
Razzer: Finding Kernel Race Bugs
through Fuzzing

Dae R. Jeong† Kyungtae Kim∗ Basavesh Shivakumar∗ Byoungyoung Lee‡∗ Insik Shin†

†Korea Advanced Institute of Science and Technology
‡Seoul National University

∗Purdue University

Kernel Vulnerability

2

Kernel Vulnerability

2

Kernel Vulnerability

Attacker can control the entire system

2

Fuzzing: Focused to Extend Coverage

• Fuzzing
• One of the most practical approaches in finding vulnerabilities

• Coverage-guided fuzzing
• It gathers interesting inputs that extend code coverage.

• The more coverage, the more vulnerabilities

3

Race Bugs

• Assumption: Race condition between two threads

• Race condition occurs if following three conditions meet
• Two instructions access the same memory location
• At least one of two is a write instruction
• These two are executed concurrently

• If a race occurs, the computational results may vary
depending on the execution order
• A race vulnerability is caused by the execution order unintended by

developers.

4

Inefficient Fuzzing for Race Bugs

5

• Traditional fuzzers are inefficient to find race bugs
• Instructions should be executed within a specific time window

• Called as race window

• Execution orders are not determined by the fuzzer
• Execution orders are determined by the kernel scheduler

Inefficient Fuzzing for Race Bugs:
Example

Thread 1

6

Race
window strcpy(file_name, longer_name);

strcpy(buf, file_name);

Thread 2

len = strlen(file_name);
buf = kmalloc(len);

Syscall: open() Syscall: rename()

Inefficient Fuzzing for Race Bugs:
Example

Thread 1

6

Race
window strcpy(file_name, longer_name);

strcpy(buf, file_name);

Thread 2

len = strlen(file_name);
buf = kmalloc(len);

Syscall: open() Syscall: rename()

Inefficient Fuzzing for Race Bugs:
Example

Thread 1

6

Race
window strcpy(file_name, longer_name);

strcpy(buf, file_name);

Thread 2

len = strlen(file_name);
buf = kmalloc(len);

Syscall: open() Syscall: rename()

Inefficient Fuzzing for Race Bugs:
Example

Thread 1

6

Race
window strcpy(file_name, longer_name);

strcpy(buf, file_name);

Thread 2

len = strlen(file_name);
buf = kmalloc(len);

Syscall: open() Syscall: rename()

Inefficient Fuzzing for Race Bugs:
Example

Thread 1

6

Race
window strcpy(file_name, longer_name);

strcpy(buf, file_name);

Thread 2

len = strlen(file_name);
buf = kmalloc(len);

file_name is longer than
the allocated buffer

Syscall: open() Syscall: rename()

Inefficient Fuzzing for Race Bugs:
Example

Thread 1

6

Race
window strcpy(file_name, longer_name);

strcpy(buf, file_name);

Thread 2

len = strlen(file_name);
buf = kmalloc(len);

file_name is longer than
the allocated buffer

Buffer overflow!

Syscall: open() Syscall: rename()

Inefficient Fuzzing for Race Bugs:
Syzkaller
• Syzkaller

• A kernel syscall fuzzer developed by Google

• Run Syzkaller to find three race bugs with limited set of syscalls
• CVE-2016-8655

• CVE-2017-17712

• CVE-2017-2636

• None of CVEs was found within 10 hours
• Traditional fuzzing is inefficient to find race bugs

• Razzer can find all of them within 7~30 minutes

7

Our approach: Razzer

8

Code coverage Thread interleaving

strcpy(file_name, longer_name);

len = strlen(file_name);
buf = kmalloc(len);

strcpy(buf, file_name);

Our approach: Razzer

9

Thread 1

Race
window

len = strlen(file_name);
buf = kmalloc(len);

strcpy(file_name, longer_name);

strcpy(buf, file_name);

Thread 2

Syscall: open() Syscall: rename()

Our approach: Razzer

9

Thread 1

Race
window

len = strlen(file_name);
buf = kmalloc(len);

strcpy(file_name, longer_name);

strcpy(buf, file_name);

Thread 2

BP

BP

Syscall: open() Syscall: rename()

Our approach: Razzer

9

Thread 1

Race
window

len = strlen(file_name);
buf = kmalloc(len);

strcpy(file_name, longer_name);

strcpy(buf, file_name);

Thread 2

BP

BP

Syscall: open() Syscall: rename()

Our approach: Razzer

9

Thread 1

Race
window

len = strlen(file_name);
buf = kmalloc(len);

strcpy(file_name, longer_name);

strcpy(buf, file_name);

Thread 2

BP

Syscall: open() Syscall: rename()

Our approach: Razzer

9

Thread 1

Race
window

len = strlen(file_name);
buf = kmalloc(len);

strcpy(file_name, longer_name);

strcpy(buf, file_name);

Thread 2

Syscall: open() Syscall: rename()

Our approach: Razzer

9

Thread 1

Race
window

len = strlen(file_name);
buf = kmalloc(len);

strcpy(file_name, longer_name);

strcpy(buf, file_name);

Thread 2

Buffer overflow!

Syscall: open() Syscall: rename()

Multi-thread
input

Design Overview

10

Source
code

Static analysis Single-thread
fuzzing

Offline
analysis

Online
testing

Multi-thread
fuzzing

Over-approximated
data races

Multi-thread
input

Design Overview

11

Single-thread
fuzzing

Offline
analysis

Online
testing

Multi-thread
fuzzing

Source
code

Static analysis

Over-approximated
data races

Static Analysis

• Identifying instructions that may race
• Teaching Razzer where to install breakpoints to trigger race

• Inclusion-based points-to analysis
• Also known as Andersen-style points-to analysis

• This static analysis certainly has false positives
• Next phases (fuzzing) takes care of this issue because it is “fuzzing”

12

Static Analysis: Example

13

strcpy(file_name, longer_name);

strcpy(buf, file_name);

len = strlen(file_name);
buf = kmalloc(len);

Read

Write

Read

Source code

Static Analysis: Example

13

strcpy(file_name, longer_name);

strcpy(buf, file_name);

len = strlen(file_name);
buf = kmalloc(len);

Read

Write

Read

Source code
Razzer identified 3.4M race candidates over the entire Linux kernel

Source
code

Static analysis

Design Overview

14

Offline
analysis

Online
testing

Multi-thread
fuzzing

Multi-thread
input

Single-thread
fuzzing

Over-approximated
data races

Single-thread Fuzzing

15

open()

…

rename()

…

Single-thread
input

strcpy(file_name, longer_name);

strcpy(buf, file_name);

len = strlen(file_name);
buf = kmalloc(len);

Single-thread Fuzzing

15

open()

…

rename()

…

Single-thread
input

Syscall: open()

Syscall: rename()

Thread 1

Transformation to Multi-thread Input

16

open()

…

rename()

…

Transformation to Multi-thread Input

16

Thread 1

open()

…

Thread 2

rename()

…

strcpy(buf, file_name);

len = strlen(file_name);
buf = kmalloc(len);

strcpy(file_name,
longer_name);

Transformation to Multi-thread Input

16

Thread 1

open()

…

Thread 2

rename()

…BP

BP

Over-approximated
data races

Single-thread
fuzzing

Source
code

Static analysis

Design Overview

17

Offline
analysis

Online
testing

Multi-thread
input

Multi-thread
fuzzing

strcpy(buf, file_name);

strcpy(file_name,
longer_name);

len = strlen(file_name);
buf = kmalloc(len);

Multi-thread Fuzzing

CPU 1 CPU 2

Guest VM

Thread 1

Syscall n

… Thread 2

Syscall m…

18

BP

BP

strcpy(buf, file_name);

strcpy(file_name,
longer_name);

len = strlen(file_name);
buf = kmalloc(len);

Multi-thread Fuzzing

CPU 1 CPU 2

Thread 1 Thread 2

Guest VM

Hypervisor

Thread 1

Syscall n

… Thread 2

Syscall m…

18

BP

BP

strcpy(buf, file_name);

strcpy(file_name,
longer_name);

len = strlen(file_name);
buf = kmalloc(len);

Multi-thread Fuzzing

CPU 1 CPU 2

Thread 1 Thread 2

Guest VM

Hypervisor

Thread 1

Syscall n

… Thread 2

Syscall m…

Hypercall Hypercall

18

BP

BP

strcpy(buf, file_name);

strcpy(file_name,
longer_name);

len = strlen(file_name);
buf = kmalloc(len);

Multi-thread Fuzzing

CPU 1 CPU 2

Thread 1 Thread 2

Guest VM

Hypervisor

Thread 1

Syscall n

… Thread 2

Syscall m…

Hypercall Hypercall

18

BP

BP

strcpy(buf, file_name);

strcpy(file_name,
longer_name);

len = strlen(file_name);
buf = kmalloc(len);

strcpy(buf, file_name);

Multi-thread Fuzzing

CPU 1 CPU 2

Thread 1 Thread 2

Guest VM

Hypervisor

Thread 1

Syscall n

… Thread 2

Syscall m…

Hypercall Hypercall

18

BP

BP

strcpy(file_name, other_name);

strcpy(buf, file_name);

strcpy(file_name,
longer_name);

len = strlen(file_name);
buf = kmalloc(len);

strcpy(buf, file_name);

Multi-thread Fuzzing

CPU 1 CPU 2

Thread 1 Thread 2

Guest VM

Hypervisor

Thread 1

Syscall n

… Thread 2

Syscall m…

Hypercall Hypercall

18

BP

BP

Two threads access the same memory
 A race condition is occurred

strcpy(file_name, other_name);

Implementation

• Static analysis
• Implemented using SVF which is based on LLVM compiler suite

• Single-thread/Multi-thread fuzzing
• Implemented based on Syzkaller

• Deterministic scheduler
• Implemented using QEMU/KVM

• Exposing hypercall interfaces to support per-core breakpoint

19

• 30 new races in the Linux kernel

• 15 were fixed

Evaluation

• 30 new races in the Linux kernel

• 15 were fixed

Evaluation

Use-after-free

• 30 new races in the Linux kernel

• 15 were fixed

Evaluation

Use-after-free

Heap overflow

• 30 new races in the Linux kernel

• 15 were fixed

Evaluation

Use-after-free

Heap overflow

Double free

Evaluation: Comparison with Syzkaller

Race bugs
Syzkaller Razzer

of exec Time Found # of exec Time Found

CVE-2016-8655 29 M 10 hrs X 1,170 K 26 min ✓

CVE-2017-17712 37 M 10 hrs X 807 K 18 mins ✓

CVE-2017-2636 5 M 10 hrs X 246 K 7 mins ✓

• Run Razzer and Syzkaller with limited set of syscalls

• Razzer found race bugs 23~85 faster than Syzkaller
• Razzer found 3 race bugs within short time

• Syzkaller didn’t find 3 race bugs within 10 hours

21

Conclusion

• Razzer, a new fuzzer focusing on race bugs

• Taming non-deterministic behavior of races

• Combining static analysis and fuzzing

• Source code (by May 25, 2019)
• https://github.com/compsec-snu/razzer

22

Thank you

Dae R. Jeong
threeearcat@gmail.com

