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Obtaining basic results on Orlicz spaces in the literature is not so easy. Indeed, the old
seminal textbook by Krasnosel’skii and Rutickii [1] (1961) contains all the fundamental
properties one should know about Orlicz spaces, but the theory is developed in Rd with
the Lebesgue measure. One is left with the question “What can be kept in a more general
measure space?”. Many of the answers to this question might be found in the more
recent textbook by Rao and Ren [3] (1991) where the theory is developed in very general
situations including many possible pathologies of the Young functions and the underlying
measure. Because of its high level of generality, I find it uneasy to extract from [3] the
basic ideas of the proofs of the theorems on Orlicz spaces which are the analogues of the
basic results on Lp spaces.

The aim of these notes is to present basic results about Orlicz spaces. I have tried to
make the proofs as self-contained and synthetic as possible. I hope for the indulgence of
the reader acquainted with Walter Rudin’s books, in particular with [4] where wonderful
pages are written on the Lp spaces which are renowned Orlicz spaces.

1. Basic definitions and results on Orlicz spaces

The notion of Orlicz space extends the usual notion of Lp space with p ≥ 1. The
function sp entering the definition of Lp is replaced by a more general convex function
θ(s) which is called a Young function.

Definition 1.1 (Young function). A function θ : R→ [0,∞] is a Young function if

(i) θ is a convex lower semicontinuous [0,∞]-valued function on R;
(ii) θ is even and θ(0) = 0;
(iii) θ is non-trivial: it is different from the constant function 0(s) = 0, s ∈ R and its

convex conjugate 0∗(s) =

{
0, if s = 0
+∞, otherwise.

One says that the Young function θ is finite if its effective domain dom θ := {s ∈ R; θ(s) <
∞} is the whole real line R.
One says that the Young function θ is strict if it is finite and lims→∞ θ(s)/s = ∞.
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2 CHRISTIAN LÉONARD

In the literature, Young functions are sometimes not required to be lower semicon-
tinuous or are allowed to be trivial in the sense of condition (iii). These restrictions are
introduced in these notes in order to escape from the uninteresting trivial cases and to
work with convex conjugacy without trouble. Doing so, one doesn’t loose generality.

Examples 1.2. The following functions are Young functions.

(1) θp(s) := |s|p/p with p ≥ 1;

(2) θ∞(s) = ι[−1,+1](s) :=

{
0, if − 1 ≤ s ≤ +1
+∞, otherwise.

;

(3) θexp(s) = e|s| − 1; θ̃exp(s) := e|s| − |s| − 1.

Remarks 1.3.

(1) Properties (i) and (ii) imply that θ achieves its minimum at 0 and is increasing on
[0,∞).

(2) Under (i) and (ii), one has (iii) if and only if there exist s0, s1 > 0 such that
θ(s0) ∈ [0,∞) and θ(s1) ∈ (0,∞].

(3) Any Young function satisfies lims→∞ θ(s) = +∞.
(4) As a Young function is convex on R, it is continuous on the interior of its effective

domain. In particular, a finite Young function is continuous.

Convex conjugacy of Young functions will appear to be linked to the duality of Orlicz
spaces. Recall that the convex conjugate of θ is defined by

θ∗(t) := sup
s∈R
{st− θ(s)} ∈ [0,∞], t ∈ R.

Proposition 1.4.

(1) θ is a Young function if and only if θ∗ is a Young function.
(2) Let θ be a Young function. We have

[θ is strict] ⇔ [θ∗ is strict] ⇔ [θ and θ∗ are finite].

Proof. Left in exercise. �

Let the space X be given with a σ-field and a σ-finite positive measure µ.
Recall that µ is said to be σ-finite if there exists a sequence (Xk)k≥1 of measurable subsets
of X such that ⋃

k≥1

Xk = X and µ(Xk) < ∞, ∀k ≥ 1. (1.5)

Without loss of generality, considering
⋃

i≤k Xi, one can assume that (Xk)k≥1 is an in-
creasing sequence.

Definition 1.6 (Luxemburg norm). Let θ be a Young function. For any measurable
function f on X ,

‖f‖θ := inf

{
b > 0;

∫
X

θ(f/b) dµ ≤ 1

}
∈ [0,∞]

where it is understood that inf(∅) = +∞.

It is the gauge of the set U = {f measurable;
∫
X θ(f) dµ ≤ 1}.

Examples 1.7 (Fundamental examples). The Young function θp at Example 1.2-1 leads to
the usual norm p1/p‖f‖θp = ‖f‖p = [

∫
X |f |

p dµ]1/p on Lp(µ), while θ∞ at Example 1.2-2
gives the usual norm ‖f‖θ∞ = ‖f‖∞ = µ-ess sup|f | on L∞(µ).
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The functions θexp and θ̃exp given at Example 1.2-3 will give rise to function spaces
entering the class of Orlicz spaces which are useful to study the relative entropy, as will
be seen later.

Lemma 1.8. For any measurable function f on X , ‖f‖θ = 0 if and only if f = 0 µ-almost
everywhere.

Proof. Clearly, ‖f‖θ = 0 if and only if
∫
X θ(f/ε) dµ ≤ 1, ∀ε > 0. It follows that the

equivalence (a) below is satisfied:

‖f‖θ = 0
(a)⇔

∫
X

θ(af) dµ = 0, ∀a > 0

(b)⇔ θ(af) = 0, µ-a.e. ∀a > 0
(c)⇔ f = 0, µ-a.e.

where (b) holds since θ ≥ 0 and (c) is a consequence of the existence of some s1 > 0 such
that θ(s1) > 0, see Remark 1.3-2. �

Identification of almost everywhere equal functions. As with Lp spaces, one identifies
the functions which are µ-almost everywhere equal. This means that one works with
the equivalence classes of the equivalence relation defined by the µ-almost everywhere
equality. From now on, this will be done without further mention.
Consequently, one writes:

‖f‖θ = 0 ⇔ f = 0. (1.9)

Lemma 1.10. If 0 < ‖f‖θ < ∞, then
∫
X θ(f/‖f‖θ) dµ ≤ 1.

In particular, ‖f‖θ ≤ 1 is equivalent to
∫
X θ(f) dµ ≤ 1.

Proof. For all b > ‖f‖θ,
∫
X θ(f/b) dµ ≤ 1. Letting b decrease to ‖f‖θ, one obtains the

first result by monotone convergence. The second statement follows from this and Lemma
1.8. �

Proposition 1.11. The gauge ‖ · ‖θ is a norm on the vector space of all the measurable
functions f such that ‖f‖θ < ∞.

Proof. It is already seen that (1.9) holds under the identification of a.e. equal functions.
It is clear that for all real λ, ‖λf‖θ = |λ|‖f‖θ.
It remains to prove the triangle inequality. Let f and g be two measurable functions such
that 0 < ‖f‖θ + ‖g‖θ < ∞. Then,∫

X
θ

(
f + g

‖f‖θ + ‖g‖θ

)
dµ

=

∫
X

θ

(
‖f‖θ

‖f‖θ + ‖g‖θ

f

‖f‖θ

+
‖g‖θ

‖f‖θ + ‖g‖θ

g

‖g‖θ

)
dµ

≤ ‖f‖θ

‖f‖θ + ‖g‖θ

∫
X

θ

(
f

‖f‖θ

)
dµ +

‖g‖θ

‖f‖θ + ‖g‖θ

∫
X

θ

(
g

‖g‖θ

)
dµ

≤ 1

where the last but one inequality follows from the convexity of θ and the last inequality
from Lemma 1.10. Therefore, ‖f + g‖θ ≤ ‖f‖θ + ‖g‖θ.
As a consequence, the set of all measurable functions f such that ‖f‖θ < ∞ is a vector
space. �
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Definitions 1.12 (Orlicz spaces). Let θ be a Young function. One defines the Orlicz
spaces

Lθ(X , µ) :=

{
f measurable;∃a > 0,

∫
X

θ(af) dµ < ∞
}

Mθ(X , µ) :=

{
f measurable;∀a > 0,

∫
X

θ(af) dµ < ∞
}

Let us drop (X , µ) and write Lθ = Lθ(X , µ) and Mθ = Mθ(X , µ). Clearly

Mθ ⊂ Lθ

and

Lθ = {f measurable; ‖f‖θ < ∞}.
Hence, Lθ is a vector space. Of course, Mθ is a vector subspace of Lθ.
One calls respectively Lθ and Mθ the large and small Orlicz spaces. Very often, the large
space Lθ is simply called the Orlicz space.

Examples 1.13. One refers to the Young functions introduced at Examples 1.2.

(1) With θp, Mθp = Lθp = Lp;
(2) With θ∞, Mθ∞ = {0} and Lθ∞ = L∞;

(3) With θexp(s) := e|s| − 1 or θ̃exp(s) := e|s| − |s| − 1, in general we have the strict
inclusions

{0} $Mθexp $ Lθexp .

To see this, consider the example where X = R, µ is the standard Gaussian
probability measure N (0, 1). Then, the function f(x) = x2 is in Lθexp but not in
Mθexp .

(4) If µ is a bounded measure, the functions θexp and θ̃exp define the same Orlicz
spaces. On the other hand, if µ is unbounded, this is not true anymore. This will
be illustrated later.

It follows from Proposition 1.4 that if Lθ is an Orlicz space, then Lθ∗ is also an Orlicz
space.

Proposition 1.14 (Hölder’s inequality). For all f ∈ Lθ and g ∈ Lθ∗ ,∫
X
|fg| dµ ≤ 2‖f‖θ‖g‖θ∗ .

In particular, fg ∈ L1.

Proof. If ‖f‖θ = 0 or ‖g‖θ∗ = 0, one concludes with Lemma 1.8. Assume now that
0 < ‖f‖θ, ‖g‖θ∗ . Because of Young’s inequality: st ≤ θ(s)+θ∗(t), f

‖f‖θ

g
‖g‖θ∗

≤ θ(f/‖f‖θ)+

θ∗(g/‖g‖θ∗). Hence,

1

‖f‖θ‖g‖θ∗

∫
X

fg dµ ≤
∫
X

θ(f/‖f‖θ) dµ +

∫
X

θ∗(g/‖g‖θ∗) dµ ≤ 2.

�

Proposition 1.15 (µ(X ) < ∞). Assume that µ is bounded, then

Lθ ⊂ L1

where the inclusion is continuous from (Lθ, ‖ · ‖θ) to (L1, ‖ · ‖1).
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Proof. There exist u > 0 and v ≥ 0 such that θ(s) ≥ us − v, ∀s ≥ 0. Let f ∈ Lθ. For
a > 0 small enough, a

∫
X |f | dµ ≤ 1

u

∫
X [θ(af) + v] dµ = 1

u

∫
X θ(af) dµ + vµ(X )/u < ∞.

Therefore, Lθ ⊂ L1 and this inclusion is continuous since with c > 0 taken sufficiently
small for the inequality u/c− vµ(X ) ≥ 1 to hold, we have∫

X
θ

(
f

c‖f‖1

)
dµ ≥

∫
X

u

c

f

‖f‖1

dµ− vµ(X ) = u/c− vµ(X ) ≥ 1.

This means that c‖f‖1 ≤ ‖f‖θ for all f ∈ Lθ. �

Lemma 1.16. Let (fn)n≥1 be a sequence in Lθ. Then, the following assertions are equiv-
alent:

(a) limn→∞ ‖fn‖θ = 0;
(b) For all a > 0, lim supn→∞

∫
X θ(afn) dµ ≤ 1;

(c) For all a > 0, limn→∞
∫
X θ(afn) dµ = 0.

Proof. The equivalence (a) ⇔ (b) is a direct consequence of the definition of ‖f‖θ. Of
course (c) ⇒ (b) is obvious. As θ is convex and θ(0) = 0, for all s ≥ 0 and 0 < ε ≤ 1,
θ(s) = θ((1− ε)0 + ε(s/ε)) ≤ (1− ε)θ(0) + εθ(s/ε). That is

θ(s) ≤ εθ(s/ε), s ≥ 0, 0 < ε ≤ 1 (1.17)

from which (b) ⇒ (c) follows easily. �

Proposition 1.18. The normed spaces (Lθ, ‖ · ‖θ) and (Mθ, ‖ · ‖θ) are Banach spaces.

Proof. Let us begin proving that Lθ is complete. Let (fn)n≥1 be a Cauchy sequence in
Lθ. As µ is σ-finite there exists a countable partition (Xk; k ≥ 1) of measurable subsets
of X such that µ(Xk) < ∞ for all k ≥ 1. In restriction to each Xk furnished with
the measure µk(·) = µ(Xk ∩ ·), (fn)n≥1 is a Cauchy sequence in Lθ(Xk, µk). Thanks to
Proposition 1.15, it is also Cauchy in L1(Xk, µk). As L1 is complete, it is convergent in
L1 and one can extract a subsequence which converges µk-a.e. pointwise to f on Xk.
Using the diagonal extraction procedure, one can extract a subsequence (fnk

)k≥1 which
converges µ-a.e. pointwise to f on the whole space X .

Let a > 0. By Lemma 1.16 there exists a large enough integer N(a) such that∫
X

θ(a(fm − fn)) dµ ≤ 1, ∀m, n ≥ N(a).

With Fatou’s lemma this gives∫
X

θ(a(fm − f)) dµ ≤ lim inf
k→∞

∫
X

θ(a(fm − fnk
)) dµ ≤ 1, ∀m ≥ N(a).

Therefore, fm − f belongs to Lθ. But fm ∈ Lθ, so that f ∈ Lθ.
Moreover, as lim supm→∞

∫
X θ(a(fm − f)) dµ ≤ 1 for all a > 0, we have limm→∞ ‖fm −

f‖θ = 0. This proves that Lθ is complete.
It remains to show that Mθ is closed in Lθ. Let (fn)n≥1 be a sequence in Mθ which
converges to f in Lθ. As θ is convex, for all a > 0 and n ≥ 1,∫

X
θ(af/2) dµ =

∫
X

θ

(
1

2
afn +

1

2
a(f − fn)

)
dµ

≤ 1

2

∫
X

θ(afn) dµ︸ ︷︷ ︸
A

+
1

2

∫
X

θ(a(f − fn)) dµ︸ ︷︷ ︸
B

.
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But A is finite for all n and all a since fn ∈ Mθ and B ≤ 1 as soon as n ≥ N(a) for some
large enough N(a). Hence,

∫
X θ(af/2) dµ < ∞ for all a, that is f ∈ Mθ. �

Remark. A direct proof of this result is possible, following the standard proofs of the
completeness of Lp. See [4] for instance. Here, we relied on some known properties of L1

to spare time.

Definition 1.19 (Orlicz norm). Let us introduce another norm on Lθ :

|f |θ := sup

{∫
X

fg dµ; g ∈ Lθ∗ ,

∫
X

θ∗(g) dµ ≤ 1

}
, f ∈ Lθ.

Note that by Hölder’s inequality, this integral is well-defined. Because of Lemma 1.10,
one can also write

|f |θ := sup

{∫
X

fg dµ; g ∈ Lθ∗ , ‖g‖θ∗ ≤ 1

}
.

Proposition 1.20. | · |θ is a norm on Lθ which is equivalent to ‖ · ‖θ. More precisely,

‖f‖θ ≤ |f |θ ≤ 2‖f‖θ, f ∈ Lθ.

Proof. • Let us show that |f |θ = 0 implies that f = 0, µ-a.e. Take f 6= 0. Since µ
is σ-finite, there is some set A such that 0 < µ(A) < ∞ and A ⊂ {f 6= 0}. Choose
go = c1A with c > 0 such that

∫
X θ∗(g) dµ = θ∗(c)µ(A) ≤ 1 (this is possible since the

Young function θ∗ is continuous at zero) and remark that |f |θ ≥
∫
X |f |go dµ > 0.

It is clear that |λf |θ = |λ||f |θ and |f + g|θ ≤ |f |θ + |g|θ for all f, g ∈ Lθ and all real λ. We
have shown that | · |θ is a norm.
• For all g ∈ Mθ∗ such that

∫
X θ∗(g) dµ ≤ 1, we have ‖g‖θ∗ ≤ 1 and Hölder’s inequality

states that
∫
X fg dµ ≤ 2‖f‖θ‖g‖θ∗ ≤ 2‖f‖θ. That is |f |θ ≤ 2‖f‖θ.

• To prove that ‖f‖θ ≤ |f |θ, it remains to show that∫
X

θ(f/|f |θ) dµ ≤ 1 (1.21)

for any positive f in Lθ. Denote so = sup dom θ ∈ (0,∞]. Let us assume for a while that

either θ(so) = ∞ or ∂θ(so) 6= ∅. (1.22)

Under this assumption, for all s in dom θ, the subdifferential ∂θ(s) is non-empty and
Young’s equality is

θ(s) + θ∗(θ′(s)) = sθ′(s), s ∈ dom θ (1.23)

where we pick some θ′(s) ∈ ∂θ(s) for all s ∈ dom θ. Of course, if θ is differentiable, then
θ′(s) is the usual derivative. As θ is convex, the function θ′ is increasing so that it is
measurable. Now, considering the measurable function

g := θ′(f/|f |θ)1A,

where A is any measurable subset of X , one obtains that∫
A

θ(f/|f |θ) dµ +

∫
X

θ∗(g) dµ =

∫
X

f

|f |θ
g dµ (1.24)

where these integrals take their values in [0,∞] and the convention that θ′(0) = 0 is
adopted so that Young’s equality is still satisfied outside of A.

If
∫

A
θ∗(g) dµ ≤ 1, we get

∫
X fg dµ ≤ |f |θ, that is

∫
X

f
|f |θ

g dµ ≤ 1. As
∫
X θ∗(g) dµ ≥ 0,

one obtains with (1.24) that
∫

A
θ(f/|f |θ) dµ ≤

∫
X

f
|f |θ

g dµ ≤ 1.
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If 1 <
∫

A
θ∗(g) dµ < ∞, let us consider the function g/

∫
X θ∗(g) dµ. Since θ∗ is a

Young function, (1.17) tells us that for all 0 < α ≤ 1, θ∗(αt) ≤ αθ∗(t), t ≥ 0. In par-
ticular, θ∗(g/

∫
X θ∗(g) dµ) ≤ θ∗(g)/

∫
X θ∗(g) dµ and

∫
X θ∗(g/

∫
X θ∗(g) dµ) dµ ≤ 1. Hence,∫

X fg/(
∫
X θ∗(g) dµ) dµ ≤ |f |θ. In other words,

∫
X

f
|f |θ

g dµ ≤
∫
X θ∗(g) dµ. Together with

(1.24), this implies that
∫

A
θ
(

f
|f |θ

)
dµ = 0.

At this point of the proof, we have shown that
∫

A
θ
(

f
|f |θ

)
dµ ≤ 1 provided that∫

A
θ∗(θ′(f/|f |θ)) dµ is finite.

• Now, let’s have a look at the situation where
∫
X θ∗(θ′(f/|f |θ)) dµ = ∞. If (1.22) is

satisfied, the function θ∗(θ′(s)) is finite everywhere by Proposition 1.37-c of [2]. This
implies that (Bk)k≥1 with Bk = {θ∗[θ′(f/|f |θ)] ≤ k} is an increasing sequence such that
∪k≥1Bk = X . As µ is σ-finite there exists another increasing sequence (Xk)k≥1 of mea-
surable subsets of X satisfying (1.5). Taking Ak = Bk ∩ Xk, it follows that (Ak)k≥1 is an
increasing sequence such that limk→∞ Ak = X and

∫
Ak

θ∗[θ′(f/|f |θ)] dµ < ∞ for each k.

With our previous result, this implies that
∫

Ak
θ
(

f
|f |θ

)
dµ ≤ 1 for all k. One concludes by

monotone convergence that
∫
X θ

(
f
|f |θ

)
dµ ≤ 1 which is the desired result: ‖f‖θ ≤ |f |θ.

• It remains to get rid of the technical requirement (1.22). The remaining case is: θ(so) <
∞ with θ′(so) = ∞. Instead of g as above, consider the sequence (gn)n≥1 defined by

gn := θ′(f/|f |θ)1A + n1B,

where A and B are any measurable subset of X such that A ⊂ {f/|f |θ 6= so} and
B ⊂ {f/|f |θ = so} with µ(B) < ∞.

Now, (1.24) with gn instead of g is not an equality anymore, the difference providing
from the contribution of the set B where Young’s equality (1.23) is replaced by the
asymptotic equality

θ(so) + θ∗(n) = son + εn

with limn→∞ εn = 0. With gn, (1.24) is replaced by∫
A∪B

θ(f/|f |θ) dµ

=

∫
A

θ(f/|f |θ) dµ + µ(B)θ(so)

=

∫
A

f

|f |θ
gn dµ−

∫
A

θ∗(gn) dµ + µ(B)(son− θ∗(n) + εn)

=

∫
X

f

|f |θ
gn dµ−

∫
X

θ∗(gn) dµ + µ(B)εn

Reasoning as above, one obtains that
∫

A∪B
θ
(

f
|f |θ

)
dµ ≤ 1 + µ(B)εn provided that∫

A
θ∗(θ′(f/|f |θ)) dµ and µ(B) are finite. As this is valid for all n ≥ 1, letting n tend

to infinity leads us to
∫

A∪B
θ
(

f
|f |θ

)
dµ ≤ 1. But now, the function θ∗(θ′(f/|f |θ)) is fi-

nite on any A ⊂ {f/|f |θ 6= so} and one concludes as before, taking advantage of the
σ-finiteness of µ, that (1.21) holds true. �

Remark 1.25. One may think of

Nθ(f) := sup

{∫
X

fg dµ; g ∈ Mθ∗ , ‖g‖θ∗ ≤ 1

}
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and

NB
θ (f) := sup

{∫
X

fg dµ; g ∈ BX , ‖g‖θ∗ ≤ 1

}
which are similar to |f |θ, but where the suprema are taken over g ∈ Mθ∗ and g ∈ BX
rather than Lθ∗ . Following the previous proof, one sees that NB

θ is a norm.
But, one must be careful with Nθ since [Nθ(f) = 0 ⇒ f = 0] fails unless it is assumed
that dom θ∗ = R. Indeed, if dom θ∗  R, Mθ∗ = {0} and Nθ(f) = 0 for all f. On the other
hand, dom θ∗ = R insures that go = c1A at the first step of the proof is in BX , so that
[Nθ(f) = 0 ⇒ f = 0] holds.
The rest of the proof still works with the norms Nθ(f) and NB

θ (f). This leads us to

‖f‖θ ≤ Nθ(f) ≤ 2‖f‖θ

and

‖f‖θ ≤ NB
θ (f) ≤ 2‖f‖θ

for all f ∈ Lθ.

2. A first step towards duality

Because of Hölder’s inequality, any h ∈ Lθ∗ defines a continuous linear form via

`h(f) :=

∫
X

hf dµ, f ∈ Lθ (2.1)

with an operator norm ‖`h‖ ≤ 2‖h‖θ∗ . The main result of this section is the following

Theorem 2.2 (dom θ = R). Assume that θ is finite. Then, the topological dual space M ′
θ

of (Mθ, ‖ · ‖θ) is isomorphic to Lθ∗ :

M ′
θ
∼= Lθ∗ .

This means that one can associate to any ` ∈ M ′
θ, a unique h ∈ Lθ∗ such that ` = `h

where `h is defined at (2.1).

Remarks 2.3.

(1) When θ takes infinite values, Mθ is the null space and Theorem 2.2 obviously fails.
(2) Defining for any 1 ≤ p < ∞, θp(s) = |s|p/p, s ∈ R, we have for all 1 < p < ∞,

Mθp = Lθp = Lp and θ∗p = θp∗ where

1/p + 1/p∗ = 1.

Theorem 2.2 appears to be an extension of the usual dual representation theorem
of Lp spaces which states that

L′
p
∼= Lp∗

for all 1 < p < ∞.

The proof of Theorem 2.2 will be done after some preliminary lemmas are established.

Lemma 2.4. Let h be a measurable function.

(a) If hf ∈ L1 for all f ∈ Lθ, then h ∈ Lθ∗ .
(b) Suppose that θ is finite. If hf ∈ L1 for all f ∈ Mθ, then h ∈ Lθ∗ .
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Proof. •Proof of (a). For all h measurable, n, k ≥ 1, denote hn := |h| ∧ n and define the
linear form

`n,k(f) :=

∫
X

1Xk
hnf dµ, f ∈ Lθ

where (Xk)k≥1 is the increasing sequence already encountered at (1.5). As by Hölder’s
inequality |`n,k(f)| ≤ 2‖1Xk

hn‖θ∗‖f‖θ, `n,k is a continuous linear form on the Banach
space Lθ and for all n, k ≥ 1

|`n,k(f)| ≤
∫
X

1Xk
hn|f | dµ ≤

∫
X
|h||f | dµ := A(f) < ∞.

Therefore, one can apply the uniform boundedness principle (Banach-Steinhaus theorem)
to assert that

B := sup
n,k≥1

‖`n,k‖ < ∞

where ‖`n,k‖ = sup{`n,k(f); f ∈ Lθ, ‖f‖θ ≤ 1}. It follows that

|h|θ∗ = sup

{∫
X
|h|f dµ; f ∈ Lθ, ‖f‖θ ≤ 1

}
(a)
= sup

{
lim

n,k→∞
|`n,k(f)|; f ∈ Lθ, ‖f‖θ ≤ 1

}
≤ sup{B‖f‖θ; f ∈ Lθ, ‖f‖θ ≤ 1}
= B < ∞.

By Proposition 1.20, ‖h‖θ∗ ≤ |h|θ∗ < ∞. This shows that h belongs to Lθ∗ .
It remains to justify equality (a) in the previous sequence of inequalities. Clearly, one can
restrict the proof to the case where f is nonnegative and the result follows by monotone
convergence.
•Proof of (b). The same proof works, replacing |h|θ∗ by Nθ∗(h) and taking Remark 1.25
into account. �

Lemma 2.5. The space BX ∩Mθ of all bounded functions in Mθ is everywhere dense in
Mθ.

Proof. First consider the case where θ is not finite. Then, Mθ reduces to {0} and there is
nothing to prove.
Now, let us assume that θ is finite and let f be in Mθ. For all n ≥ 1, denote fn :=
(−n)∨ f ∧n ∈ BX ∩Mθ. Clearly, limn→∞ fn = f pointwise and ‖f − fn‖θ = ‖f1{|f |>n}‖θ.
But, for all a > 0, limn→∞

∫
X θ(af1{|f |>n}) dµ = 0 by dominated convergence. Hence,

limn→∞ ‖f − fn‖θ = 0, by Lemma 1.16. �

Remark 2.6. One already knows that Mθ is closed in Lθ (see Proposition 1.18) and that
it happens that BX ⊂ Mθ  Lθ (see Example 1.13-3 where µ is bounded), therefore it
happens that BX ∩ Lθ isn’t everywhere dense in Lθ.

We are now ready to write the proof of Theorem 2.2.

Proof of Theorem 2.2. • The easy inclusion is Lθ∗ ⊂ M ′
θ. Indeed, Hölder’s inequality

implies that for all h ∈ Lθ∗ , `h defined at (2.1) is continuous on Mθ.
• Let us prove the converse inclusion: M ′

θ ⊂ Lθ∗ . Let ` belong to M ′
θ. One first shows that

` is a measure which is absolutely continuous with respect to µ :

` � µ.
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Clearly, ` is an additive functional on Mθ. To be a measure, it still needs to be σ-additive.
To see this, we are going to prove that

lim
n→∞

`(gnf) = 0 (2.7)

for any f ∈ Mθ and any decreasing sequence (gn)n≥1 in BX such that 0 ≤ gn ≤ 1 and
limn→∞ gn(x) = 0, ∀x ∈ X . As dom θ = R, by dominated convergence one sees that
for all a ≥ 0, limn→∞

∫
X θ(agnf) dµ = 0 since for all n ≥ 1, 0 ≤ θ(agnf) ≤ θ(af) and∫

X θ(af) dµ < ∞. Hence, by Lemma 1.16, limn→∞ ‖gnf‖θ = 0. But ` is continuous on Mθ,
so that (2.7) is satisfied. This proves that for all f ∈ Mθ, there exists a signed measure
λf such that `(gf) =

∫
X g dλf , ∀g ∈ BX .

On the other hand, for any g ∈ BX such that g = 0 µ-a.e., we have `(gf) = `(0) = 0.
This implies that λf is absolutely continuous with respect to µ and by Radon-Nykodym’s
theorem there exists some function hf in L1(X , λf ) such that

`(gf) =

∫
X

ghf dµ, ∀g ∈ BX .

With f ∈ BX ∩ Mθ, as fg ∈ BX for all g ∈ BX , writing f = 1 × f, one obtains that
hf = fh1, µ-a.e. Hence,

`(f) =

∫
X

fh dµ, ∀f ∈ BX ∩Mθ (2.8)

where we have taken h = h1.
Denote f+ = 0∨f, f− = 0∨(−f), η+ = 1{h≥0} and η− = 1{h<0}. Of course, for all f ∈ Mθ,
`(f) = `(η+f+) + `(η−f+)− `(η+f−)− `(η−f−) where the functions η+f+, η−f+, η+f− and
η−f− are nonnegative. As their products with h have constant sign, one can restrict our
attention to the case where f ≥ 0 and h ≥ 0.
For all f ≥ 0 in Mθ, as a consequence of the dominated convergence theorem (see Lemma
2.5), we have limk→∞ f ∧k = f in Mθ. Since ` is continuous, we obtain limk→∞ `(f ∧k) =
`(f). By monotone convergence, limk→∞

∫
X (f ∧ k)h dµ =

∫
X fh dµ ∈ [0,∞]. These two

limits, (2.8) and the decomposition into functions with constant sign lead us to

`(f) =

∫
X

fh dµ, ∀f ∈ Mθ.

One concludes with Lemma 2.4-b that h ∈ Lθ∗ . This completes the proof of the theorem.
�

References

[1] M.A. Krasnosel’skii and Ya.B. Rutickii. Convex functions and Orlicz spaces. P. Noordfoff Ltd., Gronin-
gen, 1961.
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