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Kernel Vulnerability

Attacker can control the entire system
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Fuzzing: Focused to Extend Coverage

• Fuzzing
• One of the most practical approaches in finding vulnerabilities

• Coverage-guided fuzzing
• It gathers interesting inputs that extend code coverage.

• The more coverage, the more vulnerabilities
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Race Bugs

• Assumption: Race condition between two threads

• Race condition occurs if following three conditions meet
• Two instructions access the same memory location
• At least one of two is a write instruction
• These two are executed concurrently

• If a race occurs, the computational results may vary 
depending on the execution order
• A race vulnerability is caused by the execution order unintended by 

developers.
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Inefficient Fuzzing for Race Bugs
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• Traditional fuzzers are inefficient to find race bugs
• Instructions should be executed within a specific time window

• Called as race window

• Execution orders are not determined by the fuzzer
• Execution orders are determined by the kernel scheduler



Inefficient Fuzzing for Race Bugs: 
Example

Thread 1
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window strcpy(file_name, longer_name);

strcpy(buf, file_name);

Thread 2

len = strlen(file_name);
buf = kmalloc(len);

Syscall: open() Syscall: rename()
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Inefficient Fuzzing for Race Bugs: 
Syzkaller
• Syzkaller

• A kernel syscall fuzzer developed by Google

• Run Syzkaller to find three race bugs with limited set of syscalls
• CVE-2016-8655

• CVE-2017-17712

• CVE-2017-2636

• None of CVEs was found within 10 hours
• Traditional fuzzing is inefficient to find race bugs

• Razzer can find all of them within 7~30 minutes

7



Our approach: Razzer
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Code coverage Thread interleaving

strcpy(file_name, longer_name);

len = strlen(file_name);
buf = kmalloc(len);

strcpy(buf, file_name);
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Static Analysis

• Identifying instructions that may race
• Teaching Razzer where to install breakpoints to trigger race

• Inclusion-based points-to analysis
• Also known as Andersen-style points-to analysis

• This static analysis certainly has false positives
• Next phases (fuzzing) takes care of this issue because it is “fuzzing”
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Static Analysis: Example
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Razzer identified 3.4M race candidates over the entire Linux kernel
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Single-thread Fuzzing
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strcpy(buf, file_name);

len = strlen(file_name);
buf = kmalloc(len);

strcpy(file_name,
longer_name);

Transformation to Multi-thread Input
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Two threads access the same memory
 A race condition is occurred

strcpy(file_name, other_name);



Implementation

• Static analysis
• Implemented using SVF which is based on LLVM compiler suite

• Single-thread/Multi-thread fuzzing
• Implemented based on Syzkaller

• Deterministic scheduler
• Implemented using QEMU/KVM

• Exposing hypercall interfaces to support per-core breakpoint
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• 30 new races in the Linux kernel

• 15 were fixed

Evaluation

Use-after-free

Heap overflow
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Evaluation: Comparison with Syzkaller

Race bugs
Syzkaller Razzer

# of exec Time Found # of exec Time Found

CVE-2016-8655 29 M 10 hrs X 1,170 K 26 min ✓

CVE-2017-17712 37 M 10 hrs X 807 K 18 mins ✓

CVE-2017-2636 5 M 10 hrs X 246 K 7 mins ✓

• Run Razzer and Syzkaller with limited set of syscalls

• Razzer found race bugs 23~85 faster than Syzkaller
• Razzer found 3 race bugs within short time

• Syzkaller didn’t find 3 race bugs within 10 hours
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Conclusion

• Razzer, a new fuzzer focusing on race bugs

• Taming non-deterministic behavior of races

• Combining static analysis and fuzzing

• Source code (by May 25, 2019)
• https://github.com/compsec-snu/razzer

22



Thank you

Dae R. Jeong
threeearcat@gmail.com


