
Introduction to Staged Compilation and Two-Level Type Theory

Yulong Liu Youzhang Sun

1 Introduction to Staged Compilation
The purpose of staged compilation is to write expressive metaprograms that generate code with the guarantees that the

generated code is well-formed. To justify the well-formedness of the code output, the model of two-level type theory (2LTT)
[Ann+19] is employed as a formal typing system for staged compilation. While languages such as MetaML [TS97] supports
metaprogramming, 2LTT additionally supports dependent types. Therefore, 2LTT contributes to the field of programming
language and type theory by introducing dependent types to metaprogramming.

In this paper, we focus on metaprogramming with two stages. We index these stages as stage 0 and stage 1. Each stage
has a language which we will further formalise into a type system. We use the term staging algorithm to refer the process of
transforming (i.e. staging) a metaprogram to a program that only uses the stage 0 language. A metaprogram is a term with
stage 0 type but uses type/terms from the stage 1 language through staging annotations. To explain how a metaprogram can
use stage 1 language despite being at stage 0, we first describe the interaction between these two stages.

1.1 Interaction between Stages
While 2LTT provides safety about the output code staged from a metaprogram, the only way to interact between stages

is through these three staging operations: lifting, quoting, and splicing.

• If we have a stage 0 type 𝐴0, we can lift 𝐴0, denoted as ⇑𝐴0. The type ⇑𝐴0 describes the type of metaprograms that
compute a stage 0 expression of type 𝐴0.

• If we have a stage 0 term 𝑡 of type 𝐴0, we can quote 𝑡 , denoted as ⟨𝑡⟩. The term ⟨𝑡⟩ describes a metaprogram that
immediately yields 𝑡 .

• If we have a stage 1 term 𝑠 of type ⇑𝐴0, we can splice 𝑠 , denoted as ∼𝑠 . The term ∼𝑠 describes a term that is to be
executed during staging with the resulting expression substituted back to the output code.

The combinations of these staging operations allows us to lift stage 0 terms and types to stage 1, and bring lifted terms
back to stage 0.

1.2 Example of A Staged Program
In this section, we start with an example of a programwithout staging annotations; then we will convert this program into

a metaprogram to demonstrate the usage of staging operations. After introducing inference rules of 2LTT in later sections,
we will revisit this example by type-checking and staging it according to the inference rules.

For now, let’s consider a programming language that provides addition for natural numbers. We can implement a multipli-
cation algorithm using the provided addition function recursively. Thus, we can write a program, called double : Nat → Nat
that fixes the first argument of mul:

1



zero : Nat
suc : Nat → Nat

add : Nat → Nat → Nat

mul : Nat → Nat → Nat

mul zero𝑥 = zero

mul (suc𝑛) 𝑥 = add𝑥 (mul𝑛 𝑥)

double : Nat → Nat

double := 𝜆 𝑥 .mul (suc (suc zero)) 𝑥
Currently, there is no distinction between the stage of our function mul and add. For the purpose of demonstrating the

effect of staging a metaprogram, let us lift the function mul to stage 1 and keep add at stage 0. The staging algorithm will
stage double into a program with no occurrences of mul. In other words, we can stage the code 𝜆 𝑥 .mul (suc (suc zero)) 𝑥
into 𝜆 𝑥 . add𝑥 (add𝑥 zero) through substitution with its definition during staging.

Therefore, we rewrite these function asmul1 and add0 to indicate their stage. Because both functions add0 andmul1 take
a natural number as argument but compute in different stages, we also need each stage to have a type for describing naturals.
Thus to distinguish between naturals in these two stages, we index the type by its stage. We define Nat0 to be the type of
natural numbers at stage 0, and Nat1 to be the type of natural numbers at stage 1. We treat these two types as separate types,
thus the constructors of these naturals are also indexed: zero1 and suc1 for stage 1, and zero0 and suc0 for stage 0.

zero0 : Nat0
suc0 : Nat0 → Nat0
add0 : Nat0 → Nat0 → Nat0

zero1 : Nat1
suc1 : Nat1 → Nat1

mul1 : Nat1 → ⇑Nat0 → ⇑Nat0
mul1 zero1 𝑡 = ⟨zero0⟩
mul1 (suc1 𝑛) 𝑡 = ⟨add0 ∼𝑡 ∼(mul1 𝑛 𝑡)⟩

double0 : Nat0 → Nat0
double0 := 𝜆 𝑥 .∼(mul1 (suc1 (suc1 zero1)) ⟨𝑥⟩)

We also rewrite our original double program as double0 : Nat0 → Nat0 since it is the program we want to stage into
the output code. However, the argument of the function double0, namely 𝑥 : Nat0, is passed to mul1, a function at stage 1.
Therefore, we need to quote this argument as ⟨𝑥⟩ : ⇑Nat0 to lift 𝑥 to stage 1 for the metaprogram mul1 to compute.

Therefore, our program double0 takes a 𝑥 : Nat0 as a stage 0 term, quotes it as ⟨𝑥⟩ : ⇑𝐴 to pass it to the metaprogram
mul1 (suc1 (suc1 zero1)), which would gives us a lifted term in stage 1. Then, we can splice the output of mul1 to get back a
stage 0 term.

For the metaprogrammul1, we follow its recursive definition with respect to the first argument, aNat1 from stage 1. Since
mul1 is a metaprogram that generates a lifted code for stage 0, namely with type ⇑Nat0, we splice the output inside double0 to
bring the term back to stage 0. Therefore, we quote the base case as ⟨zero0⟩ and the recursive step as ⟨add0 · · · ⟩ to yield these
terms during staging. In the recursive step, as 𝑡 is passed as a ⇑Nat0, namely ⟨𝑥⟩ from double0, we splice it to get 𝑥 : Nat0
and pass it to the stage 0 function add0.

Once we feed this program to the staging algorithm, we will get a well-typed program where the occurrence of mul1
inside double0 is substituted by its compile time definition during staging:

2



zero0 : Nat0
suc0 : Nat0 → Nat0
add0 : Nat0 → Nat0 → Nat0

double0 : Nat0 → Nat0
double0 := 𝜆 𝑥 . add0 𝑥 (add0 𝑥 zero0)

1.3 Soundness of Staging
The result of staging double0 was a well-typed function that only uses terms and constructors native to stage 0. We would

like to generalize so any metaprogram should be staged to a program that only uses terms and constructors from stage 0. We
use the term “sound” to describe such staging algorithm.

Definition 1.3.1 (Soundness, Well-staged, Well-formedness). A staging algorithm is sound if for all input programwith stage
0 type, the algorithm outputs a well-typed program containing only stage 0 terms / constructors, and no lift, quote, or splice.

A well-typed output program that contains only stage 0 terms / constructors, and no lift, quote, or splice, is called well-
staged or well-formed.

To justify the soundness of staging algorithm, we use two-level type theory, which the remaining paper will explore.

2 Introduction to Two-Level Type Theory
Two-level type theory (2LTT), as the name suggests, extends type theory to two levels, which in our case, are the stages

0 and 1. 2LTT is useful since we can extend the language of stage 0 as the stage 1 language to derive useful properties that
are not expressable within stage 0; namely, the soundness of a staging algorithm.

To apply 2LTT in staged programming, we consider the languages used in the two stages as separate type systems.
This separation provides support for a wide range of languages even with completely different syntax. For instance, staged
compilation with 2LTT is applicable to domain specific languages whose implementations are in different languages (e.g.
staging LINQ expressions to C# method calls [Dev23]).

Since 2LTT formalises our metaprograms and output code into type theories, we provide an example of a 2LTTmodel that
consists of universe hierarchies, type formers with dependent types, and formers/eliminators for natural numbers. We will
also present a portion of the inference rules for the purpose of formalising the staging operations and working with natural
numbers. Next, we will revisit the double0 metaprogram for type-checking and applying the staging algorithm with these
inference rules. We will then round off this paper with some discussions and conclusion.

2.1 Universes and Type Formers
The types that we construct in both stages can be treated as terms as well; a type whose terms are also types is called a

universe. As universes themselves are types, a hierarchy of universes is formed for each stage. We denote these universes as
U𝑖, 𝑗 for 𝑖 ∈ {0, 1} and 𝑗 ∈ N where 𝑖 indicates the stage and 𝑗 for the universe level, that is U𝑖, 𝑗 is a term of U𝑖, 𝑗+1.

In staged programming, the universesU0, 𝑗 are inhabited by types from stage 0 andU1, 𝑗 by types from stage 1. For instance,
Nat0 as a term has the type U0,0 whereas Nat1 as a term has the type U1,0. As mentioned before, we can lift a stage 0 type to
stage 1, thus for any 𝐴 : U0, 𝑗 , we have ⇑𝐴 : U1, 𝑗 .

To construct new types, there are type formers (also known as type constructors) for each universe and stage. Type
formers takes types as arguments and construct a new type in the same stage. For instance, the Π-type constructor combines
a domain type 𝐴 : U𝑖, 𝑗 and a codomain type 𝐵 : U𝑖, 𝑗 to form the function type Π𝐴𝐵 : U𝑖, 𝑗 which describes the type of a
function that maps an 𝐴 to a 𝐵. We notice here 𝐴 and 𝐵 are from the same stage. All type formers require the input types to
be from the same stage, and outputs a type of the same stage.

Up until now, we have given a informal description of the natural number type and staging operations to introduce staged
compilation through examples. In the next sections, we formalise these ideas through inference rules.

3 Inference Rules of 2LTT
In this section, we analyze the inference rules of 2LTT. As 2LTT is an extension of Martin-Löf type theory, many concepts

involve to dependent functions. Therefore, to denote the type of a dependent function, we use the notation (𝑥 : 𝐴) → 𝐵

3



where the term 𝑥 may occur in the type 𝐵. We also use the alternative notation (𝑥 : 𝐴) → 𝐵 𝑥 , which clarifies that 𝐵 is a type
dependent on 𝑥 .

3.1 Judgments
We start by listing the forms of judgments defined for 2LTT relevant to our use. We will then explain the meaning of each

judgment presented.
Because there are two different stages in 2LTT, a type in one stage is often not available in the other stage. As 2LTT

supports the hierarchy of universes, we need to take into consideration the level we are at when making a judgment. We
assume index 𝑖 ∈ {0, 1} to indicate the stage, and 𝑗 ∈ N for the universe level.
Notation 3.1.1. “Γ ⊢𝑖, 𝑗 ...” is the notation for making the judgment in stage 𝑖 and universe level 𝑗 .

We also use the following convention:

• Uppercase Greek letters Γ,Δ for context

• Lowercase Greek letters 𝜎, 𝛿 for context substitution

• Uppercase alphabet 𝐴, 𝐵,𝐶 for types

• Lowercase alphabet 𝑡,𝑢, 𝑣 for terms

Definition 3.1.1 (Judgments of 2LTT).

Γ ⊢ context formation
Γ ⊢ 𝜎 : Δ explicit substitution formation, assuming Γ ⊢ and Δ ⊢
Γ ⊢𝑖, 𝑗 𝐴 type formation, assuming Γ ⊢
Γ ⊢𝑖, 𝑗 𝑡 : 𝐴 term formation, assuming Γ ⊢𝑖, 𝑗 𝐴
Γ ⊢𝑖, 𝑗 𝐴 = 𝐵 type equality, assuming Γ ⊢𝑖, 𝑗 𝐴 and Γ ⊢𝑖, 𝑗 𝐵
Γ ⊢𝑖, 𝑗 𝑡 = 𝑢 : 𝐴 term equality, assuming Γ ⊢𝑖, 𝑗 𝑡 : 𝐴 and Γ ⊢𝑖, 𝑗 𝑢 : 𝐴

We now explain each judgment in detail.

Definition 3.1.2 (Form of Judgment Context Formation).

Γ ⊢ means “Γ is a context”

We always have the empty context, denoted as •. Thus, the judgment “• ⊢” would be a believable judgment.

Definition 3.1.3 (Substitution and De Bruijn Indices).

Γ ⊢ 𝜎 : Δ means “under the context Γ, 𝜎 is a substitution from Δ”

In short, a substitution is a mapping of terms and types from one context to another. In particular, Γ ⊢ 𝜎 : Δmeans 𝜎 maps
terms and types from the context Δ to the context Γ. If Δ ⊢𝑖, 𝑗 𝐴, that is, 𝐴 is a type under the context Δ, then we can apply
the substitution to derive that Γ ⊢𝑖, 𝑗 𝐴[𝜎], that is, 𝐴[𝜎] is a type under the context Γ. We will discuss applying substitions in
detail through inference rules in later sections.

For this paper, we only work with the weakening substitution p for the purpose of employing De Bruijn indices. The De
Bruijn index is a convenient way of refering to the terms in a context without putting them in it explicitly. Again, we will
provide examples in the section of inference rules.

Definition 3.1.4 (Forms of Judgment for Type and Term Formation).

Γ ⊢𝑖, 𝑗 𝐴 means “𝐴 is a type of stage 𝑖 , universe level 𝑗”
Γ ⊢𝑖, 𝑗 𝑡 : 𝐴 means “𝑡 is a term of type 𝐴 in stage 𝑖 , universe level 𝑗 ”

Example 3.1.1. The expression “Γ ⊢1,10 𝐴” means “𝐴 is a type in stage 1 and universe level 10”

Example 3.1.2. Consider the two Nat types for the two stages: Nat0 and Nat1. While the type Nat0 belong strictly in stage
0, the type Nat1 is in stage 1. So Γ ⊢0, 𝑗 Nat0 would be a believable judgment, but Γ ⊢1, 𝑗 Nat0 is not believable.

4



The judgment “Γ ⊢𝑖, 𝑗 𝐴” makes the presupposition that Γ is a valid context (Γ ⊢). The judgment “Γ ⊢𝑖, 𝑗 𝑡 : 𝐴” assumes 𝐴
is a type in stage 𝑖 universe level 𝑗 (Γ ⊢𝑖, 𝑗 𝐴)

Definition 3.1.5 (Forms of Judgment for Type and Term Equality).

Γ ⊢𝑖, 𝑗 𝐴 = 𝐵 means “𝐴 and 𝐵 are the same type in stage 𝑖 , universe level 𝑗”
Γ ⊢𝑖, 𝑗 𝑡 = 𝑢 : 𝐴 means “𝑡 and 𝑢 are the same term of type 𝐴 in stage 𝑖 , universe level 𝑗”

Judgmental equality also require specifying the stage and universe level. They also come with the presupposition that the
two expressions in comparison are from the same stage and universe.

Example 3.1.3 (Ill-formed Judgment). Γ ⊢0,0 Nat0 = Nat1 is not well formed. Although Γ ⊢0,0 Nat0 is believable, Γ ⊢0,0 Nat1
is not believable. So we cannot judge the equality of the two types.

3.2 Familiar Inference Rules in the Context of 2LTT
Here we look at some inference rules that are common in many type theories, but now they involve stage and universe

level.

3.2.1 Context

We always have access to the empty context, as represented by the axiom:
empty-cxt

• ⊢

If a type 𝐴 can be derived from a context Γ, we can extend Γ with the type 𝐴
cxt-extension
Γ ⊢ Γ ⊢𝑖, 𝑗 𝐴

Γ ⊲𝐴 ⊢

An interesting observation is that types from all stages and universe levels are treated equally with extending context. A
type in stage 0 extends the context in the same way as a type in stage 1.

3.2.2 Substitutions

As mentioned in in the previous section on judgments, we will only employ the weakening substitution for De Bruijn
indices. Nonetheless, it is important to mention that substitutions have an identity before covering weakening substitutions:

identity-sub
Γ ⊢

Γ ⊢ id : Γ

type-id-sub
Γ ⊢𝑖, 𝑗 𝐴

Γ ⊢𝑖, 𝑗 𝐴[id] = 𝐴

term-id-sub
Γ ⊢𝑖, 𝑗 𝑡 : 𝐴

Γ ⊢𝑖, 𝑗 𝑡 [id] = 𝑡 : 𝐴

Since we only extend a type to the context through cxt-extension rather than a type-term pair, we need to refer to the
terms in our context. To do so, we can derive the zero variable q and the weakening substitution p when extending a context
with an arbitrary type:

sub-first-proj
Γ ⊢𝑖, 𝑗 𝐴

Γ ⊲𝐴 ⊢ p : Γ

sub-second-proj
Γ ⊢𝑖, 𝑗 𝐴

Γ ⊲𝐴 ⊢ q : 𝐴[p]

From the rule sub-second-proj, the term q refers to a term in the context Γ ⊲ 𝐴, in particular, with type 𝐴 that we have
just extended. In general, the term q always points to the most recently extended type. Similarly, the weakening substitution
p that is applied to the type 𝐴[p] under the context Γ ⊲ 𝐴 means that 𝐴[p] refers to the type inside the context (namely, the
most recently extended one) rather than a newly formed type. Therefore, if we continue to extend more types to the context,
we need to shift the De Bruijn index q with these substitution rules:

type-sub
Δ ⊢𝑖, 𝑗 𝐴 Γ ⊢ 𝜎 : Δ

Γ ⊢𝑖, 𝑗 𝐴[𝜎]

term-sub
Δ ⊢𝑖, 𝑗 𝑡 : 𝐴 Γ ⊢ 𝜎 : Δ

Γ ⊢𝑖, 𝑗 𝑡 [𝜎] : 𝐴[𝜎]

5



For example, suppose we can form the type𝐴 under context Γ and the type 𝐵 under Γ ⊲𝐴, then we can derive the following
De Bruijn indices, which we will use colors to match with their type in the context:

Γ ⊢ 𝐴
Γ ⊲𝐴 ⊢ q : 𝐴[p]

sub-second-proj
Γ ⊲𝐴 ⊢ 𝐵

Γ ⊲𝐴 ⊲ 𝐵 ⊢ p : Γ ⊲𝐴
sub-first-proj

Γ ⊲𝐴 ⊲ 𝐵 ⊢ q[p] : 𝐴[p] [p]
term-sub

Γ ⊲𝐴 ⊢ 𝐵
Γ ⊲𝐴 ⊲ 𝐵 ⊢ q : 𝐵 [p]

sub-second-proj

Next, as substitutions are mappings from one context to another, they can be composed. In addition, applying the com-
position of two substitutions is judgmentally equal to applying the first, then applying the second. Despite the fact that there
are other properties on substitution composition such as associativity and composing substitutions on terms, they won’t be
used for the purpose of this paper. Nonetheless, we have these inference rules:

sub-composition
Δ ⊢ 𝜎 : Θ Γ ⊢ 𝛿 : Δ

Γ ⊢ 𝜎 ◦ 𝛿 : Θ

type-comp-sub
Θ ⊢𝑖, 𝑗 𝐴 Δ ⊢ 𝛿 : Θ Γ ⊢ 𝜎 : Δ

Γ ⊢𝑖, 𝑗 𝐴[𝜎 ◦ 𝛿] = 𝐴[𝜎] [𝛿]

Lastly, substitutions can be extended with a term, and applying an extended substitution to a term is analogous to function
application. For instance, if a funtion 𝑓 is defined as 𝜆 𝑥 .body for some term body where 𝑥 might appear in, then the function
application 𝑓 𝑎 results the same expression as the substitution body[id, 𝑎] where (id, 𝑎) is the identity substitution extended
with the term 𝑎. Extending a substitution is rarely used in this paper other than for the elimination of naturals, but for
completeness, we have these inference rules:

sub-extension
Γ ⊢ 𝜎 : Δ Γ ⊢ 𝑡 : 𝐴[𝜎]

Γ ⊢ (𝜎, 𝑡) : Δ ⊲𝐴

As we revisit the double0 example for type-checking and staging, we will intensively apply these inference rules on
substitution along with the three staging operations.

3.2.3 Universes

Both stage 0 and stage 1 supports hierarchy of universes. 2LTT chooses the Russell-style universes as the framework for
implementing hierarchy.

Definition 3.2.1 (Russell-style Universe). Russell-style universes have types as terms of universes. For example, it has Γ ⊢ 𝐴 :
U where 𝐴 is a type.

The rule universe describes the hierarchy:
universe

Γ ⊢𝑖, 𝑗+1 U𝑗

Notice the index shift by 1 between the type we are judging and the universe we are making judgment in. The rule states
that regardless of the stage, a universe is a term of the next largest universe. This is a reflection of the Russell-style universes.

3.2.4 Natural Numbers (Nat)

Within the context of staged compilation 2LTT, we assume all universes across both stages have access to Nat. Nat is
implemented through Peano Arithmetic, meaning we have term zero and the term former suc at our disposal.

nat-formation

Γ ⊢𝑖, 𝑗 Nat

zero

Γ ⊢𝑖, 𝑗 zero : Nat

suc
Γ ⊢𝑖, 𝑗 𝑡 : Nat

Γ ⊢𝑖, 𝑗 suc 𝑡 : Nat

We emphasis that althoughNat is a type in any stage and universe, twoNats are not the samewhen they are from different
stage or universe by our judgments. Type and term equality require the presupposition of the two types coming from the
same stage and universe level. We use the notation Nat0 and Nat1 to extinguish Nat from different stages.

We also have eliminator for Nat in the form of NatElim. This eliminator also comes with 𝛽 reductions as inference rules
so we can apply substitutions on a given target.

6



nat-elim
Γ ⊲ Nat ⊢𝑖,𝑘 𝑃

Γ ⊢𝑖,𝑘 𝑧 : 𝑃 [id, zero]
Γ ⊲ Nat ⊲ 𝑃 ⊢𝑖,𝑘 𝑠 : 𝑃 [p ◦ p, suc (q[p])]

Γ ⊢𝑖, 𝑗 𝑡 : Nat
Γ ⊢𝑖,𝑘 NatElim 𝑃 𝑧 𝑠 𝑡 : 𝑃 [id, 𝑡]

zero-𝛽

Γ ⊢𝑖, 𝑗 NatElim 𝑃 𝑧 𝑠 zero = 𝑧 : 𝑃 [id, zero]

suc-𝛽

Γ ⊢𝑖, 𝑗 NatElim 𝑃 𝑧 𝑠 (suc 𝑡) = 𝑠 [id, 𝑡, NatElim 𝑃 𝑧 𝑠 𝑡] : 𝑃 [id, suc 𝑡]

While the premises of nat-elim involve some menacing substitutions on the type 𝑃 , the substitutions on the type Nat
and its term formers are rather simple. Again, we describe them as inference rules:

nat-sub
Γ ⊢ 𝜎 : Δ

Γ ⊢𝑖, 𝑗 Nat[𝜎] = Nat

zero-sub
Γ ⊢ 𝜎 : Δ

Γ ⊢𝑖, 𝑗 zero[𝜎] = zero : Nat

suc-sub
Γ ⊢ 𝜎 : Δ Δ ⊢𝑖, 𝑗 𝑡 : Nat

Γ ⊢𝑖, 𝑗 (suc 𝑡) [𝜎] = suc (𝑡 [𝜎]) : Nat

As described in the section on De Bruijn indices, substitutions can be thought as function applications. Therefore, by
applying the notation on dependently typed functions, we can the eliminator of Nat as follows:

NatElim : (𝑃 : Nat → U𝑖, 𝑗 )
→ 𝑃 zero

→ ((𝑛 : Nat) → 𝑃 𝑛 → 𝑃 (suc𝑛))
→ (𝑡 : Nat)
→ 𝑃 𝑡

Therefore, NatElim takes a motive 𝑃 : Nat → U𝑖, 𝑗 , a base 𝑧 : 𝑃 zero, a step function 𝑠 : (𝑛 : Nat) → 𝑃 𝑛 → 𝑃 (suc𝑛),
and a target 𝑡 : Nat as arguments; then it eliminates the target to Nat 𝑃 𝑧 𝑠 𝑡 : 𝑃 𝑡 . The rules of elimination is described as the
𝛽-reductions, which we can rephrase as:

zero-𝛽 : NatElim 𝑃 𝑧 𝑠 zero = 𝑧

suc-𝛽 : NatElim 𝑃 𝑧 𝑠 (suc𝑛) = 𝑠 𝑛 (NatElim 𝑃 𝑧 𝑠 𝑛)

Example 3.2.1 (Addition and Multiplication). We can implement addition, add : Nat → Nat between two naturals 𝑎,𝑏 : Nat
by eliminating 𝑎 with NatElim. More specifically, on each suc-𝛽 rule, we wrap 𝑏 (i.e. the base) with suc:

add : Nat → Nat

add : 𝜆 𝑎 𝑏.NatElim (𝜆 _.Nat) 𝑏 (𝜆 _𝑛. suc𝑛) 𝑎
With add implemented using theNatElim from our 2LTTmodel, we can implementmultiplicationmul𝑎 𝑏 in a similar manner,
by eliminating 𝑎 with zero as base case, and perform add𝑏 on each suc-𝛽 reduction. Therefore, we can rewrite the example
from section 1.1 into well-typed metaprogram in coherenece with our inference rules on Nats and lifting:

add0 : Nat0 → Nat0 → Nat0
add0 := 𝜆 𝑎 𝑏.NatElim0 (𝜆 _.Nat0) 𝑏 (𝜆 _𝑛. suc0 𝑛) 𝑎

mul1 : Nat1 → ⇑Nat0 → ⇑Nat0
mul1 := 𝜆 𝑎 𝑏.NatElim1 (𝜆 _. ⇑Nat0) ⟨zero0⟩ (𝜆 _𝑛. ⟨add0 ∼𝑏 ∼𝑛⟩) 𝑎
two1 := suc1 (suc1 zero1)

double0 : Nat0 → Nat0
double0 := 𝜆 𝑥 .∼(mul1 two1 ⟨𝑥⟩)

In a later section, we will stage this metaprogram rigorously through inference rules and get the same result from the intro-
duction.

7



3.3 Lifting, Quoting, and Splicing
We now move on to the new addition 2LTT brings to the table, lifting, quoting, and splicing. Of all the inference rules we

introduced so far, the premise and conclusion does not modify the index 𝑖 that represents the stage. We are going to address
that by introducing inference rules that allows that.

3.3.1 Lifting

We start with lifting. Syntactically, we define the annotation “⇑–” (“–” is placeholder for specific type). Stage 0 types are
the only valid arguments that can be used in place of “–”. The behaviour of lifting is as follows:

lift
Γ ⊢0, 𝑗 𝐴
Γ ⊢1, 𝑗 ⇑𝐴

lift-sub
Γ ⊢ 𝜎 : Δ Δ ⊢0, 𝑗 𝐴

Γ ⊢1, 𝑗 (⇑𝐴) [𝜎] = ⇑(𝐴[𝜎])

We see that given a type 𝐴 in stage 0, universe level 𝑗 , applying lift to 𝐴 creates a new type ⇑𝐴 in stage 1 of the same
universe level.

Example 3.3.1 (Examples of Lifted Types). ⇑Nat0, ⇑(ΠNat0 Nat0) are examples of types that are in stage 1.

Remark 3.3.1 (Lift and Native types are not the same). Both stage 0 and 1 has the type Nat, denoted Nat0,Nat1. And we have

Γ ⊢0,0 Nat0
Γ ⊢1,0 ⇑Nat0 Γ ⊢1,0 Nat1

However, ⇑Nat0 is not the same type as Nat1
Example 3.3.2 (Not Lifted Type). The type (Π ⇑Nat0 ⇑Nat0) is not a lifted type. It is a Π-type with domain and co-domain
being lifted types. We demonstrate this with the inference tree below:

Lift

Nat
• ⊢0,0 Nat0

• ⊢1,0 ⇑Nat0

• ⊢0,0 Nat0
nat

• ⊢1,0 ⇑Nat0
Lift

• ⊲ ⇑Nat0 ⊢
cxt-extension

• ⊲ ⇑Nat0 ⊢0,0 Nat0
nat

• ⊲ ⇑Nat0 ⊢1,0 ⇑Nat0
lift

• ⊢1,0 Π ⇑Nat0 ⇑Nat0
Π

As we see at the bottom of the inference tree, the final step of inference is not Lift, so the type Π, ⇑Nat0 ⇑Nat0 is not a lifted
type, but a stage 1 Π type.

Remark 3.3.2. We do not believe the following judgment is true:

Γ ⊢1, 𝑗 ⇑(Π𝐴𝐵) = Π ⇑𝐴 ⇑𝐵

However, as we will show in later section, there is a way to transform a term of type Π ⇑𝐴 ⇑𝐵 into a lifted type.

Remark 3.3.3 (Lift v.s. Stage Index). Let 𝐴 be a type that exists in both stages, denoted 𝐴0 and 𝐴1. We emphasis ⇑𝐴0 ≠ 𝐴1.

In another word, a lifted type 𝐴 from stage 0 is not equal to the equivalent to the same type 𝐴 native to stage 1. This is a
small but important detail.

Remark 3.3.4 (Lifted Types Do Not Have Eliminator). There is no general elimination rule for ⇑𝐴.
Example 3.3.3. Take Bool1 and ⇑Bool0. Where Bool1/0 are the respective boolean type of stage 1 and 0

Unlike Bool1, ⇑Bool0 does not have eliminator. As a result, a function of type Π ⇑Bool0 Bool1 would have to be a constant
function, because there are no stage 1 eliminator that can inspect the internal of a term of type ⇑Bool0, and all eliminator
eliminates a term to another term in the same stage.

One might attempt to counter with the following function:

𝑓 := 𝜆𝑏. if ∼𝑏 then ⟨True0⟩ else ⟨False0⟩
However, this function outputs terms of type ⇑Bool0, which as we mentioned in 𝑟𝑒𝑚𝑎𝑟𝑘 3.3.2, is not the same type as

Bool1.

No eliminator for ⇑𝐴will restrict terms we can produce, and a trade-off for the program to behave in a predictable manner.

8



3.3.2 Quoting

We now introduce quoting, used to create a term of lifted type. Quoting is assigned the annotation ⟨–⟩, (“–” is placeholder
for specific term). Its inference rule is as followed

qote
Γ ⊢0, 𝑗 𝑡 : 𝐴

Γ ⊢1, 𝑗 ⟨𝑡⟩ : ⇑𝐴

qote-sub
Δ ⊢0, 𝑗 𝑡 : 𝐴 Γ ⊢ 𝜎 : Δ

Γ ⊢1, 𝑗 ⟨𝑡⟩[𝜎] = ⟨𝑡 [𝜎]⟩ : ⇑(𝐴[𝜎])
Given a term 𝑡 of type 𝐴 in stage 0, quoting 𝑡 to ⟨𝑡⟩ gives us a term of type ⇑𝐴 in stage 1.

Example 3.3.4 (Examples of Quoted Terms). Some examples of quoted terms are

• ⟨zero0⟩ has type ⇑Nat0
• ⟨𝜆𝑥.suc𝑥⟩ has type ⇑(Nat0 → Nat0)

3.3.3 Splicing

Lastly we have splicing. Splicing has the annotation ∼– (“–” is placeholder for specific term). Splice also has the highest
precedence, even higher than function application. So ∼ 𝑓 𝑥 parses to (∼ 𝑓 ) 𝑥 . Splicing comes with the inference rule:

splice
Γ ⊢1, 𝑗 𝑡 : ⇑𝐴
Γ ⊢0, 𝑗 ∼𝑡 : 𝐴

Splice is used to bring a stage 0 term that has been lifted to stage 1 back down to 0.
Remark 3.3.5. We can quote any term 𝑡 of type 𝐴 if 𝐴 is a type in stage 0. However, not every term 𝑠 of type 𝐵 in stage 1 can
be spliced. For example, zero1 cannot be spliced because zero1 is of type Nat1, and Nat1 is not a lifted type.

3.3.4 Interaction Between Quoting and Splicing

There are two more inference rules that tells us ⟨–⟩ and ∼– are inverses of each other:
qote-splice

Γ ⊢1, 𝑗 𝑡 : ⇑𝐴
Γ ⊢1, 𝑗 ⟨∼𝑡⟩ = 𝑡 : ⇑𝐴

splice-qote
Γ ⊢0, 𝑗 𝑡 : 𝐴

Γ ⊢0, 𝑗 ∼⟨𝑡⟩ = 𝑡 : 𝐴

Example 3.3.5 (Elimination). The term suc (suc zero0) is judgmentally the same Nat0 as ∼⟨suc (suc zero0)⟩
This makes intuitive sense. If no computation is done in between lifting and splicing, we should expect to get back the

same term.
Onemay askwhywe have two annotations ⟨–⟩ and∼ for terms, which are inverses of each other, but only one annotation,

the ⇑ for types? To answer this, we consider the origin of 2LTT where it was intended to make meta-theoretical results of
homotopy type theory internal [Ann+19]. We now understand stage 0 being the object-level and stage 1 being the meta-level.
There is usually a way of representing object or concepts of the object-level in meta-level. However, with object-level usually
being simpler, there are concepts in the meta-level which cannot be represented in the object-level. To make an analogy, N
in meta-level might be defined as a subset of R, while N in object-level is defined using Peano Arithmetic. In such situation,
we cannot guarantee the correctness of bringing N from meta-level down to object level.

In fact, ⟨∼–⟩ is not the identity function on all terms 𝑡 in stage 1, but only terms like ⟨𝑠⟩ that were lifted from stage 0. The
inventors of 2LTT phrased it as such:

One intuition for the two levels is as follows: from a type in HoTT [Homotopy Type Theory, the inner type
theory], we can extract a statement that can be phrased in the meta-theory. From a meta-theoretical statement
about HoTT, it is not always possible to construct a type. Thus, we can convert inner types into outer one, but
not always vice versa [Ann+19].

4 Applying Judgments and Inference Rules
In this section, we provide examples that employ the inference rules as presented in the previous section. First, we apply

the inference rules to derive the type of mul1 under the assumption that add0 has type Nat0 → Nat0 → Nat0. The type of
add0 is derived in the same manner since mul1 and add0 are both defined with NatElim. Second, we use the inference rules
for lifting to prove the isomorphism between lifted function types and function types where the domain and codomain are
lifted. This isomorphism property is useful as it can optimise the implementation of the 2LTT model.

9



4.1 Type Derivation for mul1
Back to the definition of mul1:

mul1 := 𝜆 𝑎 𝑏.NatElim1 (𝜆 _. ⇑Nat0) ⟨zero0⟩ (𝜆 _𝑛. ⟨add0 ∼𝑏 ∼𝑛⟩) 𝑎
The ultimate goal for this section is to derive the judgment that mul1 has the type Nat1 → ⇑Nat0 → ⇑Nat0 from the

empty context. Since the definition for mul1 uses the function add0, we will assume the type of add0. In other words, let’s
add the following inference rule.

add
Γ ⊢00 𝑎 : Nat0 Γ ⊢00 𝑏 : Nat0

Γ ⊢00 add0 𝑎 𝑏 : Nat0

Now, we have enough inference rules to derive the type of mul1 from the empty context. To begin, we will derive the
arguments for the function mul1 through context extensions.

• ⊢10 Nat1
nat-formation

• ⊲ Nat1 ⊢10 q : Nat1 [p]
sub-second-proj

• ⊢10 Nat1
nat-formation

• ⊲ Nat1 ⊢
cxt-extension

• ⊲ Nat1 ⊢00 Nat0
nat-formation

• ⊲ Nat1 ⊢10 ⇑Nat0
lift

• ⊲ Nat1 ⊲ ⇑Nat0 ⊢ p : • ⊲ Nat1
sub-first-proj

• ⊲ Nat1 ⊲ ⇑Nat0 ⊢10 q[p] : Nat1 [p] [p]
term-sub

• ⊲ Nat1 ⊲ ⇑Nat0 ⊢10 q[p] : Nat1 [p ◦ p]
type-comp-sub

• ⊲ Nat1 ⊲ ⇑Nat0 ⊢10 q[p] : Nat1
nat-sub

• ⊢10 Nat1
nat-formation

• ⊲ Nat1 ⊢
cxt-extension

• ⊲ Nat1 ⊢00 Nat0
nat-formation

• ⊲ Nat1 ⊢10 ⇑Nat0
lift

• ⊲ Nat1 ⊲ ⇑Nat0 ⊢ q : ⇑Nat0
sub-second-proj

From the two derivations above, we obtain the terms q[p] : Nat1 and the term q : ⇑Nat0 under the context •⊲Nat1 ⊲⇑Nat0.
These will become the arguments to our functionmul1 in the form of De Bruijn indices, with first argument, q[p] : Nat1, being
the target of our natural elimination. Notice our derivation also implies that • ⊲Nat1 ⊲ ⇑Nat0 is a context, thus we will denote
this context as Γ for the rest of the section for brevity.

As per the definition of mul1, it consists of terms to be passed to NatElim as arguments. We start with the derivation of
(𝜆 _.⇑Nat0), which we will refer to as the motive.

Γ ⊢
Γ ⊢10 Nat1

nat-formation

Γ ⊲ Nat1 ⊢
cxt-extension

Γ ⊲ Nat1 ⊢00 Nat0
nat-formation

Γ ⊲ Nat1 ⊢10 ⇑Nat0
lift

Since we have derived ⇑Nat0 as our motive under the context Γ ⊲ Nat1, both the base and step should produce a ⇑Nat0
with some substitutions according to the inference rule nat-elim. Thus, we continue our derivation with the base, ⟨zero0⟩.
We will reuse previously derived judgments as assumptions and apply equality judgments directly to our expressions.

10



Γ ⊢
Γ ⊢ id : Γ

identity-sub

Γ ⊢
Γ ⊢10: zero1 : Nat1

zero

Γ ⊢10 zero1 : Nat1 [id]
type-id-sub

Γ ⊢ (id, zero1) : Γ ⊲ Nat1
sub-extension

Γ ⊲ Nat1 ⊢
Γ ⊲ Nat1 ⊢00 zero0 : Nat0

zero

Γ ⊲ Nat1 ⊢10 ⟨zero0⟩ : ⇑Nat0
lift

Γ ⊢10 ⟨zero0⟩[id, zero1] : (⇑Nat0) [id, zero1]
term-sub

Γ ⊢10 ⟨zero0 [id, zero1]⟩ : (⇑Nat0) [id, zero1]
qote-sub

Γ ⊢10: ⟨zero0⟩ : (⇑Nat0) [id, zero1]
zero-sub

When our target of elimination is zero1 : Nat1, the multiplication function should return ⟨zero0⟩. Otherwise, the target is
be nested with suc1. Thus, to perform multiplication with our argument q : ⇑Nat0, we add q on each step.

Since the output of the step function is a (⇑Nat0) [p ◦ p, suc(q[p])] as per the inference rule nat-elim, we first simplify
this type by deriving Nat0 [p ◦ p, suc(q[p])] = Nat0. Next, as the step function uses add0 according to the definition of mul1,
we derive the first argument of add0 as q : ⇑Nat0 in our first derivation. However, we need to shift its De Bruijn index as the
context is extended for the step function. Lastly, we apply the inference rule add as described in the beginning of the section.

Γ ⊢10 q : ⇑Nat0

Γ ⊲ Nat1 ⊢10 ⇑Nat0
Γ ⊲ Nat1 ⊲ ⇑Nat0 ⊢ p : Γ ⊲ Nat1

sub-first-proj
Γ ⊢ Nat1

Γ ⊲ Nat1 ⊢ p : Γ
sub-first-proj

Γ ⊲ Nat1 ⊲ ⇑Nat0 ⊢ p ◦ p : Γ
sub-composition

Γ ⊲ Nat1 ⊲ ⇑Nat0 ⊢10 q[p ◦ p] : (⇑Nat0) [p ◦ p]
term-sub

Γ ⊲ Nat1 ⊲ ⇑Nat0 ⊢10 q[p ◦ p] : ⇑(Nat0 [p ◦ p])
lift-sub

Γ ⊲ Nat1 ⊲ ⇑Nat0 ⊢10 q[p ◦ p] : ⇑Nat0
nat-sub

Γ ⊲ Nat1 ⊲ ⇑Nat0 ⊢00 ∼(q[p ◦ p]) : Nat0
splice

Γ ⊲ Nat1 ⊲ ⇑Nat0 ⊢00 ∼(q[p ◦ p]) : Nat0

Γ ⊲ Nat1 ⊢10 ⇑Nat0
Γ ⊲ Nat1 ⊲ ⇑Nat0 ⊢10 q : (⇑Nat0) [p]

sub-second-proj

Γ ⊲ Nat1 ⊲ ⇑Nat0 ⊢10 q : ⇑(Nat0 [p])
lift-sub

Γ ⊲ Nat1 ⊲ ⇑Nat0 ⊢10 q : ⇑Nat0
nat-sub

Γ ⊲ Nat1 ⊲ ⇑Nat0 ⊢00 ∼q : Nat0
splice

Γ ⊲ Nat1 ⊲ ⇑Nat0 ⊢00 add0 ∼(q[p ◦ p]) ∼q : Nat0
add

Γ ⊲ Nat1 ⊲ ⇑Nat0 ⊢00 add0 ∼(q[p ◦ p]) ∼q : Nat0 [p ◦ p, suc(q[p])]
(1)

Γ ⊲ Nat1 ⊲ ⇑Nat0 ⊢10 ⟨add0 ∼(q[p ◦ p]) ∼q⟩ : ⇑(Nat0 [p ◦ p, suc(q[p])])
qote

Γ ⊲ Nat1 ⊲ ⇑Nat0 ⊢10 ⟨add0 ∼(q[p ◦ p]) ∼q⟩ : (⇑Nat0) [p ◦ p, suc(q[p])]
lift-sub

Now we have derived all the arguments for NatElim, we follow the definition of mul1 and derive the following:

Γ ⊲ Nat1 ⊢10 ⇑Nat0
Γ ⊢10: ⟨zero0⟩ : (⇑Nat0) [id, zero1]

Γ ⊲ Nat1 ⊲ ⇑Nat0 ⊢10 ⟨add0 ∼(q[p ◦ p]) ∼q⟩ : (⇑Nat0) [p ◦ p, suc(q[p])]
Γ ⊢10 q[p] : Nat1

Γ ⊢10 NatElim ⇑Nat0 ⟨zero0⟩ ⟨add0 ∼(q[p ◦ p]) ∼q⟩ q[p] : (⇑Nat0) [id, q[p]]
nat-elim

Γ ⊢10 NatElim ⇑Nat0 ⟨zero0⟩ ⟨add0 ∼(q[p ◦ p]) ∼q⟩ q[p] : ⇑(Nat0 [id, q[p]])
lift-sub

Γ ⊢10 NatElim ⇑Nat0 ⟨zero0⟩ ⟨add0 ∼(q[p ◦ p]) ∼q⟩ q[p] : ⇑Nat0
nat-sub

• ⊲ Nat1 ⊲ ⇑Nat0 ⊢10 NatElim ⇑Nat0 ⟨zero0⟩ ⟨add0 ∼(q[p ◦ p]) ∼q⟩ q[p] : ⇑Nat0
In the last step of the derivation above, we apply the assumption that the context Γ denotes • ⊲ Nat1 ⊲ ⇑Nat0 since

the beginning of the section. The end result of our derivation shows that, for an 𝑎 : Nat1 and 𝑏 : ⇑Nat0, the expression
NatElim ⇑Nat0 ⟨zero0⟩ ⟨add0 ∼𝑏 ∼q)⟩ 𝑎 has the type ⇑Nat0, where q is an argument in the step function. In other words, the
step function is 𝜆 _. 𝜆 𝑛.⟨add0 ∼𝑏 ∼𝑛⟩. Ultimately, our derived expression matches the definition of mul1, thus mul1 has the

11



type Nat1 → ⇑Nat0 → ⇑Nat0 as wanted. Therefore, we can now use the derivation to stage the metaprogram double0 :=
𝜆 𝑥 .∼(mul1 (suc1 (suc1 zero1)) ⟨𝑥⟩) through the equality judgments ofNatElim, whichwill result the same output as described
in the introduction.

4.2 Staging double0 Formally
Bringing back the definition of double0:

double0 : Nat0 → Nat0
double0 := 𝜆 𝑥 .∼(mul1 (suc1 (suc1 zero1)) ⟨𝑥⟩)

Based on the definition above, we substitute q[p] with the term suc1 (suc1 zero1) : Nat1 and q[p ◦ p] with ⟨𝑥⟩ : ⇑Nat0.
Thus, applying the inference rules, we stage the program as follows:

𝜆 𝑥 .∼(mul1 (suc1 (suc1 zero1)) ⟨𝑥⟩)
= 𝜆 𝑥 .∼(NatElim ⇑Nat0 ⟨zero0⟩ ⟨add0 ∼⟨𝑥⟩ ∼q⟩ (suc1 (suc1 zero1))) (definition of mul1)
= 𝜆 𝑥 .∼(NatElim ⇑Nat0 ⟨zero0⟩ ⟨add0 𝑥 ∼q⟩ (suc1 (suc1 zero1))) (splice-qote)
= 𝜆 𝑥 .∼⟨add0 𝑥 ∼(NatElim ⇑Nat0 ⟨zero0⟩ ⟨add0 𝑥 ∼q⟩ (suc1 zero1))⟩ (suc-𝛽)
= 𝜆 𝑥 . add0 𝑥 ∼(NatElim ⇑Nat0 ⟨zero0⟩ ⟨add0 𝑥 ∼q⟩ (suc1 zero1)) (splice-qote)
= 𝜆 𝑥 . add0 𝑥 ∼⟨add0 𝑥 ∼(NatElim ⇑Nat0 ⟨zero0⟩ ⟨add0 𝑥 ∼q⟩ zero1⟩) (suc-𝛽)
= 𝜆 𝑥 . add0 𝑥 (add0 𝑥 ∼(NatElim ⇑Nat0 ⟨zero0⟩ ⟨add0 𝑥 ∼q⟩ zero1)) (splice-qote)
= 𝜆 𝑥 . add0 𝑥 (add0 𝑥 ∼⟨zero0⟩) (zero-𝛽)
= 𝜆 𝑥 . add0 𝑥 (add0 𝑥 zero0) (splice-qote)

5 Discussion
We have completed our main objective of applying and type-checking our metaprogram double0. Now we will discuss

some properties of 2LTT that can serve as direction for further exploration.

5.1 Isomorphism Property of Lifting and Quoting
In mathematics, isomorphism describes a bijective function that preserves “properties”. The properties an isomorphism

preserves can differ from context to context.

Definition 5.1.1 (Isomorphic). If there is an isomorphism between two sets 𝐴, 𝐵, we call these two sets isomorphic.

We do not believe ⇑(Π𝐴𝐵) is the same type as Π (⇑𝐴) (⇑𝐵). However, it is possible to show that there two types are
similar enough that we can consider them to be isomorphic.

To set up the demonstration, we first define two functions.

Definition 5.1.2 (Transformation between ⇑((𝑥 : 𝐴) → 𝐵 𝑥) and (𝑥 : ⇑𝐴) → ⇑ (𝐵 ∼𝑥)). We define two functions:

𝑝𝑟𝑒𝑠→ : ⇑((𝑥 : 𝐴) → 𝐵 𝑥) → ((𝑥 : ⇑𝐴) → ⇑ (𝐵 ∼𝑥))
𝑝𝑟𝑒𝑠→ := 𝜆 𝑓 . 𝜆 𝑥 . ⟨∼𝑓 ∼𝑥⟩
𝑝𝑟𝑒𝑠−1→ : ((𝑥 : ⇑𝐴) → ⇑ (𝐵 ∼𝑥)) → ⇑((𝑥 : 𝐴) → 𝐵 𝑥)
𝑝𝑟𝑒𝑠−1→ := 𝜆 𝑓 . ⟨𝜆 𝑥 . ∼(𝑓 ⟨𝑥⟩)⟩

Remark 5.1.1 (𝑝𝑟𝑒𝑠→ and 𝑝𝑟𝑒𝑠−1→ don’t modify the input function). We now demonstrate 𝑝𝑟𝑒𝑠→ and 𝑝𝑟𝑒𝑠−1→ does not modify
the input function’s behaviour. We do so by showing it is possible to recover the original function through an inverse opera-
tion.
Let 𝑓 : (𝑥 : ⇑𝐴) → ⇑ (𝐵 ∼𝑥). Consider the following reduction:

12



𝑝𝑟𝑒𝑠→ (𝑝𝑟𝑒𝑠−1→ 𝑓 ) = (𝜆 𝑓 . 𝜆 𝑥 . ⟨∼𝑓 ∼𝑥⟩) ((𝜆 𝑓 . ⟨𝜆 𝑥 . ∼(𝑓 ⟨𝑥⟩)⟩) 𝑓 )
= (𝜆 𝑓 . 𝜆 𝑥 . ⟨∼𝑓 ∼𝑥⟩) ⟨𝜆 𝑥 . ∼(𝑓 ⟨𝑥⟩)⟩ (𝛽-reduction)
= 𝜆 𝑥 . ⟨∼⟨𝜆 𝑥 . ∼(𝑓 ⟨𝑥⟩)⟩ ∼𝑥⟩ (𝛽-reduction)
= 𝜆 𝑥 . ⟨(𝜆 𝑥 . ∼(𝑓 ⟨𝑥⟩)) ∼𝑥⟩ (splice-qote)
= 𝜆 𝑥 . ⟨∼(𝑓 ⟨∼𝑥⟩)⟩ (𝛽-reduction)
= 𝜆 𝑥 . ⟨∼(𝑓 𝑥)⟩ (qote-splice)
= 𝜆 𝑥 . (𝑓 𝑥) (qote-splice)
= 𝑓 (Function 𝜂-reduction)

Now we are ready to demonstrate that the lifting process possesses isomorphic behaviour. For those more comfortable
with mathematics, and isomorphism 𝜙 often satisfies the following structure:

𝜙 (𝑓 𝑎) = 𝜙 (𝑓 )𝜙 (𝑎)

Ideally, we would define for all 𝑥 , 𝜙 (𝑥) = ⟨𝑥⟩, and show ⟨𝑓 𝑎⟩ = ⟨𝑏⟩ = ⟨𝑓 ⟩ ⟨𝑎⟩ to match the structure. However, because
the expression (⟨𝑓 ⟩ ⟨𝑎⟩) is undefined due to type mismatch, we achieve a similar structure by 𝑝𝑟𝑒𝑠→ to ⟨𝑓 ⟩ first, which doesn’t
change 𝑓 ’s behaviour as shown. With that, we will show the lifting process possesses properties of isomorphism.

Example 5.1.1 (The effect of lifting). Let 𝑓 : (𝑥 : 𝐴) → 𝐵 𝑥 , and 𝑎 : 𝐴,𝑏 : (𝐵 𝑎) such that 𝑓 𝑎 = 𝑏, then we have the following
reduction:

(𝑝𝑟𝑒𝑠→⟨𝑓 ⟩)⟨𝑎⟩ = ((𝜆 𝑓 𝑥 . ⟨∼𝑓 ∼𝑥⟩) ⟨𝑓 ⟩) ⟨𝑎⟩
= (𝜆 𝑥 . ⟨∼⟨𝑓 ⟩ ∼𝑥⟩) ⟨𝑎⟩
= ⟨∼⟨𝑓 ⟩ ∼⟨𝑎⟩⟩
= ⟨𝑓 𝑎⟩
= ⟨𝑏⟩

6 Conclusion
We introduced staged compilation, more specifically, two-stage compilation as a useful way to write metaprograms that

generate code with safety. With the special operations for moving between stages (namely lifting, quoting, and splicing)
integrated to the typing rules, the 2LTT model provides not only guarantees the well-formedness of the generated output,
but also support for dependent types on both stages. While this paper only covered the typing rules for type-checking a
metaprogram, the staging algorithm (also known as the substitution calculus) can alse be formalised into typing rules through
categorical logic (also known as abstract nonsense logic).

References
[TS97] Walid Taha and Tim Sheard. “MetaML and Multi-Stage Programming with Explicit Annotations”. In: SIGPLAN

Not. 32.12 (Dec. 1997), pp. 203217. issn: 0362-1340. doi: 10.1145/258994.259019. url: https://dl.acm.org/
doi/10.1145/258994.259019.

[Ann+19] Danil Annenkov et al. “Two-Level Type Theory and Applications”. In: ArXiv e-prints (May 2019). url: http:
//arxiv.org/abs/1705.03307.

[Dev23] .NET Developers. Language Integrated Query (LINQ). 2023. url: https://learn.microsoft.com/en- us/
dotnet/csharp/linq/ (visited on 07/18/2023).

13

https://doi.org/10.1145/258994.259019
https://dl.acm.org/doi/10.1145/258994.259019
https://dl.acm.org/doi/10.1145/258994.259019
http://arxiv.org/abs/1705.03307
http://arxiv.org/abs/1705.03307
https://learn.microsoft.com/en-us/dotnet/csharp/linq/
https://learn.microsoft.com/en-us/dotnet/csharp/linq/

	Introduction to Staged Compilation
	Interaction between Stages
	Example of A Staged Program
	Soundness of Staging

	Introduction to Two-Level Type Theory
	Universes and Type Formers

	Inference Rules of 2LTT
	Judgments
	Familiar Inference Rules in the Context of 2LTT
	Context
	Substitutions
	Universes
	Natural Numbers (Nat)

	Lifting, Quoting, and Splicing
	Lifting
	Quoting
	Splicing
	Interaction Between Quoting and Splicing


	Applying Judgments and Inference Rules
	Type Derivation for mul1
	Staging double0 Formally

	Discussion
	Isomorphism Property of Lifting and Quoting

	Conclusion

