
LLOV: A Fast Static Data-Race Checker for OpenMP
Programs

Utpal Bora

PhD Student
Computer Science and Engineering

IIT Hyderabad, India

February 23, 2020

Bora, Utpal (IITH) LLVM-Performance@CGO20 1 / 29



Table of Contents

1 Motivation for LLOV

2 Architecture and Methodology

3 Results

4 Current Status

5 Extensions

Bora, Utpal (IITH) LLVM-Performance@CGO20 2 / 29



Data race in Parallel programs

Definition (Data Race)

An execution of a concurrent program is said to have a data race when
two different threads access the same memory location,

these accesses are not protected by a mutual exclusion mechanism

the order of the two accesses is non-deterministic

one of these accesses is a write

Bora, Utpal (IITH) LLVM-Performance@CGO20 3 / 29



Common race conditions in OpenMP programs

Missing data sharing clauses

Loop carried dependences

SIMD races

Synchronization issues

Control flow dependent on
number of threads

1 #pragma omp parallel for

private (temp ,i,j)

2 for (i = 0; i < len; i++)

3 for (j = 0; j < len; j++)

{

4 temp = u[i][j];

5 sum = sum + temp * temp;

6 }

DRB021: OpenMP Worksharing construct with
data race

Bora, Utpal (IITH) LLVM-Performance@CGO20 4 / 29



Common race conditions in OpenMP programs

Missing data sharing clauses

Loop carried dependences

SIMD races

Synchronization issues

Control flow dependent on
number of threads

1 for (i=0;i<n;i++) {

2 #pragma omp parallel for

3 for (j=1;j<m;j++) {

4 b[i][j]=b[i][j-1];

5 }

6 }

DRB038: Example with Loop Carried
Dependence

Bora, Utpal (IITH) LLVM-Performance@CGO20 4 / 29



Common race conditions in OpenMP programs

Missing data sharing clauses

Loop carried dependences

SIMD races

Synchronization issues

Control flow dependent on
number of threads

1 #pragma omp simd

2 for (int i=0; i<len -1; i++){

3 a[i+1] = a[i] + b[i];

4 }

DRB024: Example with SIMD data race

Bora, Utpal (IITH) LLVM-Performance@CGO20 4 / 29



Common race conditions in OpenMP programs

Missing data sharing clauses

Loop carried dependences

SIMD races

Synchronization issues

Control flow dependent on
number of threads

1 #pragma omp parallel shared(b,

error) {

2 #pragma omp for nowait

3 for(i = 0; i < len; i++)

4 a[i] = b + a[i]*5;

5 #pragma omp single

6 error = a[9] + 1;

7 }

DRB013: Example with data race due to
improper synchronization

Bora, Utpal (IITH) LLVM-Performance@CGO20 4 / 29



Common race conditions in OpenMP programs

Missing data sharing clauses

Loop carried dependences

SIMD races

Synchronization issues

Control flow dependent on
number of threads

1 #pragma omp parallel

2 if (omp_get_thread_num () % 2

== 0) {

3 Flag = true;

4 }

Control flow dependent on number of threads

Bora, Utpal (IITH) LLVM-Performance@CGO20 4 / 29



Race Detection Tools

Table: OpenMP Race Detection Tools: A Short Survey

Tools Infrastructure Analysis Type

Helgrind [Vp07b] Valgrind Dynamic
Valgrind DRD [Vp07a] Valgrind Dynamic
TSan [SI09] LLVM/GCC Dynamic
Archer [AGR+16] LLVM Hybrid
SWORD [AGR+18] LLVM Dynamic
ROMP [GMC18] Dyninst Dynamic
PolyOMP [CSS15] ROSE Static
DRACO [YSL+18] ROSE Static
ompVerify [BYR+11] AlphaZ Static

There is still need for a static OpenMP data race checker in LLVM.

Bora, Utpal (IITH) LLVM-Performance@CGO20 5 / 29



Race Detection Tools

Table: OpenMP Race Detection Tools: A Short Survey

Tools Infrastructure Analysis Type

Helgrind [Vp07b] Valgrind Dynamic
Valgrind DRD [Vp07a] Valgrind Dynamic
TSan [SI09] LLVM/GCC Dynamic
Archer [AGR+16] LLVM Hybrid
SWORD [AGR+18] LLVM Dynamic
ROMP [GMC18] Dyninst Dynamic
PolyOMP [CSS15] ROSE Static
DRACO [YSL+18] ROSE Static
ompVerify [BYR+11] AlphaZ Static

There is still need for a static OpenMP data race checker in LLVM.

Bora, Utpal (IITH) LLVM-Performance@CGO20 5 / 29



Advantage of Static tools over Dynamic tools

Static tools have the following advantages over dynamic tools:

Can detect races in SIMD constructs

Are independent of the runtime thread schedule

Are independent of the input size

Are independent of the number of threads

LLOV is an attempt to bridge this gap and move towards a fast,
language agnostic, robust, static OpenMP data race checker in LLVM.

Bora, Utpal (IITH) LLVM-Performance@CGO20 6 / 29



Advantage of Static tools over Dynamic tools

Static tools have the following advantages over dynamic tools:

Can detect races in SIMD constructs

Are independent of the runtime thread schedule

Are independent of the input size

Are independent of the number of threads

LLOV is an attempt to bridge this gap and move towards a fast,
language agnostic, robust, static OpenMP data race checker in LLVM.

Bora, Utpal (IITH) LLVM-Performance@CGO20 6 / 29



Advantage of Static tools over Dynamic tools

Static tools have the following advantages over dynamic tools:

Can detect races in SIMD constructs

Are independent of the runtime thread schedule

Are independent of the input size

Are independent of the number of threads

LLOV is an attempt to bridge this gap and move towards a fast,
language agnostic, robust, static OpenMP data race checker in LLVM.

Bora, Utpal (IITH) LLVM-Performance@CGO20 6 / 29



Advantage of Static tools over Dynamic tools

Static tools have the following advantages over dynamic tools:

Can detect races in SIMD constructs

Are independent of the runtime thread schedule

Are independent of the input size

Are independent of the number of threads

LLOV is an attempt to bridge this gap and move towards a fast,
language agnostic, robust, static OpenMP data race checker in LLVM.

Bora, Utpal (IITH) LLVM-Performance@CGO20 6 / 29



Advantage of Static tools over Dynamic tools

Static tools have the following advantages over dynamic tools:

Can detect races in SIMD constructs

Are independent of the runtime thread schedule

Are independent of the input size

Are independent of the number of threads

LLOV is an attempt to bridge this gap and move towards a fast,
language agnostic, robust, static OpenMP data race checker in LLVM.

Bora, Utpal (IITH) LLVM-Performance@CGO20 6 / 29



Advantage of Static tools over Dynamic tools

Static tools have the following advantages over dynamic tools:

Can detect races in SIMD constructs

Are independent of the runtime thread schedule

Are independent of the input size

Are independent of the number of threads

LLOV is an attempt to bridge this gap and move towards a fast,
language agnostic, robust, static OpenMP data race checker in LLVM.

Bora, Utpal (IITH) LLVM-Performance@CGO20 6 / 29



Table of Contents

1 Motivation for LLOV

2 Architecture and Methodology

3 Results

4 Current Status

5 Extensions

Bora, Utpal (IITH) LLVM-Performance@CGO20 7 / 29



LLOV Overview

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework.

LLOV is

based on Intermediate representation of LLVM (LLVM-IR)

uses Polyhedral framework, Polly, of LLVM

can handle FORTRAN as well as C/C++

can detect that a program is race free

has all the advantages of a static data-race checker

can be extended for approximate dependences (like LAI of LLVM)

has provision for handling entire OpenMP pragmas

Bora, Utpal (IITH) LLVM-Performance@CGO20 8 / 29



LLOV Overview

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

based on Intermediate representation of LLVM (LLVM-IR)

uses Polyhedral framework, Polly, of LLVM

can handle FORTRAN as well as C/C++

can detect that a program is race free

has all the advantages of a static data-race checker

can be extended for approximate dependences (like LAI of LLVM)

has provision for handling entire OpenMP pragmas

Bora, Utpal (IITH) LLVM-Performance@CGO20 8 / 29



LLOV Overview

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

based on Intermediate representation of LLVM (LLVM-IR)

uses Polyhedral framework, Polly, of LLVM

can handle FORTRAN as well as C/C++

can detect that a program is race free

has all the advantages of a static data-race checker

can be extended for approximate dependences (like LAI of LLVM)

has provision for handling entire OpenMP pragmas

Bora, Utpal (IITH) LLVM-Performance@CGO20 8 / 29



LLOV Overview

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

based on Intermediate representation of LLVM (LLVM-IR)

uses Polyhedral framework, Polly, of LLVM

can handle FORTRAN as well as C/C++

can detect that a program is race free

has all the advantages of a static data-race checker

can be extended for approximate dependences (like LAI of LLVM)

has provision for handling entire OpenMP pragmas

Bora, Utpal (IITH) LLVM-Performance@CGO20 8 / 29



LLOV Overview

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

based on Intermediate representation of LLVM (LLVM-IR)

uses Polyhedral framework, Polly, of LLVM

can handle FORTRAN as well as C/C++

can detect that a program is race free

has all the advantages of a static data-race checker

can be extended for approximate dependences (like LAI of LLVM)

has provision for handling entire OpenMP pragmas

Bora, Utpal (IITH) LLVM-Performance@CGO20 8 / 29



LLOV Overview

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

based on Intermediate representation of LLVM (LLVM-IR)

uses Polyhedral framework, Polly, of LLVM

can handle FORTRAN as well as C/C++

can detect that a program is race free

has all the advantages of a static data-race checker

can be extended for approximate dependences (like LAI of LLVM)

has provision for handling entire OpenMP pragmas

Bora, Utpal (IITH) LLVM-Performance@CGO20 8 / 29



LLOV Overview

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

based on Intermediate representation of LLVM (LLVM-IR)

uses Polyhedral framework, Polly, of LLVM

can handle FORTRAN as well as C/C++

can detect that a program is race free

has all the advantages of a static data-race checker

can be extended for approximate dependences (like LAI of LLVM)

has provision for handling entire OpenMP pragmas

Bora, Utpal (IITH) LLVM-Performance@CGO20 8 / 29



LLOV Overview

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

based on Intermediate representation of LLVM (LLVM-IR)

uses Polyhedral framework, Polly, of LLVM

can handle FORTRAN as well as C/C++

can detect that a program is race free

has all the advantages of a static data-race checker

can be extended for approximate dependences (like LAI of LLVM)

has provision for handling entire OpenMP pragmas

Bora, Utpal (IITH) LLVM-Performance@CGO20 8 / 29



LLOV Architecture

LLVM-IROpenMP	Source
C/C++/FORTRAN

Collect
OpenMP

information

Verifier
(loadable	module)

Polly

Data	Race
Warnings

Alias
Analysis

LLOV	:	LLVM	OpenMP	Verifier

Figure: Flow Diagram of LLVM OpenMP Verifier (LLOV)

Bora, Utpal (IITH) LLVM-Performance@CGO20 9 / 29



Methodology (with Example)

1 for (i=0;i<10;i++) {

2 #pragma omp parallel for

3 for (j=1;j<10;j++) {

4 b[i][j]=b[i][j-1];

5 }

6 }

Example with Loop Carried
Dependence i dimension

j dimension

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure: Dependence Polyhedra

Bora, Utpal (IITH) LLVM-Performance@CGO20 10 / 29



Methodology (with Example)

1 for (i=0;i<10;i++) {

2 #pragma omp parallel for

3 for (j=1;j<10;j++) {

4 b[i][j]=b[i][j-1];

5 }

6 }

Listing 1: Example with Loop Carried
Dependence

i dimension

j dimension

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure: Projection of the Dependence Polyhedra
on i-dimension

Zero magnitude of the projections on a dimension signifies that the
dimension is parallel.

Bora, Utpal (IITH) LLVM-Performance@CGO20 11 / 29



Methodology (with Example)

1 for (i=0;i<10;i++) {

2 #pragma omp parallel for

3 for (j=1;j<10;j++) {

4 b[i][j]=b[i][j-1];

5 }

6 }

Listing 2: Example with Loop Carried
Dependence

i dimension

j dimension

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure: Projection of the Dependence Polyhedra
on j-dimension

Non-zero magnitude of the projections on a dimension signifies that the
dimension is not parallel.

Bora, Utpal (IITH) LLVM-Performance@CGO20 12 / 29



Table of Contents

1 Motivation for LLOV

2 Architecture and Methodology

3 Results

4 Current Status

5 Extensions

Bora, Utpal (IITH) LLVM-Performance@CGO20 13 / 29



Results: Experimental Setup

Benchmarks:

DataRaceBench C/C++ v1.2 [LLA+18, LLSK18]

OmpSCR v2.0 [Dor04, DRd05]

DataRaceBench FORTRAN [KSB19]

System Specifications:

System: Two Intel Xeon E5-2697 v4 @ 2.30GHz processors
OS: 64 bit Ubuntu 18.04.2 LTS server
Kernel: Linux kernel version 4.15.0-48-generic
Threads: 72 (2 x 36) hardware threads
Memory: 128GB
OpenMP library: LLVM OpenMP runtime v5.0.1 (libomp5)

Bora, Utpal (IITH) LLVM-Performance@CGO20 14 / 29



Results: Other Race Detection Tools

Table: Race detection tools with the version numbers used for comparison

Tools Source Version / Commit

Helgrind [Vp07b] Valgrind 3.13.0
Valgrind DRD [Vp07a] Valgrind 3.13.0
TSan-LLVM [SI09] LLVM 6.0.1
Archer [AGR+16] git master branch fc17353
SWORD [AGR+18] git master branch 7a08f3c
ROMP [GMC18] git master branch 6a0ad6d

Bora, Utpal (IITH) LLVM-Performance@CGO20 15 / 29



Results: DataRaceBench v1.2 comparison

Table: Maximum number of Races reported by different tools in DataRaceBench 1.2

Tools
Race: Yes Race: No

Coverage/116
TP FN TN FP

Helgrind 56 3 2 55 116

Valgrind DRD 56 3 26 31 116

TSan-LLVM 57 2 2 55 116

Archer 56 3 2 55 116

SWORD 47 4 24 4 79

LLOV 45 3 28 9 85

Table: Maximum number of Races reported by different tools in common 66 kernels of
DataRaceBench 1.2

Tools
Race: Yes Race: No

Coverage/116
TP FN TN FP

Helgrind 46 1 2 17 66

Valgrind DRD 46 1 13 6 66

TSan-LLVM 46 1 2 17 66

Archer 46 1 2 17 66

SWORD 46 1 18 1 66

LLOV 44 3 16 3 66

Bora, Utpal (IITH) LLVM-Performance@CGO20 16 / 29



Results: DataRaceBench v1.2 comparison

Table: Maximum number of Races reported by different tools in DataRaceBench 1.2

Tools
Race: Yes Race: No

Coverage/116
TP FN TN FP

Helgrind 56 3 2 55 116

Valgrind DRD 56 3 26 31 116

TSan-LLVM 57 2 2 55 116

Archer 56 3 2 55 116

SWORD 47 4 24 4 79

LLOV 45 3 28 9 85

Table: Maximum number of Races reported by different tools in common 66 kernels of
DataRaceBench 1.2

Tools
Race: Yes Race: No

Coverage/116
TP FN TN FP

Helgrind 46 1 2 17 66

Valgrind DRD 46 1 13 6 66

TSan-LLVM 46 1 2 17 66

Archer 46 1 2 17 66

SWORD 46 1 18 1 66

LLOV 44 3 16 3 66

Bora, Utpal (IITH) LLVM-Performance@CGO20 16 / 29



Results: DataRaceBench v1.2 statistics

Table: Precision, Recall and Accuracy of the tools on DataRaceBench 1.2

Tools Precision Recall Accuracy F1 Score Diagnostic odds ratio

Helgrind 0.50 0.95 0.50 0.66 0.68

Valgrind DRD 0.64 0.95 0.71 0.77 15.66

TSan-LLVM 0.51 0.97 0.51 0.67 1.04

Archer 0.50 0.95 0.50 0.66 0.68

SWORD 0.92 0.92 0.90 0.92 70.50

LLOV 0.83 0.94 0.86 0.88 46.67

Table: Precision, Recall and Accuracy of the tools on common 66 kernels of DataRaceBench 1.2

Tools Precision Recall Accuracy F1 Score Diagnostic odds ratio

Helgrind 0.73 0.98 0.73 0.84 5.41

Valgrind DRD 0.88 0.98 0.89 0.93 99.67

TSan-LLVM 0.73 0.98 0.73 0.84 5.41

Archer 0.73 0.98 0.73 0.84 5.41

SWORD 0.98 0.98 0.97 0.98 828.00

LLOV 0.94 0.94 0.91 0.94 78.22

Bora, Utpal (IITH) LLVM-Performance@CGO20 17 / 29



Results: DataRaceBench v1.2 statistics

Table: Precision, Recall and Accuracy of the tools on DataRaceBench 1.2

Tools Precision Recall Accuracy F1 Score Diagnostic odds ratio

Helgrind 0.50 0.95 0.50 0.66 0.68

Valgrind DRD 0.64 0.95 0.71 0.77 15.66

TSan-LLVM 0.51 0.97 0.51 0.67 1.04

Archer 0.50 0.95 0.50 0.66 0.68

SWORD 0.92 0.92 0.90 0.92 70.50

LLOV 0.83 0.94 0.86 0.88 46.67

Table: Precision, Recall and Accuracy of the tools on common 66 kernels of DataRaceBench 1.2

Tools Precision Recall Accuracy F1 Score Diagnostic odds ratio

Helgrind 0.73 0.98 0.73 0.84 5.41

Valgrind DRD 0.88 0.98 0.89 0.93 99.67

TSan-LLVM 0.73 0.98 0.73 0.84 5.41

Archer 0.73 0.98 0.73 0.84 5.41

SWORD 0.98 0.98 0.97 0.98 828.00

LLOV 0.94 0.94 0.91 0.94 78.22

Bora, Utpal (IITH) LLVM-Performance@CGO20 17 / 29



Results: DataRaceBench v1.2 runtime

3 36 45 72 90 180 256
1

10

100

1,000

10,000

43

Number of threads

E
xe

cu
ti

on
ti

m
e

in
S

ec
on

d
s

(l
og

sc
al

e)

Lower time is better

Archer Helgrind

SWORD TSan

DRD LLOV

Figure: DataRaceBench v1.2 total time taken by different tools for all 116 kernels on logarithmic
scale

Bora, Utpal (IITH) LLVM-Performance@CGO20 18 / 29



Results: DataRaceBench v1.2 runtime

3 36 45 72 90 180 256
1

10

100

1,000

4.9

Number of threads

E
xe

cu
ti

on
ti

m
e

in
S

ec
on

d
s

(l
og

sc
al

e)

Lower time is better

Archer Helgrind

SWORD TSan

DRD LLOV

Figure: DataRaceBench v1.2 total time taken by different tools for common 66 kernels on
logarithmic scale

Bora, Utpal (IITH) LLVM-Performance@CGO20 19 / 29



Results: OmpSCR v2.0 race conditions

Table: Number of Races detected in OmpSCR v2.0 benchmark (CT is Compilation Timeout)

Kernel LLOV Helgrind DRD TSan Archer SWORD
Manually verified kernels with data races

c loopA.badSolution 1 1 1 1 1 1
c loopA.solution2 1 1 1 1 1 0
c loopA.solution3 1 1 1 1 1 0
c loopB.badSolution1 1 1 1 1 1 1
c loopB.badSolution2 1 1 1 1 1 1
c loopB.pipelineSolution 1 1 1 1 1 0
c md 1 2 2 2 1 CT
c lu 1 1 1 1 1 0

Manually verified race free kernels
c loopA.solution1 0 2 1 2 1 0
c mandel 0 1 0 1 1 0
c pi 0 1 0 1 1 0
c jacobi01 1 2 1 0 0 CT
c jacobi02 1 1 1 0 0 CT
c jacobi03 0 1 1 0 0 CT

Unverified kernels
c fft 1 1 1 1 1 CT
c fft6 1 1 0 1 1 CT
c qsort 0 1 1 1 1 CT
c GraphSearch 0 0 0 0 0 0
cpp qsomp1 0 0 0 0 0 0
cpp qsomp2 0 0 0 0 0 0
cpp qsomp3 0 0 0 0 0 0
cpp qsomp4 0 0 0 0 0 0
cpp qsomp5 0 0 0 0 0 0
cpp qsomp6 0 0 0 0 0 0
cpp qsomp7 0 0 0 0 0 0

Bora, Utpal (IITH) LLVM-Performance@CGO20 20 / 29



Results: OmpSCR v2.0 runtime

3 36 45 72 90 180 256
1

10

100

1,000

10,000

5.1

Number of threads

E
xe

cu
ti

on
ti

m
e

in
S

ec
on

d
s

(l
og

sc
al

e)

Lower time is better

Archer Helgrind

SWORD TSan

DRD LLOV

Figure: OmpSCR v2.0 total execution time by different tools on logarithmic scale

Bora, Utpal (IITH) LLVM-Performance@CGO20 21 / 29



DataRaceBench FORTRAN

An implementation of DataRaceBench C/C++ v1.2 [LLSK18] in
FORTRAN 95.

Converted 92 (out of 116) C/C++ kernels to FORTRAN

Demonstrate that LLOV is language agnostic

Already open-sourced this benchmark [KSB19]

Bora, Utpal (IITH) LLVM-Performance@CGO20 22 / 29



Results: DataRaceBench FORTRAN statistics

Table: Maximum number of Races reported by different tools in DataRaceBench FORTRAN

Tools
Race: Yes Race: No

Coverage/92
TP FN TN FP

Helgrind 46 6 4 36 92

Valgrind DRD 45 7 21 19 92

LLOV 34 6 19 5 64

Bora, Utpal (IITH) LLVM-Performance@CGO20 23 / 29



Table of Contents

1 Motivation for LLOV

2 Architecture and Methodology

3 Results

4 Current Status

5 Extensions

Bora, Utpal (IITH) LLVM-Performance@CGO20 24 / 29



OpenMP v4.5 Pragma Handling Status: Various Tools

Table: Comparison of OpenMP pragma handling by OpenMP aware tools. (Y for Yes, N for No)

OpenMP Pragma LLOV PolyOMP DRACO SWORD

#pragma omp parallel Y Y Y Y
#pragma omp for Y Y Y Y
#pragma omp parallel for Y Y Y Y
#pragma omp atomic Y N N Y
#pragma omp threadprivate Y N N N
#pragma omp master Y N N Y
#pragma omp single Y N N Y
#pragma omp simd Y N Y N
#pragma omp parallel for simd Y N Y N
#pragma omp distribute Y N N N
#pragma omp ordered Y N N N
#pragma omp critical Y N N Y
#pragma omp parallel sections N N N Y
#pragma omp sections N N N Y
#pragma omp declare reduction N N N N
#pragma omp task N N N N
#pragma omp taskgroup N N N N
#pragma omp taskloop N N N N
#pragma omp taskwait N N N N
#pragma omp teams N N N N
#pragma omp barrier N N N Y
#pragma omp target map N N N N

Bora, Utpal (IITH) LLVM-Performance@CGO20 25 / 29



Table of Contents

1 Motivation for LLOV

2 Architecture and Methodology

3 Results

4 Current Status

5 Extensions

Bora, Utpal (IITH) LLVM-Performance@CGO20 26 / 29



Possible Extensions to LLOV

Working on

Use approximate dependece analysis (LAI) [Gro19] of LLVM

Increase coverage- handle more OpenMP pragmas

Use May-Happen-in-Parallel analysis for race detection

Bora, Utpal (IITH) LLVM-Performance@CGO20 27 / 29



Possible Extensions to LLOV

Working on

Use approximate dependece analysis (LAI) [Gro19] of LLVM

Increase coverage- handle more OpenMP pragmas

Use May-Happen-in-Parallel analysis for race detection

Bora, Utpal (IITH) LLVM-Performance@CGO20 27 / 29



Possible Extensions to LLOV

Working on

Use approximate dependece analysis (LAI) [Gro19] of LLVM

Increase coverage- handle more OpenMP pragmas

Use May-Happen-in-Parallel analysis for race detection

Bora, Utpal (IITH) LLVM-Performance@CGO20 27 / 29



Contributions Welcome!!

Open source links:

DataRaceBench FORTRAN:
https://github.com/IITH-Compilers/drb fortran

LLOV: Please drop me an email at cs14mtech11017@iith.ac.in

We welcome your contributions in any form.

Bora, Utpal (IITH) LLVM-Performance@CGO20 28 / 29



Thanks and Acknowledgements

Johannes Doerfert
Tobias Grosser
GSoC mentors for ”Polly as a pass in LLVM”
LLVM Community

Bora, Utpal (IITH) LLVM-Performance@CGO20 29 / 29



References I

Simone Atzeni, Ganesh Gopalakrishnan, Zvonimir Rakamaric, Dong H Ahn, Ignacio
Laguna, Martin Schulz, Gregory L Lee, Joachim Protze, and Matthias S Müller.
Archer: effectively spotting data races in large openmp applications.
In Parallel and Distributed Processing Symposium, 2016 IEEE International, pages 53–62,
Chicago, IL, USA, 2016. IEEE, IEEE.

Simone Atzeni, Ganesh Gopalakrishnan, Zvonimir Rakamaric, Ignacio Laguna, Gregory L
Lee, and Dong H Ahn.
Sword: A bounded memory-overhead detector of openmp data races in production runs.
In 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
845–854, Vancouver, BC, Canada, 2018. IEEE, IEEE.

Vamshi Basupalli, Tomofumi Yuki, Sanjay Rajopadhye, Antoine Morvan, Steven Derrien,
Patrice Quinton, and David Wonnacott.
ompverify: polyhedral analysis for the openmp programmer.
In International Workshop on OpenMP, pages 37–53, Berlin, Heidelberg, 2011. Springer,
Springer Berlin Heidelberg.

P. Chatarasi, J. Shirako, and V. Sarkar.
Polyhedral optimizations of explicitly parallel programs.
In 2015 International Conference on Parallel Architecture and Compilation (PACT), pages
213–226, San Francisco, CA, USA, Oct 2015. IEEE.

Bora, Utpal (IITH) LLVM-Performance@CGO20 29 / 29



References II

A.J. Dorta.
OpenMP Source Code Repository.
https://sourceforge.net/projects/ompscr/files/OmpSCR/OmpSCR%20Full%

20Distribution%20v2.0/, 2004.
[Online; accessed 19-May-2019].

A. J. Dorta, C. Rodriguez, and F. de Sande.
The openmp source code repository.
In 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing,
pages 244–250, Washington, DC, USA, Feb 2005. IEEE Computer Society.

Yizi Gu and John Mellor-Crummey.
Dynamic data race detection for openmp programs.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, SC ’18, pages 61:1–61:12, Piscataway, NJ, USA, 2018.
IEEE Press.

LLVM Developer Group.
Loop Access Info, Class Reference .
https://llvm.org/doxygen/classllvm_1_1LoopAccessInfo.html, 2019.
[Online; accessed 08-May-2019].

Bora, Utpal (IITH) LLVM-Performance@CGO20 29 / 29

https://sourceforge.net/projects/ompscr/files/OmpSCR/OmpSCR%20Full%20Distribution%20v2.0/ 
https://sourceforge.net/projects/ompscr/files/OmpSCR/OmpSCR%20Full%20Distribution%20v2.0/ 
https://llvm.org/doxygen/classllvm_1_1LoopAccessInfo.html


References III

Pankaj Kukreja, Himanshu Shukla, and Utpal Bora.
DataRaceBench FORTRAN.
https://github.com/IITH-Compilers/drb_fortran, 2019.
[Online; accessed 19-October-2019].

Chunhua Liao, Pei-Hung Lin, Joshua Asplund, Markus Schordan, and Ian Karlin.
DataRaceBench v1.2.0.
https://github.com/LLNL/dataracebench, 2018.
[Online; accessed 19-May-2019].

Chunhua Liao, Pei-Hung Lin, Markus Schordan, and Ian Karlin.
A semantics-driven approach to improving dataracebench’s openmp standard coverage.
In Bronis R. de Supinski, Pedro Valero-Lara, Xavier Martorell, Sergi Mateo Bellido, and
Jesus Labarta, editors, Evolving OpenMP for Evolving Architectures, pages 189–202,
Cham, 2018. Springer International Publishing.

Konstantin Serebryany and Timur Iskhodzhanov.
Threadsanitizer: Data race detection in practice.
In Proceedings of the Workshop on Binary Instrumentation and Applications, WBIA ’09,
pages 62–71, New York, NY, USA, 2009. ACM.

Bora, Utpal (IITH) LLVM-Performance@CGO20 29 / 29

https://github.com/IITH-Compilers/drb_fortran
https://github.com/LLNL/dataracebench


References IV

Valgrind-project.
DRD: a thread error detector.
http://valgrind.org/docs/manual/drd-manual.html, 2007.
[Online; accessed 08-May-2019].

Valgrind-project.
Helgrind: a thread error detector.
http://valgrind.org/docs/manual/hg-manual.html, 2007.
[Online; accessed 08-May-2019].

Fangke Ye, Markus Schordan, Chunhua Liao, Pei-Hung Lin, Ian Karlin, and Vivek Sarkar.
Using polyhedral analysis to verify openmp applications are data race free.
In 2018 IEEE/ACM 2nd International Workshop on Software Correctness for HPC
Applications (Correctness), pages 42–50, Dallas, TX, USA, 2018. IEEE, IEEE.

Bora, Utpal (IITH) LLVM-Performance@CGO20 29 / 29

http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/hg-manual.html


Thank You!

Bora, Utpal (IITH) LLVM-Performance@CGO20 29 / 29



LLOV: Race Detection Algorithm

Algorithm 1: Race Detection
Algorithm
Input: L
Output: result

1 Function isRaceFree(L):
2 SCoP = ConstructSCoP(L) ;
3 RDG =

ComputeDependences(SCoP)
;

4 depth = GetLoopDepth(L) ;
5 if isParallel(RDG, depth) then
6 result = ”Program is race

free.” ;

7 else
8 result = ”Data Race

detected.” ;

9 return result

10 End Function

Algorithm 2: Algorithm to check
parallelism
Input: RDG , dim
Output: True/False

1 Function isParallel(RDG, dim):
2 if RDG is Empty then
3 return True ;
4 else
5 Flag = True;
6 while Dependence D in RDG

do
7 D ′ = Project Out first dim

dimensions from D ;
8 if D’ is Empty then
9 continue ;

10 else
11 Flag = False ;
12 break ;

13 return Flag ;

14 End Function
Bora, Utpal (IITH) LLVM-Performance@CGO20 1 / 5



Terminology I

True Positive (TP): If the evaluation tool correctly detects a data
race present in the kernel it is a True Positive test result. A higher
number of true positives represents a better tool.

True Negative (TN): If the benchmark does not contain a race and
the tool declares it as race-free, then it is a true negative case. A
higher number of true negatives represents a better tool.

False Positives (FP): If the benchmark does not contain any race,
but the tool reports a race condition, it is a false positive. False
Positives should be as low as possible.

False Negatives (FN): False Negative test result is obtained when
the tool fails to detect a known race in the benchmark. These are the
cases that are missed by the tool. A lower number of false negatives
are desirable.

Bora, Utpal (IITH) LLVM-Performance@CGO20 2 / 5



Terminology II

Precision : Precision is the measure of closeness of the outcomes of
prediction. Thus, a higher value of precision represents that the tool
will more often than not identify a race condition when it exists.
Precision = TP

TP + FP

Recall : Recall gives the total number of cases detected out of the
maximum data races present. A higher recall value means that there
are less chances that a data race is missed by the tool. It is also
called true positive rate (TPR).
Recall = TP

TP + FN

Accuracy : Accuracy gives the chances of correct reports out of all
the reports, as the name suggests. A higher value of accuracy is
always desired and gives overall measure of the efficacy of the tool.
Accuracy = TP + TN

TP + FP + TN + FN

Bora, Utpal (IITH) LLVM-Performance@CGO20 3 / 5



Terminology III

F1 Score : The harmonic mean of precision and recall is called the
F1 score. An F1 score of 1 can be achieved in the best case when
both precision and recall are perfect. The worst case F1 score is 0
when either precision or recall is 0.
F1 Score = 2 ∗ Precision ∗ Recall

Precision + Recall

Diagnostic odds ratio (DOR) : It is the ratio of the positive
likelihood ratio (LR+) to the negative likelihood ratio (LR−).
DOR = LR+

LR− where,

Positive Likelihood Ratio (LR+) = TPR
FPR ,

Negative Likelihood Ratio (LR−) = FNR
TNR ,

True Positive Rate (TPR) = TP
TP + FN ,

False Positive Rate (FPR) = FP
FP + TN ,

False Negative Rate (FNR) = FN
FN + TP and

True Negative Rare (TNR) = TN
TN + FP

Bora, Utpal (IITH) LLVM-Performance@CGO20 4 / 5



Terminology IV

DOR is the measure of the ratio of the odds of race detection being
positive given that the test case has a data race, to the odds of race
detection being positive given the test case does not have a race.

Bora, Utpal (IITH) LLVM-Performance@CGO20 5 / 5


	Motivation for LLOV
	Architecture and Methodology
	Results
	Current Status
	Extensions
	Appendix

