
Staged Compilation with Two-Level Type Theory

2023-08-11

1 / 20



Staged Compilation
Staged compilation separates code compilation in at two stages.
▶ Compile time (aka meta-level, indexed 1) stage and runtime

(aka object-level, indexed 0) stage.
▶ Each stage can have their own language.

A staging algorithm converts/stages a metaprogram to a program
with only runtime language.
▶ A metaprogram is a term with runtime type but uses

type/terms from the compile-time language through staging
annotations.

Examples where staged compilation is useful:
▶ Metaprogramming: evaluate the code-generation annotations

(e.g. macros, inlining) to runtime language, i.e. without
annotations.

▶ Domain specific languages: e.g. LINQ (C#)

2 / 20

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/standard-query-operators-overview


Two-Level Type Theory

A staging algorithm needs to be sound:
▶ Any well-typed metaprogram should be staged into a

well-typed runtime code.
▶ The resulting code of staging does not use any types/terms

from the compile-time language.
To justify the the soundness of staging
▶ Two-level type theory can be applied.
▶ Treat the two stages as separate type systems.
▶ Restrict the interaction between stages with explicit

annotations.
Unlike previous works like MetaML [TS97], staged compilation
with 2LTT supports dependent types.

3 / 20



Π-Types

To adhere to the notations from the original paper on staged
compilation [Kov22], we introduce new notations in comparison
with Pie.
▶ Dependent function types (Π-types)

f : (a : A) → (b : B) → C

(claim f (Π ([a A] [b B]) C))
▶ Functions (lambdas)

f := λ a b. body

(define f (λ (a b) body))

4 / 20



Moving Between Stages

We have two universes of types, one for each stage:
▶ U0 for the universe of stage 0 (recall 0 is index for

runtime/object stage)
▶ U1 for the universe of stage 1 (recall 1 is index for

compile-time/meta stage)
For interaction between stages, we define three staging annotations
on the compile-time level.

5 / 20



Lifting: Compute Runtime Expressions at Compile-Time

Given A : U0, we have ⇑A : U1

▶ The lifted type ⇑A : U1 is the type of metaprograms that
compute runtime expression of type A : U0.

6 / 20



Quoting: Metaprograms from Runtime Terms

Given t : A and A : U0, we have ⟨t⟩ : ⇑A and ⇑A : U1

▶ The quoted term ⟨t⟩ : ⇑A is a metaprogram that immediately
yields the term t : A.

7 / 20



Splicing: Executing Metaprograms During Staging

Given t : ⇑A and ⇑A : U1, we have ∼t : A and A : U0

▶ The spliced metaprogram ∼t will be executed during staging,
and substituted by result expression.

8 / 20



Moving Between Stages

With the three staging annotations for moving between stages:
▶ Lifting: Given A : U0, we have ⇑A : U1

▶ Quoting: Given t : A and A : U0, we have ⟨t⟩ : ⇑A
▶ Splicing: Given t : ⇑A and ⇑A : U1, we have ∼t : A

We have two equalities:
∼⟨t⟩ = t
⟨∼s⟩ = s

9 / 20



The Natural Eliminator
We introduce natural numbers for each stage i ∈ {0, 1}

Nati : Ui

zeroi : Nati

suci : Nati → Nati

NatElimi : (P : Nati → Ui,j)

→ P zeroi

→ ((n : Nati) → P n → P (suci n))
→ (t : Nati)

→ P t

For simplicity, let us define iteri to represent iter-Nat from Pie

iteri : (X : Ui) → Nati → X → (X → X) → X
iteri := λX t z s.NatElimi (λ n.X) z (λ n acc. s acc) t 10 / 20



Addition and Multiplication

iteri : (X : Ui) → Nati → X → (X → X) → X
iteri := λX t z s.NatElimi (λ n.X) z (λ n acc. s acc) t

Similar to the definition of + and * in Pie, we can implement them
in 2LTT as well.
▶ We put add0 to stage 0:

add0 : Nat0 → Nat0 → Nat0
add0 := λ a b. iter0 Nat0 a b (λ n.suc0 n)

▶ For multiplication, it takes a compile-time number x : Nat1
and produces a metaprogram that computes the product with
x at runtime.

mul1 : Nat1 → ⇑Nat0 → ⇑Nat0
mul1 = λ x t. iter1 (⇑Nat0) x ⟨zero0⟩ ⟨add0∼t⟩

11 / 20



The Staging Process
iteri : (X : Ui) → Nati → X → (X → X) → X
iteri := λX t z s.NatElimi (λ n.X) z (λ n acc. s acc) t

add0 : Nat0 → Nat0 → Nat0
add0 := λ a b. iter0 Nat0 a b (λ n.suc0 n)
mul1 : Nat1 → ⇑Nat0 → ⇑Nat0
mul1 = λ x t. iter1 (⇑Nat0) x ⟨zero0⟩ ⟨add0∼t⟩

With add0 being a function on stage 0 and mul1 on stage 1, a
metaprogram, for instance

double : Nat0 → Nat0
double := λ x.∼(mul1 2 ⟨x⟩)

will get staged to

double := λ x. add0 x (add0 x zero0)

12 / 20



Formal Inference Rules

lift
Γ ⊢0,j A
Γ ⊢1,j ⇑A

quote
Γ ⊢0,j t : A

Γ ⊢1,j ⟨t⟩ : ⇑A

splice
Γ ⊢1,j t : ⇑A
Γ ⊢0,j ∼t : A

quote-splice
Γ ⊢1,j t : ⇑A

Γ ⊢1,j ⟨∼t⟩ = t : ⇑A

splice-quote
Γ ⊢0,j t : A

Γ ⊢0,j ∼⟨t⟩ = t : A

13 / 20



Limitation of Staging

The original purpose of 2LTT is to express meta-theoretical
statements about homotopy type theory (HoTT)
▶ “From a type in HoTT, we can extract a statement that can

be phrased in the meta-theory. From a meta-theoretical
statement about HoTT, it is not always possible to construct
a type. Thus, we can convert inner types into outer one, but
not always vice versa.” [Ann+19]

▶ Therefore cannot splice arbitrary stage 1 term.
▶ Stage 0 don’t always have ways to represent types in stage 1.
▶ ∼zero1 would be invalid.

14 / 20



Isomorphism Between Types

⇑((a : A) → B a) ≃ (a : ⇑A) → ⇑(B∼a)

⇑((a : A)× B a) ≃ ((a : ⇑A)× ⇑(B∼a))

15 / 20



Isomorphism Example

pres→ : ⇑((x : A) → B x) → ((x : ⇑A) → ⇑ (B∼x))
pres→ f := λ x. ⟨∼f∼x⟩
pres→ := λ f x. ⟨∼f∼x⟩

pres−1
→ : ((x : ⇑A) → ⇑ (B∼x)) → ⇑((x : A) → B x)

pres−1
→ f := ⟨λ x. ∼(f ⟨x⟩)⟩

pres−1
→ := λ f. ⟨λ x. ∼(f ⟨x⟩)⟩

16 / 20



Isomorphism Example

pres→(pres−1
→ f) = (λ f x. ⟨∼f∼x⟩) ((λ f. ⟨λ x. ∼(f ⟨x⟩)⟩) f)

=β (λ f x. ⟨∼f∼x⟩) ⟨λ x. ∼(f ⟨x⟩)⟩
=β λ x. ⟨∼⟨λ x. ∼(f ⟨x⟩)⟩∼x⟩
= λ x. ⟨(λ x. ∼(f ⟨x⟩))∼x⟩
=β λ x. ⟨∼(f ⟨∼x⟩)⟩
= λ x. ⟨∼(f x)⟩
= λ x. (f x)
=η f

17 / 20



Result of 2LTT

▶ Staging: Given a program t : A, where A : U0. Staging
computes metaprograms and replace all splices in t and A
with resulting runtime expression.

▶ 2LTT guarantees resulting computation does not contain
more splices.

▶ Regardless of the body, if you have a runtime type program, it
can be turned into a program using strictly stage 0 terms and
constructors.

18 / 20



Bibliography

[TS97] Walid Taha and Tim Sheard. “MetaML and
Multi-Stage Programming with Explicit Annotations”.
In: SIGPLAN Not. 32.12 (Dec. 1997), pp. 203–217.
issn: 0362-1340. doi: 10.1145/258994.259019. url:
https://dl.acm.org/doi/10.1145/258994.259019.

[Ann+19] Danil Annenkov et al. “Two-Level Type Theory and
Applications”. In: ArXiv e-prints (May 2019). url:
http://arxiv.org/abs/1705.03307.

[Kov22] András Kovács. “Staged Compilation with Two-Level
Type Theory”. In: Proc. ACM Program. Lang. 6.ICFP
(Aug. 2022). doi: 10.1145/3547641. url:
https://doi.org/10.1145/3547641.

19 / 20

https://doi.org/10.1145/258994.259019
https://dl.acm.org/doi/10.1145/258994.259019
http://arxiv.org/abs/1705.03307
https://doi.org/10.1145/3547641
https://doi.org/10.1145/3547641


End

20 / 20


	Staged Compilation
	Two-Level Type Theory

	Notation
	-Types

	Moving Between Stages
	Lifting: Compute Runtime Expressions at Compile-Time
	Quoting: Metaprograms from Runtime Terms
	Splicing: Executing Metaprograms During Staging
	Moving Between Stages

	The Natural Eliminator
	Addition and Multiplication
	The Staging Process

	Formal Inference Rules
	Limitation of Staging
	Isomorphism Between Types
	Isomorphism Example

	Result of 2LTT
	Bibliography

