
Predicting IPv4 Services Across All Ports
Liz Izhikevich

Stanford University

Renata Teixeira

Inria, Paris

Zakir Durumeric

Stanford University

ABSTRACT
Internet-wide scanning is commonly used to understand the topol-

ogy and security of the Internet. However, IPv4 Internet scans have

been limited to scanning only a subset of services—exhaustively

scanning all IPv4 services is too costly and no existing bandwidth-

saving frameworks are designed to scan IPv4 addresses across all

ports. In this work we introduce GPS, a system that efficiently

discovers Internet services across all ports. GPS runs a predictive

framework that learns from extremely small sample sizes and is

highly parallelizable, allowing it to quickly find patterns between

services across all 65K ports and a myriad of features. GPS com-

putes service predictions in 13 minutes (four orders of magnitude

faster than prior work) and finds 92.5% of services across all ports
with 131× less bandwidth, and 204× more precision, compared to

exhaustive scanning. GPS is the first work to show that, given at

least two responsive IP addresses on a port to train from, predicting

the majority of services across all ports is possible and practical.

CCS CONCEPTS
•Networks → Network structure; • Computingmethodologies
→ Model development and analysis; • Information systems →
Data mining;

KEYWORDS
Internet Scanning, Prediction, IPv4, Measurement

ACM Reference Format:
Liz Izhikevich, Renata Teixeira, and Zakir Durumeric. 2022. Predicting IPv4

Services Across All Ports. In ACM SIGCOMM 2022 Conference (SIGCOMM
’22), August 22–26, 2022, Amsterdam, Netherlands. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3544216.3544249

1 INTRODUCTION
Internet-wide scanning allows researchers and network operators

to understand how the Internet works in practice, and has been used
to study network topology [16, 38], operator decisions [20, 28] and

security vulnerabilities [15, 17]. Internet-wide scanning works by

initiating network connections with services on a set of given ports.

Unfortunately, no study has been able to analyze the entire IPv4

service space across all ports, as scanning all 65K ports across all

3.7 billion IPv4 addresses would require 5.6 years using ZMap [21] at

1 Gbps—a scanning rate that prevents flooding destination networks.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-9420-8/22/08. . . $15.00

https://doi.org/10.1145/3544216.3544249

As a result, Internet-wide studies often scan only a relevant subset

of assigned ports (e.g., 23/TELNET and 2323/TELNET), and popular

Internet-service “search engines” like Censys [19] and Shodan [37]

resort to scanning only the most populated ports.

However, recent work has shown that the majority of Internet

services do not run on assigned ports. Scanning only port 80 misses

97% (1.8 billion) of all IPv4 HTTP services and scanning only port 23

misses 95% (6.8 million) of Telnet services [25]. Services occupy a

long tail of nonstandard ports [25]: Internet service search engines

that scan the five thousand most populated ports (e.g., Censys)

miss the majority—an estimated 1.9 billion (63%)—of Internet ser-

vices. To complicate matters, the services on non-standard ports

are not accurately represented by those on standardized ports: IoT

and security-critical devices are up to five times more likely to

inhabit the 1.9 billion services on non-standard ports [25]. Unfortu-

nately, botnets already target vulnerable services on non-standard

ports [13]. Further, both researchers and network operators often

cannot rely on sub-sampling when needing to find a “needle in

the haystack” in the long tail of Internet services. For example,

Marczak et al. rely on complete Internet-wide scans of select ports

to identify spyware infrastructure [31] and clients of cyber espi-

onage [32], which occupy only a few hundred compromised servers.

For researchers and operators to secure the entire Internet, it is

imperative to find services across all IP addresses and ports.

In this work, we introduce GPS, an intelligent scanning system

that scalably and efficiently finds services across all IPv4 addresses

and ports. GPS assumes no prior knowledge and starts by collecting

an initial set of “seed” data. It uses a myriad of application, trans-

port, and network layer features to probabilistically model service

presence. GPS uses the model to construct a two-phased scanning

approach that: (1) finds at least one service on all hosts, and (2) uses

the discovered service to find remaining services on the same host.

GPS’s key contribution is a parallelizable and accurate predictive

algorithm—relying on calculating simple conditional probabilities

between features and services—that can find patterns and predict

new services across all ports in parallel with minimal training data.

GPS finds 92% of services across all 65K ports (with greater than

two responsive IP addresses) using 131 times less bandwidth and

204 times higher precision than exhaustive scanning. We show

that as services become harder to predict, the bandwidth required

to find new services increases: finding 96% of services across all

ports uses only 10 times less bandwidth compared to exhaustively

scanning. When scanning only popular ports, GPS’s algorithm uses

up to 28 times less bandwidth than the state-of-the-art ML-based

solution [36]. On a single CPU core, GPS computes predictions five

times faster than if prior work was extended to predict services

across all ports. When using elastic cloud platforms, GPS’s par-

allelizeable algorithm computes predictions in 13 minutes—four

orders of magnitude faster than extending prior work.

GPS is the first practical system that finds the majority of ser-

vices across all ports on the IPv4 address space. We are releasing

https://doi.org/10.1145/3544216.3544249
https://doi.org/10.1145/3544216.3544249


GPS under the Apache 2.0 License so that individual researchers,

network operators, and security companies can reduce the needed

bandwidth to find, study, and secure the majority of exposed—and

perhaps already exploited—services on the Internet.

2 PRIORWORK
To reduce the cost of scanning and identify additional services, prior

work has proposed several solutions to predict which IP addresses

to scan on a given port. There exist two drawbacks across prior

work: (1) no system is designed—nor scales—to predict services

across all 65K ports, and (2) existing solutions require a prohibitive

amount of training data, which would take years to collect due to

the sparse search space.

Classifiers. Sarabi et al. [36] approach intelligent Internet-wide

scanning as a classification problem—in which each port value

is a class—and use an XGBoost classifier [18] to predict whether

an IP will respond on one of 20 popular ports. Their work finds

that the strongest predictor of a service is the presence of other

services on the same host. To find patterns across common ports,

their system sequentially trains a model per port and uses the

output of each model to train the next. Unfortunately, their method

does not scale to all 65K ports for two reasons. First, their model

requires at least 10 million services to train on per port, which is

not available across 99.99% of ports (many ports simply do not have

that number of services present). Second, an individual model must

be trained for each port, making the computation time prohibitively

expensive: the training and prediction process per port requires

roughly 70 seconds on an NVIDIA GeForce GTX 1080 Ti GPU, and

requires roughly 53 days of computation across all 65K ports. This

computation cannot be parallelized, because the training of the

models is sequential. We compare the performance of XGBoost

scanner to GPS in Section 6.4, and show that GPS is more accurate

than XGBoost on average, is capable of predicting services across

all ports, and takes four orders of magnitude less time to compute

service predictions.

Target generation algorithms. Previous work [22, 23, 35] has

predicted services on IPv6 addresses using Target Generation Algo-
rithms (TGAs). TGAs learn the structure of known IP addresses and

predict similarly structured addresses that are likely to run services.

However, TGAs are unable to find patterns across all 65K ports and

require a new model to be built and trained for each port. TGAs

also rely solely on subnetwork correlations, which we show are

orders of magnitude less predictive of hosts on uncommon ports

(Section 4). Most importantly, TGAs are not computationally scal-

able: obtaining the minimum number of IP addresses required to

effectively train the model (i.e, 1,000 IPs [22]) across 90% of ports

would require randomly probing at least 25% of the address space

per port—due to the sparsity of most uncommon services—requiring

over one year to collect using ZMap [21] at 1Gbps.

We verify whether TGAs are capable of predicting services on

IPv4 addresses across densely-populated ports by modifying En-

tropy/IP [22] and EIP [23] to predict IPv4 addresses (predicting

one IPv4 octet at a time instead of one IPv6 nibble). We use 1,000

randomly sub-sampled addresses from Censys’ Universal Internet

Dataset containing 100% IPv4 scans across 2K ports to train a model

for each port. Each model predicts 1M candidate addresses per port

(an order of magnitude more addresses than the number of IPs that

respond across 90% of ports). Combining all candidate addresses,

Entropy/IP and EIP are able to find only 19% of services in the

Censys dataset.

Recommendation Systems. Proprietary recommendation sys-

tems have been successful at recommendingmillions of items tomil-

lions of users [24, 30, 33]. We apply a popular open-sourced hybrid

recommender [26] to recommend candidate ports to IP addresses

and find it to be unsuccessful at predicting services (Appendix A).

3 GPS OBJECTIVE
GPS’s objective is to maximize finding services across all ports. This
differs from prior Internet scanning systems [36] that maximize

the total “fraction of services” found (Equation 1): the number of

services found by the system relative to the number of IPs that are

found in a “ground truth” set (i.e., a baseline for the true number of

services on port 𝑝 , obtained by a 100% scan). This metric is biased

towards discovering services on popular ports where services are

more dense (e.g., 5% of all services across all 65K ports live on the

top 10 ports) and disincentives finding services on uncommon ports,

which are understudied and more likely to be vulnerable [25].

Fraction of Services =

#(𝐼𝑃, 𝑝) Found by System

#(𝐼𝑃, 𝑝) in Ground Truth

(1)

To address this, we introduce an additional normalized service met-

ric (Equation 2) which, given port 𝑝 , normalizes the weight of a

service based on the number of IPs that respond on port 𝑝 (i.e., 𝐼𝑃𝑝 )

in a “ground truth” set. By doing so, discovering all services on an

uncommon port holds equal weight compared to discovering all

services on a popular port. Using the new metric, GPS’s goal (Equa-

tion 3) is to maximize the fraction of normalized services found

across the set of all ports (|P |), while constraining the number of

probes (i.e., bandwidth) by constant 𝑐1.

Normalized Services =

∑
𝑝∈P

#𝐼𝑃𝑝 Found by System

#𝐼𝑃𝑝 in Ground Truth

|P | (2)

maxNormalized Services(𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ)
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ < 𝑐1

(3)

By constraining bandwidth, GPS is optimized to scan only the

most predictable services in order to maximize the total fraction

of normalized services found. The more bandwidth available, the

more services GPS finds.

There are two additional constraints when building a deployable

system:

(1)Computationally scalable: Predicting services across all ports
and IP addresses encompasses a large search space, but requires a

solution that operates in a constrained amount of wall-time. This

is especially important as Internet services are constantly chang-

ing [34]. For example, we conduct a scan of the same 0.1% of the

IPv4 address space across 65K ports on June 17, 2021 and June 27,

2021. Within the 10-day period, 15% of normalized services and 9%

of all services disappear. Thus, if predicting services takes too long,

the initial set of services that the model uses to learn patterns from,

2



and the model’s predictions, will likely become obsolete.

(2) No prior knowledge: Intelligent Internet scanning is not a

classic prediction task in which informative features are initially

available for training. Predictive features reside on IP addresses and

ports that are not initially known. Since GPS starts with no prior

information about the location of Internet services, it must devise

an efficient scanning strategy that gradually discovers information

about hosts, which can later be used to predict other services.

Ethics. Any open source scanning technique can be used both by

researchers to monitor and secure Internet services, and by attack-

ers to uncover vulnerabilities. We design GPS to be easily blocked

by network operators (Section 5.5), which disincentives attackers

from using GPS while enabling researchers to gain visibility of and

secure the Internet. When executing scans and building GPS, we

follow the community standards for good Internet citizenship out-

lined by Durumeric et al. [21]. We also emphasize that GPS reduces

the traffic sent when scanning services on a large number of ports

(Section 6), thereby reducing the impact on destination networks.

We hope that researchers and companies both consider using GPS

to reduce the total number of scan probes on the Internet.

4 IDENTIFYING PREDICTIVE FEATURES
At first glance, finding IPv4 services across 3.7 billion addresses

and 65K ports—a nearly 2
48

search space—may seem intractable.

However, prior studies have surfaced several ways to predict the

locations of popular services. We begin by investigating whether

these predictive patterns can be used to predict services across all

65K ports. Our results build the foundational set of three categories

of predictive features that GPS will rely on: network layer, transport

layer, and application layer.

Port usage is correlated (Transport layer). Bano et al. showed

that among the eight most popular ports, the presence of one port

on a host can be used to predict the presence of other ports [14].

We scan all 65K ports on a 1% random IPv4 sample in March 2021

and find the same holds true across the majority of all ports: for

every port, at least 25% of hosts also respond on the same second

port. Thus, a service’s port can be used to predict other open ports

on the same host.

Different populations of hosts are more likely to run spe-
cific services (Application layer). Prior work [25, 27] shows

that IoT and router vendors often manufacture particular ports

to be open in order to provide network access. Thus, application-

layer data (e.g., TLS certificates) that indicates manufacturer or

operating system can likely be used to predict other services on

the same host. Using the same scan, we manually investigate the

top 3K most common HTTP header values, SSH banners, and TLS

certificates across all hosts. We find that IoT devices and routers

are the most popular host type across the majority of ports. Having

devices with manufactured—and thus predictable—port presence

dominate services across all ports encourages the pursuit of pre-

dicting services on uncommon ports. Application layer features

that identify a host’s manufacturer (e.g., the organization, subject

name or issuer of a TLS certificate, SSH Banner, PPTP vendor, etc.),

operating system (e.g., HTTP Server, SSH banner, CWMP Header,

MySQL server version, etc), purpose (e.g., HTTP HTML title, VNC

desktop name, etc), and owner (e.g., SSH key, TLS certificate, etc.)

can predict service presence.

Internet services are more likely to appear together in net-
works (Network layer). Murdock et al. and Foremski et al. found

that hosts in a given network are more likely to have the same ports

open [22, 35]. Using Censys’ universal data set comprising of 100%

IPv4 scans of over 2K ports [11], we find that 81% of all services

appear at least twice on the same port within the same /16 subnet-

work. This result indicates that the network is predictive of service

presence. However, as ports become less popular, the probability of

finding two services responding on the same port in the same /16

subnetwork becomes as low as 0.02%. Thus, while network patterns

are effective at finding hosts with a popular port open, discovering

services on uncommon ports cannot be done by solely relying on

network patterns.

In Section 5.2, GPS uses transport-layer, application-layer, and

network-layer features to predict service presence.

5 SYSTEM ARCHITECTURE
In this section, we introduce GPS, a system that efficiently finds

Internet services across all ports. GPS assumes no prior knowledge

and uses a four phase process to bootstrap itself and comprehen-

sively discover services. First, through random sampled scanning,

GPS collects a “seed set” of Internet hosts and services to learn from.

Second, GPS creates a probabilistic model of the most predictive

feature values across all services in the seed set. Third, because

GPS’s seed set spans only a subset of hosts, GPS uses its proba-

bilistic model to find at least one service on each responsive IPv4

host. Finding the first service of a host is non-trivial and bandwidth

expensive, but is crucial to predicting remaining services. Fourth,

once GPS has discovered at least one service on each responsive

host, GPS predicts remaining services.

GPS’s key insight is using a simple and parallelizable compu-

tation for predicting services that is not dependent upon a large

training set. While GPS’s algorithm is computationally expensive,

we provide an implementation that marries serverless computing’s

elastic resources with GPS’s parallelization, speeding up GPS’s

wall-clock prediction time by orders of magnitude.

5.1 Building a Seed Set
GPS starts with no knowledge about Internet hosts. To learn pat-

terns and find services, GPS must either collect, or use an available

(e.g., the LZR dataset [3]) uniform random sample of IPv4 hosts

each scanned across all 65K ports (i.e., “a seed set”). The size of the

seed scan directly impacts prediction quality and is the primary way

to ensure that GPS will learn all predictive patterns. We show in

Appendix D.2 the bandwidth/coverage trade-off when determining

the size of a seed-scan: larger seed sizes find more services, but

use substantially more bandwidth. Importantly, unlike prior work

(Section 2) that requires large sample sizes (e.g., 25% IPv4 sample)

to train, GPS is able to predict services across the majority of ports

with only a 0.1% IPv4 sample. GPS allows the user to specify the

desired size of the seed scan as an input parameter based on their

bandwidth constraint (Equation 3).

3



Application-Layer or # Unique Values in

Network-Layer Feature Censys Ground Truth

Protocol 56

TLS Cert: Hash 30.1M

TLS Cert: Organization 1.1M

TLS Cert: Subject Name 27.9M

HTTP: HTML title 5.9M

HTTP: Body Hash 50.8M

HTTP: Server 480K

HTTP: Header 22K

SSH: Host Key 14.3M

SSH: Banner 177K

VNC: Desktop Name 4.5K

SMTP: Banner 2.9M

FTP: Banner 1.5M

IMAP: Banner 144K

POP3: Banner 390K

CWMP: Header 10

CWMP: Body Hash 11

Telnet: Banner 219K

PPTP: Vendor 390K

MYSQL: Server Version 5.7K

Memcached: Server Version 129

MSSQL: Server Version 381

IPMI: Banner 116

IP’s /16 subnetwork 37.3K

IP’s ASN 67.7K

Table 1: GPS Features— GPS’s features span all TCP protocols

with an available banner on Censys (i.e., 15 unique protocols). GPS

only uses network features that are most predictive of service pres-

ence; the filtering process is described in Appendix C. The dimen-

sionality (i.e., number of unique values) is calculated using the

Censys ground truth dataset described in Section 6.1.

5.2 Identifying Predictive Patterns
GPS’s second phase is purely computational: building a probabilis-

tic model to identify feature patterns most predictive of service

presence. GPS uses the probabilistic model in the third and fourth

stages of the process to scan for new services (Sections 5.3 and 5.4).

Feature selection. To identify feature values that are most pre-

dictive of service presence, GPS uses the seed set to extract the

three categories of features—application, transport, and network—

introduced in Section 4. GPS uses a total of 25 unique application

and network layer features (Table 1) in our evaluation. GPS’s fea-

tures span all TCP protocols with an available banner on Censys

(i.e., 15 unique protocols). GPS therefore accommodates the possi-

bility that both popular (e.g., HTTP) and less popular (e.g., VNC)

protocols contain information that are predictive of service pres-

ence. GPS’s design allows for the user to easily include/remove any

feature candidates.

Modeling interactions. GPS independently models different

interactions of the three primary feature categories. This accom-

modates the possibility that any combination of the three feature

categories may be predictive of Internet services. For example,

knowing a host’s network (𝑁𝑒𝑡𝐼𝑃 ) can be less predictive when the

host appears in many subnetworks (e.g., Android TVs) or more

predictive when a service is in only one subnetwork (e.g., Free-

box devices only appear in the Free network [4]). Concretely, GPS

models the following:

1. Transport layer correspondence: the probability that a host will

have 𝑃𝑜𝑟𝑡𝑎 open given the host has 𝑃𝑜𝑟𝑡𝑏 open (Expression 4).

IP(𝑃𝑜𝑟𝑡𝑎 |𝑃𝑜𝑟𝑡𝑏 ) (4)

2. Transport and application layer correspondence: the probability

that a host will have 𝑃𝑜𝑟𝑡𝑎 open given the host has 𝑃𝑜𝑟𝑡𝑏 open and

the service on 𝑃𝑜𝑟𝑡𝑏 contains a specific application layer feature

value (Expression 5).

IP(𝑃𝑜𝑟𝑡𝑎 | (𝑃𝑜𝑟𝑡𝑏 , 𝐴𝑝𝑝𝑃𝑜𝑟𝑡𝑏 )) (5)

3. Transport and network correspondence: the probability that a

host will have 𝑃𝑜𝑟𝑡𝑎 open given the host has 𝑃𝑜𝑟𝑡𝑏 open and the

host responding on 𝑃𝑜𝑟𝑡𝑏 resides in network 𝑁𝑒𝑡𝐼𝑃 (Expression 6).

IP(𝑃𝑜𝑟𝑡𝑎 | (𝑃𝑜𝑟𝑡𝑏 , 𝑁𝑒𝑡𝐼𝑃 )) (6)

4. Transport, application and network correspondence: the prob-

ability that a host will have 𝑃𝑜𝑟𝑡𝑎 open given the host has 𝑃𝑜𝑟𝑡𝑏
open and the service on 𝑃𝑜𝑟𝑡𝑏 contains a specific application layer

feature value and the host responding on 𝑃𝑜𝑟𝑡𝑏 resides in network

𝑁𝑒𝑡𝐼𝑃 (Expression 7).

IP(𝑃𝑜𝑟𝑡𝑎 | (𝑃𝑜𝑟𝑡𝑏 , 𝐴𝑝𝑝𝑃𝑜𝑟𝑡𝑏 , 𝑁𝑒𝑡𝐼𝑃 )) (7)

Note that all conditional probabilities rely on 𝑃𝑜𝑟𝑡𝑏 having already

been discovered, such that the relevant application layer and/or

transport layer feature values can be used to predict 𝑃𝑜𝑟𝑡𝑎 . However,

not all hosts respond on more than one port and not all hosts have a

priori available information (e.g., a known service). We show in the

following section how GPS uses its probabilistic models to predict

services no matter how many ports the hosts responds on or how

much a priori host information is available.

Computational scalability. Wenote that GPS’smethod formod-

eling feature interactions is computationally expensive; GPS must

calculate all possible combinations of features that appear in the

seed set. Furthermore, while the port feature (𝑃𝑜𝑟𝑡𝑎) has a dimen-

sionality of 65K, application-layer features can vary widely in di-

mensionality (Table 1), thus allowing for potentially billions of

feature-value combinations. Nevertheless, GPS’s method is compu-

tationally scalable across all 65K ports because computing condi-

tional probabilities is a parallelizable computation across all 65K

ports. We discuss our implementation of the probabilistic model in

Section 5.5 and how we use serverless computing to dramatically

reduce the wall-clock time and use matrix operations to scale com-

putations. We formally evaluate the computational complexity of

GPS in Section 6.5.

5.3 Predicting The First Service
Predicting a host’s first service must be treated differently than

predicting the remaining services on the host. When predicting

a host’s first service, only network-layer features (i.e., the IP ad-

dresses’ subnetwork) are available to predict service presence. In

contrast, when at least one service is known, the information pro-

vided by that service can be used to predict other services on the

same host (e.g., port correlations). Since the seed set only contains

4



information about a subset (e.g., 1%) of all hosts, GPS must first

discover at least one service on each responsive IPv4 host in order

to use it to further predict other services on the same host.

Scanning step size. As presented in Section 4, services are more

likely to appear together in subnetworks. Thus, given a responsive

service (𝐼𝑃, 𝑝) in the seed set, GPS must probe the IP addresses

around 𝐼𝑃 (i.e., in its network) on port 𝑝 , to maximize its chances

of finding other services.

GPS faces a trade-off when building an efficient scanning strat-

egy: how exhaustively should the subnetwork of a responsive ser-

vice in the seed set be scanned? Scanning 100% of the IPv4 address

space on a port increases the likelihood of finding all hosts that

respond on that port, but requires more bandwidth and increases

the impact on destination networks. Scanning, for example, the

/24 subnetwork of IP 𝐼𝑃 on port 𝑝 from the seed set requires sub-

stantially less bandwidth, but potentially misses hosts outside of

the subnetwork that also respond on port 𝑝 . The user’s bandwidth

constraint is the deciding factor of how large of a “scanning step

size” (i.e., the subnetwork size to exhaustively scan a port) GPS

should use, and is left as a user-specified parameter. We formally

evaluate the bandwidth/coverage trade-off in Section 6.2 to help

inform the user what scanning step size to use.

Relying on selective random probing of a particular network and

port is a bandwidth-expensive but initially unavoidable process.

Thus, GPS uses it only when absolutely necessary: predicting on

each host only the service(s) that must be found first in order to

predict any remaining services.

Choosing the most predictive services. GPS prioritizes find-

ing the minimum set of services that is most informative for predict-

ing any remaining services. For example, for a host that responds

with a generic HTTP page on port 80 and a vendor-revealing banner

on port 222, discovering the banner is likely much more predictive

of the HTTP/80 service than vice versa (most HTTP/80 services

do not respond on SSH/222 but most SSH/222 services do respond

on HTTP/80). GPS uses its probablistic models (Equations 4–7) to

calculate which service for each host in the seed set is most predic-

tive of all the host’s remaining services. If a host only responds on

one port in the seed set, the sole service is the first and only service

that must be predicted.

GPS executes the following algorithm to determinewhich subnet-

works and ports to scan in order to prioritize finding the minimum

set of most predictive services:

(1) For all hosts that respond on only one port in the seed set,

save the service’s (𝑃𝑜𝑟𝑡𝑎, 𝑁𝑒𝑡𝐼𝑃 ).
(2) For all hosts that respond on more than one port in the

seed set, compute all four conditional probabilities (Equa-

tions 4–7). For every (𝐼𝑃, 𝑃𝑜𝑟𝑡𝑎) in the seed set, identify the

𝑃𝑜𝑟𝑡𝑏 that results in the maximum IP(𝑃𝑜𝑟𝑡𝑎), and save the

(𝑃𝑜𝑟𝑡𝑏 , 𝑁𝑒𝑡𝐼𝑃 ).
(3) Across all hosts, group together the required (𝑃𝑜𝑟𝑡, 𝑁𝑒𝑡𝐼𝑃 )

tuples and count the number of unique services they help

predict in the seed scan (i.e., maximal coverage).

(4) Sort the (𝑃𝑜𝑟𝑡, 𝑁𝑒𝑡𝐼𝑃 ) based on maximum coverage.

Priors scan list. GPS’s algorithm outputs a “priors scan list”: an

ordered list of unique tuples, consisting of a (port, subnetwork of

size scanning step) pair (e.g., (80, 1.1.0.0/16)) in order of maximum

coverage. The prior scans list allows GPS to collect the most predic-

tive services across all ports in parallel. Note that not all ports and

subnetworks will be scanned: only the (port, subnetwork) tuples

that result in the maximum probability of all remaining services

being found. Scanning the priors list allows GPS to find the most

predictive service on each host, which it can next use to predict

additional services on each host.

5.4 Predicting Additional Services
After GPS finds at least one service per host, GPS extracts three

categories of features—application, transport, and network—in each

discovered service to predict additional new services on the same

host. GPS predicts new services by using the existing probabilistic

models (Equations 4–7) to create a “most predictive features” list,

and uses that list to predict additional services.

GPS uses the following algorithm to predict additional services:

(1) For each service in the seed set, identify the feature-tuple

(e.g., (𝑃𝑜𝑟𝑡𝑏 ,𝐴𝑝𝑝𝑃𝑜𝑟𝑡𝑏 )) that results in themaximum IP(𝑃𝑜𝑟𝑡𝑎).

Save the feature tuple and predicted port, 𝑃𝑜𝑟𝑡𝑎 , in a “most

predictive feature values” list. To account for services that

appear on random ports and have a low maximum IP(𝑃𝑜𝑟𝑡𝑎)),

discard all probabilities below 0.00001, which is roughly the

hit rate of randomly probing the majority of ports.

(2) For each responsive service found in the priors scan, extract
available feature values (e.g., TLS certificate, SSH host key).

(3) For each responsive service in the priors scan, and for all of its
feature values, if the feature appears in the “most predictive

feature values” list (i.e., 𝑃𝑜𝑟𝑡𝑏 , 𝐴𝑝𝑝𝑃𝑜𝑟𝑡𝑏 ), save the predicted

port 𝑃𝑜𝑟𝑡𝑎 and the host’s IP to a “predictions” list.

GPS’s algorithm outputs a “predictions list”: an ordered list of

unique IP addresses and ports to scan. Step 1 is crucial to the GPS’s

algorithm; by using every service in the seed scan to build the

“most predictive features” list, GPS’s prediction algorithm guaran-

tees that every service—that GPS has seen before in the seed set

and is “predictable”—will be predicted by using the feature value

pattern most likely to find the service.

5.5 Implementation
We describe an implementation of GPS that capitalizes on its par-

allelizable algorithm to drastically reduce the wall-clock time of

predicting services.

To perform Internet-wide scans (e.g., collect a seed scan, scan

for prior services, scan for predicted services), GPS chains together

three existing tools to conduct a scan: ZMap [21] + LZR [25] +

ZGrab [12]. ZMap is a stateless Layer 4 scanner (i.e., “syn-scanner”)

that initiates TCP connections with Internet hosts in the GPS

pipeline. GPS’s use of ZMap allows it to easily be blocked by net-

work operators, due to its unique fingerprint (IP ID = 54321). LZR

then takes over the TCP connection, filters out middleboxes, and

efficiently fingerprints services (a necessary step when scanning

unassigned ports). For all services that are fingerprinted to be run-

ning real services, GPS provides LZR the option to forward the

connection information to ZGrab, which can then complete the full

Layer 7 handshake to collect additional application layer features.

5



Google Datacenter

Seed 
Scan

Scanner

Internet

1. 

2.

3.
Scanning 

Plan - Priors

4.

Priors 
Scan5.

Scanning Plan 
- Predict

6.
7.

Internet 
Services

8.

Figure 1: GPS Implementation—GPS’s parallelizable prediction
algorithm takes advantage of Google BigQuery’s serverless plat-

form to compute predictions in a highly parallelizable execution

environment.

Implementing GPS’s algorithm for identifying predictive pat-

terns (Section 5.2) presents a challenge: finding all pairwise com-

binations of features and ports—although parallelizable—is com-

putationally and memory intensive. Thus, to minimize wall-clock

time, GPS can directly benefit from a highly parallelizable execution

environment that, ideally, would be available to any user of the

system. While GPS can be deployed on any server infrastructure,

we find that Google BigQuery, a serverless database service that en-

ables scalable analysis of petabytes of data [1], is well suited for the

task. Implementing GPS’s algorithms (e.g., calculating conditional

probabilities, identifying the most predictive features) in a database

query language is a natural choice, as the algorithms rely heavily

on reading data, aggregating, and joining among shared data fields.

We formally evaluate the implementation in Section 6.5 and show

how with and without a highly parallelizable environment, GPS is

5870× and 5× faster than prior work, respectively.

We illustrate GPS’s interaction with BigQuery in Figure 1; GPS

uses BigQuery as a computational engine and does not rely on any

pre-existing BigQuery data. Upon the completion of the seed scan,

GPS uploads the results of the scan to BigQuery. Service features

are extracted in BigQuery by either (1) selecting the appropriate

fields from the uploaded scans, (2) performing operations on the

IP address to extract the host’s subnetwork, or (3) joining on a

database that provides the feature (e.g., ASN). To efficiently calculate

conditional probabilities, GPS uses BigQuery’s SQL language to

compute the pairwise co-occurence matrix for every feature and

port, which involves JOIN-ing the dataset on itself to find all pair-

wise combinations of features and aggregating together identical

feature value patterns and target-ports to calculate the conditional

probabilities. GPS also uses BigQuery’s SQL language to implement

the strategy for predicting the first service (Section 5.3), by joining

the seed scan with a computed co-occurence matrix.

Once the strategy for predicting the first service is calculated,

GPS downloads the strategy on its scanning host. The scanning

host exhaustively scans the (port, subnetwork) tuples and uploads

the results of the scan to BigQuery, which again extracts the host

features. GPS uses BigQuery’s SQL language to create the most

predictive feature list (Section 5.4) by joining the priors scan with

the computed co-occurence matrix, and downloading the prediction

strategy (i.e., a list of IPs and ports) for all remaining services to

the scanning host. The scanning host then scans all remaining

predicted services, and saves the results in a local database. We

have released GPS’s implementation under the Apache 2.0 License

at https://github.com/stanford-esrg/gps.

6 EVALUATION
In this section, we evaluate GPS’s ability to find services across all

ports. First, we evaluate GPS’s ability to find the maximum number

of services under a variable bandwidth constraint. We show that, as

services become harder to predict, the bandwidth required to find

services increases: GPS finds 92% of services across all ports (with

greater than two responsive IP addresses) with 131× less bandwidth

compared to exhaustive scanning, but saves only 10× the bandwidth

when finding 96% of services across all ports. Second, we evaluate

GPS’s precision. When minimizing Internet scanning’s impact on

available Internet resources, we show GPS is two orders of magni-

tude more precise than exhaustive probing. Third, when scanning

popular ports, we compare GPS’s accuracy and bandwidth with the

XGBoost scanner [36]. GPS saves up to 28 times, and on average

2.3 times, the bandwidth required to achieve the same coverage

of services. Fourth, we evaluate the computational complexity of

predicting services and show that, compared to XGBoost scanner,

GPS computes predictions 5 times faster when using a single core

and up to four orders of magnitude faster when using BigQuery.

Lastly, using GPS’s predictions, we identify the feature values that

are most predictive of service presence.

6.1 Methodology
Properly evaluating GPS requires finding an appropriate ground

truth dataset and appropriately configuring GPS.

Approximating ground truth. Finding a “ground truth” dataset

to evaluate GPS presents a challenge: no method exists to efficiently

scan all 65K ports at 100% (hence the need for GPS). Thus, we eval-

uate GPS using two data sets. First, we use Censys’ universal data

set comprising of 100% IPv4 scans of the most popular 2K ports [11]

sampled on July 26, 2021, which is the largest publicly available

dataset that scans the most number of ports at 100%. Censys shares

that, given their scanning bandwidth, it would require 196 days to

exhaustively scan all 65K ports.

Censys targets only themost popular ports. Thus, we additionally

evaluate GPS against a 1% random scan of the IPv4 address space

across all 65K ports in April, 2021, requiring all 30 days to collect,

using the LZR scanner [25]. While the LZR dataset spans all ports, it

reduces the available sample for each port, which maymiss patterns

exhibited by a small number of hosts. We filter both dataset for real

services using the steps described in Appendix B.

To create seed-scans and test sets for each dataset, we randomly

assign each IP address, and its accompanying services, to either a

seed or test set. Thus, a 2% Censys seed set leaves a 98% test set,

and a 0.5% LZR seed set leaves a 0.5% test set. Although we spend

an entire month scanning 1% of the IPv4 address space across 65K

ports, responsive services are still sparse across most ports. Since

we do not expect GPS to learn and predict services on ports with no

6

https://github.com/stanford-esrg/gps


training data, we filter both the LZR seed and test set to only include

ports that have greater than two responsive IP addresses. When

using a 0.5% seed set, filtering leaves a remaining 13,162 ports.

Parameter tuning. GPS requires specifying a seed and step size

as input parameters. We evaluate how the seed and scanning step

size impact GPS’s performance and find that a small step size in-

creases GPS’s precision, but decreases recall (Appendix D). This

trade off happens because, as discussed in Section 5.3, scanning

a smaller subnetwork of the prior port requires substantially less

bandwidth, but potentially misses hosts outside of the subnetwork

that could hold informative feature values. Increasing the seed size

increases the fraction of normalized services found, since a larger

seed size is more likely to encounter uncommon patterns that dom-

inate uncommon ports. However, seed size does not substantially

affect the fraction of overall services found. We specify in each

experiment the seed and scanning step sizes chosen.

Features. We specify GPS to use 25 features (Table 1).

6.2 GPS’s Coverage Across All Ports
GPS’s objective is to maximize the number of services found across

all ports. To quantify coverage, we use two metrics: fraction of

all services found (Equation 1 in Section 3) and fraction of nor-

malized services found (Equation 2 in Section 3), which weighs

services on popular and unpopular ports equally. We calculate both

metrics across both the Censys (2% seed set) and LZR (0.5% seed

set) datasets. As a reference point, we also plot (1) the bandwidth

used by an oracle predictor that knows exactly which services to

probe (i.e., 100% accuracy) and (2) the fraction of services found

as a function of bandwidth when exhaustively probing the mini-

mum subset of ports that maximizes service discovery (i.e., port 80,

(80,443), (80,443,7547), etc) . In comparison to exhaustively scanning

all ports, this “optimal port-order” probing benchmark provides a

tighter estimate for the minimum number of ports that must be

exhaustively probed in order to find a maximum fraction of services.

For example, exhaustively scanning only the 10 most popular ports

(i.e., 0.015% of all ports) is the minimum set of ports that finds 5% of

all services. We report bandwidth usage in units of 100% scans (i.e.,

3.7 billion packets), in order to easily compare GPS performance

with exhaustive scanning.

The number of services GPS finds depends on the bandwidth

budget (Figure 2). When evaluating against 100% IPv4 scans across

2K ports (Censys), GPS initially finds 94% of services using 21× less

the amount of bandwidth compared to optimal port-order prob-

ing. However, since GPS scans services in descending order of

predictability, predicting services quickly becomes more bandwidth

consuming: finding 98.2% of services across 2K ports only saves

7.6× the bandwidth compared to optimal port-order probing. Cen-

sys shares that they probe the equivalent of 572 100% scans every

day to curate their dataset; GPS uses 3 × 10
11

probes, or 6.3× less

probes than Censys, to finds 98.2% of services across 2K ports.

The bandwidth coverage trade off is exacerbated when finding

normalized services: GPS finds 46% of normalized services across 2K

ports using 100× less bandwidth than optimal port-order probing

but, when finding 67% of normalized services, saves only 50% of

bandwidth. When evaluating against 1% IPv4 scans across all ports

(with greater than 2 responsive IP addresses), GPS finds 92.5% and

95% of all services using 6× less and 2× less bandwidth, respectively,

than optimal port-order probing. GPS’s performance drop when

evaluating against all ports is likely due to the 4x smaller seed size;

GPS’s performance is nearly identical when using a 0.5% training

seed set across 2K ports (Appendix D.2).

We quantify the fundamental limitations that GPS faces when

predicting services in Section 7.

6.3 GPS’s Precision Across All Ports
When minimizing Internet-wide scanning’s impact on destination

networks, we show that GPS is over two orders of magnitude more

precise than random probing. GPS scans services that are most

predictable first (Section 5.4). Thus, GPS requires less bandwidth,

is more precise, and minimizes time-to-discovery to find the most

predictable services at the beginning of the scanning schedule. We

use the Censys dataset, to evaluate against 100% scans, with a 1%

seed size. To maximize GPS’s precision, we configure GPS with a

small (/20) scanning step size. We plot in Figure 3 GPS’s precision

as it continues to find services, and, for comparison, show the

precision of exhaustively probing all ports in the optimal order that

prioritizes discovering the most number of services first.

GPS is able to find the first 1% of all serviceswith a 36% precision—

one order of magnitude more precise than exhaustive probing. GPS

finds up to 94% of all services and 46% of normalized services while

being consistently over an order of magnitude more precise than ex-

haustive probing. For example, GPS finds the 94th-percentile of ser-

vices with 204× more precision than exhaustive probing. Note that

GPS’s precision decreases over time as it continues to exhaust its

predictions in descending order of predictability. Once GPS exhausts

all predictions, it can be optionally configured to randomly probe

the rest of all previously un-probed services, thereby eventually

finding 100% of all normalized services (albeit at a very slow rate).

6.4 GPS vs. Machine Learning
As introduced in Section 2, Sarabi et al. [36] use a state-of-the-art

XGBoost classifier [18] to predict responsive IPs for a given port.

Unfortunately, the classifier cannot be deployed across all 65K ports

due to (1) its prohibitively expensive runtime and (2) the lack of

10 million IP address samples across 99.99% of all 65K ports to train

robust models [36]. Nevertheless, we benchmark GPS against the

XGBoost since it is the closest related work.

Methodology. Since Sarabi et al.’s XGBoost scanner is not open

sourced, we benchmark GPS using the results presented in their pa-

per. We use XGBoost scanner’s best performing implementation: a

sequence of models that follow an optimal ordering of port scanning

and use port responses as input features. We configure GPS to use

a seed size of 0.5% (equivalent to the number of IPs Sarabi et al. use

to train their model) from the Censys dataset—also used by Sarabi

et al. —for evaluation. We configure GPS to use a /16 step size in

order to balance coverage and accuracy. We provide an evaluation

for all 19 TCP ports and protocols evaluated by Sarabi et al. Since

their work provides metrics across varying step-sizes of coverage,

7



0 10 20 30 40 50 60 70

0.92

0.94

0.96

0.98

1.00

0 200 400 600 800 1000
0.00

Time (H)
(1 Gb/s Bandwidth)

Bandwidth
 (# of 100% Scans)

Fr
ac

tio
n 

of
 S

er
vi

ce
s

GPS
exhaustive, optimal order
oracle

(a) Service Discovery (Censys): GPS finds 94% of services using 21× less

the amount of bandwidth compared to optimal port-order probing (2K ports,

100% scan, 2% seed).

0 20 40 60 80 100

0.85

0.90

0.95

1.00

0 200 400 600 800 1000 1200 1400
0.00

Time (H)
(1 Gb/s Bandwidth)

Bandwidth
 (# of 100% Scans)

Fr
ac

tio
n 

of
 S

er
vi

ce
s

GPS
exhaustive, optimal order
oracle

(b) Service Discovery (LZR): GPS finds 92.5% and 95% of all services

using 6× less and 2× less bandwidth, respectively, than optimal port-order

probing. (all ports, 1% scan, 0.5% seed).

0 20 40 60 80 100 120 140 160

0.4

0.6

0.8

1.0

0 250 500 750 1000 1250 1500 1750 2000
0.0

Time (H)
(1 Gb/s Bandwidth)

Bandwidth
 (# of 100% Scans)

Fr
ac

tio
n 

No
rm

al
ize

d 
Se

rv
ice

s

GPS
exhaustive, optimal order
oracle

(c) Normalized ServiceDiscovery (Censys):GPS finds 46% of normalized

services across 2K ports using 100× less bandwidth than optimal port-order

probing, but when finding 67% of normalized services, only saves 50% of

bandwidth. (2K ports, 100% scan, 2% seed).

0 50 100 150 200 250 300 350
1.0

0 1000 2000 3000 4000 5000
0.0

0.2

0.4

Time (H)
(1 Gb/s Bandwidth)

Bandwidth
 (# of 100% Scans)

Fr
ac

tio
n 

No
rm

al
ize

d 
Se

rv
ice

s
GPS
exhaustive, optimal order
oracle

(d) Normalized Service Discovery (LZR): GPS finds 17% and 38% of nor-

malized services using 15× and 1.7× less bandwidth, respectively, than

optimal port-order probing. (all ports, 1% scan, 0.5% seed).

Figure 2: Finding Services—Under a variety of training and testing sets, GPS is able to find up to 85% of normalized services and 99.8% of

all services using less bandwidth than optimal port-order probing.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction (Normalized/All) Services Found

0.0

0.1

0.2

0.3

0.4

Pr
ec

isi
on

GPS (normalized)
GPS (all)
exhaustive

Figure 3: GPS Precision—GPS finds up to 94% of all services and

46% of normalized services while being consistently over an order

of magnitude more precise than exhaustive probing.

we evaluate XGBoost scanner at the maximum coverage level that

GPS can achieve
1
(i.e., a 98.8% average coverage).

1
Using GPS with a 0.5% seed size and /16 step size, GPS achieves the following maxi-

mum coverage: 99.9% for ports 21,22,80,443, 99% for ports 23, 25, 119, 445, 465, 587,

993, 3306, 7547, 8080, 8888; 98% for ports 143, 995, 5432; and 94% for port 2323.

Similar to how GPS scans a minimum set of predictive services

across all hosts to find remaining services, XGBoost scanner also

relies on a set of prior scanned IP addresses and ports to predict

additional services. In Figure 4a we plot the bandwidth required

by the XGBoost scanner to collect all needed prior information

(following their optimal scanning sequence) and compare it to the

bandwidth required by GPS to scan the minimum set of predictive

services. We note that, while Sarabi et al. do not directly reveal their

model’s prediction accuracy, bandwidth and accuracy are correlated:

the less bandwidth needed to accurately predict services, the more

accurate the model’s predictions are.

Across all ports, GPS requires an average 5.7x less bandwidth

to collect its minimum set of predictive services and, at best, 28x

less bandwidth when scanning port 2323. Scanning port 80 is the

only case in which GPS requires more bandwidth than the XG-

Boost scanner; XGBoost scanner does not rely on a minimum set of

predictive services to predict services on port 80 (i.e., it only uses

network layer features to immediately predict all services).

Assuming that the minimum set of predictive services has been

scanned (e.g., a user originally intended to scan more than one port),

we show in Figure 4b the bandwidth required by each system to

8



23
23

54
32 46

5
99

5
14

3
75

47 11
0

58
7

99
3

44
5

33
06

88
88 25 23

80
80 21 22 80 44

3
0

2

4

6

8

10

Ba
nd

wi
dt

h
(#

 o
f 1

00
%

 S
ca

ns
)

XGBoost (Sequential)
GPS

(a) Bandwidth Used to Scan Minimum Set of Predictive Services—
GPS saves up to 28x more bandwidth than the XGBoost scanner.

23
23

54
32 46

5
99

5
14

3
75

47 11
0

58
7

99
3

44
5

33
06

88
88 25 23

80
80 21 22 80 44

3

Port
(Sorted by GPS Performance)

0.0

0.2

0.4

0.6

0.8

Ba
nd

wi
dt

h
(#

 o
f 1

00
%

 S
ca

ns
)

XGBoost (Sequential)
GPS

(b) Bandwidth Used to Scan Remaining Services—GPS saves more

bandwidth than XGBoost scanner when scanning 16 of 19 popular ports.

0 2 4 6 8 10
Bandwidth

(# of 100% Scans)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 N

or
m

al
ize

d 
Se

rv
ice

s

exhaustive, optimal order
XGBoost (Sequential)
GPS

(c) Normalized Service Discovery—GPS uses 3x less bandwidth to find

98.5% of all normalized services than XGBoost scanner.

Figure 4: GPS vs. XGBoost Bandwidth Consumption

achieve majority coverage
1
of a target port. GPS requires less band-

width than XGBoost when scanning 16 out of the 19 evaluated ports.

For example, GPS requires 4x less bandwidth when predicting hosts

on ports 2323 and 5432. Ports 995, 993 and 465 are the only ports

that XGBoost requires less bandwidth to scan. However, XGBoost’s

performance gains are not free: the XGBoost scanner require 3–14x

more prior bandwidth to collect the minimum set of predictive

services for ports 995, 993 and 465 compared to GPS (Figure 4a).

On average, GPS requires half the amount of bandwidth to achieve

the same coverage of a target port. In other words, simple condi-

tional probabilities, on average, achieve a greater accuracy than the

XGBoost machine learning classifier when predicting services.

When accounting for all the bandwidth needed to find services,

we show in Figure 4c howGPS finds 98.5% of all normalized services

using 3 times less bandwidth than the XGBoost scanner.

6.5 Computational Complexity
Given the appropriate computational resources, GPS’s parallelizable

prediction algorithm allows it to find services across all ports in a

constrained amount of wall time. In this section, we discuss how

GPS’s performance is dependent upon the availability of a seed scan,

bandwidth, and computational resources. We report the breakdown

of GPS’s performance in Table 2 when configuring GPS to use all

25 features in Table 1, a 1% seed scan and a /16 scan step size to

predict services across all ports.

Time. GPS spends time on three categories of tasks: scanning,

prediction, and data transfer. GPS’s bottleneck lies in bandwidth.

Without an existing seed scan, GPS requires 12.3 days to perform

all scans, which is bounded by existing scanning tools and avail-

able bandwidth. Collecting the initial 1% seed scan contributes to

97.5% of all scanning time, due to the low precision when randomly

probing (i.e., below 0.00001 for the majority of ports). However, if a

seed scan is already available, GPS can forego collecting the initial

seed scan, reducing the overall runtime by 94%. In contrast to the

seed scan, both prediction scans take only hours to execute, due

to their orders of magnitude higher precision than exhaustively

probing uncommon ports. In total, GPS predicts 28 billion services

that require 8 hours to scan.

On a single CPU core, GPS performs predictions in roughly

9 days and 9 hours—5.6x faster than the XGBoost scanner on a

single GPU. However, GPS’s wall time can be drastically reduced

when marrying its parallelizable prediction algorithm with a highly

parallelizable computing environment. When implementing GPS’s

prediction algorithm to use BigQuery, GPS computes all predictions

within 13 minutes of wall-time, 4 orders of magnitude less time than

the XGBoost scanner, while costing only 75 cents.

Unfortunately, computing over big data on any platform often

faces a data transfer bottleneck. Using a serverless platform requires

that data be uploaded and downloaded to/from the platform. GPS

needs a total of 9.1 hours to up/download a total of 606 GB of data

to BigQuery. The biggest bottleneck in the up/download process is

the up/download bandwidth, which GPS experiences to be between

18MB/s–30MB/s when using 24 parallel processes. BigQuery does

not charge for inbound data transport, leaving the total BigQuery

cost to be bounded by computation. Sarabi et al. do not report the

time it takes to load all necessary data into XGBoost scanner’s

GPU, which is often considered to be the biggest bottleneck for

large-scale machine learning computations [6].

Space. The amount of memory GPS requires is directly correlated

with the size of the seed scan, the number of features used to pre-

dict services, and the implementation used to calculate conditional

probabilities. The seed scan itself—including all of its features—is

often quite small; a filtered
2
1% IPv4 65K port seed scan collected

by LZR [25] is only 4 GB. However, GPS requires substantially

more memory when predicting services, which is determined by

the implementation of conditional probability calculations. For ex-

ample, the implementation described in Section 5.5— JOIN-ing the

data on itself to find all pair-wise combinations of an IP’s features—

increases the memory footprint by at least 50 fold relative to the

2
Using the methodology in Appendix B.

9



Bandwidth Computation Time Wall-clock Time Data Processed/Shuffled Cost

(Single Core)

1% Seed Scan (if needed) 1.5 Gb/s – 12 Days – –

Seed Scan Upload 20 Mb/s – 3.5 Min 4 GB 0¢

Predicting First Service (PFS) - 6 Days 2 Hours 8 Min (BigQuery) 4 TB 13¢

PFS Download 1.3 KB/s – 7 Sec 9.3 KB 0¢

PFS Scan 50 Mb/s – 20 Min – –

PFS Scan Upload 30 Mb/s – 34 Min 55 GB 0¢

Predicting Remaining Service (PRS) – 3 Days 7 Hours 5 Min (BigQuery) 2.5 TB 62¢

PRS Download 18 Mb/s – 8.5 Hours 547 GB 0¢

PRS Scan 50 Mb/s – 8 Hours – –

Total Scanning Wall-Time – – 12.3 Days – –

Total Download/Upload Wall-Time – – 9.1 Hours – –

Total Computational Wall-Time – – 13 Min – –

Total – 9 Days 9 Hours 12.7 Days 7 TB 75¢

Table 2: GPS Performance Breakdown—When using a 1% seed scan and a /16 scan step size to predict services across all ports, GPS

bottleneck lies in bandwidth. GPS computes all the necessary predictions within 13 minutes when using BigQuery. Due to GPS’s high

scanning precision, both prediction scans use a substantially lower scanning rate (i.e., 50 Mb/s compared to 1.5Gb/s) in order to avoid packet

congestion and incoming packet drop.

Feature Normalized Services

Services

( Port, Port
Protocol

) 18.7% 2.0%

Port 14.1% 2.0%

( Port, Port
HTTP Header

) 9.7% 2.0%

( Port, PortASN, PortHTTP-Body-Hash
) 7.7% 2.0%

( Port, Port
HTTP-Body-Hash

) 6.1% 2.0%

Table 3: Top 5 Predictive Features—A port’s protocol is the most

predictive feature, predicting 18.7% of normalized services.

seed scan and the number of features used. GPS also requires size-

able disk space when outputting the final list of predicted services;

writing the predicted 28 billion IP and port pairs results in 547 GB

of output.

Researchers deploying GPS will achieve the largest performance

gains when using a highly parallelizable computational environ-

ment with two orders of magnitude more memory than the initial

seed scan size.

6.6 Which features are most predictive?
By using conditional probabilities, it is simple to understand what

features are most predictive of Internet services. When running

GPS using a 1% seed set to predict services across all ports in the

Censys dataset, GPS selects 402K unique feature values as being
most predictive of a service. Information found when using the

HTTP protocol (e.g., HTTP header, HTTP Body hash) is most pre-

dictive compared to every other protocol, contributing to 45% of

the most predictive features values. We present the top-5 most

predictive feature candidates that GPS identifies in Table 3. Across

18.7% of normalized services, the protocol (e.g., SSH) running on

a host’s port (i.e., (Port, Port
Protocol

)) is most predictive of another

port being responsive.

GPS identifies 64 unique tuples of feature values that are most

predictive of services, which include the interaction of application-

layer and network-layer features such as: (ASN, TLS certificate)

(4.4% normalized services), (ASN, SSH Key) (1.2%), VNC name (0.4%),

and (ASN, FTP banner) (0.24%). For example, 95% of hosts in Dis-

tributel Network (ASN 1181) that respond on port 23 with the telnet

banner “Telnet service is disabled or Your telnet session has expired

due to inactivity...” host HTTP content on port 8082; and 98% of

hosts in Bizland (ASN 29873), which respond with an IMAP banner

requesting TLS on port 143, also host SSH on port 2222. These find-

ings show that GPS’s ability to model the interaction of features

(Section 5.2), and decision to not exclude any feature candidates,

helps predict services on various networks and ports.

7 LIMITATIONS
While GPS dramatically shifts the barrier for scanning all Internet

services, there remain existing challenges.

Pattern Mining. GPS is bounded by the features it is configured

to use (Appendix C) and the resulting patterns it mines. If, for ex-

ample, detecting a pattern relies on collecting features from the

union of multiple port responses, GPS may not detect the pattern

due to the computationally expensive nature of calculating correla-

tions between more than two ports. Nonetheless, with the advent

of increased availability of computational parallelism, GPS’s algo-

rithm is modular and easily extensible to add additional feature

correlation computations.

IPv6. GPS relies on exhaustive scans to obtain a set of responsive

IP addresses to use for service predictions: this approach does not

work for IPv6 due to the larger search space. However, given known

IPv6 addresses that respond on at least one port, GPS can be used

to predict other responsive services on the known IPv6 addresses.

RandomHost Configuration. While services often exhibit pre-

dictable patterns, random configurations of hosts will always present

10



a limitation for predicting services. For example, the manual of the

most common (21%) IoT device found in our LZR scan, FRITZ!Box,

states that “for security reasons, FRITZ!Box sets up a random TCP

port for HTTPS when internet access via HTTPS is enabled” [2, 5].

Furthermore, routers can easily port-forward services through ran-

dom ports [7, 10]. We find in our LZR scan that at least 55% of

services are likely being port-forwarded (i.e., different TTL values

returned across all services being hosted) across 99% of the most

uncommon ports.

To understand how random host configurations impact GPS,

we set up an experiment in which we: (1) Use a 95% seed set to

predict the remaining 5% of services of the Censys dataset, thereby

assuming that nearly all patterns are known beforehand; (2) Count

all services on an IP as being discovered the moment at least one

service has been discovered on an IP, thereby assuming that feature

correlations are 100% available and 100% accurate; and (3) Specify

the largest scanning step size (/0) to maximize the total fraction

of normalized services found. Under these ideal conditions, 80%

of all normalized services can be discovered using less bandwidth

than exhaustive scanning, a percentage slightly lower than GPS

due to the small size of the random test set. These results illustrate

how, in a “real-world” setting, GPS performs near what is best

achievable and illustrates what fundamental limitations lie ahead

for any intelligent Internet-wide scanning system.

8 CONCLUSION
In this work, we introduced GPS, an intelligent scanning system

that scalably and efficiently predicts services across all IPs and

ports with no prior knowledge. We demonstrated how a seemingly

simple predictive framework based conditional probabilities can

perform orders of magnitude faster and with more accuracy than

the leading machine learning implementation. GPS finds 92.5% of

services across all ports using 131× less bandwidth than exhaustive

scanning, while being 204× more precise. By releasing GPS as an

open source tool, we hope that the research community will now be

able to find the billions of previously-missed services, at a fraction

of the cost of exhaustive scanning.

ACKNOWLEDGEMENTS
The authors thank Tatyana Izhikevich, Katherine Izhikevich, Kim-

berly Ruth, Deepak Kumar, Pratiksha Thaker, Deepti Raghavan,

members of the Stanford University security and networking groups,

our shepherd, Lixia Zhang, and the anonymous reviewers for pro-

viding insightful discussion and comments. This work was sup-

ported in part by the National Science Foundation under award

CNS-1823192, Google., Inc., the NSF Graduate Fellowship DGE-

1656518 and a Stanford Graduate Fellowship.

REFERENCES
[1] Bigquery: Cloud data warehouse. https://cloud.google.com/bigquery. Accessed:

2021-08-28.

[2] Cannot access user interface via HTTPS from the home network. https:

//en.avm.de/service/knowledge-base/dok/FRITZ-Box-4020/3439_Cannot-

access-user-interface-via-HTTPS-from-the-home-network/. Accessed:

2022-01-26.

[3] Dataset for LZR: Identifying unexpected Internet services. https://scans.io/study/

lzr. Accessed: 2022-01-26.

[4] Free. https://www.free.fr/freebox/. Accessed: 2021-09-09.

[5] FRITZ!box 7490 help. https://service.avm.de/help/en/FRITZ-Box-Fon-WLAN-

7490/015/hilfe_internet_remote_https. Accessed: 2021-08-13.

[6] GPUs are fast! datasets are your bottleneck. https://towardsdatascience.com/

gpus-are-fast-datasets-are-your-bottleneck-e5ac9bf2ad27. Accessed: 2021-09-

06.

[7] How to port forward – general guide to multiple router brands. https://

www.noip.com/support/knowledgebase/general-port-forwarding-guide/. Ac-

cessed: 2021-09-09.

[8] Moving beyond the noise by filtering Internet pseudo services. https://censys.io/

blog/beyond-noise-by-filtering-pseudo-services/. Accessed: 2021-08-19.

[9] Recommenders. https://github.com/microsoft/recommenders. Accessed: 2021-

09-06.

[10] Understanding port forwarding. https://stevessmarthomeguide.com/

understanding-port-forwarding/. Accessed: 2022-01-26.

[11] Universal Internet BigQuery dataset. https://support.censys.io/hc/en-us/articles/

360056063151-Universal-Internet-BigQuery-Dataset. Accessed: 2021-09-09.

[12] ZGrab 2.0 - GitHub. https://github.com/zmap/zgrab2. Accessed: 2019-12-14.

[13] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Du-

rumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, et al. Understanding the

Mirai botnet. In USENIX Security Symposium, 2017.

[14] S. Bano, P. Richter, M. Javed, S. Sundaresan, Z. Durumeric, S. J. Murdoch,

R. Mortier, and V. Paxson. Scanning the Internet for liveness. ACM SIGCOMM
Computer Communication Review, 2018.

[15] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss,

A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue. A messy state of the union: Taming

the composite state machines of TLS. In IEEE Symposium on Security and Privacy,
2015.

[16] R. Beverly. Yarrp’ing the Internet: Randomized high-speed active topology

discovery. In ACM Internet Measurement Conference, 2016.
[17] S. Checkoway, R. Niederhagen, A. Everspaugh, M. Green, T. Lange, T. Ristenpart,

D. J. Bernstein, J. Maskiewicz, H. Shacham, and M. Fredrikson. On the practical

exploitability of dual EC in TLS implementations. In USENIX Security Symposium,

2014.

[18] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.

[19] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman. A search

engine backed by Internet-wide scanning. In ACM Conference on Computer and
Communications Security, 2015.

[20] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver,

D. Adrian, V. Paxson, M. Bailey, et al. The matter of heartbleed. In ACM Internet
Measurement Conference, 2014.

[21] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast Internet-wide

scanning and its security applications. In USENIX Security Symposium, 2013.

[22] P. Foremski, D. Plonka, and A. Berger. Entropy/IP: Uncovering structure in IPv6

addresses. In ACM Internet Measurement Conference, 2016.
[23] O. Gasser, Q. Scheitle, P. Foremski, Q. Lone, M. Korczyński, S. D. Strowes, L. Hen-

driks, and G. Carle. Clusters in the expanse: Understanding and unbiasing IPv6

hitlists. In ACM Internet Measurement Conference, 2018.
[24] C. A. Gomez-Uribe and N. Hunt. The Netflix recommender system: Algorithms,

business value, and innovation. ACM Transactions on Management Information
Systems (TMIS), 2015.

[25] L. Izhikevich, R. Teixeira, and Z. Durumeric. LZR: Identifying unexpected Internet

services. In USENIX Security Symposium, 2021.

[26] M. Kula. Metadata embeddings for user and item cold-start recommendations.

arXiv preprint arXiv:1507.08439, 2015.
[27] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich, D. Kuznetsov, R. Gupta,

and Z. Durumeric. All things considered: An analysis of IoT devices on home

networks. In USENIX Security Symposium, 2019.

[28] F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey, D. McCoy, S. Savage, and

V. Paxson. You’ve got vulnerability: Exploring effective vulnerability notifications.

In USENIX Security Symposium, 2016.

[29] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker. Unexpected means

of protocol inference. In ACM Internet Measurement Conference, 2006.
[30] Y. Ma, B. Narayanaswamy, H. Lin, and H. Ding. Temporal-contextual recom-

mendation in real-time. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2020.

[31] B. Marczak, J. Scott-Railton, K. Berdan, B. Razzak, and R. Deibert. Hooking

candiru: Another mercenary spyware vendor comes into focus. Technical report,

2021.

[32] B. Marczak, J. Scott-Railton, S. Prakash Rao, S. Anstis, and R. Deibert. Running in

circles: Uncovering the clients of cyberespionage firm circles. Technical report,

2020.

[33] J. McInerney, B. Lacker, S. Hansen, K. Higley, H. Bouchard, A. Gruson, and

R. Mehrotra. Explore, exploit, and explain: personalizing explainable recommen-

dations with bandits. In ACM conference on recommender systems, 2018.
[34] G. C. Moura, C. Ganán, Q. Lone, P. Poursaied, H. Asghari, and M. van Eeten. How

dynamic is the isps address space? towards Internet-wide dhcp churn estimation.

In IFIP Networking Conference, 2015.

11

https://cloud.google.com/bigquery
https://en.avm.de/service/knowledge-base/dok/FRITZ-Box-4020/3439_Cannot-access-user-interface-via-HTTPS-from-the-home-network/
https://en.avm.de/service/knowledge-base/dok/FRITZ-Box-4020/3439_Cannot-access-user-interface-via-HTTPS-from-the-home-network/
https://en.avm.de/service/knowledge-base/dok/FRITZ-Box-4020/3439_Cannot-access-user-interface-via-HTTPS-from-the-home-network/
https://scans.io/study/lzr
https://scans.io/study/lzr
https://www.free.fr/freebox/
https://service.avm.de/help/en/FRITZ-Box-Fon-WLAN-7490/015/hilfe_internet_remote_https
https://service.avm.de/help/en/FRITZ-Box-Fon-WLAN-7490/015/hilfe_internet_remote_https
https://towardsdatascience.com/gpus-are-fast-datasets-are-your-bottleneck-e5ac9bf2ad27 
https://towardsdatascience.com/gpus-are-fast-datasets-are-your-bottleneck-e5ac9bf2ad27 
https://www.noip.com/support/knowledgebase/general-port-forwarding-guide/
https://www.noip.com/support/knowledgebase/general-port-forwarding-guide/
https://censys.io/blog/beyond-noise-by-filtering-pseudo-services/
https://censys.io/blog/beyond-noise-by-filtering-pseudo-services/
https://github.com/microsoft/recommenders
https://stevessmarthomeguide.com/understanding-port-forwarding/
https://stevessmarthomeguide.com/understanding-port-forwarding/
https://support.censys.io/hc/en-us/articles/360056063151-Universal-Internet-BigQuery-Dataset
https://support.censys.io/hc/en-us/articles/360056063151-Universal-Internet-BigQuery-Dataset
https://github.com/zmap/zgrab2


[35] A. Murdock, F. Li, P. Bramsen, Z. Durumeric, and V. Paxson. Target generation

for Internet-wide IPv6 scanning. In ACM Internet Measurement Conference, 2017.
[36] A. Sarabi, K. Jin, and M. Liu. Smart Internet Probing: Scanning Using Adaptive

Machine Learning. 2021.
[37] SHODAN. The search engine for Internet-connected devices. https://

www.shodan.io/.

[38] K. Vermeulen, J. P. Rohrer, R. Beverly, O. Fourmaux, and T. Friedman. Diamond-

miner: Comprehensive discovery of the Internet’s topology diamonds. In USENIX
Symposium on Networked Systems Design and Implementation (NSDI), 2020.

APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

A RECOMMENDATION SYSTEMS FOR
INTELLIGENT SCANNING

Proprietary recommendation systems have successfully recom-

mended millions of items to millions of users at Netflix [24], Spo-

tify [33], and Amazon [30]. The model’s success inspires us to use

a recommendation system to recommend/predict responsive ports

for IP addresses. We explore over 30 different open source recom-

mendation models [9] and find that while existing recommendation

systems allow features to be assigned to users (i.e., IPs) and/or items

(i.e., ports), they do not directly allow for features to be assigned

to their interaction (i.e., IP,Port tuples). Consequently, application

layer features for every service cannot be easily represented. Fur-

ther, the majority of models do not support adding new features,

which may have been discovered as a result of a successful predic-

tion, without the undesirable computational overhead of re-training

the model.

To evaluate if open source models can successfully predict ser-

vices, we extend a popular open-sourced hybrid recommender sys-

tem, LightFM [26] to predict a responsive port, given an IP address.

We provide the implementation of the model, including all of its

parameters, on GitHub
3
. Given the framework’s inability to as-

sign features to specific services (i.e., (IP, Port) pairs), we are only

able to encode features for IP addresses and ports. We experiment

with assigning different network layer features (e.g., autonomous

system, /16 subnetwork, /20 subnetwork), to every IP address and

assigning a binary feature (designating whether the port number

is IANA assigned) to every port. We train the model on the LZR

dataset across all 65K ports (using an 0.8% IPv4 seed set) and have

it generate 100 port predictions for every IP address in the test set

(i.e., similar to generating 100 “100% prediction scans”). The model

finds a maximum of 47% of all services—consistently performing

worse compared to exhaustively probing ports in an order the prior-

itizes finding the most number of services—and 1.5% of normalized

services. Due to the feature constraints that recommendation sys-

tems impose and this model’s poor performance, we choose to stop

pursuing adapting recommendation systems for predicting services

across all ports.

B FILTERING FOR REAL SERVICES
Prior work has shown that a substantial number of IP addresses host

“pseudo services” [8]. Pseudo services are often HTTP or HTTPS

webpages that have successfully loaded, but display a message

stating that no services exists on the webpage itself. We conduct a

3
https://github.com/stanford-esrg/recommender-system-gps

Network Feature % Services

Most Predictive

ASN 36%

/16 20%

/18 8%

/19 8%

/17 8%

/20 7%

/21 6%

/22 4%

/23 3%

Table 4: Network Features—When configuring GPS to use the

/16–/23 subnetworks of an IP address, the ASN and /16 of an IP

address are most predictive for the majority of services.

LZR [25] scan across all 65K ports on a random 1% subset of the

IPv4 address space in March 2021 and find that across 96% of all

65K ports, the vast majority of services belong to a host that serve

pseudo services on greater than 1,000 contiguous ports.

To ensure GPS does not learn to predict “pseudo services,” GPS’s

seed set must filter all pseudo services. Over 80% of pseudo services

are simply filtered by first, removing expected dynamic fields (e.g.,

HTTP date field, HTTP Cookie field, TLS random bytes) in the data

and secondly, removing all services on the host that share the same

filtered data. However, the long tail of pseudo services are much

harder to fingerprint and filter. For example, data containing an

unexpected random string (e.g., “Incident ID”, timestamp), results

in the data and content-length to slightly differ. Existing filtering

solutions are often complex and incomplete [29]. Thus, we filter

any host that serves more than 10 services—a method identifies

pseudo services with 100% recall and 99% precision. All results in

this work assume that pseudo services are filtered.

C NETWORK-LAYER FEATURE CANDIDATES
The final implementation of GPS is configured to use only the

network-layer features that are most predictive of the majority of

services. Reducing the number of network-layer features reduces

the computational complexity of GPS’s predictive algorithm. To

determine which network-layer features are most predictive of

service presence, we initially configure GPS to use all subnetwork

sizes between /23–/16, and the autonomous system number. GPS

builds a probabilistic model using a 0.5% seed set from the LZR

dataset, which we use to analyze which network features are most

predictive across all services. We show in Table 4 how the IP’s ASN

and /16 subnetwork are most predictive of service presence. It is

no surprise that larger subnetworks are more predictive of service

presence: larger subnetworks are more likely to be shared amongst

multiple hosts in the seed set.

D PARAMETER TUNING
D.1 Varying Step Size
GPS minimizes bandwidth during prediction by regulating the scan-

ning step size. As the step size decreases, the precision of finding

12

https://www.shodan.io/
https://www.shodan.io/
https://github.com/stanford-esrg/recommender-system-gps


0.0 0.2 0.4 0.6 0.8 1.0
Fraction Normalized Services Found

10−5

10−3

10−1

101

103

Ba
nd

wi
dt

h 
(1

00
%

 S
ca

ns
)

/0
/4
/8
/12
/16
/20
exhaustive

Figure 5: Varying Step Size (Censys)—A smaller scanning step

saves more bandwidth when initially finding services, but ulti-

mately finds less services compared to a larger scanning step size.

services increases, causing the overall bandwidth required to de-

crease. For example, as seen in Figure 5, finding the first 25% of

normalized services using a scanning step size of /12 uses one order

of magnitude more bandwidth compared to a scanning step size

of /20. No GPS configuration finds more than 82% of normalized

services with a bandwidth usage better than exhaustive probing.

D.2 Varying Seed Size
The seed size regulates the amount of unique service patterns GPS

has already seen. We plot the amount of bandwidth needed (in-

cluding collecting the seed size) and fraction of services found in

Figure 6. When optimizing to find normalized services, Figure 6a

shows that, for a bandwidth budget above 30 100% IPv4 scans, a 2%

IPv4 seed size always finds the most fraction of normalized services

compared to smaller seed size. This indicates that patterns found

in a larger seed scan are crucial for finding normalized services.

However, when optimizing to find the largest fraction of services,

smaller seed sizes are sufficient (Figure 2a), indicating that the most

predictive patterns for finding popular services can be detected

with a small seed size.

100 101 102 103

Bandwidth
 (# of 100% Scans)

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

No
rm

al
ize

d 
Se

rv
ice

s

Seed Size
2%
1%
0.1%
0.5%
exhaustive

1 5 10 50 100

Time (H)
(1 Gb/s Bandwidth)

(a) Normalized Service Discovery

100 101 102 103

Bandwidth
 (# of 100% Scans)

0.92

0.94

0.96

0.98

1.00

Fr
ac

tio
n 

of
 S

er
vi

ce
s Seed Size

2%
1%
0.1%
0.5%
exhaustive

1 5 10 50 100

Time (H)
(1 Gb/s Bandwidth)

(b) Service Discovery

Figure 6: Varying Seed Size (Censys)—A larger seed size in-

creases the fraction of normalized services GPS finds, but does

not substantially impact the fraction of all services GPS finds.

13


	Abstract
	1 Introduction
	2 Prior Work
	3 GPS Objective
	4 Identifying Predictive Features
	5 System Architecture
	5.1 Building a Seed Set
	5.2 Identifying Predictive Patterns
	5.3 Predicting The First Service
	5.4 Predicting Additional Services
	5.5 Implementation

	6 Evaluation
	6.1 Methodology
	6.2 GPS's Coverage Across All Ports
	6.3 GPS's Precision Across All Ports
	6.4 GPS vs. Machine Learning
	6.5 Computational Complexity
	6.6 Which features are most predictive?

	7 Limitations
	8 Conclusion
	References
	Appendix
	A Recommendation Systems for Intelligent Scanning
	B Filtering For Real Services
	C Network-Layer Feature Candidates
	D Parameter Tuning
	D.1 Varying Step Size
	D.2 Varying Seed Size


