LLOV: A Fast Static Data-Race Checker for OpenMP
Programs

e e peva
[Pt

Utpal Bora

PhD Student
Computer Science and Engineering
IIT Hyderabad, India

February 23, 2020

Bora, Utpal (IITH) LLVM-Performance@CGO20 1/29

Table of Contents Iﬁl

© Motivation for LLOV

Bora, Utpal (IITH) LLVM-Performance@CGO20 2/29

Data race in Parallel programs B

Definition (Data Race)

An execution of a concurrent program is said to have a data race when
two different threads access the same memory location,

@ these accesses are not protected by a mutual exclusion mechanism

@ the order of the two accesses is non-deterministic

@ one of these accesses is a write

Bora, Utpal (IITH) LLVM-Performance@CGO20 3/29

J
Common race conditions in OpenMP programs N

1| #pragma omp parallel for
private (temp,i,j)
@ Missing data sharing clauses 2| for (i = 0; i < len; i++)
3 for (j = 0; j < len; j++)
{
4 temp = ulil[j];
5 sum = sum + temp * temp;
6 }
DRBO021: OpenMP Worksharing construct with
data race

Bora, Utpal (IITH) LLVM-Performance@CGO20 4/29

J
Common race conditions in OpenMP programs n

for (i=0;i<n;i++) {
#pragma omp parallel for
for (j=1;j<m;j++) {
b[11[j1=b[i][j-11;
}

@ Missing data sharing clauses

@ Loop carried dependences

o A W N =

}

DRBO038: Example with Loop Carried
Dependence

Bora, Utpal (IITH) LLVM-Performance@CGO20 4/29

Common race conditions in OpenMP programs u

@ Missing data sharing clauses

i 1| #pragma omp simd
@ Loop carried dependences ol for (int i=0; i<len-1; i++){
@ SIMD races 3 ali+1] = alil + b[il;
4l }

DRBO024: Example with SIMD data race

Bora, Utpal (IITH) LLVM-Performance@CGO20 4/29

Common race conditions in OpenMP programs u

Missing data sharing clauses
Loop carried dependences
SIMD races

Synchronization issues

N o g A~ W N

#pragma omp parallel shared(b,
error) {
#pragma omp for nowait
for(i = 0; i < len; i++)
alil] = b + al[il*5;
#pragma omp single
error = al9] + 1;

}

DRBO013: Example with data race due to
improper synchronization

Bora, Utpal (IITH) LLVM-Performance@CGO20 4/29

Common race conditions in OpenMP programs u

@ Missing data sharing clauses

-

#pragma omp parallel
if (omp_get_thread_num() % 2
== 0) {

N

@ Loop carried dependences

@ SIMD races 5 Flag = true;
@ Synchronization issues i}
@ Control flow dependent on Control flow dependent on number of threads

number of threads

Bora, Utpal (IITH) LLVM-Performance@CGO20 4/29

Race Detection Tools

Table: OpenMP Race Detection Tools: A Short Survey

Tools Infrastructure Analysis Type
HELGRIND [Vp0T7b] Valgrind Dynamic
VALGRIND DRD [Vp07a] Valgrind Dynamic
TSAN [SI09] LLVM/GCC Dynamic
ARCHER [AGR'16] LLVM Hybrid
SWORD [AGR"18] LLVM Dynamic
ROMP [GMC18] Dyninst Dynamic
PoLYOMP [CSS15] ROSE Static
DRACO [YSL*18] ROSE Static
OMPVERIFY [BYR'11] AlphaZ Static
Bora, Utpal (IITH) LLVM-Performance@CGO20

5/29

Race Detection Tools

Table: OpenMP Race Detection Tools: A Short Survey

Tools Infrastructure Analysis Type
HELGRIND [Vp0T7b] Valgrind Dynamic
VALGRIND DRD [Vp07a] Valgrind Dynamic
TSAN [SI09] LLVM/GCC Dynamic
ARCHER [AGR'16] LLVM Hybrid
SWORD [AGR"18] LLVM Dynamic
ROMP [GMC18] Dyninst Dynamic
PoLYOMP [CSS15] ROSE Static
DRACO [YSL*18] ROSE Static
OMPVERIFY [BYR'11] AlphaZ Static

There is still need for a static OpenMP data race checker in LLVM.

Bora, Utpal (IITH) LLVM-Performance@CGO20

5/29

J
Advantage of Static tools over Dynamic tools u

Static tools have the following advantages over dynamic tools:

@ Can detect races in SIMD constructs

Bora, Utpal (IITH) LLVM-Performance@CGO20 6/29

Advantage of Static tools over Dynamic tools

Static tools have the following advantages over dynamic tools:

@ Can detect races in SIMD constructs

@ Are independent of the runtime thread schedule

Bora, Utpal (IITH) LLVM-Performance@CGO20

6/29

Advantage of Static tools over Dynamic tools

Static tools have the following advantages over dynamic tools:

@ Can detect races in SIMD constructs
@ Are independent of the runtime thread schedule

@ Are independent of the input size

Bora, Utpal (IITH) LLVM-Performance@CGO20

6/29

J
Advantage of Static tools over Dynamic tools u

Static tools have the following advantages over dynamic tools:
@ Can detect races in SIMD constructs
@ Are independent of the runtime thread schedule
@ Are independent of the input size

@ Are independent of the number of threads

Bora, Utpal (IITH) LLVM-Performance@CGO20 6/29

J
Advantage of Static tools over Dynamic tools u

Static tools have the following advantages over dynamic tools:
@ Can detect races in SIMD constructs
@ Are independent of the runtime thread schedule
@ Are independent of the input size

@ Are independent of the number of threads

Bora, Utpal (IITH) LLVM-Performance@CGO20 6/29

Advantage of Static tools over Dynamic tools

Static tools have the following advantages over dynamic tools:
@ Can detect races in SIMD constructs
@ Are independent of the runtime thread schedule
@ Are independent of the input size
°

Are independent of the number of threads

LLOYV is an attempt to bridge this gap and move towards a fast,

language agnostic, robust, static OpenMP data race checker in LLVM.

Bora, Utpal (IITH) LLVM-Performance@CGO20

6/29

Table of Contents lﬁl

© Architecture and Methodology

Bora, Utpal (IITH) LLVM-Performance@CGO20 7/29

LLOV Overview Iﬁl

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework.

Bora, Utpal (IITH) LLVM-Performance@CGO20 8/29

LLOV Overview |

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

@ based on Intermediate representation of LLVM (LLVM-IR)

Bora, Utpal (IITH) LLVM-Performance@CGO20 8/29

LLOV Overview |

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

@ based on Intermediate representation of LLVM (LLVM-IR)
@ uses Polyhedral framework, Polly, of LLVM

Bora, Utpal (IITH) LLVM-Performance@CGO20 8/29

LLOV Overview |

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

@ based on Intermediate representation of LLVM (LLVM-IR)
@ uses Polyhedral framework, Polly, of LLVM
@ can handle FORTRAN as well as C/C++

Bora, Utpal (IITH) LLVM-Performance@CGO20 8/29

LLOV Overview |

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

@ based on Intermediate representation of LLVM (LLVM-IR)
@ uses Polyhedral framework, Polly, of LLVM
@ can handle FORTRAN as well as C/C++

@ can detect that a program is race free

Bora, Utpal (IITH) LLVM-Performance@CGO20 8/29

LLOV Overview |

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

@ based on Intermediate representation of LLVM (LLVM-IR)
@ uses Polyhedral framework, Polly, of LLVM

@ can handle FORTRAN as well as C/C++

@ can detect that a program is race free

@ has all the advantages of a static data-race checker

Bora, Utpal (IITH) LLVM-Performance@CGO20 8/29

LLOV Overview Il»

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

based on Intermediate representation of LLVM (LLVM-IR)
uses Polyhedral framework, Polly, of LLVM
can handle FORTRAN as well as C/C++

can detect that a program is race free

has all the advantages of a static data-race checker

can be extended for approximate dependences (like LAl of LLVM)

Bora, Utpal (IITH) LLVM-Performance@CGO20 8/29

LLOV Overview Iﬁlﬂ

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

@ based on Intermediate representation of LLVM (LLVM-IR)

@ uses Polyhedral framework, Polly, of LLVM

e can handle FORTRAN as well as C/C++

@ can detect that a program is race free

@ has all the advantages of a static data-race checker

@ can be extended for approximate dependences (like LAl of LLVM)

o

has provision for handling entire OpenMP pragmas

Bora, Utpal (IITH) LLVM-Performance@CGO20 8/29

LLOV Architecture

OpenMP Source
C/C++/FORTRAN

Collect Alias
OpenMP Analysis
F information T i
Verifier Data Race
B (loadable module) Warnings

| 1

Polly

LLOV : LLVM OpenMP Verifier

Figure: Flow Diagram of LLVM OpenMP Verifier (LLOV)

. Utpal (IITH)

LLVM-Performance@CGO20

9/29

Methodology (with Example)

j dimension

for (i=0;i<10;i++) {
#pragma omp parallel for
for (j=1;j<10;j++) { 4
b[il1[j1=b[i1[j-11;
}

5

o AW N

}

Example with Loop Carried
Dependence i dimension

Figure: Dependence Polyhedra

Bora, Utpal (IITH) LLVM-Performance@CGO20 10 /29

Methodology (with Example) 1l

j dimension
1| for (i=0;i<10;i++) { 5
2| #pragma omp parallel for 4
3 for (j=1;j<10;j++) {
4 b[il[j1=bl[il[j-1]1; °
5 } 2
6|]
Listing 1: Example with Loop Carried o s
Dependence I dimension

Figure: Projection of the Dependence Polyhedra
on i-dimension

Zero magnitude of the projections on a dimension signifies that the
dimension is parallel.

Bora, Utpal (IITH) LLVM-Performance@CGO20 11/29

Methodology (with Example)

j dimension
1| for (i=0;i<10;i++) { 5
2| #pragma omp parallel for 4
3 for (j=1;j<10;j++) {
4 b[il[j1=bl[il[j-1]1; °
5 } 2
6|]
Listing 2: Example with Loop Carried o s
Dependence I dimension

Figure: Projection of the Dependence Polyhedra
on j-dimension

Non-zero magnitude of the projections on a dimension signifies that the
dimension is not parallel.

Bora, Utpal (IITH) LLVM-Performance@CGO20 12 /29

Table of Contents M

© Results

Bora, Utpal (IITH) LLVM-Performance@CGO20 13 /29

Results: Experimental Setup i

Benchmarks:
o DataRaceBench C/C++ v1.2 [LLA"18, LLSK18]
@ OmpSCR v2.0 [Dor04, DRd05]
e DataRaceBench FORTRAN [KSB19]

System Specifications:

System: Two Intel Xeon E5-2697 v4 @ 2.30GHz processors
OS: 64 bit Ubuntu 18.04.2 LTS server

Kernel: Linux kernel version 4.15.0-48-generic

Threads: 72 (2 x 36) hardware threads

Memory: 128GB

OpenMP library: LLVM OpenMP runtime v5.0.1 (libomp5)

Bora, Utpal (IITH) LLVM-Performance@CGO20 14 /29

Results: Other Race Detection Tools |

Table: Race detection tools with the version numbers used for comparison

Tools Source Version / Commit
HELGRIND [Vp07b] Valgrind 3.13.0
VALGRIND DRD [Vp07a] Valgrind 3.13.0
TSaN-LLVM [SI109] LLVM 6.0.1
ARCHER [AGR*16] git master branch fc17353
SWORD [AGR'18] git master branch 7a08f3c
ROMP [GMC18] git master branch 6a0ad6d

Bora, Utpal (IITH) LLVM-Performance@CGO20 15/29

Results: DataRaceBench v1.2 comparison

Table: Maximum number of Races reported by different tools in DataRaceBench 1.2

Bora, Utpal (IITH)

Tools _T_;Ce' '\:(:Is _Il?_?\‘ce. I':\‘FC’) Coverage/116
HELGRIND 56 3 2 55 116
VALGRIND DRD | 56 3 26 31 116
TSAN-LLVM 57 2 2 55 116
ARCHER 56 3 2 55 116
SWORD 47 4 24 4 79
LLOV 45 3 28 9 85

LLVM-Performance@CGO20

16 /29

Results: DataRaceBench v1.2 comparison

Table: Maximum number of Races reported by different tools in DataRaceBench 1.2

Race: Yes | Race: No

Tools 5 N (TN FP Coverage/116
HELGRIND 56 3 2 55 116
VALGRIND DRD | 56 3 26 31 116
TSAN-LLVM 57 2 2 55 116
ARCHER 56 3 2 55 116
SWORD 47 4 24 4 79
LLOV 45 3 28 9 85

Table: Maximum number of Races reported by different tools in common 66 kernels of
DataRaceBench 1.2

Tools _T_;Ce' ::ls _Il?_?\lce. ”:\‘; Coverage/116
HELGRIND 46 1 2 17 66
VALGRIND DRD | 46 1 13 6 66
TSAN-LLVM 46 1 2 17 66
ARCHER 46 1 2 17 66
SWORD 46 1 18 1 66
LLOV 44 3 16 3 66

Bora, Utpal (IITH) LLVM-Performance@CGO20 16 /29

Results: DataRaceBench v1.2 statistics

Table: Precision, Recall and Accuracy of the tools on DataRaceBench 1.2

Tools Precision | Recall | Accuracy | F1 Score | Diagnostic odds ratio
HELGRIND 0.50 0.95 0.50 0.66 0.68
VALGRIND DRD 0.64 0.95 0.71 0.77 15.66
TSAN-LLVM 0.51 0.97 0.51 0.67 1.04
ARCHER 0.50 0.95 0.50 0.66 0.68
SWORD 0.92 0.92 0.90 0.92 70.50
LLOV 0.83 0.94 0.86 0.88 46.67

Bora, Utpal (IITH)

LLVM-Performance@CGO20

17 /29

Results: DataRaceBench v1.2 statistics

Table: Precision, Recall and Accuracy of the tools on DataRaceBench 1.2

Tools Precision | Recall | Accuracy | F1 Score | Diagnostic odds ratio
HELGRIND 0.50 0.95 0.50 0.66 0.68
VALGRIND DRD 0.64 0.95 0.71 0.77 15.66
TSAN-LLVM 0.51 0.97 0.51 0.67 1.04
ARCHER 0.50 0.95 0.50 0.66 0.68
SWORD 0.92 0.92 0.90 0.92 70.50
LLOV 0.83 0.94 0.86 0.88 46.67

Table: Precision, Recall and Accuracy of the tools on common 66 kernels of DataRaceBench 1.2

Tools Precision | Recall | Accuracy | F1 Score | Diagnostic odds ratio
HELGRIND 0.73 0.98 0.73 0.84 5.41
VALGRIND DRD 0.88 0.98 0.89 0.93 99.67
TSAN-LLVM 0.73 0.98 0.73 0.84 5.41
ARCHER 0.73 0.98 0.73 0.84 5.41
SWORD 0.98 0.98 0.97 0.98 828.00
LLOV 0.94 0.94 0.91 0.94 78.22

Bora, Utpal (IITH) LLVM-Performance@CGO20 17 /29

Results: DataRaceBench v1.2 runtime |

Lower time is better

o

3 & —® —® @ @ ——=0
@ 10,000 |-

a0 .

i) -

- —

T 1,0002

] -

8 —

2 —

< 100 =

) 43 —% --------------------------------
g — | Archer —o— Helgrind —=m—

- 10— | SWORD —e— TSaN

2 — | DRD 4+ LLOV -e-
un I

8 T T 1T 1T 1 7
& 3 36 45 72 90 180 256

Number of threads

Figure: DataRaceBench v1.2 total time taken by different tools for all 116 kernels on logarithmic
scale

Bora, Utpal (IITH) LLVM-Performance@CGO20 18 /29

Results: DataRaceBench v1.2 runtime |

Lower time is better

o

Q

?

a0 1,000 |

o =

%] [

o

£ |

b 100;

UC) En/ Archer ~ —e— Helgrind —m—
) - SWORD —e— TSaN

E 10l DRD —+ LLOV -@-
5 49 —E --------------------------------
b= L

| E N R R B B

(i 3 36 45 72 90 180 256

Number of threads

Figure: DataRaceBench v1.2 total time taken by different tools for common 66 kernels on
logarithmic scale

Bora, Utpal (IITH) LLVM-Performance@CGO20 19 /29

Results: OmpSCR v2.0 race conditions

Table: Number of Races detected in OmpSCR v2.0 benchmark (CT is Compilation Timeout)

Kernel

[LLOV [HELGRIND [DRD | TSaAN [ARCHER | SWORD

Manually verified kernels with data races

c_loopA.badSolution 1 1 1 1 1 1
c_loopA .solution2 1 1 1 1 1 0
c_loopA.solution3 1 1 1 1 1 0
c_loopB.badSolutionl 1 1 1 1 1 1
c_loopB.badSolution2 1 1 1 1 1 1
c_loopB.pipelineSolution 1 1 1 1 1 0
cmd 1 2 2 2 1 cT
clu 1 1 1 1 1 0
Manually verified race free kernels
c_loopA .solutionl 0 2 1 2 1 0
c_mandel 0 1 0 1 1 0
c_pi 0 1 0 1 1 0
c_jacobi01 1 2 1 0 0 cT
c_jacobi02 1 1 1 0 0 cT
c_jacobi03 0 1 1 0 0 cT
Unverified kernels
cfft 1 1 1 1 1 cT
c_fft6 1 1 0 1 1 cT
c_gsort 0 1 1 1 1 cT
c_GraphSearch 0 0 0 0 0 0
cpp-gsompl 0 0 0 0 0 0
cpp-qsomp2 0 0 0 0 0 0
cpp-qsomp3 0 0 0 0 0 0
cpp-qsomp4 0 0 0 0 0 0
cpp-qsomp5 0 0 0 0 0 0
cpp-qsomp6 0 0 0 0 0 0
cpp-qsomp7 0 0 0 0 0 0

Bora, Utpal (IITH)

LLVM-Performance@CGO20

20 /29

Results: OmpSCR v2.0 runtime i

Lower time is better

>

< 10,000

[12] —

e10] [

Rs) |

o 1,000} -

o] —

c -

o) [

Ug) [

< 100§+ Archer ~m Helgrind
10} H —e— SWORD TSAN
£ |-+~ DRD -e- LLOV
o Bl F===mmmmmmeeeee e eeee -
5 -

) 1 \ \ \ \ \ \

) 3 36 45 72 90 180 256

Number of threads

Figure: OmpSCR v2.0 total execution time by different tools on logarithmic scale

Bora, Utpal (IITH) LLVM-Performance@CGO20 21/29

DataRaceBench FORTRAN |

An implementation of DataRaceBench C/C++ v1.2 [LLSK18] in
FORTRAN 95.

e Converted 92 (out of 116) C/C++ kernels to FORTRAN
@ Demonstrate that LLOV is language agnostic
@ Already open-sourced this benchmark [KSB19]

Bora, Utpal (IITH) LLVM-Performance@CGO20 22/29

Results: DataRaceBench FORTRAN statistics

Table: Maximum number of Races reported by different tools in DataRaceBench FORTRAN

Race: Yes | Race: No
Tools TP EN TN EP Coverage/92
HELGRIND 46 6 4 36 92
VALGRIND DRD | 45 7 21 19 92
| LLOV (34 6 |19 5 | 64 |

Bora, Utpal (IITH)

LLVM-Performance@CGO20

23/29

Table of Contents M

@ Current Status

Bora, Utpal (IITH) LLVM-Performance@CGO20 24/29

OpenMP v4.5 Pragma Handling Status: Various Tools

Table: Comparison of OpenMP pragma handling by OpenMP aware tools. (Y for Yes, N for No)

OpenMP Pragma

LLOV

PoLyOMP DRACO

SWORD

##pragma omp parallel
#pragma omp for

F#£pragma omp parallel for
#pragma omp atomic
#pragma omp threadprivate
#£pragma omp master
F#pragma omp single

F#pragma omp simd

#pragma omp parallel for simd
#pragma omp distribute
#pragma omp ordered
F#pragma omp critical
##pragma omp parallel sections
#pragma omp sections
F#pragma omp declare reduction
F#pragma omp task

##pragma omp taskgroup
#pragma omp taskloop
#pragma omp taskwait
#£pragma omp teams
#pragma omp barrier
#£pragma omp target map

<<

Z2zZzZzz22Z222Z22<<<<<<<<<<

zzzzzzzzZzZzZ222222222<<X<
zZzzzzzzZzZzZ2Z222<<Z2Z222<<X<

z2<Xzzzzzz<<<<<zZz2ZzZz2Z2<K<KZ2<K<K<<

Bora, Utpal (IITH) LLVM-Performance@CGO20

25 /29

Table of Contents M

© Extensions

Bora, Utpal (IITH) LLVM-Performance@CGO20 26 /29

Possible Extensions to LLOV

Working on

@ Use approximate dependece analysis (LAI) [Grol9] of LLVM

Bora, Utpal (IITH) LLVM-Performance@CGO20

27 /29

Possible Extensions to LLOV

Working on

@ Use approximate dependece analysis (LAI) [Grol9] of LLVM

@ Increase coverage- handle more OpenMP pragmas

Bora, Utpal (IITH) LLVM-Performance@CGO20

27 /29

Possible Extensions to LLOV Iﬁl

Working on
@ Use approximate dependece analysis (LAI) [Grol9] of LLVM

@ Increase coverage- handle more OpenMP pragmas

@ Use May-Happen-in-Parallel analysis for race detection

Bora, Utpal (IITH) LLVM-Performance@CGO20 27/29

Contributions Welcome!! |

Open source links:

o DataRaceBench FORTRAN:
https://github.com /I TH-Compilers/drb_fortran

o LLOV: Please drop me an email at cs14mtech11017@iith.ac.in

We welcome your contributions in any form.

Bora, Utpal (IITH) LLVM-Performance@CGO20 28/29

Thanks and Acknowledgements

Johannes Doerfert
Tobias Grosser

GSoC mentors for "Polly as a pass in LLVM"
LLVM Community

Bora, Utpal (IITH) LLVM-Performance@CGO20

29 /29

J
References | 1]

ﬁ Simone Atzeni, Ganesh Gopalakrishnan, Zvonimir Rakamaric, Dong H Ahn, Ignacio
Laguna, Martin Schulz, Gregory L Lee, Joachim Protze, and Matthias S Miiller.
Archer: effectively spotting data races in large openmp applications.
In Parallel and Distributed Processing Symposium, 2016 IEEE International, pages 53-62,
Chicago, IL, USA, 2016. IEEE, IEEE.

ﬁ Simone Atzeni, Ganesh Gopalakrishnan, Zvonimir Rakamaric, Ignacio Laguna, Gregory L
Lee, and Dong H Ahn.
Sword: A bounded memory-overhead detector of openmp data races in production runs.
In 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
845-854, Vancouver, BC, Canada, 2018. IEEE, IEEE.

ﬁ Vamshi Basupalli, Tomofumi Yuki, Sanjay Rajopadhye, Antoine Morvan, Steven Derrien,
Patrice Quinton, and David Wonnacott.
ompverify: polyhedral analysis for the openmp programmer.
In International Workshop on OpenMP, pages 37-53, Berlin, Heidelberg, 2011. Springer,
Springer Berlin Heidelberg.

ﬁ P. Chatarasi, J. Shirako, and V. Sarkar.
Polyhedral optimizations of explicitly parallel programs.
In 2015 International Conference on Parallel Architecture and Compilation (PACT), pages
213-226, San Francisco, CA, USA, Oct 2015. IEEE.

Bora, Utpal (IITH) LLVM-Performance@CGO20 29/29

References Il

[A.J Dorta.
OpenMP Source Code Repository.
https://sourceforge.net/projects/ompscr/files/OmpSCR/OmpSCR}20Fully,
20Distribution’20v2.0/, 2004.
[Online; accessed 19-May-2019].

[A. J. Dorta, C. Rodriguez, and F. de Sande.
The openmp source code repository.
In 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing,
pages 244-250, Washington, DC, USA, Feb 2005. IEEE Computer Society.

@ Yizi Gu and John Mellor-Crummey.
Dynamic data race detection for openmp programs.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, SC '18, pages 61:1-61:12, Piscataway, NJ, USA, 2018.
IEEE Press.

@ LLVM Developer Group.
Loop Access Info, Class Reference .
https://1lvm.org/doxygen/classllvm_1_1iLoopAccessInfo.html, 2019.
[Online; accessed 08-May-2019].

Bora, Utpal (IITH) LLVM-Performance@CGO20 29/29

https://sourceforge.net/projects/ompscr/files/OmpSCR/OmpSCR%20Full%20Distribution%20v2.0/
https://sourceforge.net/projects/ompscr/files/OmpSCR/OmpSCR%20Full%20Distribution%20v2.0/
https://llvm.org/doxygen/classllvm_1_1LoopAccessInfo.html

J
References || 1]

@ Pankaj Kukreja, Himanshu Shukla, and Utpal Bora.
DataRaceBench FORTRAN.
https://github.com/IITH-Compilers/drb_fortran, 2019.
[Online; accessed 19-October-2019].

@ Chunhua Liao, Pei-Hung Lin, Joshua Asplund, Markus Schordan, and lan Karlin.
DataRaceBench v1.2.0.
https://github.com/LLNL/dataracebench, 2018.
[Online; accessed 19-May-2019].

@ Chunhua Liao, Pei-Hung Lin, Markus Schordan, and lan Karlin.
A semantics-driven approach to improving dataracebench’s openmp standard coverage.
In Bronis R. de Supinski, Pedro Valero-Lara, Xavier Martorell, Sergi Mateo Bellido, and
Jesus Labarta, editors, Evolving OpenMP for Evolving Architectures, pages 189-202,
Cham, 2018. Springer International Publishing.

@ Konstantin Serebryany and Timur Iskhodzhanov.
Threadsanitizer: Data race detection in practice.
In Proceedings of the Workshop on Binary Instrumentation and Applications, WBIA '09,
pages 62-71, New York, NY, USA, 2009. ACM.

Bora, Utpal (IITH) LLVM-Performance@CGO20 29/29

https://github.com/IITH-Compilers/drb_fortran
https://github.com/LLNL/dataracebench

References 1V wl!.llw

ﬁ Valgrind-project.
DRD: a thread error detector.
http://valgrind.org/docs/manual/drd-manual.html, 2007.
[Online; accessed 08-May-2019].

ﬁ Valgrind-project.
Helgrind: a thread error detector.
http://valgrind.org/docs/manual/hg-manual.html, 2007.
[Online; accessed 08-May-2019].

ﬁ Fangke Ye, Markus Schordan, Chunhua Liao, Pei-Hung Lin, lan Karlin, and Vivek Sarkar.
Using polyhedral analysis to verify openmp applications are data race free.
In 2018 IEEE/ACM 2nd International Workshop on Software Correctness for HPC
Applications (Correctness), pages 42-50, Dallas, TX, USA, 2018. IEEE, IEEE.

Bora, Utpal (IITH) LLVM-Performance@CGO20 29/29

http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/hg-manual.html

Thank Youl

Bora, Utpal (IITH) LLVM-Performance@CGO20 29/29

LLOV: Race Detection Algorithm I

Algorithm 1: Race Detection

Algorithm

Input: L

Output: result
1 Function isRaceFree(L):
2 SCoP = ConstructSCoP(L) ;
3 RDG =
ComputeDependences(SCoP)

4 depth = GetLoopDepth(L) ;
5 if isParallel(RDG, depth) then

6 result = "Program is race
‘ free.” :
7 else
8 result = "Data Race
detected.” ;
9 return result

10 End Function

o o B w N =

8
9
10
11
12
13

14

Algorithm 2: Algorithm to check
parallelism
Input: RDG, dim
Output: True/False
Function isParallel (RDG, dim):
if RDG is Empty then
‘ return True ;
else

Flag = True;
while Dependence D in RDG
do
D’ = Project Out first dim
dimensions from D ;
if D’ is Empty then
| continue ;
else
Flag = False ;
break ;
return Flag ;
End Function

Bora, Utpal (IITH) LLVM-Performance@CGO20 1/5

Terminology | u

@ True Positive (TP): If the evaluation tool correctly detects a data
race present in the kernel it is a True Positive test result. A higher
number of true positives represents a better tool.

o True Negative (TN): If the benchmark does not contain a race and
the tool declares it as race-free, then it is a true negative case. A
higher number of true negatives represents a better tool.

o False Positives (FP): If the benchmark does not contain any race,
but the tool reports a race condition, it is a false positive. False
Positives should be as low as possible.

o False Negatives (FN): False Negative test result is obtained when
the tool fails to detect a known race in the benchmark. These are the
cases that are missed by the tool. A lower number of false negatives
are desirable.

Bora, Utpal (IITH) LLVM-Performance@CGO20 2/5

Terminology |l B

@ Precision : Precision is the measure of closeness of the outcomes of
prediction. Thus, a higher value of precision represents that the tool
will more often than not identify a race condition when it exists.

... TP
Precision = P+ FP

@ Recall : Recall gives the total number of cases detected out of the
maximum data races present. A higher recall value means that there
are less chances that a data race is missed by the tool. It is also
called true positive rate (TPR).

_ TP
Recall = TP+ FEN

@ Accuracy : Accuracy gives the chances of correct reports out of all
the reports, as the name suggests. A higher value of accuracy is

always desired and gives overall measure of the efficacy of the tool.

_ TP + TN
Accuracy = 1pFp 1 TN T FN

Bora, Utpal (IITH) LLVM-Performance@CGO20 3/5

Terminology Il

@ F1 Score : The harmonic mean of precision and recall is called the
F1 score. An F1 score of 1 can be achieved in the best case when
both precision and recall are perfect. The worst case F1 score is 0
when either precision or recall is 0.

_ Precision * Recall
F1 Score = 2 x Precision + Recall

e Diagnostic odds ratio (DOR) : It is the ratio of the positive
likelihood ratio (LR+) to the negative likelihood ratio (LR—).
DOR = é;% where,

Positive Likelihood Ratio (LR+) = % :
Negative Likelihood Ratio (LR—) = % :
True Positive Rate (TPR) = % :
False Positive Rate (FPR) = z5tr4y |
False Negative Rate (FNR) = % and

True Negative Rare (TNR) = mTifr\l,_—P

Bora, Utpal (IITH) LLVM-Performance@CGO20

4/5

Terminology IV B

DOR is the measure of the ratio of the odds of race detection being
positive given that the test case has a data race, to the odds of race
detection being positive given the test case does not have a race.

Bora, Utpal (IITH) LLVM-Performance@CGO20 5/5

	Motivation for LLOV
	Architecture and Methodology
	Results
	Current Status
	Extensions
	Appendix

