
Exploting Kernel Races
Through

Taming Thread Interleaving

Yoochan Lee, Byoungyoung Lee, Chanwoo Min

Seoul National University, Virginia Tech

#BHUSA @BLACKHATEVENTS

#BHUSA @BLACKHATEVENTS

Race condition is an increasing attack vector

• Race Condition is gaining strong attention from the security community.

• Razzer, IEEE S&P 2019, found more than 30 race bugs.

• KCSAN, developed by Google 2019, found more than 300 race bugs.

30 bugs

UAF

15 bugs

OOB

7 bugs

Race

143 bugs

UAF

111 bugs

OOB

67 bugs

Uninit

104 bugs

UAF

81 bugs

Race

59 bugs

OOB

of fixed bugs that Syzkaller found in 2017 # of fixed bugs that Syzkaller found in 2018 # of fixed bugs that Syzkaller found in 2019

#BHUSA @BLACKHATEVENTS

Background : Race condition

• Accessing the same memory location from two processor

 the results are different according to access order.

Core 1

Core 2

A

B

current

execution

Instructions that

access the same memory
A B

Pair of race instruction

#BHUSA @BLACKHATEVENTS

Background : Two Conditions for Triggering Race

1. Can create threads 2. Can execute race instructions

on each threads

attacker input target software

thread B

thread A

A

B

execute

execute

Race condition

occurs

User-level Software Operating System

Difficult to meet two conditions Create two threads, where each executes syscalls

#BHUSA @BLACKHATEVENTS

Background : Race Condition Vulnerability

Race Condition

Vulnerability
Race Condition= + Memory Corruption

Race instruction pair A

Race instruction pair B

.

.

.

A Bif >> >> C , then

Overflow

Use-After-Free

.

.

.

#BHUSA @BLACKHATEVENTS

Background : to trigger Race Condition Vulnerability

if , then memory corruption occurs.A B C

Brute forcing :

Try until success

#BHUSA @BLACKHATEVENTS

Background : Exploitability of Race Condition Vulnerability

Is

Race Condition

Vulnerability

Exploitable?

A very specific

memory access order= +
Availability of

Memory Corruption

#BHUSA @BLACKHATEVENTS

Classification of Race Condition Vulnerability

• As mentioned earlier, race conditions consist of multiple order-violations.

• Order violations can occur only for one variable or multiple variables.

Race Condition

Order violation 1

Order violation 2

…

Single Variable

Race Condition

Order violation 1 for M1

Order violation 2 for M1

…

Multi Variable

Race Condition

Order violation 1 for M1

Order violation 2 for M2

…

#BHUSA @BLACKHATEVENTS

Single-variable Race Condition

• Single-variable race condition consists of more than one race pairs related to single

variable (Most of bugs consist of two order violation).

Pair

Core 2Core 1

A

B

C

Pair

Time

Window

Control Flow Dependency

Data Flow Dependency

do_ip_setsockopt()

{

…

inet->hdrincl = 0;

…

}

raw_sendmsg()

{

…

if (! inet->hdrincl) {

// initialize rfv variable

rfv.msg = msg;

…

}

if (! inet->hdrincl) {

memcpy(to, rfv->hdr.c, …);

}

…

}

A

B

C

Case study : CVE-2017-17712

A Bif >> >> C , then uninitialized buffer use occurs.

inet->hdrincl is 1

inet->hdrincl is 0

#BHUSA @BLACKHATEVENTS

Exploitability of Single-variable Race

• The smaller the time window is, the lower the probability of race condition occurring.

Order

violation

Core 2Core 1

A

B

C
Order

violation

Time

Window

Only consider the

availability of memory corruption

No matter how low the probability,

it is not zero.

#BHUSA @BLACKHATEVENTS

Multi-variable Race Condition

• Multi-Variable race condition consists of more than one race pairs, each race pair is

related to a different variable.

Control flow Dependency

Data flow Dependency

Core 2Core 1

A

B

D

Time

Window

x
C

Time

Window

y

Instructions that

access the M1
A B

Pair of race instruction

C D
Instructions that

access the M2

Pair of race instruction

#BHUSA @BLACKHATEVENTS

Multi-variable Race Condition

Tx > Ty

Inclusive Multi-variable Race

Inst pair

to access M1

Core 2Core 1

A

B

D
Inst pair

to access M2

Tx

C

Ty

Tx ≤ Ty

Non-inclusive Multi-variable Race

Core 2Core 1

Tx Ty

D

A

C

B
Inst pair

to access M1

Inst pair

to access M2

#BHUSA @BLACKHATEVENTS

Exploitability of Inclusive Multi-variable Race

• The more similar the two time windows are, the lower the probability that

a race will occur.

Race Pair

Core 2Core 1

A

B

D
Race Pair

Tx

C

Ty

Only consider the

availability of memory corruption

No matter how low the probability,

it is not zero.

#BHUSA @BLACKHATEVENTS

Problem : Exploitability of Non-inclusive Race

• impossible to physically execute this type of race condition in the

order of A >> B and C >> D.

Even if,

A >> B is succeed,

C >> D will be failed

Tx

Ty

Core 2Core 1

binder_alloc_new_buf_locked()

{

if (alloc->vma == NULL) return ERR;

mmget_not_zero(alloc->vma_vm_mm));

}

binder_alloc_mmap_handler()

{

// initialize vma

alloc->vma = vma;

alloc->vma_vm_mm =

vma->vm_mm;

}

Case study : Patch #987393

Tx = 18 cycles

D

A

C

B

Ty = 2250 cycles

A

D

B

C

A Bif >> && , then uninitialized buffer use occurs in .C CD>>

#BHUSA @BLACKHATEVENTS

Previous Approach : Using Debugging Feature

void race_function1()

{

}

A

D

BP

Insert breakpointInsert sleep function

A

D

sleep()

void race_function1()

{

}

Modifying the kernel Using debugger

GDB

Tx + αTx + α

#BHUSA @BLACKHATEVENTS

Previous Approach : Using Debugging Feature

race_function1():

BPA D

Core 1
Status : Working

Core 2
Status : Working

current

execution

Execution Order : A B>> D>>C&

Status : Stop

#BHUSA @BLACKHATEVENTS

Limitation of Using Debugging Feature

Attacker

(User Privilege)

Modifying the kernel

(e.g., insert sleep())

Using debugger

Insert breakpoint

GDB

#BHUSA @BLACKHATEVENTS

Previous method : Using Different Core Latency

Core 1

1.6 Ghz

Core 2

2.5 Ghz

Execution Order : A B>> D>>C&

• e.g., Qualcomm Snapdragon 845 4x 2.5GHz, 4x 1.6GHz

#BHUSA @BLACKHATEVENTS

Limitations of Use Different Core Latency

• must use the CPU that latency between the cores are different.

• Not applicable to vulnerabilities with large time window differences

CPU dependency

CPU

#BHUSA @BLACKHATEVENTS

Previous Approach : Using scheduler (CONFIG_PREEMPT)

Execution Order : A B>> D>>C&

race_function1():

DWait queue :

Core 1

Core 2

Core 0 Hey, u needs

reschedule

current

execution

Jann Horn, Linux Security Summit EU 2019,

"Exploiting Race Conditions Using the Scheduler"

#BHUSA @BLACKHATEVENTS

Limitation of Using scheduler

• Can be used when COFIG_PREEMPT option is applied.

• Linux apply CONFIG_PREEMPT_VOLUTARY option as default.

Configuration dependency

#BHUSA @BLACKHATEVENTS

Each of methods has obvious limitations

• All of the methods are hard to applied in general.

• We needs a new method that extend the race window and can be used in general.

Configuration dependencyCPU dependency

CPU

Attacker

(User Privilege)

#BHUSA @BLACKHATEVENTS

How to extend the race window?

1. Stop the core

Core 1

A
D

2. Degrade the performance

Core 1

#BHUSA @BLACKHATEVENTS

Attacker

ExpRace

• The key idea of EXPRACE is to keep raising interrupts to indirectly alter kernel

thread’s interleaving.

Core 1

Performance :

FastSlow

A

D

Interrupt handler!
Interrupt handler!

Interrupt handler!

• Inter-processor interrupt

• Hardware Interrupt

Bullets

#BHUSA @BLACKHATEVENTS

ExpRace : How to send IPI & IRQ with user priv

Attacker

(User Priv)

user_function()

{

syscall();

}

User mode

syscall()

{

send_IPI();

}

Kernel mode
Core 1

Send IPI

to core1

Attacker

(User Priv)

user_function()

{

syscall();

}

User mode

syscall()

{

send_REQ();

}

Kernel mode
Core 1

Send IRQ

to core1

Hardware device

Request

to device

#BHUSA @BLACKHATEVENTS

ExpRace : TLB Shootdown

Core 1 Core 2

~ ~ ~

0xABC0 0xABD0 0xABE0

cache

~ ~ ~

0xABC0 0xABD0 0xABE0

cache

munmap(0xABD0) IPI_handler()?

• Modern OS implement a TLB shootdown mechanism to ensure that TLB

entries are synchronized across different cores.

• Syscalls that either modify the permission of the page (e.g., mprotect())

or unmap (e.g., munmap()) the page use IPI for TLB shootdown.

IPI

Flush 0xABD0

#BHUSA @BLACKHATEVENTS

ExpRace : IPI Environment setting

Ty + α

IPI_send

(core 1 and core 2)

mm α

Process C

(Core 0)

Process A

(Core 1)

Process B

(Core 2)

Tx + α

Interrupt

handlerα
Interrupt

handler
α

B

C

A

D

If 3 processes have same mm

IPI_send

(core 1)

mm α mm β

A

B

C

Ty

Process C

(Core 0)

Process A

(Core 1)

Process B

(Core 2)

D

Tx + α
Interrupt

handler
α

If process A and C have same mm,

and B have different mm

Same mm == thread

Different mm == process

#BHUSA @BLACKHATEVENTS

ExpRace : Hardware Interrupt Environment Setting

1. Check irq’s core affinity.

(In our environment, ethernet device (IRQ 122) have affinity to core 11)

2. Pin the thread to corresponding core using sched_setaffinity().

Process A

(Core 11)

Process B

(Core 2)

A
B

C

D

Process C

(Core 0)

1. connect()

Ethernet

device

D

Tx + α ISRα

4. IRQ
2. req

3. res

#BHUSA @BLACKHATEVENTS

ExpRace : Two conditions must be satisfied for succeed

B and C is executed within Tx + α

D

IPI, IRQ

Process A

(Core 1)

A

Process C

(Core 0)

send

interrupt

to core 1
Tx

Interrupt is received within Tx

IPI

handler

or

ISR

Process B

(Core 2)

Process A

(Core 1)

A
B

C

D

α Tx+ α&&

#BHUSA @BLACKHATEVENTS

ExpRace : How many cycles are extended?

A

B

C

D

Ty

Core 1 Core 2

IPI

handler
1500 ~ 20000 cycles

A

B

C

D

Ty

Core 1 Core 2

ISR

handler

About

15000 cycles
It depends on memory size

TLB Shootdown Hardware Interrupt

#BHUSA @BLACKHATEVENTS

ExpRace : Advanced Technique

• IPI and IRQ can be used simultaneously.

• The time window is extended up to 200,000 cycles

Process D

(Core 3)

1. connect()

Ethernet

device

IRQ

IPI_send

(core 1)

mm α mm β

Ty

Process C

(Core 0)

Process A

(Core 1)

Process B

(Core 2)

Tx + α

Interrupt

Handler

+

ISR

α

C

B

D

A

#BHUSA @BLACKHATEVENTS

ExpRace : Other OSs

✔ TLB shootdown

✔ Hardware Interrupt
(#Device Parameters Interrupt registry)

✔ TLB shootdown

✗ Hardware Interrupt

#BHUSA @BLACKHATEVENTS

Case Study : CVE-2017-15265

snd_seq_create_port()

{

…

port = kzalloc();

list_add_tail(&port->list, &p->list);

…

strlcpy(port->name, info->name,

sizeof(port->name));

}

A

Tx = 110 cycles

D

snd_seq_delete_port()

{

list_for_each_entry(… p->list)

{

if (p->addr.port == port) {

found = p;

…

}

}

…

kfree(found);

}
C

Ty = 450 cycles

Bz

A Bif >> && , then Use-After-Free Write occurs.C D>>

z

Problems to exploit

1. Non-inclusive Multi-variable Race

2. No time to reallocate

#BHUSA @BLACKHATEVENTS

Interrupt Handler

ExpRace can solve two problems at once

snd_seq_create_port()

{

…

port = kzalloc();

list_add_tail(&port->list, &p->list);

strlcpy(port->name, info->name,

sizeof(port->name));

}

A

Tx’ = 110 + 15000 cycles

D

snd_seq_delete_port()

{

list_for_each_entry(… p->list)

{

if (p->addr.port == port) {

found = p;

…

}

}

…

kfree(found);

}

syscall_for_reallocte()

{

kmalloc();

}

C

Ty = 450 cycles

B

A Bif >> && , then Use-After-Free Write occurs.C D>>

It takes about

3000 cycles

#BHUSA @BLACKHATEVENTS

Brief introduction about memory corruption exploit

• Spray struct file pointer using SCM_RIGHT

• Partially overwrite the pointer in reallocated

structure for kernel address leak.

• Use iovec structure for AAR, AAW.

1st Use-After-Free Write

2nd Use-After-Free Write

3rd Use-After-Free Write

We totally trigger the vulnerability 3 times

Leak : struct file pointer

AAR : file->f_cred pointer

AAW : f_cred -> uid = 0

#BHUSA @BLACKHATEVENTS

DEMO

#BHUSA @BLACKHATEVENTS

DEMO

#BHUSA @BLACKHATEVENTS

Conclusion

• Some type of race condition vulnerabilities are impossible to exploit.

• ExpRace can make unexploitable race to exploitable race.

• ExpRace is the only method that can be used in general.

