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Data race in Parallel programs B

Definition (Data Race)

An execution of a concurrent program is said to have a data race when
two different threads access the same memory location,

@ these accesses are not protected by a mutual exclusion mechanism

@ the order of the two accesses is non-deterministic

@ one of these accesses is a write
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J
Common race conditions in OpenMP programs N

1| #pragma omp parallel for
private (temp,i,j)
@ Missing data sharing clauses 2| for (i = 0; i < len; i++)
3 for (j = 0; j < len; j++)
{
4 temp = ulil[j];
5 sum = sum + temp * temp;
6 }
DRBO021: OpenMP Worksharing construct with
data race
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J
Common race conditions in OpenMP programs n

for (i=0;i<n;i++) {
#pragma omp parallel for
for (j=1;j<m;j++) {
b[11[j1=b[i][j-11;
}

@ Missing data sharing clauses

@ Loop carried dependences

o A W N =

}

DRBO038: Example with Loop Carried
Dependence
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Common race conditions in OpenMP programs u

@ Missing data sharing clauses

i 1| #pragma omp simd
@ Loop carried dependences ol for (int i=0; i<len-1; i++){
@ SIMD races 3 ali+1] = alil + b[il;
4l }

DRBO024: Example with SIMD data race
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Common race conditions in OpenMP programs u

Missing data sharing clauses
Loop carried dependences
SIMD races

Synchronization issues

N o g A~ W N

#pragma omp parallel shared(b,
error) {
#pragma omp for nowait
for(i = 0; i < len; i++)
alil] = b + al[il*5;
#pragma omp single
error = al9] + 1;

}

DRBO013: Example with data race due to
improper synchronization
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Common race conditions in OpenMP programs u

@ Missing data sharing clauses

-

#pragma omp parallel
if (omp_get_thread_num() % 2
== 0) {

N

@ Loop carried dependences

@ SIMD races 5 Flag = true;
@ Synchronization issues i}
@ Control flow dependent on Control flow dependent on number of threads

number of threads
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Race Detection Tools

Table: OpenMP Race Detection Tools: A Short Survey

Tools Infrastructure  Analysis Type
HELGRIND [Vp0T7b] Valgrind Dynamic
VALGRIND DRD [Vp07a] Valgrind Dynamic
TSAN [SI09] LLVM/GCC Dynamic
ARCHER [AGR'16] LLVM Hybrid
SWORD [AGR"18] LLVM Dynamic
ROMP [GMC18] Dyninst Dynamic
PoLYOMP [CSS15] ROSE Static
DRACO [YSL*18] ROSE Static
OMPVERIFY [BYR'11] AlphaZ Static
Bora, Utpal (IITH) LLVM-Performance@CGO20
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Race Detection Tools

Table: OpenMP Race Detection Tools: A Short Survey

Tools Infrastructure  Analysis Type
HELGRIND [Vp0T7b] Valgrind Dynamic
VALGRIND DRD [Vp07a] Valgrind Dynamic
TSAN [SI09] LLVM/GCC Dynamic
ARCHER [AGR'16] LLVM Hybrid
SWORD [AGR"18] LLVM Dynamic
ROMP [GMC18] Dyninst Dynamic
PoLYOMP [CSS15] ROSE Static
DRACO [YSL*18] ROSE Static
OMPVERIFY [BYR'11] AlphaZ Static

There is still need for a static OpenMP data race checker in LLVM.
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J
Advantage of Static tools over Dynamic tools u

Static tools have the following advantages over dynamic tools:

@ Can detect races in SIMD constructs
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Advantage of Static tools over Dynamic tools

Static tools have the following advantages over dynamic tools:
@ Can detect races in SIMD constructs
@ Are independent of the runtime thread schedule
@ Are independent of the input size
°

Are independent of the number of threads

LLOYV is an attempt to bridge this gap and move towards a fast,

language agnostic, robust, static OpenMP data race checker in LLVM.
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LLOV Overview Iﬁl

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework.

Bora, Utpal (IITH) LLVM-Performance@CGO20 8/29



LLOV Overview |

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

@ based on Intermediate representation of LLVM (LLVM-IR)

Bora, Utpal (IITH) LLVM-Performance@CGO20 8/29



LLOV Overview |

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

@ based on Intermediate representation of LLVM (LLVM-IR)
@ uses Polyhedral framework, Polly, of LLVM

Bora, Utpal (IITH) LLVM-Performance@CGO20 8/29



LLOV Overview |

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

@ based on Intermediate representation of LLVM (LLVM-IR)
@ uses Polyhedral framework, Polly, of LLVM
@ can handle FORTRAN as well as C/C++

Bora, Utpal (IITH) LLVM-Performance@CGO20 8/29



LLOV Overview |

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

@ based on Intermediate representation of LLVM (LLVM-IR)
@ uses Polyhedral framework, Polly, of LLVM
@ can handle FORTRAN as well as C/C++

@ can detect that a program is race free

Bora, Utpal (IITH) LLVM-Performance@CGO20 8/29



LLOV Overview |

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

@ based on Intermediate representation of LLVM (LLVM-IR)
@ uses Polyhedral framework, Polly, of LLVM

@ can handle FORTRAN as well as C/C++

@ can detect that a program is race free

@ has all the advantages of a static data-race checker

Bora, Utpal (IITH) LLVM-Performance@CGO20 8/29



LLOV Overview Il»

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

based on Intermediate representation of LLVM (LLVM-IR)
uses Polyhedral framework, Polly, of LLVM
can handle FORTRAN as well as C/C++

can detect that a program is race free

has all the advantages of a static data-race checker

can be extended for approximate dependences (like LAl of LLVM)

Bora, Utpal (IITH) LLVM-Performance@CGO20 8/29



LLOV Overview Iﬁlﬂ

LLOV is a language agnostic, static OpenMP data race checker in the
LLVM compiler framework. LLOV is

@ based on Intermediate representation of LLVM (LLVM-IR)

@ uses Polyhedral framework, Polly, of LLVM

e can handle FORTRAN as well as C/C++

@ can detect that a program is race free

@ has all the advantages of a static data-race checker

@ can be extended for approximate dependences (like LAl of LLVM)

o

has provision for handling entire OpenMP pragmas
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LLOV Architecture

OpenMP Source
C/C++/FORTRAN

Collect Alias
OpenMP Analysis
F information T i
Verifier Data Race
B (loadable module) Warnings

| 1

Polly

LLOV : LLVM OpenMP Verifier

Figure: Flow Diagram of LLVM OpenMP Verifier (LLOV)

. Utpal (IITH)

LLVM-Performance@CGO20

9/29



Methodology (with Example)

j dimension

for (i=0;i<10;i++) {
#pragma omp parallel for
for (j=1;j<10;j++) { 4
b[il1[j1=b[i1[j-11;
}

5

o AW N

}

Example with Loop Carried
Dependence i dimension

Figure: Dependence Polyhedra

Bora, Utpal (IITH) LLVM-Performance@CGO20 10 /29



Methodology (with Example) 1l

j dimension
1| for (i=0;i<10;i++) { 5
2| #pragma omp parallel for 4
3 for (j=1;j<10;j++) {
4 b[il[j1=bl[il[j-1]1; °
5 } 2
6| ]
Listing 1: Example with Loop Carried o s
Dependence I dimension

Figure: Projection of the Dependence Polyhedra
on i-dimension

Zero magnitude of the projections on a dimension signifies that the
dimension is parallel.
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Methodology (with Example)

j dimension
1| for (i=0;i<10;i++) { 5
2| #pragma omp parallel for 4
3 for (j=1;j<10;j++) {
4 b[il[j1=bl[il[j-1]1; °
5 } 2
6| ]
Listing 2: Example with Loop Carried o s
Dependence I dimension

Figure: Projection of the Dependence Polyhedra
on j-dimension

Non-zero magnitude of the projections on a dimension signifies that the
dimension is not parallel.
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Results: Experimental Setup i

Benchmarks:
o DataRaceBench C/C++ v1.2 [LLA"18, LLSK18]
@ OmpSCR v2.0 [Dor04, DRd05]
e DataRaceBench FORTRAN [KSB19]

System Specifications:

System: Two Intel Xeon E5-2697 v4 @ 2.30GHz processors
OS: 64 bit Ubuntu 18.04.2 LTS server

Kernel: Linux kernel version 4.15.0-48-generic

Threads: 72 (2 x 36) hardware threads

Memory: 128GB

OpenMP library: LLVM OpenMP runtime v5.0.1 (libomp5)
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Results: Other Race Detection Tools |

Table: Race detection tools with the version numbers used for comparison

Tools Source Version / Commit
HELGRIND [Vp07b] Valgrind 3.13.0
VALGRIND DRD [Vp07a] Valgrind 3.13.0
TSaN-LLVM [SI109] LLVM 6.0.1
ARCHER [AGR*16] git master branch fc17353
SWORD [AGR'18] git master branch 7a08f3c
ROMP [GMC18] git master branch 6a0ad6d
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Results: DataRaceBench v1.2 comparison

Table: Maximum number of Races reported by different tools in DataRaceBench 1.2

Bora, Utpal (IITH)

Tools _T_;Ce' '\:(:Is _Il?_?\‘ce. I':\‘FC’) Coverage/116
HELGRIND 56 3 2 55 116
VALGRIND DRD | 56 3 26 31 116
TSAN-LLVM 57 2 2 55 116
ARCHER 56 3 2 55 116
SWORD 47 4 24 4 79
LLOV 45 3 28 9 85
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Results: DataRaceBench v1.2 comparison

Table: Maximum number of Races reported by different tools in DataRaceBench 1.2

Race: Yes | Race: No

Tools 5 N (TN FP Coverage/116
HELGRIND 56 3 2 55 116
VALGRIND DRD | 56 3 26 31 116
TSAN-LLVM 57 2 2 55 116
ARCHER 56 3 2 55 116
SWORD 47 4 24 4 79
LLOV 45 3 28 9 85

Table: Maximum number of Races reported by different tools in common 66 kernels of
DataRaceBench 1.2

Tools _T_;Ce' ::ls _Il?_?\lce. ”:\‘; Coverage/116
HELGRIND 46 1 2 17 66
VALGRIND DRD | 46 1 13 6 66
TSAN-LLVM 46 1 2 17 66
ARCHER 46 1 2 17 66
SWORD 46 1 18 1 66
LLOV 44 3 16 3 66
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Results: DataRaceBench v1.2 statistics

Table: Precision, Recall and Accuracy of the tools on DataRaceBench 1.2

Tools Precision | Recall | Accuracy | F1 Score | Diagnostic odds ratio
HELGRIND 0.50 0.95 0.50 0.66 0.68
VALGRIND DRD 0.64 0.95 0.71 0.77 15.66
TSAN-LLVM 0.51 0.97 0.51 0.67 1.04
ARCHER 0.50 0.95 0.50 0.66 0.68
SWORD 0.92 0.92 0.90 0.92 70.50
LLOV 0.83 0.94 0.86 0.88 46.67
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Results: DataRaceBench v1.2 statistics

Table: Precision, Recall and Accuracy of the tools on DataRaceBench 1.2

Tools Precision | Recall | Accuracy | F1 Score | Diagnostic odds ratio
HELGRIND 0.50 0.95 0.50 0.66 0.68
VALGRIND DRD 0.64 0.95 0.71 0.77 15.66
TSAN-LLVM 0.51 0.97 0.51 0.67 1.04
ARCHER 0.50 0.95 0.50 0.66 0.68
SWORD 0.92 0.92 0.90 0.92 70.50
LLOV 0.83 0.94 0.86 0.88 46.67

Table: Precision, Recall and Accuracy of the tools on common 66 kernels of DataRaceBench 1.2

Tools Precision | Recall | Accuracy | F1 Score | Diagnostic odds ratio
HELGRIND 0.73 0.98 0.73 0.84 5.41
VALGRIND DRD 0.88 0.98 0.89 0.93 99.67
TSAN-LLVM 0.73 0.98 0.73 0.84 5.41
ARCHER 0.73 0.98 0.73 0.84 5.41
SWORD 0.98 0.98 0.97 0.98 828.00
LLOV 0.94 0.94 0.91 0.94 78.22
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Results: DataRaceBench v1.2 runtime |

Lower time is better

o
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Figure: DataRaceBench v1.2 total time taken by different tools for all 116 kernels on logarithmic
scale
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Results: OmpSCR v2.0 race conditions

Table: Number of Races detected in OmpSCR v2.0 benchmark (CT is Compilation Timeout)

Kernel

[ LLOV [ HELGRIND [ DRD | TSaAN [ ARCHER | SWORD

Manually verified kernels with data races

c_loopA.badSolution 1 1 1 1 1 1
c_loopA .solution2 1 1 1 1 1 0
c_loopA.solution3 1 1 1 1 1 0
c_loopB.badSolutionl 1 1 1 1 1 1
c_loopB.badSolution2 1 1 1 1 1 1
c_loopB.pipelineSolution 1 1 1 1 1 0
cmd 1 2 2 2 1 cT
clu 1 1 1 1 1 0
Manually verified race free kernels
c_loopA .solutionl 0 2 1 2 1 0
c_mandel 0 1 0 1 1 0
c_pi 0 1 0 1 1 0
c_jacobi01 1 2 1 0 0 cT
c_jacobi02 1 1 1 0 0 cT
c_jacobi03 0 1 1 0 0 cT
Unverified kernels
cfft 1 1 1 1 1 cT
c_fft6 1 1 0 1 1 cT
c_gsort 0 1 1 1 1 cT
c_GraphSearch 0 0 0 0 0 0
cpp-gsompl 0 0 0 0 0 0
cpp-qsomp2 0 0 0 0 0 0
cpp-qsomp3 0 0 0 0 0 0
cpp-qsomp4 0 0 0 0 0 0
cpp-qsomp5 0 0 0 0 0 0
cpp-qsomp6 0 0 0 0 0 0
cpp-qsomp7 0 0 0 0 0 0
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Results: OmpSCR v2.0 runtime i

Lower time is better
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DataRaceBench FORTRAN |

An implementation of DataRaceBench C/C++ v1.2 [LLSK18] in
FORTRAN 95.

e Converted 92 (out of 116) C/C++ kernels to FORTRAN
@ Demonstrate that LLOV is language agnostic
@ Already open-sourced this benchmark [KSB19]
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Results: DataRaceBench FORTRAN statistics

Table: Maximum number of Races reported by different tools in DataRaceBench FORTRAN

Race: Yes | Race: No
Tools TP EN TN EP Coverage/92
HELGRIND 46 6 4 36 92
VALGRIND DRD | 45 7 21 19 92
| LLOV (34 6 |19 5 | 64 |
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OpenMP v4.5 Pragma Handling Status: Various Tools

Table: Comparison of OpenMP pragma handling by OpenMP aware tools. (Y for Yes, N for No)

OpenMP Pragma

LLOV

PoLyOMP DRACO

SWORD

##pragma omp parallel
#pragma omp for

F#£pragma omp parallel for
#pragma omp atomic
#pragma omp threadprivate
#£pragma omp master
F#pragma omp single

F#pragma omp simd

#pragma omp parallel for simd
#pragma omp distribute
#pragma omp ordered
F#pragma omp critical
##pragma omp parallel sections
#pragma omp sections
F#pragma omp declare reduction
F#pragma omp task

##pragma omp taskgroup
#pragma omp taskloop
#pragma omp taskwait
#£pragma omp teams
#pragma omp barrier
#£pragma omp target map

<<

Z2zZzZzz22Z222Z22<<<<<<<<<<

zzzzzzzzZzZzZ222222222<<X<
zZzzzzzzZzZzZ2Z222<<Z2Z222<<X<

z2<Xzzzzzz<<<<<zZz2ZzZz2Z2<K<KZ2<K<K<<
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Possible Extensions to LLOV

Working on

@ Use approximate dependece analysis (LAI) [Grol9] of LLVM
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Possible Extensions to LLOV Iﬁl

Working on
@ Use approximate dependece analysis (LAI) [Grol9] of LLVM

@ Increase coverage- handle more OpenMP pragmas

@ Use May-Happen-in-Parallel analysis for race detection
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Contributions Welcome!! |

Open source links:

o DataRaceBench FORTRAN:
https://github.com /I TH-Compilers/drb_fortran

o LLOV: Please drop me an email at cs14mtech11017@iith.ac.in

We welcome your contributions in any form.
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LLOV: Race Detection Algorithm I

Algorithm 1: Race Detection

Algorithm

Input: L

Output: result
1 Function isRaceFree(L):
2 SCoP = ConstructSCoP(L) ;
3 RDG =
ComputeDependences(SCoP)

4 depth = GetLoopDepth(L) ;
5 if isParallel(RDG, depth) then

6 result = "Program is race
‘ free.” :
7 else
8 result = "Data Race
detected.” ;
9 return result

10 End Function

o o B w N =

8
9
10
11
12
13

14

Algorithm 2: Algorithm to check
parallelism
Input: RDG, dim
Output: True/False
Function isParallel (RDG, dim):
if RDG is Empty then
‘ return True ;
else

Flag = True;
while Dependence D in RDG
do
D’ = Project Out first dim
dimensions from D ;
if D’ is Empty then
| continue ;
else
Flag = False ;
break ;
return Flag ;
End Function
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Terminology | u

@ True Positive (TP): If the evaluation tool correctly detects a data
race present in the kernel it is a True Positive test result. A higher
number of true positives represents a better tool.

o True Negative (TN): If the benchmark does not contain a race and
the tool declares it as race-free, then it is a true negative case. A
higher number of true negatives represents a better tool.

o False Positives (FP): If the benchmark does not contain any race,
but the tool reports a race condition, it is a false positive. False
Positives should be as low as possible.

o False Negatives (FN): False Negative test result is obtained when
the tool fails to detect a known race in the benchmark. These are the
cases that are missed by the tool. A lower number of false negatives
are desirable.
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Terminology |l B

@ Precision : Precision is the measure of closeness of the outcomes of
prediction. Thus, a higher value of precision represents that the tool
will more often than not identify a race condition when it exists.

... TP
Precision = P+ FP

@ Recall : Recall gives the total number of cases detected out of the
maximum data races present. A higher recall value means that there
are less chances that a data race is missed by the tool. It is also
called true positive rate (TPR).

_ TP
Recall = TP+ FEN

@ Accuracy : Accuracy gives the chances of correct reports out of all
the reports, as the name suggests. A higher value of accuracy is

always desired and gives overall measure of the efficacy of the tool.

_ TP + TN
Accuracy = 1pFp 1 TN T FN
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Terminology Il

@ F1 Score : The harmonic mean of precision and recall is called the
F1 score. An F1 score of 1 can be achieved in the best case when
both precision and recall are perfect. The worst case F1 score is 0
when either precision or recall is 0.

_ Precision * Recall
F1 Score = 2 x Precision + Recall

e Diagnostic odds ratio (DOR) : It is the ratio of the positive
likelihood ratio (LR+) to the negative likelihood ratio (LR—).
DOR = é;% where,

Positive Likelihood Ratio (LR+) = % :
Negative Likelihood Ratio (LR—) = % :
True Positive Rate (TPR) = % :
False Positive Rate (FPR) = z5tr4y |
False Negative Rate (FNR) = % and

True Negative Rare (TNR) = mTifr\l,_—P
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Terminology IV B

DOR is the measure of the ratio of the odds of race detection being
positive given that the test case has a data race, to the odds of race
detection being positive given the test case does not have a race.
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