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Data race in Parallel programs

Definition (Data Race)

An execution of a concurrent program is said to have a data race when
two different threads access the same memory location,

these accesses are not protected by a mutual exclusion mechanism

the order of the two accesses is non-deterministic

one of these accesses is a write

Bora, Utpal (IITH) LLVM-Performance@CGO20 3 / 29



Common race conditions in OpenMP programs

Missing data sharing clauses

Loop carried dependences

SIMD races

Synchronization issues

Control flow dependent on
number of threads

1 #pragma omp parallel for

private (temp ,i,j)

2 for (i = 0; i < len; i++)

3 for (j = 0; j < len; j++)

{

4 temp = u[i][j];

5 sum = sum + temp * temp;

6 }

DRB021: OpenMP Worksharing construct with
data race
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Common race conditions in OpenMP programs

Missing data sharing clauses

Loop carried dependences

SIMD races

Synchronization issues

Control flow dependent on
number of threads

1 for (i=0;i<n;i++) {

2 #pragma omp parallel for

3 for (j=1;j<m;j++) {

4 b[i][j]=b[i][j-1];

5 }

6 }

DRB038: Example with Loop Carried
Dependence
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Common race conditions in OpenMP programs

Missing data sharing clauses

Loop carried dependences

SIMD races

Synchronization issues

Control flow dependent on
number of threads

1 #pragma omp simd

2 for (int i=0; i<len -1; i++){

3 a[i+1] = a[i] + b[i];

4 }

DRB024: Example with SIMD data race
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Common race conditions in OpenMP programs

Missing data sharing clauses

Loop carried dependences

SIMD races

Synchronization issues

Control flow dependent on
number of threads

1 #pragma omp parallel shared(b,

error) {

2 #pragma omp for nowait

3 for(i = 0; i < len; i++)

4 a[i] = b + a[i]*5;

5 #pragma omp single

6 error = a[9] + 1;

7 }

DRB013: Example with data race due to
improper synchronization
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Common race conditions in OpenMP programs

Missing data sharing clauses

Loop carried dependences

SIMD races

Synchronization issues

Control flow dependent on
number of threads

1 #pragma omp parallel

2 if (omp_get_thread_num () % 2

== 0) {

3 Flag = true;

4 }

Control flow dependent on number of threads
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Race Detection Tools

Table: OpenMP Race Detection Tools: A Short Survey

Tools Infrastructure Analysis Type

Helgrind [Vp07b] Valgrind Dynamic
Valgrind DRD [Vp07a] Valgrind Dynamic
TSan [SI09] LLVM/GCC Dynamic
Archer [AGR+16] LLVM Hybrid
SWORD [AGR+18] LLVM Dynamic
ROMP [GMC18] Dyninst Dynamic
PolyOMP [CSS15] ROSE Static
DRACO [YSL+18] ROSE Static
ompVerify [BYR+11] AlphaZ Static

There is still need for a static OpenMP data race checker in LLVM.

Bora, Utpal (IITH) LLVM-Performance@CGO20 5 / 29



Race Detection Tools

Table: OpenMP Race Detection Tools: A Short Survey

Tools Infrastructure Analysis Type

Helgrind [Vp07b] Valgrind Dynamic
Valgrind DRD [Vp07a] Valgrind Dynamic
TSan [SI09] LLVM/GCC Dynamic
Archer [AGR+16] LLVM Hybrid
SWORD [AGR+18] LLVM Dynamic
ROMP [GMC18] Dyninst Dynamic
PolyOMP [CSS15] ROSE Static
DRACO [YSL+18] ROSE Static
ompVerify [BYR+11] AlphaZ Static

There is still need for a static OpenMP data race checker in LLVM.

Bora, Utpal (IITH) LLVM-Performance@CGO20 5 / 29



Advantage of Static tools over Dynamic tools

Static tools have the following advantages over dynamic tools:

Can detect races in SIMD constructs

Are independent of the runtime thread schedule

Are independent of the input size

Are independent of the number of threads

LLOV is an attempt to bridge this gap and move towards a fast,
language agnostic, robust, static OpenMP data race checker in LLVM.
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LLOV Overview

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework.

LLOV is

based on Intermediate representation of LLVM (LLVM-IR)

uses Polyhedral framework, Polly, of LLVM

can handle FORTRAN as well as C/C++

can detect that a program is race free

has all the advantages of a static data-race checker

can be extended for approximate dependences (like LAI of LLVM)

has provision for handling entire OpenMP pragmas
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LLOV Architecture

LLVM-IROpenMP	Source
C/C++/FORTRAN

Collect
OpenMP

information

Verifier
(loadable	module)

Polly

Data	Race
Warnings

Alias
Analysis

LLOV	:	LLVM	OpenMP	Verifier

Figure: Flow Diagram of LLVM OpenMP Verifier (LLOV)
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Methodology (with Example)

1 for (i=0;i<10;i++) {

2 #pragma omp parallel for

3 for (j=1;j<10;j++) {

4 b[i][j]=b[i][j-1];

5 }

6 }

Example with Loop Carried
Dependence i dimension

j dimension

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure: Dependence Polyhedra
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1 for (i=0;i<10;i++) {

2 #pragma omp parallel for

3 for (j=1;j<10;j++) {

4 b[i][j]=b[i][j-1];

5 }

6 }

Listing 1: Example with Loop Carried
Dependence

i dimension

j dimension

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure: Projection of the Dependence Polyhedra
on i-dimension

Zero magnitude of the projections on a dimension signifies that the
dimension is parallel.
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1 for (i=0;i<10;i++) {

2 #pragma omp parallel for

3 for (j=1;j<10;j++) {

4 b[i][j]=b[i][j-1];

5 }

6 }

Listing 2: Example with Loop Carried
Dependence

i dimension

j dimension

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure: Projection of the Dependence Polyhedra
on j-dimension

Non-zero magnitude of the projections on a dimension signifies that the
dimension is not parallel.
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Results: Experimental Setup

Benchmarks:

DataRaceBench C/C++ v1.2 [LLA+18, LLSK18]

OmpSCR v2.0 [Dor04, DRd05]

DataRaceBench FORTRAN [KSB19]

System Specifications:

System: Two Intel Xeon E5-2697 v4 @ 2.30GHz processors
OS: 64 bit Ubuntu 18.04.2 LTS server
Kernel: Linux kernel version 4.15.0-48-generic
Threads: 72 (2 x 36) hardware threads
Memory: 128GB
OpenMP library: LLVM OpenMP runtime v5.0.1 (libomp5)
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Results: Other Race Detection Tools

Table: Race detection tools with the version numbers used for comparison

Tools Source Version / Commit

Helgrind [Vp07b] Valgrind 3.13.0
Valgrind DRD [Vp07a] Valgrind 3.13.0
TSan-LLVM [SI09] LLVM 6.0.1
Archer [AGR+16] git master branch fc17353
SWORD [AGR+18] git master branch 7a08f3c
ROMP [GMC18] git master branch 6a0ad6d
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Results: DataRaceBench v1.2 comparison

Table: Maximum number of Races reported by different tools in DataRaceBench 1.2

Tools
Race: Yes Race: No

Coverage/116
TP FN TN FP

Helgrind 56 3 2 55 116

Valgrind DRD 56 3 26 31 116

TSan-LLVM 57 2 2 55 116

Archer 56 3 2 55 116

SWORD 47 4 24 4 79

LLOV 45 3 28 9 85

Table: Maximum number of Races reported by different tools in common 66 kernels of
DataRaceBench 1.2

Tools
Race: Yes Race: No

Coverage/116
TP FN TN FP

Helgrind 46 1 2 17 66

Valgrind DRD 46 1 13 6 66

TSan-LLVM 46 1 2 17 66

Archer 46 1 2 17 66

SWORD 46 1 18 1 66

LLOV 44 3 16 3 66

Bora, Utpal (IITH) LLVM-Performance@CGO20 16 / 29



Results: DataRaceBench v1.2 comparison

Table: Maximum number of Races reported by different tools in DataRaceBench 1.2

Tools
Race: Yes Race: No

Coverage/116
TP FN TN FP

Helgrind 56 3 2 55 116

Valgrind DRD 56 3 26 31 116

TSan-LLVM 57 2 2 55 116

Archer 56 3 2 55 116

SWORD 47 4 24 4 79

LLOV 45 3 28 9 85

Table: Maximum number of Races reported by different tools in common 66 kernels of
DataRaceBench 1.2

Tools
Race: Yes Race: No

Coverage/116
TP FN TN FP

Helgrind 46 1 2 17 66

Valgrind DRD 46 1 13 6 66

TSan-LLVM 46 1 2 17 66

Archer 46 1 2 17 66

SWORD 46 1 18 1 66

LLOV 44 3 16 3 66

Bora, Utpal (IITH) LLVM-Performance@CGO20 16 / 29



Results: DataRaceBench v1.2 statistics

Table: Precision, Recall and Accuracy of the tools on DataRaceBench 1.2

Tools Precision Recall Accuracy F1 Score Diagnostic odds ratio

Helgrind 0.50 0.95 0.50 0.66 0.68

Valgrind DRD 0.64 0.95 0.71 0.77 15.66

TSan-LLVM 0.51 0.97 0.51 0.67 1.04

Archer 0.50 0.95 0.50 0.66 0.68

SWORD 0.92 0.92 0.90 0.92 70.50

LLOV 0.83 0.94 0.86 0.88 46.67

Table: Precision, Recall and Accuracy of the tools on common 66 kernels of DataRaceBench 1.2

Tools Precision Recall Accuracy F1 Score Diagnostic odds ratio

Helgrind 0.73 0.98 0.73 0.84 5.41

Valgrind DRD 0.88 0.98 0.89 0.93 99.67

TSan-LLVM 0.73 0.98 0.73 0.84 5.41

Archer 0.73 0.98 0.73 0.84 5.41

SWORD 0.98 0.98 0.97 0.98 828.00

LLOV 0.94 0.94 0.91 0.94 78.22
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Results: DataRaceBench v1.2 runtime
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Figure: DataRaceBench v1.2 total time taken by different tools for all 116 kernels on logarithmic
scale
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Results: OmpSCR v2.0 race conditions

Table: Number of Races detected in OmpSCR v2.0 benchmark (CT is Compilation Timeout)

Kernel LLOV Helgrind DRD TSan Archer SWORD
Manually verified kernels with data races

c loopA.badSolution 1 1 1 1 1 1
c loopA.solution2 1 1 1 1 1 0
c loopA.solution3 1 1 1 1 1 0
c loopB.badSolution1 1 1 1 1 1 1
c loopB.badSolution2 1 1 1 1 1 1
c loopB.pipelineSolution 1 1 1 1 1 0
c md 1 2 2 2 1 CT
c lu 1 1 1 1 1 0

Manually verified race free kernels
c loopA.solution1 0 2 1 2 1 0
c mandel 0 1 0 1 1 0
c pi 0 1 0 1 1 0
c jacobi01 1 2 1 0 0 CT
c jacobi02 1 1 1 0 0 CT
c jacobi03 0 1 1 0 0 CT

Unverified kernels
c fft 1 1 1 1 1 CT
c fft6 1 1 0 1 1 CT
c qsort 0 1 1 1 1 CT
c GraphSearch 0 0 0 0 0 0
cpp qsomp1 0 0 0 0 0 0
cpp qsomp2 0 0 0 0 0 0
cpp qsomp3 0 0 0 0 0 0
cpp qsomp4 0 0 0 0 0 0
cpp qsomp5 0 0 0 0 0 0
cpp qsomp6 0 0 0 0 0 0
cpp qsomp7 0 0 0 0 0 0
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Results: OmpSCR v2.0 runtime
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Figure: OmpSCR v2.0 total execution time by different tools on logarithmic scale
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DataRaceBench FORTRAN

An implementation of DataRaceBench C/C++ v1.2 [LLSK18] in
FORTRAN 95.

Converted 92 (out of 116) C/C++ kernels to FORTRAN

Demonstrate that LLOV is language agnostic

Already open-sourced this benchmark [KSB19]
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Results: DataRaceBench FORTRAN statistics

Table: Maximum number of Races reported by different tools in DataRaceBench FORTRAN

Tools
Race: Yes Race: No

Coverage/92
TP FN TN FP

Helgrind 46 6 4 36 92

Valgrind DRD 45 7 21 19 92

LLOV 34 6 19 5 64
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OpenMP v4.5 Pragma Handling Status: Various Tools

Table: Comparison of OpenMP pragma handling by OpenMP aware tools. (Y for Yes, N for No)

OpenMP Pragma LLOV PolyOMP DRACO SWORD

#pragma omp parallel Y Y Y Y
#pragma omp for Y Y Y Y
#pragma omp parallel for Y Y Y Y
#pragma omp atomic Y N N Y
#pragma omp threadprivate Y N N N
#pragma omp master Y N N Y
#pragma omp single Y N N Y
#pragma omp simd Y N Y N
#pragma omp parallel for simd Y N Y N
#pragma omp distribute Y N N N
#pragma omp ordered Y N N N
#pragma omp critical Y N N Y
#pragma omp parallel sections N N N Y
#pragma omp sections N N N Y
#pragma omp declare reduction N N N N
#pragma omp task N N N N
#pragma omp taskgroup N N N N
#pragma omp taskloop N N N N
#pragma omp taskwait N N N N
#pragma omp teams N N N N
#pragma omp barrier N N N Y
#pragma omp target map N N N N
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Possible Extensions to LLOV

Working on

Use approximate dependece analysis (LAI) [Gro19] of LLVM

Increase coverage- handle more OpenMP pragmas

Use May-Happen-in-Parallel analysis for race detection
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Contributions Welcome!!

Open source links:

DataRaceBench FORTRAN:
https://github.com/IITH-Compilers/drb fortran

LLOV: Please drop me an email at cs14mtech11017@iith.ac.in

We welcome your contributions in any form.
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LLOV: Race Detection Algorithm

Algorithm 1: Race Detection
Algorithm
Input: L
Output: result

1 Function isRaceFree(L):
2 SCoP = ConstructSCoP(L) ;
3 RDG =

ComputeDependences(SCoP)
;

4 depth = GetLoopDepth(L) ;
5 if isParallel(RDG, depth) then
6 result = ”Program is race

free.” ;

7 else
8 result = ”Data Race

detected.” ;

9 return result

10 End Function

Algorithm 2: Algorithm to check
parallelism
Input: RDG , dim
Output: True/False

1 Function isParallel(RDG, dim):
2 if RDG is Empty then
3 return True ;
4 else
5 Flag = True;
6 while Dependence D in RDG

do
7 D ′ = Project Out first dim

dimensions from D ;
8 if D’ is Empty then
9 continue ;

10 else
11 Flag = False ;
12 break ;

13 return Flag ;

14 End Function
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Terminology I

True Positive (TP): If the evaluation tool correctly detects a data
race present in the kernel it is a True Positive test result. A higher
number of true positives represents a better tool.

True Negative (TN): If the benchmark does not contain a race and
the tool declares it as race-free, then it is a true negative case. A
higher number of true negatives represents a better tool.

False Positives (FP): If the benchmark does not contain any race,
but the tool reports a race condition, it is a false positive. False
Positives should be as low as possible.

False Negatives (FN): False Negative test result is obtained when
the tool fails to detect a known race in the benchmark. These are the
cases that are missed by the tool. A lower number of false negatives
are desirable.
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Terminology II

Precision : Precision is the measure of closeness of the outcomes of
prediction. Thus, a higher value of precision represents that the tool
will more often than not identify a race condition when it exists.
Precision = TP

TP + FP

Recall : Recall gives the total number of cases detected out of the
maximum data races present. A higher recall value means that there
are less chances that a data race is missed by the tool. It is also
called true positive rate (TPR).
Recall = TP

TP + FN

Accuracy : Accuracy gives the chances of correct reports out of all
the reports, as the name suggests. A higher value of accuracy is
always desired and gives overall measure of the efficacy of the tool.
Accuracy = TP + TN

TP + FP + TN + FN
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Terminology III

F1 Score : The harmonic mean of precision and recall is called the
F1 score. An F1 score of 1 can be achieved in the best case when
both precision and recall are perfect. The worst case F1 score is 0
when either precision or recall is 0.
F1 Score = 2 ∗ Precision ∗ Recall

Precision + Recall

Diagnostic odds ratio (DOR) : It is the ratio of the positive
likelihood ratio (LR+) to the negative likelihood ratio (LR−).
DOR = LR+

LR− where,

Positive Likelihood Ratio (LR+) = TPR
FPR ,

Negative Likelihood Ratio (LR−) = FNR
TNR ,

True Positive Rate (TPR) = TP
TP + FN ,

False Positive Rate (FPR) = FP
FP + TN ,

False Negative Rate (FNR) = FN
FN + TP and

True Negative Rare (TNR) = TN
TN + FP
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Terminology IV

DOR is the measure of the ratio of the odds of race detection being
positive given that the test case has a data race, to the odds of race
detection being positive given the test case does not have a race.
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