Staged Compilation with Two-Level Type Theory

2023-08-11

Staged Compilation

Staged compilation separates code compilation in at two stages.

- Compile time (aka meta-level, indexed 1) stage and runtime (aka object-level, indexed 0) stage.
- Each stage can have their own language.

A staging algorithm converts/stages a metaprogram to a program with only runtime language.

A metaprogram is a term with runtime type but uses type/terms from the compile-time language through staging annotations.

Examples where staged compilation is useful:

- Metaprogramming: evaluate the code-generation annotations (e.g. macros, inlining) to runtime language, i.e. without annotations.
- ► Domain specific languages: e.g. LINQ (C#)

Two-Level Type Theory

A staging algorithm needs to be sound:

- Any well-typed metaprogram should be staged into a well-typed runtime code.
- The resulting code of staging does not use any types/terms from the compile-time language.
- To justify the the soundness of staging
 - Two-level type theory can be applied.
 - Treat the two stages as separate type systems.
 - Restrict the interaction between stages with explicit annotations.

Unlike previous works like MetaML [TS97], staged compilation with 2LTT supports dependent types.

$\Pi\text{-}\mathsf{Types}$

To adhere to the notations from the original paper on staged compilation [Kov22], we introduce new notations in comparison with Pie.

▶ Dependent function types (П-types)

$$f: (a:A) \to (b:B) \to C$$
(claim f (f ([a A] [b B]) C))

Functions (lambdas)

 $f := \lambda a b. body$

(define f (λ (a b) body))

Moving Between Stages

We have two universes of types, one for each stage:

- U₀ for the universe of stage 0 (recall 0 is index for runtime/object stage)
- U₁ for the universe of stage 1 (recall 1 is index for compile-time/meta stage)

For interaction between stages, we define three staging annotations on the compile-time level.

Lifting: Compute Runtime Expressions at Compile-Time

Given $A : U_0$, we have $\Uparrow A : U_1$

The lifted type ↑A : U₁ is the type of metaprograms that compute runtime expression of type A : U₀.

Quoting: Metaprograms from Runtime Terms

Given t : A and $A : U_0$, we have $\langle t \rangle : \Uparrow A$ and $\Uparrow A : U_1$

The quoted term ⟨t⟩: ↑A is a metaprogram that immediately yields the term t : A.

Splicing: Executing Metaprograms During Staging

Given $t: \Uparrow A$ and $\Uparrow A: U_1$, we have $\sim t: A$ and $A: U_0$

The spliced metaprogram ~t will be executed during staging, and substituted by result expression.

Moving Between Stages

With the three staging annotations for moving between stages:

- Lifting: Given $A : U_0$, we have $\Uparrow A : U_1$
- Quoting: Given t : A and $A : U_0$, we have $\langle t \rangle : \Uparrow A$
- Splicing: Given $t: \Uparrow A$ and $\Uparrow A : U_1$, we have $\sim t : A$

We have two equalities:

$$\sim \langle t
angle = t$$

 $\langle \sim s
angle = s$

The Natural Eliminator

We introduce natural numbers for each stage $i \in \{0, 1\}$

 $\begin{aligned} \mathsf{Nat}_i &: U_i \\ \mathsf{zero}_i &: \mathsf{Nat}_i \\ \mathsf{suc}_i &: \mathsf{Nat}_i \to \mathsf{Nat}_i \\ \mathsf{NatElim}_i &: (P : \mathsf{Nat}_i \to \mathsf{U}_{i,j}) \\ & \to P\mathsf{zero}_i \\ & \to ((n : \mathsf{Nat}_i) \to Pn \to P(\mathsf{suc}_i n)) \\ & \to (t : \mathsf{Nat}_i) \\ & \to Pt \end{aligned}$

For simplicity, let us define iter, to represent iter-Nat from Pie

$$iter_i : (X : U_i) \to \operatorname{Nat}_i \to X \to (X \to X) \to X$$
$$iter_i := \lambda X t z s. \operatorname{NatElim}_i (\lambda n. X) z (\lambda n \operatorname{acc.} s \operatorname{acc}) t \qquad 10/20$$

Addition and Multiplication

$$\begin{aligned} &\text{iter}_i : (X : U_i) \to \mathsf{Nat}_i \to X \to (X \to X) \to X \\ &\text{iter}_i := \lambda \, X \, t \, z \, s. \, \mathsf{NatElim}_i \, (\lambda \, n. \, X) \, z \, (\lambda \, n \, \mathsf{acc.} \, s \, \mathsf{acc}) \, t \end{aligned}$$

Similar to the definition of + and * in Pie, we can implement them in 2LTT as well.

```
\begin{aligned} \mathsf{add}_0 &: \mathsf{Nat}_0 \to \mathsf{Nat}_0 \to \mathsf{Nat}_0 \\ \mathsf{add}_0 &:= \lambda \, \mathsf{a} \, \mathsf{b}. \, \mathsf{iter}_0 \, \mathsf{Nat}_0 \, \mathsf{a} \, \mathsf{b} \, (\lambda \, \mathsf{n}.\mathsf{suc}_0 \, \mathsf{n}) \end{aligned}
```

For multiplication, it takes a compile-time number x: Nat₁ and produces a metaprogram that computes the product with x at runtime.

$$\begin{split} \mathsf{mul}_1 &: \mathsf{Nat}_1 \to \Uparrow \mathsf{Nat}_0 \to \Uparrow \mathsf{Nat}_0 \\ \mathsf{mul}_1 &= \lambda \, x \, t. \, \mathsf{iter}_1 \, (\Uparrow \mathsf{Nat}_0) \, x \, \langle \mathsf{zero}_0 \rangle \, \langle \mathsf{add}_0 \, \sim t \rangle \end{split}$$

The Staging Process

$$\begin{split} &\text{iter}_i : (X : U_i) \to \mathsf{Nat}_i \to X \to (X \to X) \to X \\ &\text{iter}_i := \lambda \, X \, t \, z \, s. \, \mathsf{NatElim}_i \, (\lambda \, n. \, X) \, z \, (\lambda \, n \, \mathsf{acc.} \, s \, \mathsf{acc}) \, t \\ &\text{add}_0 : \mathsf{Nat}_0 \to \mathsf{Nat}_0 \to \mathsf{Nat}_0 \\ &\text{add}_0 := \lambda \, a \, b. \, \mathsf{iter}_0 \, \mathsf{Nat}_0 \, a \, b \, (\lambda \, n. \mathsf{suc}_0 \, n) \\ &\text{mul}_1 : \, \mathsf{Nat}_1 \to \Uparrow \mathsf{Nat}_0 \to \Uparrow \mathsf{Nat}_0 \\ &\text{mul}_1 = \lambda \, x \, t. \, \mathsf{iter}_1 \, (\Uparrow \, \mathsf{Nat}_0) \, x \, \langle \mathsf{zero}_0 \rangle \, \langle \mathsf{add}_0 \, \sim t \rangle \end{split}$$

With add_0 being a function on stage 0 and mul_1 on stage 1, a metaprogram, for instance

double : $Nat_0 \rightarrow Nat_0$ double := $\lambda x. \sim (mul_1 2 \langle x \rangle)$

will get staged to

double := λx . add₀ x (add₀ x zero₀)

Formal Inference Rules

LIFT	QUOTE	SPLICE
$\Gamma \vdash_{0,j} A$	$\Gamma \vdash_{0,j} t : \mathcal{A}$	$\Gamma \vdash_{1,j} t : \Uparrow A$
$\overline{\Gamma} \vdash_{1,j} \Uparrow A$	$\overline{\Gamma dash_{1,j} \langle t angle : \Uparrow A}$	$\overline{\Gamma} \vdash_{0,j} \sim t : A$

QUOTE-SPLICE	SPLICE-QUOTE
$\Gamma \vdash_{1,j} t : \Uparrow A$	$\Gamma \vdash_{0,j} t: \mathcal{A}$
$\overline{\Gamma \vdash_{1,j} \langle \sim t \rangle} = t : \Uparrow \overline{A}$	$\overline{\Gamma \vdash_{0,j} \sim \langle t \rangle} = t : A$

Limitation of Staging

The original purpose of 2LTT is to express meta-theoretical statements about homotopy type theory (HoTT)

- "From a type in HoTT, we can extract a statement that can be phrased in the meta-theory. From a meta-theoretical statement *about* HoTT, it is not always possible to construct a type. Thus, we can convert inner types into outer one, but not always vice versa." [Ann+19]
- Therefore cannot splice arbitrary stage 1 term.
- Stage 0 don't always have ways to represent types in stage 1.
- \triangleright ~zero₁ would be invalid.

Isomorphism Between Types

$$\Uparrow((a:A) \to Ba) \simeq (a:\Uparrow A) \to \Uparrow(B \sim a)$$
$$\Uparrow((a:A) \times Ba) \simeq ((a:\Uparrow A) \times \Uparrow(B \sim a))$$

Isomorphism Example

$$\begin{array}{l} \operatorname{pres}_{\rightarrow}: \Uparrow((x:A) \to Bx) \to ((x:\Uparrow A) \to \Uparrow(B \sim x)) \\ \operatorname{pres}_{\rightarrow} f:= \lambda \, x. \, \langle \sim f \sim x \rangle \\ \operatorname{pres}_{\rightarrow}:= \lambda \, fx. \, \langle \sim f \sim x \rangle \end{array}$$

$$\begin{array}{l} \operatorname{pres}_{\rightarrow}^{-1} : \left((x: \Uparrow A) \to \Uparrow (B \sim x) \right) \to \Uparrow ((x: A) \to Bx) \\ \operatorname{pres}_{\rightarrow}^{-1} f := \langle \lambda \, x. \, \sim (f \langle x \rangle) \rangle \\ \operatorname{pres}_{\rightarrow}^{-1} := \lambda \, f. \, \langle \lambda \, x. \, \sim (f \langle x \rangle) \rangle \end{array}$$

Isomorphism Example

$$pres_{\rightarrow}(pres_{\rightarrow}^{-1}f) = (\lambda fx. \langle \sim f \sim x \rangle) ((\lambda f. \langle \lambda x. \sim (f \langle x \rangle) \rangle) f)$$

$$=_{\beta} (\lambda fx. \langle \sim f \sim x \rangle) \langle \lambda x. \sim (f \langle x \rangle) \rangle$$

$$=_{\beta} \lambda x. \langle \sim \langle \lambda x. \sim (f \langle x \rangle) \rangle \sim x \rangle$$

$$= \lambda x. \langle (\lambda x. \sim (f \langle x \rangle)) \sim x \rangle$$

$$=_{\beta} \lambda x. \langle \sim (f \langle \sim x \rangle) \rangle$$

$$= \lambda x. \langle \sim (fx) \rangle$$

$$=_{\eta} f$$

Result of 2LTT

- Staging: Given a program t : A, where A : U₀. Staging computes metaprograms and replace all splices in t and A with resulting runtime expression.
- 2LTT guarantees resulting computation does not contain more splices.
- Regardless of the body, if you have a runtime type program, it can be turned into a program using strictly stage 0 terms and constructors.

Bibliography

[TS97] Walid Taha and Tim Sheard. "MetaML and Multi-Stage Programming with Explicit Annotations". In: SIGPLAN Not. 32.12 (Dec. 1997), pp. 203–217. ISSN: 0362-1340. DOI: 10.1145/258994.259019. URL: https://dl.acm.org/doi/10.1145/258994.259019.

[Ann+19] Danil Annenkov et al. "Two-Level Type Theory and Applications". In: ArXiv e-prints (May 2019). URL: http://arxiv.org/abs/1705.03307.

[Kov22] András Kovács. "Staged Compilation with Two-Level Type Theory". In: Proc. ACM Program. Lang. 6.ICFP (Aug. 2022). DOI: 10.1145/3547641. URL: https://doi.org/10.1145/3547641.

End