Unit Propagation

Algorithm 3.3: UnitPropagateWeakly(A, ∆, µ)
Input: An assignment A, a set of watched nogoods ∆, and a literal µ ∈ A.
Output: A extended by means of nogood propagation and ∆ with updated

watches.
1 foreach δ ∈ ∆±(µ) do
2 if δ is violated then
3 return 〈conflict,∆〉
4 else if δ is strongly unit then
5 A← A ◦H(δ)s

6 else if δ is weakly unit with σ unassigned then
7 A← A ◦ σw
8 else
9 foreach σ ∈ δ do

10 ∆±(σ)← ∆±(σ) \ {δ}
11 end
12 Let σ1, σ2 ∈ C±(δ, A) be arbitrary
13 ∆±(σ1)← ∆±(σ1) ∪ {δ}
14 ∆±(σ2)← ∆±(σ2) ∪ {δ}
15 end
16 end
17 return 〈A,∆〉

algorithm we notice that µ in Algorithm 3.3 corresponds with µ in Algorithm 3.2 and
Ai[|A|+ i] in Algorithm 3.1.

The set of nogoods that are touched by the algorithm is ∆±(µ), i.e. all nogoods δ where
µ is one of the watched literals. In lines 2 to 7 all cases that require no change of watched
literals are handled:

• δ is violated (lines 2-3) and all propagation can be stopped because a conflict was
reached.

• δ is strongly unit (lines 4-5) and a new assignment for the head literal of δ is
generated by taking its strong complement.

• δ is weakly unit (lines 6-7) and a new assignment for some literal is generated based
on the weak complement.

Note that these three cases are not mutually exclusive, e.g. a nogood might be strongly
unit and weakly unit under the same assignment. In this case, the algorithm will run
into the branch in lines (4-5), so that propagation to true overrides propagation to
must-be-true. Without checking for δ being strongly unit, cases where assignments to

27

3. Three Watched Literals

false lead to δ being strongly unit would be overlooked, as Algorithm 3.4 is only called
for assignments to true.

With the above cases handled, there must be at least two literals in the candidate
set C±(δ, A), but µ is assigned, so a new watched literal has to be found for δ to be
maintained. In lines 9 to 11 all watches are removed, or rather δ is removed from the
watch sets of all its watched literals. Then, in lines 12 to 14, δ is again inserted into the
watch sets for two arbitrary candidates.

Algorithm 3.4: UnitPropagateStrongly(A, ∆, µ)
Input: An assignment A, a watch structure ∆, and a literal µ ∈ A.
Output: A extended by means of nogood propagation.

1 foreach δ ∈ ∆α(µ) do
2 if δ is strongly unit then
3 A← A ◦H(δ)s

4 else if Cα(δ, A) 6= ∅ then
5 ∆α(µ)← ∆α(µ) \ {δ}
6 Let σ ∈ Cα(δ, A) be arbitrary
7 ∆α(σ)← ∆α(σ) ∪ {δ}
8 end
9 end

10 return 〈A,∆〉

Algorithm 3.4 works in a similar way but without the need to check for violations/conflicts
and nogoods being weakly unit, as these cases are handled by Algorithm 3.3. Further,
by the definition of a nogood δ being strongly unit, we know that all positive literals
(except the head literal) of δ must be assigned to true, and not only to must-be-true for
propagation.

Theorem 3.1. Algorithm 3.1 is sound, i.e. given an assignment A, a watch structure
∆, a literal µ, and the following precondition P, it results in a new assignment A′ and a
new watch structure ∆′ such that the postconditions P′1 through P′3 all hold:

P ∆ silently watches A.

P′1 If µ does not conflict with A and there are assignments that can be inferred by means
of unit propagation without a conflict, then ∆′ silently watches A′.

P′2 If µ does not conflict with A but a literal inferred from ∆ and A ◦ µ conflicts with A,
then A′ = conflict.

P′3 If µ conflicts with A, then A′ = conflict and ∆′ = ∆.

28

3.3. Unit Propagation

Sketch of Proof 3.1. Before establishing P′1 and P′2 observe the loop in lines 3-6 of
Algorithm 3.1 closely:

Initialization Construct A1 by appending µ to A (line 1). Initialize some loop counter
i = 1 (line 2). It points at the next literal on which propagation should be performed,
i.e. initially µ = A1[|A|+ 1].

Iteration Let the pair Si+1 = 〈Ai+1,∆i+1〉 = UnitPropagate(Ai,∆i, |A|+ i) (line 4)
denote the output of the i-th iteration which performs propagation on assignment Ai,
watch structure ∆i and literal Ai[|A|+ i] (line 1). Conversely Si can be interpreted
as the input for the (i+ 1)-th iteration. Analysis of the difference between ∆i and
∆i+1 is what resembles soundness below.

Termination Because the number of literals in all nogoods δ ∈ ∆ is finite, for some
i = k the loop invariant (line 3) is violated, i.e. |Ak| < |A|+k. Intuitively, this is the
case if no new assignment can be inferred (Sk−1 = 〈Ak−1,∆k−1〉 and Sk = 〈Ak,∆k〉
with Ak−1 = Ak) or a conflict is reached (Ak = conflict). When the loop terminates,
〈A′,∆′〉 = Sk is returned (line 7).

We consider two subsequences of the assignment An: ALn is the “left” subsequence,
which contains all assignments that already are processed and will not cause propagation.
Conversely, ARn is the “right” subsequence, containing all literals that might still cause unit
propagation. As expected, the two subsequences add up to the full sequence An = ALn ∪ARn .

Towards showing P′1 and P′2 from the preconditions, assume that µ does not conflict
with A and let P(n) = (I) ∨ (II) where

(I) Let ALn = An[1, |A|+ n− 1], ARn = An[|A|+ n, |An|].

(a) The structure ∆n watches ALn , and
(b) for each nogood δ in ∆n:

(i) If δ is weakly unit under An, then ∃µ ∈ ARn : δ ∈ ∆±n (µ).
(ii) If δ is strongly unit under An, then ∃Tv1 ∈ ARn : δ ∈ ∆α

n(v1) or ∃Fv2 ∈
ARn : δ ∈ ∆±n (Fv2).

(iii) If δ is violated under An, then ∃µ ∈ ARn : δ ∈ ∆±n (µ).

(II) An = conflict

Overview and Intuition. Using P(n) above, we show that P′1 and P′2 follow from
the preconditions by induction, closely following the structure of Algorithm 3.1 as outlined
above. Initially (n = 0, A = A0 = A0

L and A0
R = ∅), we require the input nogoods ∆ to

all be silent through Pre as a “stable” starting point. While new literals will be appended
to the assignment on the “right” side, we will show that at termination for some n = k
as hinted above, ARk = ∅ again. From there we establish the postconditions. For the

29

3. Three Watched Literals

induction step deriving P(i+1) from P(i) we will “move” exactly one literal µi from right
to left (µi 6∈ ALi , µi ∈ ARi and µi ∈ ALi+1, µi 6∈ ARi+1 as well as ALi+1 = ALi ∪ {µi}). Here,
properties (I)(b) are crucial, as they establish the connection between ARi and ALi and
cover the propagation scenarios for µi. Note that the “right” subsequence “grows” (with
the exception of µi), i.e. ARi \ {µi} ⊆ ARi+1 because of new literals inferred by propagation.

Base Case. Concerning the input assignment A0 = A and ∆0 = ∆, P(0) directly
follows, because (I)(a) is given by Pre, and all nogoods being silent (also given by Pre)
implies that the antecedents of (I)(b)(i), (I)(b)(ii), (I)(b)(iii) are false.

Induction Hypothesis. P(i) holds for some i.

Induction Step. For two consecutive iteration steps of the loop Si = 〈Ai,∆i〉 and
Si+1 = 〈Ai+1,∆i+1〉, assume P(i). Then show P(i)→ P(i+ 1) as follows:

1. To show (I)(a) let δ ∈ ∆: If B(µi) 6∈ δ, then δ stays silent and watched. For
B(µi) ∈ δ, consider the following two cases:

a) Assume µi 6= Tv. Then Algorithm 3.3 is invoked and processes all nogoods
δ ∈ ∆±(µ). For any δ, if |C±(δ, A)| ≥ 2, then δ is inserted into the watch sets
for exactly two candidates in lines 11-14.

b) Assume µi = Tv. Then Algorithm 3.3 is invoked and behaves like for the
case where µi 6= Tv, i.e. if C±(δ, A) ≥ 2 then δ is watched. Additionally,
Algorithm 3.4 is invoked and processes all nogoods δ ∈ ∆α(µ). For any δ, if
|Cα(δ, A)| 6= ∅, then δ is inserted into the watch set of exactly one candidate
in lines 4-7.

If µi ∈ ∆ then the premises of the “watch” property regarding candidate sets are
false, or pointers were moved such that µi does not watch δ anymore.

2. To show (I)(b)(i), let δ ∈ ∆ and assume δ is weakly unit under Ai+1 (else, (I)(b)(i)
trivially holds):

a) Assume δ is weakly unit under Ai.
Then ∃µ ∈ ARi : δ ∈ ∆±i (µ) by the induction hypothesis.
Assume towards contradiction that µ = µi. As δ ∈ ∆±i (µ), the weak com-
plement of µ is appended to the assignment (Algorithm 3.3, line 7), thus
µw ∈ Ai+1. Then δ is not weakly unit under Ai+1 contradicting our assump-
tion.
Therefore, µ 6= µi. From ARi \ {µi} ⊆ ARi+1, it follows that µ ∈ ARi+1. Further,
we see that δ ∈ ∆±i (µ) implies δ ∈ ∆±i+1(µ) because of the behavior of Algorithm
3.3 in case µ 6= µi and δ being weakly unit: The set of nogoods that are
considered for processing is indicated in line 1 and consists of exactly those

30

3.3. Unit Propagation

nogoods that are element of ∆±i (µ). From µ 6= µi we know that the algorithm
will not consider δ and specifically not add or remove it from any watch set
∆±. Thus we have ∃µ ∈ ARi+1 : δ ∈ ∆±i+1(µ), i.e. (I)(b)(i) holds.

b) Assume δ is not weakly unit under Ai.
Then C±(δ, Ai) ≥ 2 and because ∆i watches Ai (ind. hyp.), we have ∃σ1, σ2 ∈
δ : σ1 6= σ2∧δ ∈ ∆±i (σ1)∧δ ∈ ∆±i (σ2). We distinguish on whether µi coincides
with one of the watched literals:

i. Case µi 6= σ1 ∧ µi 6= σ2.
∆±i (σ1) = ∆±i+1(σ1) and ∆±i (σ2) = ∆±i+1(σ2), as watch sets are only
modified in case σ1 = µi and respectively σ2 = µi (see Algorithm 3.3:
Only nogoods that are being iterated over in line 1 are being removed
from any watch sets in line 10). Both σ1 and σ2 are in ARi+1, because
ARi \ {µi} ⊆ ARi+1, thus we have (I)(b)(i).

ii. Case either µi = σ1 or µi = σ2.
This means, processing of µi makes δ become unit but while δ is processed
by Algorithm 3.3 it is not unit yet, i.e., another nogood processed after δ
is unit and the assignment done there leads to δ being unit. Without loss
of generality (σ1 and σ2 arbitrary in C±(δ, Ai)), let µi = σ1. Therefore,
σ1 6∈ ARi+1. While processing δ, in Algorithm 3.3 the branch in line 8 is
taken (otherwise δ cannot be unit under Ai+1). All candidates C±(δ, Ai)
except σ1, and therefore any literals σ′1, σ′2 (arbitrarily) chosen in the
algorithm, are either unassigned under Ai+1 or in ARi+1. As δ is unit
under Ai+1, exactly one of these must be unassigned. Assume (w.l.o.g.,
symmetric) σ′1 unassigned under Ai+1 and σ′2 ∈ ARi+1. Then (I)(b)(i)
holds for σ′2.

iii. Case σ1 = µi ∧ σ2 = µi is impossible because σ1 6= σ2.

3. To show (I)(b)(ii), let δ ∈ ∆ and assume δ is strongly unit (and therefore also
weakly unit, i.e. H(δ) = Tv and Mv ∈ Ai+1) under Ai+1 (else, (I)(b)(ii) trivially
holds): we distinguish whether B(µi) ∈ δ, i.e. whether the literal being processed is
a watch for δ.

a) Case δ is strongly unit under Ai.
i. Case B(µi) ∈ δ, then Algorithm 3.3 (line 5) assigns H(δ), i.e. H(δ)s ∈
ARi+1, and therefore δ cannot be strongly unit under Ai+1 which contradicts
the assumption that δ is weakly unit under Ai+1.

ii. Case B(µi) 6∈ δ. Because δ is strongly unit under Ai and by the induction
hypothesis we have ∃Tv1 ∈ ARi : δ ∈ ∆α

i (v1) or ∃Fv2 ∈ ARi : δ ∈ ∆±i (Fv2).
From B(µi) 6∈ δ it follows that µi 6= Tv1 ∧ µi 6= Fv2.
From ARi \ {µi} ⊆ ARi+1, it follows that if Tv1,Fv2 exist, they are in ARi+1.
Also, δ ∈ ∆α

i (v1) implies δ ∈ ∆α
i+1(v1) and δ ∈ ∆±i (Fv2) implies δ ∈

∆±i+1(Fv2) because δ is strongly unit and B(µi) 6∈ δ, i.e. no algorithm will

31

3. Three Watched Literals

change the watches that contain δ. So we have ∃Tv1 ∈ ARi+1 : δ ∈ ∆α
i+1(v1)

or ∃Fv2 ∈ ARi+1 : δ ∈ ∆±i+1(Fv2), i.e. (I)(b)(ii).

b) Case δ is not strongly unit under Ai. Then, B(Ai) \ δ 6= ∅.

i. Case B(µi) 6∈ B(Ai), i.e., none of the literals of δ is processed in this step.
Since δ is strongly unit under Ai+1 and not strongly unit under Ai it holds
that δ \ARi+1 6= ∅.
Since δ is strongly unit under Ai+1, it is also weakly unit under Ai+1.
Therefore there exists µ′ ∈ ARi+1 : δ ∈ ∆±i+1(µ′).

• If µ′ = Fv′, then ∃Fv′ ∈ ARi+1 : δ ∈ ∆±i+1(Fv′) and (I)(b)(ii) holds.
• If µ′ = Tv′, then Tv′ 6∈ ALi+1 and hence Tv′ 6∈ Ai, which implies

that Cα(δ, Ai) ⊃ {Tv′} 6= ∅. By induction hypothesis it therefore
follows that there exists σ ∈ Cα(δ, Ai) : δ ∈ ∆α(σ). By Cα(δ, Ai) only
containing literals of form Tv ∈ δ it follows that ∃Tv ∈ ARi : δ ∈
∆α
i (v). Since none of the literals of δ is processed, it follows that

δ ∈ ∆α
i+1(v). Consequently (I)(b)(ii) holds.

• If µ′ = Mv′, then it follows that Tv′ 6∈ ALi+1, because Mv′ can only
be added to an assignment in Algorithm 3.3 by line 7, which is only
executed if v′ is not assigned false, i.e. Fv′. From Tv′ 6∈ ALi+1 the
same reasoning as in the previous case applies and it follows that
(I)(b)(ii) holds.

ii. B(µi) ∈ δ \ B(Ai), i.e. some literal in δ is processed. If δ is strongly
unit while δ is processed by Algorithm 3.3, then H(δ)s ∈ Ai+1 due to line
5 of Algorithm 3.3, which contradicts δ being strongly unit under Ai+1.
Therefore δ is not yet strongly unit when Algorithm 3.3 processes δ.
A. Case δ is weakly unit with µi unassigned: since δ is strongly unit

under Ai it must be the case that δ is weakly unit on H(δ), i.e., σ
of line 7 in Algorithm 3.3 is such that σ = H(δ). From δ not being
strongly unit under Ai then follows that some Tv′ ∈ δ is assigned
must-be-true, i.e. Mv′ ∈ ALi .
Let M = {Tv ∈ δ \H(δ) |Mv ∈ Ai} be the set of all such must-be-
true assigned literals of δ except its head. Let Tv′ in the following
be the literal of M that is assigned last under Ai+1. Intuitively, Tv′
triggers δ to be unit.
Since Tv′ is the “last” of M that is assigned, it cannot be the case
that Tv′ = µi, as otherwise δ would be strongly unit while processing
µi.
We distinguish whether µi = Tw for one atom w.
• If µi = Tw, then Algorithm 3.2 is executed and calls Algorithm

3.4. Since δ is not strongly unit under Ai and Cα(δ, Ai) 6= ∅
because {Tv′} ∈ Cα(δ, Ai) lines 4-7 are executed and it holds that
∃Tv1 ∈ ARi+1 : δ ∈ ∆α

i+1(v1), i.e. (I)(b)(ii) holds.

32

3.3. Unit Propagation

• If µi 6= Tw, then Algorithm 3.4 is not executed and from Tv′ 6∈ ALi+1
it follows that Tv′ 6∈ Ai and Cα(δ, Ai) 6= ∅, hence by induction
hypothesis ∃σ ∈ Cα(δ, Ai) : δ ∈ ∆α

i (σ) with σ = Tv1 for some
atom v1. Since Algorithm 3.4 is not executed, δ ∈ ∆α

i+1(Tv1) and
Tv1 ∈ ARi+1, i.e. (I)(b)(ii) holds.

B. Case δ is not weakly unit with µi unassigned, then in Algorithm 3.3
line 11-14 are executed and there exist σ1, σ2 with σ1, σ2 6∈ Ai : δ ∈
∆±(σ1) and δ ∈ ∆±(σ2) to establish that δ is watched. Similar to the
reasoning in 2.b.ii, we see that the watches condition ensures that the
assignment that leads to δ being strongly unit will be processed.

4. To show (I)(b)(iii), let δ ∈ ∆ and assume δ is violated under Ai+1 (else (I)(b)(iii)
trivially holds).

a) Assume δ is violated under Ai.
Then ∃µ ∈ ARi : δ ∈ ∆±i (µ) via induction hypothesis.
i. Case µ = µi.
Then, according to Algorithm 3.3 (line 3) Ai+1 = conflict, so (II) holds.

ii. Case µ 6= µi.
Then, from ARi \ {µi} ⊆ ARi+1, it follows that µ ∈ ARi+1, thus ∃µ ∈
ARi+1 : δ ∈ ∆±i+1(µ), because δ ∈ ∆±i (µ) implies δ ∈ ∆±i+1(µ), as watch
sets are only modified for nogoods that are watched by µi. So we have
∃µ ∈ ARi : δ ∈ ∆±i+1(µ), i.e. (I)(b)(iii) holds.

b) Assume δ is not violated under Ai. Then |B(Ai) \ δ| ≥ 1 holds by Definition
3.11.
i. Assume |δ \ B(Ai)| ≥ 2. This means that at least on literal in δ is

unassigned. Then because ∆i watches Ai it follows that ∃σ1, σ2 : δ ∈
∆±i (σ1),∆±i (σ2). Further σ1 6= µi or σ2 6= µi, so w.l.o.g. σ1 6= µi, so
∃ Xv ∈ X : δ ∈ ∆±i+1(v) with a reasoning similar to 2.b.ii.

ii. Assume |δ\B(Ai)| = 1. Then δ is weakly unit under Ai, and with reasoning
similar to 2.a one can show that ∃µ ∈ ARi+1 with δ ∈ ∆±i+1(µ).

Above induction step serves as an explanation on how execution of the loop affects the
assignment and especially the watch structure. By using induction, P(i) was shown for
any i ≥ 0, and therefore for any iteration of the loop in lines 3-6 as well. Specifically
P(i) holds for the last iteration i = k represented by Sk = 〈Ak,∆k〉.

For cases without conflict and the loop terminating at Sk, the outcome that ∆′ watches A′
directly follows from (I)(a) as A′ = Ak and ∆′ = ∆k. From termination follows ARk = ∅,
i.e. there are no nogoods δ ∈ ∆′ that are weakly unit, strongly unit or violated under A′,
thus all δ are silent under A′. Together, this amounts to P′1.

Cases in the induction step leading to (II) map to P′2.

33

3. Three Watched Literals

To show P′3 assume µ conflicts with A. Then, on line 1 of Algorithm 3.1, the assignment
A1 will be assigned conflict. Consequently, the loop in lines 3-6 is not executed as
|conflict| = 0 and i must be at least 1, as it is assigned 1 on line 2. 〈conflict,∆〉 is
returned.

34

CHAPTER 4
Evaluation

To support our results of performance improvement with 3WL compared to naive
propagation, and in order to showcase the Alpha system as the first ASP system to
combine 3WL with lazy grounding, we evaluated the run time performance for the
publicly available1 set of problem instances used in [21].

Setup. The benchmarks were run with Alpha v0.2.02 on a machine with an Intel®
CoreTM i7-7500U CPU @ 2.7GHz, 16GB main memory, Linux kernel 4.12.5 and Oracle
JavaTM SE Runtime Environment (build 1.8.0_144-b01).

Method. All measured timings are times until the first 10 (or all, if less than 10)
answer sets were found, and the solver used a fixed randomization seed of 0 (via the
--deterministic command line switch). The Java virtual machine was instructed to
limit memory usage to approximately 8GB (flags -XX:MaxRAM=8000M -Xmx3500M)
and the process running the JVM was terminated for time-out after 300 seconds (wall
time).

In the following four paragraphs we discuss the properties of the input problems and
briefly comment on the benchmark results.

Grounding Explosion is a benchmark modeled after the program shown in Example
1.3 and aims to exhibit the grounding bottleneck. Given a domain of size n, the
problem is selecting at most one element from a domain of size n and deriving an
atom p(X1, . . . , X6) where all X1, . . . , X6 are the selected element. As reported

1Concrete instances are available via http://www.kr.tuwien.ac.at/research/systems/
alpha/instances.zip, whereas Java code to generate new instances can be obtained from https:
//github.com/alpha-asp/benchmarks.

2Download freely available at http://github.com/alpha-asp/alpha/releases/v0.2.0.

35

http://www.kr.tuwien.ac.at/research/systems/alpha/instances.zip
http://www.kr.tuwien.ac.at/research/systems/alpha/instances.zip
https://github.com/alpha-asp/benchmarks
https://github.com/alpha-asp/benchmarks
http://github.com/alpha-asp/alpha/releases/v0.2.0

4. Evaluation

in [21], significant differences in the results for this benchmark arise from the
comparison of ground-and-solve vs. lazy-grounding systems. Because the difficulty
in this benchmark lies in grounding, not in search and propagation, there is no
relevant difference in run time expected, which aligns with our results as presented
in Table 4.1.

Cutedge is taken from [6, Example 1]. This problem consists of computing reachability
from a graph with exactly one edge removed. Our results (see Table 4.2) show that
naïve propagation outperforms 3WL, which runs into memory issues: Because of
the combinatorial nature of the problem (5.4 million nogoods for 500 vertices and
adjacency-probability of 30%) and the more complex memory layout required by
3WL, it uses up all available memory. Naïve propagation performs well, because
the search space is quite dense: For many calls to the propagation routine, 83% to
21% of nogoods are reported unit (some might be counted twice, as strongly and
weakly unit counts were added up during analysis). With that many nogoods being
unit, the naïve approach is faster because it does not have to do any bookkeeping
operations to adjust references to watched literals.

Graph 5-Colorability is the problem of assigning one out of five possible colors to each
vertex in a graph such that no connected vertices have the same color. Our results
(shown in Table 4.3) clearly show an improvement when using 3WL compared to
naïve propagation. We see many propagation cycles with just two to six nogoods
(out of tens of thousands) being unit. While the naïve approach must check all
nogoods, 3WL enables targeted propagation.

Reachability instances are positive programs that compute pairwise reachability of
nodes in a graph. Again, sometimes as many as 10% to 20% of all nogoods are
unit (with possible duplicates; nogoods that are strongly and weakly unit in one
run are counted twice). This makes naïve propagation slightly faster than the 3WL
approach. For positive programs, which contain no default negated literals, search
is not necessary. Other systems such as clingo use intelligent grounding for this
class of programs which could also be done for Alpha. We therefore include the
results for this benchmark (Table 4.4) primarily for the sake of completeness, as it
is not relevant for directly comparing naïve propagation with 3WL.

Summary. Evaluation of 3WL as implemented in the Alpha system has shown that the
approach is especially effective when the number of nogoods that are not unit throughout
search is low compared to the total set of nogoods. For these instances, speedups of
several orders of magnitude were measured (Table 4.3). In cases where many nogoods
propagate, bookkeeping operations (adjustment of watched literals) nullify gains in run
time. Concerning memory usage, there is some overhead for 3WL, so the method generally
runs into memory limits faster (i.e., for smaller instances) than the naïve approach.

36

Size 3WL naïve
n 〈t1,...,10〉 [s] 〈t1,...,10〉 [s]
8 0.703 0.707
10 0.763 0.756
12 0.752 0.783
14 0.741 0.764
16 0.728 0.774
18 0.736 0.769
20 0.736 0.762
22 0.757 0.772
24 0.757 0.794
26 0.775 0.779
28 0.747 0.767
30 0.770 0.806
50 0.776 0.827
100 0.813 0.855
300 0.987 1.049
500 1.097 1.218
1000 1.452 1.626

Table 4.1: Results for grounding explosion benchmark: Time in seconds taken to compute
10 answer sets, averaged over 10 runs. Size corresponds to size of the domain.

37

4. Evaluation

Size 3WL naïve
|V | p(e) 〈t1,...,10〉 [s] t/o m/o 〈t1,...,10〉 [s] t/o m/o
100 0.3 6.158 0 0 4.955 0 0
100 0.5 6.082 0 0 6.176 0 0
200 0.3 15.594 0 0 14.873 0 0
200 0.5 28.956 0 0 23.695 0 0
300 0.1 12.396 0 0 11.116 0 0
300 0.3 38.320 0 0 34.439 0 0
300 0.5 n/a 3 7 79.843 0 0
400 0.1 23.740 0 0 18.643 0 0
400 0.3 n/a 3 7 84.185 0 0
400 0.5 n/a 3 7 134.273 0 0
500 0.1 35.609 0 0 31.080 0 0
500 0.3 n/a 0 10 106.703 0 0
500 0.5 n/a 7 3 n/a 5 5

Table 4.2: Results for cutedge benchmark: Time in seconds taken to compute 10 answer
sets, averaged over successful single runs on 10 randomly generated instances. Size
is number of vertices combined with probability of any two vertices being connected.
Number of timeouts and memory-outs is indicated in columns t/o and m/o, respectively.

38

Size 3WL naïve
|V | |E|/|V | 〈t1,...,10〉 [s] t/o m/o 〈t1,...,10〉 [s] t/o m/o
10 4 1.374 0 0 0.916 0 0
20 4 0.845 0 0 1.373 0 0
30 4 1.025 0 0 2.077 0 0
40 4 1.161 0 0 2.938 0 0
50 1 0.910 0 0 2.205 0 0
50 2 1.032 0 0 2.626 0 0
50 4 1.290 0 0 4.461 0 0
50 6 8.494 2 0 23.105 4 0
50 8 61.043 7 0 n/a 10 0
50 10 41.317 3 0 n/a 10 0
75 4 1.682 0 0 8.983 0 0
100 4 2.305 0 0 16.840 0 0
200 4 4.940 0 0 115.977 0 0
300 4 7.017 0 0 n/a 10 0
400 4 10.375 0 0 n/a 10 0
500 4 12.979 0 0 n/a 10 0
750 4 25.820 0 0 n/a 10 0
1000 4 39.961 0 0 n/a 10 0

Table 4.3: Results for graph 5-colorability benchmark: Time taken in seconds to compute
10 answer sets, averaged over successful single runs on 10 randomly generated instances.
Size is number of vertices combined with number of edges in relation to the number of
vertices. Number of timeouts and memory-outs is indicated in columns t/o and m/o,
respectively.

Size 3WL naïve
|V | |E|/|V | 〈t1,...,10〉 [s] 〈t1,...,10〉 [s]
1000 4 1.085 1.102
1000 8 1.737 1.607
10000 2 3.309 3.666
10000 4 6.779 5.416
10000 8 10.116 8.874

Table 4.4: Results for reachability benchmark: Time taken compute 10 answer sets,
averaged over single runs on 10 randomly generated instances. Size is number of vertices
combined with number of edges in relation to the number of vertices.

39

CHAPTER 5
Conclusion

We have presented a new method for unit propagation, tailored for lazy-grounding ASP
solvers called Three Watched Literals (3WL). It is an extension of the Two Watched
Literals scheme (2WL), prominent in SAT solvers. We extended 2WL for a third
truth value must-be-true, which was found to greatly improve search performance for
lazy-grounding in previous works. We introduced watch structures that can be easily
implemented as the core data structure to perform 3WL.

Soundness of the new approach was analyzed in great detail and describes how assigning
one atom initiates a series of propagation that restore coherence between assignment and
watch structure at the point of termination.

Our evaluation shows that 3WL does not strictly perform better than a naïve approach,
but yields considerable improvements when the portion of unit nogoods during search is
small, which often happens for search intense problems. Here, a run-time improvement
of several orders of mangnitude can be expected.

5.1 Related Work
This work heavily relies on previous results as cited. Most notably Moskewicz et al.
[25], Zhang and Malik [36] described 2WL and Faber et al. [10] introduced must-be-true
to ASP solvers.

5.2 Open Questions and Further Work
The algorithm presented in Chapter 3 does not consider guessing of assignments for
atoms and backtracking in case of guesses leading to conflicts. One possibility for future
work therefore is formalization of the behavior of 3WL including backtracking. Note that
the implementation in the Alpha system, which was evaluated in Chapter 4 implements

41

5. Conclusion

backtracking, so there is some discrepancy between what was described and analysed here,
and the concrete implementation. Based on this work, 3WL supporting backtracking
was developed and is presented at [21].

3WL is expected to be complete in the sense that it computes all assignments that can
be inferred through unit propagation. Cross-checking the implementation in Alpha in
that regard was successful thus far. However, this work did not address completeness,
and so a proof remains open as further work.

Evaluation results show that 3WL is not effective for instances where a “large” subset of
nogoods propagates. Future work might address this issue and attempt to approximate
threshold levels for the effectiveness of 3WL based on parameters of the input program.
This line of research might lead to adaptive implementations that use heuristics to decide
which method of propagation should be used. This proposes interesting challenges in
the engineering aspects of solver systems, e.g. interfacing with different unit propagation
modules within the same solver system.

[23] surveys propagation schemes in SAT solvers. An extension for must-be-true similar
to the one in this work could be done to find out whether the results also hold for three
truth values.

One issue that is not directly connected to 3WL, but to addressing the grounding
bottleneck more generally, is dynamic deletion of nogoods. By deleting “inactive” nogoods
during search, additional memory might be freed, allowing solvers to work with larger
search spaces. As the watch structure holds all nogoods, integrating nogood deletion
might well be tightly coupled with propagation.

42

List of Figures

2.1 Step-by-step visualization of unit propagation with Two Watched Literals . . 17

3.1 Architecture of the Alpha system . 20
3.2 Example layout of a watch structure . 24

List of Tables

4.1 Results for grounding explosion benchmark 37
4.2 Results for cutedge benchmark . 38
4.3 Results for graph 5-colorability benchmark 39
4.4 Results for reachability benchmark . 39

43

List of Algorithms

3.1 UnitPropagateAll(A, ∆, µ) . 26

3.2 UnitPropagate(A, ∆, j) . 26

3.3 UnitPropagateWeakly(A, ∆, µ) . 27

3.4 UnitPropagateStrongly(A, ∆, µ) . 28

45

Bibliography

[1] Chandrabose Aravindan, Jürgen Dix, and Ilkka Niemelä. Dislop: A research project
on disjunctive logic programming. AI Commun., 10(3-4):151–165, 1997. URL http:
//content.iospress.com/articles/ai-communications/aic130.

[2] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland
Kaminski, Thomas Krennwallner, Nicola Leone, Francesco Ricca, and Torsten Schaub.
Asp-core-2: Input language format. ASP Standardization Working Group, Tech. Rep,
2015. https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.
03c.pdf.

[3] Simona Citrigno, Thomas Eiter, Wolfgang Faber, Georg Gottlob, Christoph Koch,
Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scarcello. The dlv
system: Model generator and advanced frontends (system description). In WLP,
page 0, 1997.

[4] Keith L. Clark. Negation as failure. In Hervé Gallaire and Jack Minker, editors,
Logic and Data Bases, Symposium on Logic and Data Bases, Centre d’études et de
recherches de Toulouse, 1977., Advances in Data Base Theory, pages 293–322, New
York, 1977. Plemum Press. ISBN 0-306-40060-X.

[5] Stephen A. Cook. The complexity of theorem-proving procedures. In Michael A.
Harrison, Ranan B. Banerji, and Jeffrey D. Ullman, editors, Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker
Heights, Ohio, USA, pages 151–158. ACM, 1971. doi: 10.1145/800157.805047. URL
http://doi.acm.org/10.1145/800157.805047.

[6] Minh Dao-Tran, Thomas Eiter, Michael Fink, Gerald Weidinger, and Anto-
nius Weinzierl. Omiga : An open minded grounding on-the-fly answer set
solver. In Luis Fariñas del Cerro, Andreas Herzig, and Jérôme Mengin, edi-
tors, Logics in Artificial Intelligence - 13th European Conference, JELIA 2012,
Toulouse, France, September 26-28, 2012. Proceedings, volume 7519 of Lecture
Notes in Computer Science, pages 480–483. Springer, 2012. ISBN 978-3-642-33352-
1. doi: 10.1007/978-3-642-33353-8_38. URL http://dx.doi.org/10.1007/
978-3-642-33353-8_38.

47

http://content.iospress.com/articles/ai-communications/aic130
http://content.iospress.com/articles/ai-communications/aic130
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03c.pdf
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03c.pdf
http://doi.acm.org/10.1145/800157.805047
http://dx.doi.org/10.1007/978-3-642-33353-8_38
http://dx.doi.org/10.1007/978-3-642-33353-8_38

[7] Thomas Eiter, Wolfgang Faber, Michael Fink, and Stefan Woltran. Complexity
results for answer set programming with bounded predicate arities and implications.
Ann. Math. Artif. Intell., 51(2-4):123–165, 2007. doi: 10.1007/s10472-008-9086-5.
URL https://doi.org/10.1007/s10472-008-9086-5.

[8] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer set pro-
gramming: A primer. In Sergio Tessaris, Enrico Franconi, Thomas Eiter, Claudio
Gutierrez, Siegfried Handschuh, Marie-Christine Rousset, and Renate A. Schmidt,
editors, Reasoning Web. Semantic Technologies for Information Systems, 5th Inter-
national Summer School 2009, Brixen-Bressanone, Italy, August 30 - September 4,
2009, Tutorial Lectures, volume 5689 of Lecture Notes in Computer Science, pages
40–110. Springer, 2009. ISBN 978-3-642-03753-5. doi: 10.1007/978-3-642-03754-2_2.
URL http://dx.doi.org/10.1007/978-3-642-03754-2_2.

[9] Esra Erdem, Fangzhen Lin, and Torsten Schaub, editors. Logic Programming and
Nonmonotonic Reasoning, 10th International Conference, LPNMR 2009, Pots-
dam, Germany, September 14-18, 2009. Proceedings, volume 5753 of Lecture Notes
in Computer Science, 2009. Springer. ISBN 978-3-642-04237-9. doi: 10.1007/
978-3-642-04238-6. URL https://doi.org/10.1007/978-3-642-04238-6.

[10] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Pushing goal derivation in
DLP computations. In Michael Gelfond, Nicola Leone, and Gerald Pfeifer, editors,
Logic Programming and Nonmonotonic Reasoning, 5th International Conference,
LPNMR’99, El Paso, Texas, USA, December 2-4, 1999, Proceedings, volume 1730
of Lecture Notes in Computer Science, pages 177–191. Springer, 1999. ISBN 3-540-
66749-0. doi: 10.1007/3-540-46767-X_13. URL https://doi.org/10.1007/
3-540-46767-X_13.

[11] Charles Forgy. Rete: A fast algorithm for the many patterns/many objects match
problem. Artif. Intell., 19(1):17–37, 1982. doi: 10.1016/0004-3702(82)90020-0. URL
https://doi.org/10.1016/0004-3702(82)90020-0.

[12] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. clasp
: A conflict-driven answer set solver. In Chitta Baral, Gerhard Brewka, and
John S. Schlipf, editors, Logic Programming and Nonmonotonic Reasoning, 9th
International Conference, LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007,
Proceedings, volume 4483 of Lecture Notes in Computer Science, pages 260–265.
Springer, 2007. ISBN 978-3-540-72199-4. doi: 10.1007/978-3-540-72200-7_23. URL
https://doi.org/10.1007/978-3-540-72200-7_23.

[13] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer set
solving: From theory to practice. Artif. Intell., 187:52–89, 2012. doi: 10.1016/j.artint.
2012.04.001. URL http://dx.doi.org/10.1016/j.artint.2012.04.001.

[14] Martin Gebser, Marco Maratea, and Francesco Ricca. The design of the sixth answer
set programming competition. In Francesco Calimeri, Giovambattista Ianni, and

48

https://doi.org/10.1007/s10472-008-9086-5
http://dx.doi.org/10.1007/978-3-642-03754-2_2
https://doi.org/10.1007/978-3-642-04238-6
https://doi.org/10.1007/3-540-46767-X_13
https://doi.org/10.1007/3-540-46767-X_13
https://doi.org/10.1016/0004-3702(82)90020-0
https://doi.org/10.1007/978-3-540-72200-7_23
http://dx.doi.org/10.1016/j.artint.2012.04.001

Miroslaw Truszczynski, editors, Logic Programming and Nonmonotonic Reasoning -
13th International Conference, LPNMR 2015, Lexington, KY, USA, September 27-30,
2015. Proceedings, volume 9345 of Lecture Notes in Computer Science, pages 531–544.
Springer, 2015. ISBN 978-3-319-23263-8. doi: 10.1007/978-3-319-23264-5_44. URL
https://doi.org/10.1007/978-3-319-23264-5_44.

[15] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic
Programming, Proceedings of the Fifth International Conference and Symposium,
Seattle, Washington, August 15-19, 1988 (2 Volumes), pages 1070–1080. MIT Press,
1988. ISBN 0-262-61056-6.

[16] Carla P. Gomes, Henry A. Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability
solvers. In van Harmelen, Lifschitz, and Porter [33], pages 89–134. ISBN 978-0-
444-52211-5. doi: 10.1016/S1574-6526(07)03002-7. URL https://doi.org/10.
1016/S1574-6526(07)03002-7.

[17] Claire Lefèvre and Pascal Nicolas. The first version of a new ASP solver : As-
perix. In Erdem, Lin, and Schaub [9], pages 522–527. ISBN 978-3-642-04237-
9. doi: 10.1007/978-3-642-04238-6_52. URL https://doi.org/10.1007/
978-3-642-04238-6_52.

[18] Claire Lefèvre and Pascal Nicolas. A first order forward chaining approach for
answer set computing. In Erdem et al. [9], pages 196–208. ISBN 978-3-642-04237-
9. doi: 10.1007/978-3-642-04238-6_18. URL https://doi.org/10.1007/
978-3-642-04238-6_18.

[19] Claire Lefèvre, Christopher Béatrix, Igor Stéphan, and Laurent Garcia. Asperix,
a first-order forward chaining approach for answer set computing. TPLP, 17(3):
266–310, 2017. doi: 10.1017/S1471068416000569. URL https://doi.org/10.
1017/S1471068416000569.

[20] Nicola Leone and Wolfgang Faber. The DLV project: A tour from theory and research
to applications and market. In Maria Garcia de la Banda and Enrico Pontelli, editors,
Logic Programming, 24th International Conference, ICLP 2008, Udine, Italy, Decem-
ber 9-13 2008, Proceedings, volume 5366 of Lecture Notes in Computer Science, pages
53–68. Springer, 2008. ISBN 978-3-540-89981-5. doi: 10.1007/978-3-540-89982-2_10.
URL https://doi.org/10.1007/978-3-540-89982-2_10.

[21] Lorenz Leutgeb and Antonius Weinzierl. Techniques for efficient lazy-grounding ASP
solving. In Applications of Declarative Programming and Knowledge Management -
21st International Conference, INAP 2017, Würzburg, Germany, September 19-22,
2017, Lecture Notes in Computer Science. Springer, 2017. to appear.

[22] Lengning Liu, Enrico Pontelli, Tran Cao Son, and Miroslaw Truszczynski. Logic
programs with abstract constraint atoms: The role of computations. In Verónica

49

https://doi.org/10.1007/978-3-319-23264-5_44
https://doi.org/10.1016/S1574-6526(07)03002-7
https://doi.org/10.1016/S1574-6526(07)03002-7
https://doi.org/10.1007/978-3-642-04238-6_52
https://doi.org/10.1007/978-3-642-04238-6_52
https://doi.org/10.1007/978-3-642-04238-6_18
https://doi.org/10.1007/978-3-642-04238-6_18
https://doi.org/10.1017/S1471068416000569
https://doi.org/10.1017/S1471068416000569
https://doi.org/10.1007/978-3-540-89982-2_10

Dahl and Ilkka Niemelä, editors, Logic Programming, 23rd International Conference,
ICLP 2007, Porto, Portugal, September 8-13, 2007, Proceedings, volume 4670 of
Lecture Notes in Computer Science, pages 286–301. Springer, 2007. ISBN 978-3-
540-74608-9. doi: 10.1007/978-3-540-74610-2_20. URL https://doi.org/10.
1007/978-3-540-74610-2_20.

[23] Inês Lynce and João P. Marques Silva. Efficient data structures for backtrack
search SAT solvers. Ann. Math. Artif. Intell., 43(1):137–152, 2005. doi: 10.1007/
s10472-005-0425-5. URL https://doi.org/10.1007/s10472-005-0425-5.

[24] Jack Minker. On indefinite databases and the closed world assumption, pages 292–308.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1982. ISBN 978-3-540-39240-8. doi:
10.1007/BFb0000066. URL https://doi.org/10.1007/BFb0000066.

[25] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design
Automation Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages
530–535. ACM, 2001. ISBN 1-58113-297-2. doi: 10.1145/378239.379017. URL
http://doi.acm.org/10.1145/378239.379017.

[26] Alessandro Dal Palù, Agostino Dovier, Enrico Pontelli, and Gianfranco Rossi. Answer
set programming with constraints using lazy grounding. In Patricia M. Hill and
David Scott Warren, editors, Logic Programming, 25th International Conference,
ICLP 2009, Pasadena, CA, USA, July 14-17, 2009. Proceedings, volume 5649 of
Lecture Notes in Computer Science, pages 115–129. Springer, 2009. ISBN 978-3-
642-02845-8. doi: 10.1007/978-3-642-02846-5_14. URL https://doi.org/10.
1007/978-3-642-02846-5_14.

[27] Alessandro Dal Palù, Agostino Dovier, Enrico Pontelli, and Gianfranco Rossi. GASP:
answer set programming with lazy grounding. Fundam. Inform., 96(3):297–322, 2009.
doi: 10.3233/FI-2009-180. URL https://doi.org/10.3233/FI-2009-180.

[28] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.
ISBN 978-0-444-52726-4. URL http://www.sciencedirect.com/science/
bookseries/15746526/2.

[29] Francesca Rossi, Peter van Beek, and Toby Walsh. Constraint programming. In
van Harmelen et al. [33], pages 181–211. ISBN 978-0-444-52211-5. doi: 10.1016/
S1574-6526(07)03004-0. URL https://doi.org/10.1016/S1574-6526(07)
03004-0.

[30] Lawrence Ryan. Efficient algorithms for clause-learning sat solvers. Master’s thesis,
Simon Fraser University, Burnaby, Canada, 2004. URL https://www.cs.sfu.
ca/~mitchell/papers/ryan-thesis.ps.

50

https://doi.org/10.1007/978-3-540-74610-2_20
https://doi.org/10.1007/978-3-540-74610-2_20
https://doi.org/10.1007/s10472-005-0425-5
https://doi.org/10.1007/BFb0000066
http://doi.acm.org/10.1145/378239.379017
https://doi.org/10.1007/978-3-642-02846-5_14
https://doi.org/10.1007/978-3-642-02846-5_14
https://doi.org/10.3233/FI-2009-180
http://www.sciencedirect.com/science/bookseries/15746526/2
http://www.sciencedirect.com/science/bookseries/15746526/2
https://doi.org/10.1016/S1574-6526(07)03004-0
https://doi.org/10.1016/S1574-6526(07)03004-0
https://www.cs.sfu.ca/~mitchell/papers/ryan-thesis.ps
https://www.cs.sfu.ca/~mitchell/papers/ryan-thesis.ps

[31] Dietmar Seipel and Helmut Thöne. DISLOG - A system for in disjunctive deductive
databases. In DAISD, pages 325–343, 1994.

[32] João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999. doi:
10.1109/12.769433. URL https://doi.org/10.1109/12.769433.

[33] Frank van Harmelen, Vladimir Lifschitz, and Bruce W. Porter, editors. Handbook
of Knowledge Representation, volume 3 of Foundations of Artificial Intelligence.
Elsevier, 2008. ISBN 978-0-444-52211-5. URL http://www.sciencedirect.
com/science/bookseries/15746526/3.

[34] Antonius Weinzierl. Learning non-ground rules for answer-set solving. In Proceed-
ings of the Second Workshop on Grounding and Transformation for Theories with
Variables (GTTV’13), pages 25–37, 2013.

[35] Antonius Weinzierl. Blending lazy-grounding and CDNL search for answer-set
solving. In Marcello Balduccini and Tomi Janhunen, editors, Logic Program-
ming and Nonmonotonic Reasoning - 14th International Conference, LPNMR
2017, Espoo, Finland, July 3-6, 2017, Proceedings, volume 10377 of Lecture Notes
in Computer Science, pages 191–204. Springer, 2017. ISBN 978-3-319-61659-
9. doi: 10.1007/978-3-319-61660-5_17. URL https://doi.org/10.1007/
978-3-319-61660-5_17.

[36] Lintao Zhang and Sharad Malik. The quest for efficient boolean satisfiability solvers.
In Andrei Voronkov, editor, Automated Deduction - CADE-18, 18th International
Conference on Automated Deduction, Copenhagen, Denmark, July 27-30, 2002,
Proceedings, volume 2392 of Lecture Notes in Computer Science, pages 295–313.
Springer, 2002. ISBN 3-540-43931-5. doi: 10.1007/3-540-45620-1_26. URL https:
//doi.org/10.1007/3-540-45620-1_26.

[37] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik.
Efficient conflict driven learning in boolean satisfiability solver. In Rolf Ernst, editor,
Proceedings of the 2001 IEEE/ACM International Conference on Computer-Aided
Design, ICCAD 2001, San Jose, CA, USA, November 4-8, 2001, pages 279–285. IEEE
Computer Society, 2001. ISBN 0-7803-7249-2. doi: 10.1109/ICCAD.2001.968634.
URL https://doi.org/10.1109/ICCAD.2001.968634.

51

https://doi.org/10.1109/12.769433
http://www.sciencedirect.com/science/bookseries/15746526/3
http://www.sciencedirect.com/science/bookseries/15746526/3
https://doi.org/10.1007/978-3-319-61660-5_17
https://doi.org/10.1007/978-3-319-61660-5_17
https://doi.org/10.1007/3-540-45620-1_26
https://doi.org/10.1007/3-540-45620-1_26
https://doi.org/10.1109/ICCAD.2001.968634

	Introduction
	Motivation
	Structure of the Work

	Preliminaries
	Answer Set Programming
	State-of-the-art ASP Systems
	Two Watched Literals

	Three Watched Literals
	Extended Notions for Lazy-Grounding
	Watch Structures
	Unit Propagation

	Evaluation
	Conclusion
	Related Work
	Open Questions and Further Work

