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Staged Compilation
Staged compilation separates code compilation in at two stages.
▶ Compile time (aka meta-level, indexed 1) stage and runtime

(aka object-level, indexed 0) stage.
▶ Each stage can have their own language.

A staging algorithm converts/stages a metaprogram to a program
with only runtime language.
▶ A metaprogram is a term with runtime type but uses

type/terms from the compile-time language through staging
annotations.

Examples where staged compilation is useful:
▶ Metaprogramming: evaluate the code-generation annotations

(e.g. macros, inlining) to runtime language, i.e. without
annotations.

▶ Domain specific languages: e.g. LINQ (C#)
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https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/standard-query-operators-overview


Two-Level Type Theory

A staging algorithm needs to be sound:
▶ Any well-typed metaprogram should be staged into a

well-typed runtime code.
▶ The resulting code of staging does not use any types/terms

from the compile-time language.
To justify the the soundness of staging
▶ Two-level type theory can be applied.
▶ Treat the two stages as separate type systems.
▶ Restrict the interaction between stages with explicit

annotations.
Unlike previous works like MetaML [TS97], staged compilation
with 2LTT supports dependent types.
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Π-Types

To adhere to the notations from the original paper on staged
compilation [Kov22], we introduce new notations in comparison
with Pie.
▶ Dependent function types (Π-types)

f : (a : A) → (b : B) → C

(claim f (Π ([a A] [b B]) C))
▶ Functions (lambdas)

f := λ a b. body

(define f (λ (a b) body))
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Moving Between Stages

We have two universes of types, one for each stage:
▶ U0 for the universe of stage 0 (recall 0 is index for

runtime/object stage)
▶ U1 for the universe of stage 1 (recall 1 is index for

compile-time/meta stage)
For interaction between stages, we define three staging annotations
on the compile-time level.
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Lifting: Compute Runtime Expressions at Compile-Time

Given A : U0, we have ⇑A : U1

▶ The lifted type ⇑A : U1 is the type of metaprograms that
compute runtime expression of type A : U0.
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Quoting: Metaprograms from Runtime Terms

Given t : A and A : U0, we have ⟨t⟩ : ⇑A and ⇑A : U1

▶ The quoted term ⟨t⟩ : ⇑A is a metaprogram that immediately
yields the term t : A.
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Splicing: Executing Metaprograms During Staging

Given t : ⇑A and ⇑A : U1, we have ∼t : A and A : U0

▶ The spliced metaprogram ∼t will be executed during staging,
and substituted by result expression.
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Moving Between Stages

With the three staging annotations for moving between stages:
▶ Lifting: Given A : U0, we have ⇑A : U1

▶ Quoting: Given t : A and A : U0, we have ⟨t⟩ : ⇑A
▶ Splicing: Given t : ⇑A and ⇑A : U1, we have ∼t : A

We have two equalities:
∼⟨t⟩ = t
⟨∼s⟩ = s
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The Natural Eliminator
We introduce natural numbers for each stage i ∈ {0, 1}

Nati : Ui

zeroi : Nati

suci : Nati → Nati

NatElimi : (P : Nati → Ui,j)

→ P zeroi

→ ((n : Nati) → P n → P (suci n))
→ (t : Nati)

→ P t

For simplicity, let us define iteri to represent iter-Nat from Pie

iteri : (X : Ui) → Nati → X → (X → X) → X
iteri := λX t z s.NatElimi (λ n.X) z (λ n acc. s acc) t 10 / 20



Addition and Multiplication

iteri : (X : Ui) → Nati → X → (X → X) → X
iteri := λX t z s.NatElimi (λ n.X) z (λ n acc. s acc) t

Similar to the definition of + and * in Pie, we can implement them
in 2LTT as well.
▶ We put add0 to stage 0:

add0 : Nat0 → Nat0 → Nat0
add0 := λ a b. iter0 Nat0 a b (λ n.suc0 n)

▶ For multiplication, it takes a compile-time number x : Nat1
and produces a metaprogram that computes the product with
x at runtime.

mul1 : Nat1 → ⇑Nat0 → ⇑Nat0
mul1 = λ x t. iter1 (⇑Nat0) x ⟨zero0⟩ ⟨add0∼t⟩
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The Staging Process
iteri : (X : Ui) → Nati → X → (X → X) → X
iteri := λX t z s.NatElimi (λ n.X) z (λ n acc. s acc) t

add0 : Nat0 → Nat0 → Nat0
add0 := λ a b. iter0 Nat0 a b (λ n.suc0 n)
mul1 : Nat1 → ⇑Nat0 → ⇑Nat0
mul1 = λ x t. iter1 (⇑Nat0) x ⟨zero0⟩ ⟨add0∼t⟩

With add0 being a function on stage 0 and mul1 on stage 1, a
metaprogram, for instance

double : Nat0 → Nat0
double := λ x.∼(mul1 2 ⟨x⟩)

will get staged to

double := λ x. add0 x (add0 x zero0)
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Formal Inference Rules

lift
Γ ⊢0,j A
Γ ⊢1,j ⇑A

quote
Γ ⊢0,j t : A

Γ ⊢1,j ⟨t⟩ : ⇑A

splice
Γ ⊢1,j t : ⇑A
Γ ⊢0,j ∼t : A

quote-splice
Γ ⊢1,j t : ⇑A

Γ ⊢1,j ⟨∼t⟩ = t : ⇑A

splice-quote
Γ ⊢0,j t : A

Γ ⊢0,j ∼⟨t⟩ = t : A
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Limitation of Staging

The original purpose of 2LTT is to express meta-theoretical
statements about homotopy type theory (HoTT)
▶ “From a type in HoTT, we can extract a statement that can

be phrased in the meta-theory. From a meta-theoretical
statement about HoTT, it is not always possible to construct
a type. Thus, we can convert inner types into outer one, but
not always vice versa.” [Ann+19]

▶ Therefore cannot splice arbitrary stage 1 term.
▶ Stage 0 don’t always have ways to represent types in stage 1.
▶ ∼zero1 would be invalid.
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Isomorphism Between Types

⇑((a : A) → B a) ≃ (a : ⇑A) → ⇑(B∼a)

⇑((a : A)× B a) ≃ ((a : ⇑A)× ⇑(B∼a))
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Isomorphism Example

pres→ : ⇑((x : A) → B x) → ((x : ⇑A) → ⇑ (B∼x))
pres→ f := λ x. ⟨∼f∼x⟩
pres→ := λ f x. ⟨∼f∼x⟩

pres−1
→ : ((x : ⇑A) → ⇑ (B∼x)) → ⇑((x : A) → B x)

pres−1
→ f := ⟨λ x. ∼(f ⟨x⟩)⟩

pres−1
→ := λ f. ⟨λ x. ∼(f ⟨x⟩)⟩
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Isomorphism Example

pres→(pres−1
→ f) = (λ f x. ⟨∼f∼x⟩) ((λ f. ⟨λ x. ∼(f ⟨x⟩)⟩) f)

=β (λ f x. ⟨∼f∼x⟩) ⟨λ x. ∼(f ⟨x⟩)⟩
=β λ x. ⟨∼⟨λ x. ∼(f ⟨x⟩)⟩∼x⟩
= λ x. ⟨(λ x. ∼(f ⟨x⟩))∼x⟩
=β λ x. ⟨∼(f ⟨∼x⟩)⟩
= λ x. ⟨∼(f x)⟩
= λ x. (f x)
=η f
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Result of 2LTT

▶ Staging: Given a program t : A, where A : U0. Staging
computes metaprograms and replace all splices in t and A
with resulting runtime expression.

▶ 2LTT guarantees resulting computation does not contain
more splices.

▶ Regardless of the body, if you have a runtime type program, it
can be turned into a program using strictly stage 0 terms and
constructors.
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