
Welcome
“Reproducing 150 Research Papers and Testing Them in

the Real World: Challenges and Solutions”
Grigori Fursin

Twitter Hashtag: #ACMLearning
Tweet questions & comments to: @ACMeducation

Post-Talk Discourse: https://on.acm.org
Additional Info:

• Talk begins at the top of the hour and lasts 60 minutes
• For volume control, use your master volume controls and try headphones if it’s too low
• Submit questions at any time using the Q&A window (type your question and click “Submit”)
• On the bottom panel you’ll find a number of widgets, including Twitter and sharing apps
• If you are experiencing any issues, try refreshing your browser or relaunching your session
• At the end of the presentation, please help us improve our talks by taking the experience survey

that opens in a new window (you can also click on it at any time in the Resources window)
• This session is being recorded and will be archived for on-demand viewing. You’ll receive an email

when it’s available.

https://on.acm.org/

Reproducing 150 Research Papers and
Testing Them in the Real World:

Challenges and Solutions

Speaker: Grigori Fursin
Moderator: Peter Mattson

For Scientists, Programmers, Designers, and Managers:
• Learning Center - https://learning.acm.org

• View past TechTalks with top inventors, innovators, entrepreneurs, & award winners
• Access to O’Reilly Learning Platform – technical books, video courses, & learning paths
• Access to Skillsoft Training & ScienceDirect – vendor certification prep, technical books & courses
• Listen to our ByteCast interviews with top computing luminaries and visionary researchers & entrepreneurs
• Check out the new ACM Selects – themed shortlists of learning resources curated by subject matter experts

• Ethical Responsibility – https://ethics.acm.org

ACM.org Highlights

Popular Publications & Research Papers
• Communications of the ACM - http://cacm.acm.org
• Queue Magazine - http://queue.acm.org
• Digital Library - http://dl.acm.org

Major Conferences, Events, & Recognition
• https://www.acm.org/conferences
• https://www.acm.org/chapters
• https://awards.acm.org

By the Numbers
• 2,200,000+ content readers
• 1,800,000+ DL research citations
• $1,000,000 Turing Award prize
• 100,000+ global members
• 1200+ Fellows
• 700+ chapters globally
• 170+ yearly conferences globally
• 100+ yearly awards
• 70+ Turing Award Laureates

https://learning.acm.org/
https://ethics.acm.org/
http://cacm.acm.org/
http://queue.acm.org/
http://dl.acm.org/

Welcome
“Reproducing 150 Research Papers and Testing Them in

the Real World: Challenges and Solutions”
Grigori Fursin

Twitter Hashtag: #ACMLearning
Tweet questions & comments to: @ACMeducation

Post-Talk Discourse: https://on.acm.org
Additional Info:

• Talk begins at the top of the hour and lasts 60 minutes
• For volume control, use your master volume controls and try headphones if it’s too low
• Submit questions at any time using the Q&A window (type your question and click “Submit”)
• On the bottom panel you’ll find a number of widgets, including Twitter and sharing apps
• If you are experiencing any issues, try refreshing your browser or relaunching your session
• At the end of the presentation, please help us improve our talks by taking the experience survey

that opens in a new window (you can also click on it at any time in the Resources window)
• This session is being recorded and will be archived for on-demand viewing. You’ll receive an email

when it’s available.

https://on.acm.org/

Reproducing 150 Research Papers
and Testing Them in the Real World

Grigori Fursin Founder @ cKnowledge.io and cTuning.org cKnowledge.io/@gfursin

Outline

• Personal motivation

• MILEPOST project: using ML to improve the system efficiency and reduce costs

• Reproducibility efforts and ACM

• Reproducing 150 research papers at CGO, PPoPP, ASPLOS, PACT and MLSys

• Bridging the growing gap between academic research and industry
with DevOps and FAIR principles

• Validating research papers via open hackathons and tournaments

• Validating research papers in the real world

• Conclusions

1996: my first R&D project to test Hopefield Network in the real world

Research paper

Implement
…

…

Test in
production

What could possibly go wrong?

Simulate electronic circuits

1996: my first R&D project to test Hopefield Network in the real world

Prepare
datasets

Implement
model in C

from scratch

Implement
training in C

and bash

Implement
validation in
C and bash

Optimize
matrix multiply

in assembler

Training too slow:
parallelize

Too many crashes:
add fault-tolerance

Get first results:
not matching results

from the paper

Debug
Model is finally working

but too slow and inaccurate
for production on real data

Implement
semiconductor NN

1

-1θ - threshold

Develop automation
and visualization tools

Research paper

Collect more
realistic datasets

Implement
…

…
Keep track of
experiments

Test in
production

Simulate electronic circuits

1996-1999: Took a bit longer than expected 

Prepare
datasets

Implement
model in C

from scratch

Implement
training in C

and bash

Implement
validation in
C and bash

Optimize
matrix multiply

in assembler

Training too slow:
parallelize

Too many crashes:
add fault-tolerance

Get first results:
not matching results

from the paper

Debug
Model is finally working

but too slow and inaccurate
for production on real data

Implement
semiconductor NN

1

-1θ - threshold

Develop automation
and visualization tools

Research paper

Collect more
realistic datasets

Implement
…

…
Keep track of
experiments

Hardware implementation:
too expensive and inflexible

Software implementation: too slow
Need more automation, realistic data sets

and further optimization

Test in
production

From research to production: many challenges and tradeoffs

How to accelerate innovation?

• Need reference implementations (code)
• Need realistic benchmarks and data sets
• Need public SOTA results for validation
• Need a user-friendly access to HPC resources (cloud)
• Need better and simpler automation tools
• Need performance portability
• Need to improve system efficiency (math libraries, software and hardware)
• Need to balance speed, accuracy, size and all costs in the real world

Research papers

Production

The methodology to design computer systems has hardly changed in decades

Hardware
development

Compiler
development

Verification,
validation

and testing

Semi-manual tuning
of optimization

heuristics

years months, years

A limited number of benchmarks and data sets

Production
(the real world)

Real workloads
Performance, energy,

accuracy and costs rarely
match official numbers.

Further tedious
optimization required.

years

Traditional computer systems research and engineering

Challenges:
• Engineers and researchers spend too much time on repetitive and ad-hoc tasks rather than innovation.
• Simply no time to validate new techniques on realistic benchmarks, data sets, compiler/OS versions, hardware.
• A growing gap between research and production; increasing time to market for new ideas.
• Waste of expensive resources

Research

A few benchmarks
and data sets

years

Mostly focus on papers.
No time to test

in the real world.
Lack of automation.

Too many design and optimization choices

GCC compiler (similar trends in LLVM)

GEMM: complex and non-linear
optimization space for 2 transformations

(loop tiling and unrolling)

How to accelerate design and optimization space exploration?

Results

Program

Compiler

Binary and libraries

Platform

Run-time

Algorithm

Data setSystem state

Software

Measurements
(speed, size, accuracy, costs)

1 program, 1 data set, 1 platform, 1 compiler,
1000 random combinations of optimizations

Results

Program

Compiler

Binary and libraries

Platform

Run-time

Algorithm

Data setSystem state

Software

Measurements
(speed, size, accuracy, costs)

What about using ML to improve system efficiency?

may benefit from similar optimizations

Similar programs, data sets and platforms

Train model on N benchmarks

Feature vector

Results

Program

Compiler

Binary and libraries

Platform

Run-time

Algorithm

Data setSystem state

Software

Measurements
(speed, size, accuracy, costs)

Similar programs, data sets and platforms

What about using ML to improve system efficiency?

Program embeddings
(semantic features)

Hardware counters
(dynamic features)

KNN, decision trees,
SVM, DNN …

Minimize cost function

∑𝒊𝒊=𝟏𝟏
𝑵𝑵 (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝒐𝒐𝒐𝒐𝒐𝒐 𝒊𝒊 −𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝒐𝒐𝒐𝒐𝒕𝒕′ 𝒊𝒊)

𝟐𝟐

𝑵𝑵

may benefit from similar optimizations

Feature vector

Program embeddings
(semantic features)

Hardware counters
(dynamic features)

Results

Program

Compiler

Binary and libraries

Platform

Run-time

Algorithm

Data setSystem state

Software

Measurements
(speed, size, accuracy, costs)

Previously unseen program

Suggest top-N optimizations

Predict optimizations based on semantic and dynamic features

Trained model(s)

Accelerate auto-tuning and DSE
(probabilistic focused search)

cKnowledge.io/rpi-ml-crowd-tuning

https://cknowledge.io/rpi-ml-crowd-tuning

Feature vector

Program embeddings
(semantic features)

Hardware counters
(dynamic features)

Results

Program

Compiler

Binary and libraries

Platform

Run-time

Algorithm

Data setSystem state

Software

Measurements
(speed, size, accuracy, costs)

Previously unseen program

Suggest top-N optimizations

Predict optimizations based on semantic and dynamic features

Trained model(s)
Test phase:

• Validate output
• Validate optimizations
• Engineer features
• Retrain model(s)

or select a better one
cKnowledge.io/rpi-ml-crowd-tuning

https://cknowledge.io/rpi-ml-crowd-tuning

Feature vector

Program embeddings
(semantic features)

Hardware counters
(dynamic features)

Results

Program

Compiler

Binary and libraries

Platform

Run-time

Algorithm

Data setSystem state

Software

Measurements
(speed, size, accuracy, costs)

Previously unseen program

Suggest top-N optimizations

MILEPOST project (2006-2009): test ML in a production compiler

Test phase:
• Validate output
• Validate optimizations
• Engineer features
• Retrain model(s)

or select a better one

Trained model(s)

cKnowledge.io/rpi-ml-crowd-tuning

https://cknowledge.io/rpi-ml-crowd-tuning

80% of time spent on development, benchmarking and feature engineering

• Assembled cBench with miDataSets, KDataSets and cDataSets suitable for ML-based optimization
• Developed GCC plugin framework with semantic feature extractors (IBM+INRIA)
• Implemented multiple models
• Developed autotuning framework
• Developed experiment automation framework with hardware counter collection
• Developed training and validation framework
• Developed database for collaborative experiments

ft1 - Number of basic blocks in the method Static features
…

ft19 - Number of direct calls in the method
ft20 - Number of conditional branches in the method
ft21 - Number of assignment instructions in the method
ft22 - Number of binary integer operations in the method
ft23 - Number of binary floating point operations in the method
ft24 - Number of instructions in the method
ft25 - Average of number of instructions in basic blocks
…
ft29 - Number of basic blocks with phi nodes in the interval [0, 3]
…
ft54 - Number of local variables that are pointers in the method
ft55 - Number of static/extern variables that are pointers in the method
…

cTuning.org/wiki/index.php/CTools:MilepostGCC:StaticFeatures:MILEPOST_V2.1

Dynamic features

CGO’06, CGO’07, IJPP’10

https://ctuning.org/wiki/index.php/CTools:MilepostGCC:StaticFeatures:MILEPOST_V2.1

Promising research results on 22 benchmarks and 2 platforms

“MILEPOST GCC: machine learning enabled self-tuning compiler”, GCC Summit’09 and IJPP’11
Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier Temam, Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal

Zaks, Eric Courtois, Francois Bodin, Phil Barnard, Elton Ashton, Edwin Bonilla, John Thomson, Christopher K. I. Williams, Michael O’Boyle

“Evaluating iterative optimization across 1000 data sets”, PLDI’10
“Rapidly Selecting Good Compiler Optimizations using Performance Counters”, CGO 2007

(ACM CGO’17 test of time award)

How to test it in the real world?

Top-3 optimization
prediction accuracy:

~87%

cTuning.org/wiki
SOTA dashboards

cTuning.org (2009): collaborative platform to train ML compiler

cTuning.org/wiki github.com/ctuning/reproduce-milepost-project

Released all code and data
(open-source)

Top optimizations

Top models

Mediawiki

Web API

Benchmarks and data sets

Feature extractor plugin
for GCC

Collective tuning framework

ML training/validation
framework

Communication
with cTuning.org

An experimental toolset and repository to perform ML-based optimizations with the help of the community

What could possibly go wrong?

https://ctuning.org/wiki
https://github.com/ctuning/reproduce-milepost-project

cTuning.org/wiki
SOTA dashboards

cTuning.org (2009): collaborative platform to train ML compiler

Reproducibility crisis with combined issues from two domains: ML and Systems

An experimental toolset and repository to perform ML-based optimizations with the help of the community

Released all code and data
(open-source)

Top optimizations

Top models

Mediawiki

Web API

Benchmarks and data sets

Feature extractor plugin
for GCC

Collective tuning framework

ML training/validation
framework

Communication
with cTuning.org

• Difficult to adapt to continuously evolving
software, hardware, data and models
(lack of portability)

• Difficult to reproduce empirical results
• Difficult to add new benchmarks, data sets,

compilers and tools (lack of customization)
• Need more representative benchmarks, data sets

and features (lack of diverse data sets) -
optimization prediction accuracy dropped on
new programs, data sets, platforms and compilers

• Published results are quickly outdated
• Difficult to reproduce and compare other papers

(no shared code and data; lack of a common
methodology; lack of apple-to-apple comparison)

2010-2014: Reproducibility studies and initiatives

reproducibility.cs.arizona.edu
A comprehensive study of ~600 papers to examine if related code was shared and can be built (weak reproducibility).

evaluate.inf.usi.ch/artifacts and artifact-eval.org
The original and successful introduction of the artifact evaluation process at ACM conferences (strong reproducibility).
Artifacts are evaluated after papers are accepted and before the camera-ready deadline.
Paper receive the reproducibility badge only if the related artifact is consistent, complete,
well documented and easy to reuse.

cTuning.org/ae
Cooperative process between authors and evaluators to help pass artifact evaluation.
Learn how to unify and automate this process particularly for very complex artifacts.
Learn how to make it easier to test research techniques in the real world with the latest software, hardware and data.
Encourage code and data sharing and test for artifact functionality, reproducibility and reusability separately.
Try new publication models with open reviewing: arxiv.org/pdf/1406.4020.pdf (adapt-workshop.org)

Bruce R. Childers, Grigori Fursin, Shriram Krishnamurthi, Andreas Zeller:
Artifact Evaluation for Publications (Dagstuhl Perspectives Workshop 15452). Dagstuhl Reports 5(11): 29-35 (2015)

https://arxiv.org/pdf/1406.4020.pdf
https://adapt-workshop.org/

2015-now: ACM and NeurIPS/ICML initiatives
• The ACM Task Force on Data, Software, and Reproducibility in Publication

www.acm.org/publications/task-force-on-data-software-and-reproducibility
• Common Artifact Review and Badging policy

www.acm.org/publications/policies/artifact-review-and-badging-current
• Artifacts and reproducibility badges in the ACM Digital Library

dl.acm.org/doi/proceedings/10.1145/3229762
dl.acm.org/search/advanced

• ACM SIGARCH Checklist for empirical evaluation
bit.ly/sigarch-checklist

• ACM Emerging Interest Group on Reproducibility
reproducibility.acm.org

• Reproducibility initiative at NeurIPS’19
nips.cc/Conferences/2019/CallForPapers

• PapersWithCode tips for publishing research code
github.com/paperswithcode/releasing-research-code

• NISO artifact badges
www.niso.org/publications/rp-31-2021-badging

http://www.acm.org/publications/task-force-on-data-software-and-reproducibility
http://www.acm.org/publications/policies/artifact-review-and-badging-current
https://dl.acm.org/doi/proceedings/10.1145/3229762
https://dl.acm.org/search/advanced
https://bit.ly/sigarch-checklist
http://reproducibility.acm.org/
https://nips.cc/Conferences/2019/CallForPapers
https://github.com/paperswithcode/releasing-research-code
http://www.niso.org/publications/rp-31-2021-badging

2015: introduced unified appendix and reproducibility checklist

1. Abstract
2. Check-list
3. How to obtain?
4. Prepare software
5. Prepare hardware
6. Prepare data sets
7. Proprietary code and data
8. Installation
9. Experiment workflow
10. Evaluation and expected result
11. Notes

Algorithm
Program
Compilation
Transformations
Binary
Data set
Run-time environment
Hardware
Run-time state
Execution
Output
Experiment workflow
Publicly available?

My goal is was to learn how
to automate artifact evaluation

cTuning.org/ae/checklist.html
cKnowledge.io/reproduced-papers

dl.acm.org
Results

Program

Compiler

Binary and libraries

Platform

Run-time

Algorithm

Data setSystem state

Software

Keywords

Up to 2 pages in all papers
passing artifact evaluation

https://ctuning.org/ae/submission_extra.html
https://cknowledge.io/reproduced-papers
https://dl.acm.org/

The Real World
Rapidly evolving SW and HW

Different applications and data sets

Déjà vu: main challenges during Artifact Evaluation at ML and Systems conferences

• Artifacts and workflows are very complex and diverse
• No common formats and APIs for shared artifacts and workflows:

reviewers spend most of their time understanding the structure
of the project from ReadMe files, fixing hardwired paths,
building and running code on their platforms, checking
correctness, etc.

• Sharing code, data and Jupyter notebooks is not enough to
reproduce results and test them in the real world: need to adapt
to rapidly evolving systems and plug in other artifacts
(programs, data sets, models, software and hardware).

• Containers become quickly outdated:
they hide the dependency hell rather than solving it.

• Difficult to have fair “apple-to-apple” comparison of different
research techniques: researchers tend to write their software
and tools from scratch to collect, process and report results.

• Difficult to reuse shared code in production without common
APIs, meta descriptions and portability: many research project
die when PhD students graduate or key developers leave.

Started noticing some patterns across different projects

1. Abstract
2. Check-list
3. How to obtain?
4. Prepare software
5. Prepare hardware
6. Prepare data sets
7. Proprietary code and data
8. Installation
9. Experiment workflow
10. Evaluation and expected result
11. Notes

image corner detection

matmul OpenCL

data compression

object detection CUDA

Ad-hoc scripts
to compile and
run a program

or a benchmark

Have some
common info:
which datasets
can use, how to

compile, CMD, …

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

Ad-hoc dirs for data
sets with some ad-hoc

scripts to find them,
extract features, etc

Have some
common info:
filename, size,
width, height,

colors, …

Ad-hoc scripts
to install packages

or set up environment
for code and data deps

on a given platform

Ad-hoc dirs and
scripts to record

and analyze
experiments

cvs speedups

txt hardware counters

xls table with graphs

Have some
common info:

features,
characteristics,
optimizations

GCC V9.3

LLVM V11.1

Intel Compilers 2021

Common (reusable) actions Common objects Common metaCould be reused across projects

Have some
common info:
configuration,
compilation,
linking and

optimization flags

Can convert ad-hoc scripts into micro-services with a unified API
image corner detection

matmul OpenCL

data compression

object detection CUDA

Ad-hoc scripts
to compile and
run a program

or a benchmark

Have some
common info:
which datasets
can use, how to

compile, CMD, …

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

Ad-hoc dirs for data
sets with some ad-hoc

scripts to find them,
extract features, etc

Have some
common info:
filename, size,
width, height,

colors, …

Ad-hoc scripts
to install packages

or set up environment
for code and data deps

on a given platform

Ad-hoc dirs and
scripts to record

and analyze
experiments

cvs speedups

txt hardware counters

xls table with graphs

Have some
common info:

features,
characteristics,
optimizations

GCC V9.3

LLVM V11.1

Intel Compilers 2021

Common objects Common meta

Python module
“program”

with functions:
compile and run

Python module
“soft”

with function:
detect

Python module
“package”

with function:
download

Python module
“experiment”
with function:

add, plot, replay

JSON input
CLI

Web service

JSON output
Text

HTML

JSON input
CLI

Web service

JSON input
CLI

Web service

JSON input
CLI

Web service

JSON output
Text

HTML

JSON output
Text

HTML

JSON output
Text

HTML

Common actions as micro-services
with a unified API, CLI and I/O

Have some
common info:
configuration,
compilation,
linking and

optimization flags

Can add UID, meta description and provenance info to all objects
image corner detection

matmul OpenCL

data compression

object detection CUDA

Ad-hoc scripts
to compile and
run a program

or a benchmark

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

Ad-hoc dirs for data
sets with some ad-hoc

scripts to find them,
extract features, etc

Ad-hoc scripts
to install packages

or set up environment
for code and data deps

on a given platform

Ad-hoc dirs and
scripts to record

and analyze
experiments

cvs speedups

txt hardware counters

xls table with graphs

GCC V9.3

LLVM V11.1

Intel Compilers 2021

Common actions as micro-services
with a unified API, CLI and I/O Findable and reusable plug&play objects Unified JSON/YAML

Python module
“program”

with functions:
compile and run

Python module
“soft”

with function:
detect

Python module
“package”

with function:
download

Python module
“experiment”
with function:

add, plot, replay

JSON input
CLI

Web service

JSON output
Text

HTML

JSON input
CLI

Web service

JSON input
CLI

Web service

JSON input
CLI

Web service

JSON output
Text

HTML

JSON output
Text

HTML

JSON output
Text

HTML

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

UID

UID

UID

UID

UID

UID

UID

UID

UID

UID

UID

UID

UID

UID

GitHub, GitLab, BitBucket, Docker, IPython notebook, ZIP file …

Can share research projects as a database of reusable components

image corner detection

matmul OpenCL

object detection CUDA

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

cvs speedups

txt hardware counters

xls table with graphs

GCC V9.3

LLVM V11.1

Intel Compilers 2021

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

meta.json info.json

program

program

program

dataset

dataset

dataset

dataset

experiment

experiment

experiment

soft

soft

soft

/ 1st level dirs / 2nd level dirs / 3rd level dirs

Collective Knowledge Framework:
github.com/ctuning/ck

cKnowledge.org

A simple Python framework
with a unified CLI/API

and minimal dependencies
to manage research projects

as a database of reusable components

pip install ck
ck pull repo --url=https://github.com/ctuning/ai
ck ls program:*automotive*
ck search dataset --tags=image,jpeg
ck find package:imagenet-2012-train
ck find 1dc07ee0f4742028:b4f26f2ca41539d9

/home/gfursin/CK/ai/package/imagenet-2012-train
ck search package --tags=pytorch
ck add dataset:test
ck rm experiment:*

https://github.com/ctuning/ck
https://cknowledge.org/

Started automating and sharing the most common actions from reproduced papers
Simple Python API with dict/JSON/YAML input/output
import ck.kernel as ck

input={'action':'detect', 'module_uoa':'platform'}
output=ck.access(input)
if output['return']>0: ck.err(output)

print (json.dumps(output, indent=2))
{
"return": 0,
"os_uoa": "windows-64", "os_uid": "7a95e0754c37610a",
"host_os_uoa": "windows-64", "host_os_uid": "7a95e0754c37610a",
"features": {

"cpu_unique": [
{
"ck_cpu_name": "Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz",
}

],
"gpu": {

"name": "NVIDIA GeForce 940MX", "vendor": "NVIDIA«
},
"platform": {

"vendor": "LENOVO",
"name": "LENOVO ThinkPad T470p (20J6CTO1WW)",
"model": "20J6CTO1WW"

}
...

ck {function} {module} (:{component}) @input.json
1) Describe different operating systems

ck pull repo:ck-env
ck ls os
ck load os:linux-64 --min

2) Detect and unify information about platforms
ck detect platform --help
ck detect platform --out=json
ck load os:android29-arm64 --min

3) Detect installed software (code, data, models, scripts)
ck search soft --tags=compiler
ck detect soft:compiler.llvm
ck show env --tags=compiler

4) Install missing packages (code, datasets, models, scripts)
ck search package --tags=dataset,imagenet
ck install package --tags=dataset,imagenet,2012,min
ck virtual env --tags=dataset,imagenet

Record experiments; perform stat. analysis; plot results;
validate outputs; generate papers, etc …

cKnowledge.io/modules cKnowlege.io/browse

https://cknowledge.io/modules
https://cknowlege.io/actions

Enabled portable program workflows that can adapt to continuously changing SW/HW

ck compile program:conv-armcl-opencl-uint8 ck run program:conv-armcl-opencl-uint8 --env. CK_SEED=123

CK module program (Python + meta JSON/YAML
to implement portable workflows)
• Query CK DB to find conv-armcl-opencl-uint8
• Load conv-armcl-opencl-uint8 meta.json
• Resolve dependencies and prepare env

• Query CK DB soft recipes by tags
• Detect soft (compilers, frameworks,

libraries, data sets, models)
• Query CK DB package to install

missing packages
• Compile program
• Run pro-processing
• Run program
• Run post-processing and unify metrics

for apple to apple comparison
• Query CK DB program.output

to validate ouput for correctness
• Record experiment with all provenance data

to CK DB experiment

CK program entry conv-armcl-opencl-uint8
• File conv.cpp with algorithm
• File meta.json describing SW/HW deps, configs and compile/run info

"deps": {
"compiler": {"name": "C++ compiler","tags": "compiler,lang-cpp"},
"lib-nntest": {"name": "NNTest library", "tags": "lib,nntest"},
"library": {"name": "ARM Compute Library (OpenCL, uint8)",

"or_tags": "armcl;vdefault;vconv-uint8", "tags": "lib,arm-compute-library,vopencl”},
"opencl": {“name": "OpenCL Library", "tags": "lib,opencl“}

},
"run_cmds" : {
"dataset_tags": ["dataset", "nntest", "tensor-conv"],
"pre_process_via_ck": {

"module_uoa": "script", "script_name": "process“, "data_uoa": "3b59f57d587e82f6“},
"run_cmd_main": "$#BIN_FILE#$",
"post_process_cmds": […],
"run_correctness_output_files": ["tmp-ck-output.json"],

},
"run_vars": {"CK_ABS_DIFF_THRESHOLD": 1, "CK_IN_SHAPE_N": 1,

"CK_OUT_RAW_DATA": "tmp-ck-output.bin",
"CK_OUT_RAW_DATA_BINARY_FORMAT": "B", "CK_SEED": 42

},
"tags“: ["nntest", "armcl", "conv","uint32", "vopencl“] ,

cKnowledge.io/c/program/conv-armcl-opencl-uint8cKnowledge.io/c/module/program

https://cknowledge.io/c/program/conv-armcl-opencl-uint8
https://cknowledge.io/c/module/program

We can plug in and reuse compatible components from different projects now!

GitHub repo for research paper1 as a CK DB
• CK modules, programs, packages, soft, experiments

Docker image for research paper2 as a CK DB
• CK modules, programs, packages, soft, experiments

ZIP file with datasets as a CK DB
• CK packages and data sets

GitHub private company repo as a CK DB
• CK modules, programs, packages, soft, experiments

Colab/Jupyter notebook querying CK DB

Auto-generated paper from CK DB

“Pull, plug & play” multiple repositories in the CK format

$ ck pull repo –url=https://github.com/ctuning/ck-crowduning

$ ck ls program
$ ck ls dataset

$ ck load program:cbench-automotive-susan --min
$ ck compile program:cbench-automotive-susan –fast

$ ck run program:cbench-automotive-susan

$ ck autotune program:cbench-automotive-susan

$ ck crowdtune program:cbench-automotive-susan

$ ck replay experiment

cKnowledge.io/programs cKnowledge.io/c/docker cKnowledge.io/repos cKnowledge.io/notebook

Always use the same CK API/CLI

Automatically
adapt to user
environments

https://cknowledge.io/?q=%22portable-workflow-ck%22
https://cknowledge.io/c/docker
https://cknowledge.io/solutions
https://cknowledge.io/notebook

We can plug in and reuse compatible components from different projects now!

GitHub repo for research paper1 as a CK DB
• CK modules, programs, packages, soft, experiments

Docker image for research paper2 as a CK DB
• CK modules, programs, packages, soft, experiments

ZIP file with datasets as a CK DB
• CK packages and data sets

GitHub private company repo as a CK DB
• CK modules, programs, packages, soft, experiments

Colab/Jupyter notebook querying CK DB

Auto-generated paper from CK DB

“Pull, plug & play” multiple repositories in the CK format

$ ck pull repo –url=https://github.com/ctuning/ck-crowduning

$ ck ls program
$ ck ls dataset

$ ck load program:cbench-automotive-susan --min
$ ck compile program:cbench-automotive-susan –fast

$ ck run program:cbench-automotive-susan

$ ck autotune program:cbench-automotive-susan

$ ck crowdtune program:cbench-automotive-susan

$ ck replay experiment

cKnowledge.io/programs cKnowledge.io/c/docker cKnowledge.io/repos cKnowledge.io/notebook

Always use the same CK API/CLI

Automatically
adapt to user
environments

Bringing in DevOps and FAIR principles (extended to code):
en.wikipedia.org/wiki/FAIR_data

Findable
Accessible

Interoperable
Reusable

+
Portable

https://cknowledge.io/?q=%22portable-workflow-ck%22
https://cknowledge.io/c/docker
https://cknowledge.io/solutions
https://cknowledge.io/notebook
https://en.wikipedia.org/wiki/FAIR_data

cKnowledge.io: a playground to validate research in the real world
CK JSON API

Object detection

Object classification

Speech recognition
…

Algorithms

Training/inference…

CK JSON API

MobileNets

ResNet

VGG
…

SqueezeDet
…

Models

CK JSON API

TensorFlow

Caffe

MXNet
…

PyTorch/Caffe2
…

Software

CK JSON API

ImageNet

KITTI
VOC

…
Real data sets

…

Data sets

CK JSON API

CPU

GPU

TPU
…

NN accelerators
…

Hardware

Adaptive containers and portable workflows with plug&play components,
portable workflows, common APIs, and unified I/O

Algorithms

Models

Datasets

Software Hardware

Quickly prototype and test
ideas on any tech. stack Initialize Build Run Validate

Enable “live” research papers that can be validated
and improved by the community across diverse models,

data sets, software and hardware:
cKnowledge.io/reproduced-resultsUnified

input
Unified
output

ML/AI
papers

Systems
papers

Share portable workflows,
adaptive containers,

automation actions and
plug&play components

along with research papers:
cKnowledge.io/browse

Results shared
by volunteers

Original results
from the authors

cKnowledge.io platform

cKnowledge.io/reusable-research

https://cknowledge.io/reproduced-results
https://cknowledge.io/browse
https://cknowledge.io/reusable-research

User system

Collaboratively expose optimizations, characteristics and features in different components

Results

Program

Continuously observe
behavior (characteristics);

check for normality

Requirements

Features

System state

Gradually expose all
available algorithmic, design

and optimization choices

Behavior (characteristics)

Expose additional
information

Predict
optimizations If unexpected behavior,

share with the
community,

improve models,
expose optimizations,

engineer features

b = B(c , f , s)
… … … …

Model and learn
program and system behavior

Enabled universal crowd-tuning and ML workflow connected with SOTA dashboards

Connected CK components into customizable auto-tuner for the whole ML/SW/HW stack (co-design)

Proof-of-concept of live papers validated by the community
cKnowledge.io/rpi-ml-crowd-tuning

GitHub
GitLab

ACM DL
ArXiv

…

Public optimization repository

Choose
exploration

strategy

Explore exposed design
and optimization choices

(auto-tuning / DSE)

Compile
source
code

Run
code

Test
behavior
normality

Pareto
filter

Modeling
and

prediction

Complexity
reduction

github.com/ctuning/reproduce-milepost-project cKnowledge.org/repo-beta

https://cknowledge.io/rpi-ml-crowd-tuning
https://github.com/ctuning/reproduce-milepost-project
https://cknowledge.org/repo-beta

Apply Machine Learning (try different ML algorithms, features and hyperparameters)

…

…

…

…

…

…

…

c (choices)

Training set: distinct combination of compiler optimizations (clusters)

f (features)
MILEPOST GCC

features,

hardware counters

Test different
features

Apply different
models (KNN,
SVM, DNN ...)

…

Optimization
cluster

Unseen program

f (features)
Optimization

cluster

…
c (choices)

Pr
ed

ic
tio

n

Number of code
and dataset
samples

Prediction accuracy
using optimized
SVM

12 87%

Current
limited
studies

Chart1

		0

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

Speedup

Speedup

3.68

3.4

3.32

2.86

2.55

2.5

2.16

2

2

1.77

1.77

1.71

1.68

1.67

1.66

1.65

1.63

1.56

1.55

1.55

1.53

1.52

1.5

1.49

1.49

1.47

1.44

1.42

1.42

1.42

1.4

1.39

1.38

1.37

1.34

1.34

1.33

1.31

1.31

1.3

1.3

1.27

1.27

1.25

1.24

1.24

1.23

1.22

1.22

1.22

1.21

1.21

1.2

1.2

1.19

1.19

1.19

1.18

1.17

1.17

1.17

1.16

1.16

1.15

1.15

1.14

1.14

1.14

1.13

1.13

1.13

1.13

1.12

1.12

1.12

1.11

1.11

1.11

Sheet1

		Optimization		Speedup		Positive		Negative

		0

		1		3.68		2		76

		2		3.4		2		72

		3		3.32		1		83

		4		2.86		4		67

		5		2.55		2		90

		6		2.5		1		77

		7		2.16		1		99

		8		2		1		80

		9		2		2		90

		10		1.77		1		102

		11		1.77		1		117

		12		1.71		3		84

		13		1.68		5		83

		14		1.67		1		90

		15		1.66		3		94

		16		1.65		2		99

		17		1.63		2		74

		18		1.56		6		72

		19		1.55		2		61

		20		1.55		3		79

		21		1.53		7		74

		22		1.52		4		70

		23		1.5		1		102

		24		1.49		2		65

		25		1.49		1		96

		26		1.47		3		106

		27		1.44		3		71

		28		1.42		1		73

		29		1.42		3		71

		30		1.42		2		73

		31		1.4		3		66

		32		1.39		1		72

		33		1.38		1		66

		34		1.37		1		110

		35		1.34		5		35

		36		1.34		9		59

		37		1.33		1		98

		38		1.31		5		78

		39		1.31		1		83

		40		1.3		2		82

		41		1.3		5		67

		42		1.27		1		77

		43		1.27		2		65

		44		1.25		2		80

		45		1.24		2		76

		46		1.24		5		84

		47		1.23		1		82

		48		1.22		2		115

		49		1.22		1		73

		50		1.22		1		83

		51		1.21		2		87

		52		1.21		1		106

		53		1.2		2		84

		54		1.2		4		38

		55		1.19		1		95

		56		1.19		1		99

		57		1.19		1		82

		58		1.18		1		118

		59		1.17		2		83

		60		1.17		2		80

		61		1.17		1		97

		62		1.16		2		98

		63		1.16		4		79

		64		1.15		1		118

		65		1.15		10		55

		66		1.14		1		117

		67		1.14		2		49

		68		1.14		1		79

		69		1.13		2		46

		70		1.13		1		96

		71		1.13		2		112

		72		1.13		1		67

		73		1.12		1		63

		74		1.12		2		78

		75		1.12		1		101

		76		1.11		2		93

		77		1.11		2		76

		78		1.11		2		94

				To resize chart data range, drag lower right corner of range.

Apply Machine Learning (try different ML algorithms, features and hyperparameters)

…

…

…

…

…

…

…

c (choices)

Training set: distinct combination of compiler optimizations (clusters)

…

Optimization
cluster

Unseen program

f (features)
Optimization

cluster

…
c (choices)

Pr
ed

ic
tio

n

Number of code
and dataset
samples

Prediction accuracy
using optimized
SVM

12 87%

285 56%f (features)
MILEPOST GCC

features,

hardware counters

Test different
features

Apply different
models (KNN,
SVM, DNN ...)

Chart1

		0

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

Speedup

Speedup

3.68

3.4

3.32

2.86

2.55

2.5

2.16

2

2

1.77

1.77

1.71

1.68

1.67

1.66

1.65

1.63

1.56

1.55

1.55

1.53

1.52

1.5

1.49

1.49

1.47

1.44

1.42

1.42

1.42

1.4

1.39

1.38

1.37

1.34

1.34

1.33

1.31

1.31

1.3

1.3

1.27

1.27

1.25

1.24

1.24

1.23

1.22

1.22

1.22

1.21

1.21

1.2

1.2

1.19

1.19

1.19

1.18

1.17

1.17

1.17

1.16

1.16

1.15

1.15

1.14

1.14

1.14

1.13

1.13

1.13

1.13

1.12

1.12

1.12

1.11

1.11

1.11

Sheet1

		Optimization		Speedup		Positive		Negative

		0

		1		3.68		2		76

		2		3.4		2		72

		3		3.32		1		83

		4		2.86		4		67

		5		2.55		2		90

		6		2.5		1		77

		7		2.16		1		99

		8		2		1		80

		9		2		2		90

		10		1.77		1		102

		11		1.77		1		117

		12		1.71		3		84

		13		1.68		5		83

		14		1.67		1		90

		15		1.66		3		94

		16		1.65		2		99

		17		1.63		2		74

		18		1.56		6		72

		19		1.55		2		61

		20		1.55		3		79

		21		1.53		7		74

		22		1.52		4		70

		23		1.5		1		102

		24		1.49		2		65

		25		1.49		1		96

		26		1.47		3		106

		27		1.44		3		71

		28		1.42		1		73

		29		1.42		3		71

		30		1.42		2		73

		31		1.4		3		66

		32		1.39		1		72

		33		1.38		1		66

		34		1.37		1		110

		35		1.34		5		35

		36		1.34		9		59

		37		1.33		1		98

		38		1.31		5		78

		39		1.31		1		83

		40		1.3		2		82

		41		1.3		5		67

		42		1.27		1		77

		43		1.27		2		65

		44		1.25		2		80

		45		1.24		2		76

		46		1.24		5		84

		47		1.23		1		82

		48		1.22		2		115

		49		1.22		1		73

		50		1.22		1		83

		51		1.21		2		87

		52		1.21		1		106

		53		1.2		2		84

		54		1.2		4		38

		55		1.19		1		95

		56		1.19		1		99

		57		1.19		1		82

		58		1.18		1		118

		59		1.17		2		83

		60		1.17		2		80

		61		1.17		1		97

		62		1.16		2		98

		63		1.16		4		79

		64		1.15		1		118

		65		1.15		10		55

		66		1.14		1		117

		67		1.14		2		49

		68		1.14		1		79

		69		1.13		2		46

		70		1.13		1		96

		71		1.13		2		112

		72		1.13		1		67

		73		1.12		1		63

		74		1.12		2		78

		75		1.12		1		101

		76		1.11		2		93

		77		1.11		2		76

		78		1.11		2		94

				To resize chart data range, drag lower right corner of range.

Expose unexpected behaviour and learn features with the community

Experiment -O3 -O3 -fno-if-conversion

Shared experiment1

reference execution time no change

Shared experiment2

no change +17.3% improvement

Image B&W threshold filter *matrix_ptr2++ = (temp1 > T) ? 255 : 0;

Expose unexpected behaviour and learn features with the community

Experiment -O3 -O3 -fno-if-conversion

Shared experiment1

reference execution time no change

Shared experiment2

no change +17.3% improvement

Image B&W threshold filter *matrix_ptr2++ = (temp1 > T) ? 255 : 0;

Expose unexpected behaviour and learn features with the community

Experiment -O3 -O3 -fno-if-conversion

Shared experiment1

Monitored during day

reference execution time no change

Shared experiment2

Monitored during night

no change +17.3% improvement

if get_feature(TIME_OF_THE_DAY)==NIGHT bw_filter_codelet_day(buffers);
else bw_filter_codelet_night(buffers);

Feature “TIME_OF_THE_DAY” related to algorithm, data set and run-time
Can’t be found by ML - simply does not exist in the system!

Image B&W threshold filter *matrix_ptr2++ = (temp1 > T) ? 255 : 0;

Started converting artifacts from deep learning papers to CK

Algorithms

CK Python JSON API

AI frameworks Datasets Environment Hardware

CK Python JSON API CK Python JSON API CK Python JSON API CK Python JSON API

Libraries

CK Python JSON API

Image classification

Object detection

Translation

Recommendation

TensorFlow

PyTorch

MXNet

TVM

Keras

ImageNet

KITTI

COCO

VOC

Real objects

Intel MKL-DNN

cuDNN

OpenBLAS

ArmNN

AndroidNN

Linux

Windows

MacOS

BSD

AndroidSLAM

CPU

GPU

ASIC

FPGA

simulators
… … … … … …

Models

CK Python JSON API

ResNet

MobileNets

GoogleNet

DeepSpeech

SSD
…

cKnowledge.io/browse github.com/ctuning/ai

Models

Hardware Datasets

Algorithms

Software

Costs

Ti
m

e

Assemble portable workflows with
plug&play components as LEGO bricks

https://cknowledge.io/browse
https://github.com/ctuning/ai

ACM ReQuEST: reproducible ML/SW/HW co-design tournaments

Open competitions to co-design Pareto-efficient AI/SW/HW stacks for real-world user tasks
across diverse models, data sets and platforms, convert them to the CK format

and reproduce results by the community!

cKnowledge.io/event/repro-request-asplos2018
1st competition at ACM ASPLOS’18: 8 intentions to submit and 5 submissions

CK workflow1

Intel Caffe,
BVLC Caffe

CK workflow2 CK workflow3 CK workflow4 CK workflow5

ResNet-50, SSD
Inception-v3;
32-bit, 8-bit

Intel C++ Compiler
17.0.5 20170817

AWS + Intel Xeon®
Platinum 8124M

TensorFlow;
Keras; Avro

AlexNet; VGG16

GCC

NVIDIA Jetson TX2;
12x Raspberry Pi 3

MXNet; NNVM/TVM
OpenBLAS vs ArmCL

ResNet-50, VGG16,
MobileNet-v1-1.0-224

GCC; LLVM; CUDA

Firefly-RK3399

MXNet; NNVM/TVM

ResNet-18

GCC; LLVM

Pynq
(Xilinx FPGA)

ArmCL (OpenCL)
18.01 vs 18.03

MobileNets-v1:
{1.0,0.75,0.50,0.25} x

{224,192,160,128}

GCC; LLVM

HiKey 960
(Mali-G71 GPU)

Open reviewing at https://github.com/ctuning/ck-request-asplos18-results via GitHub issues.

https://cknowledge.io/c/event/repro-request-asplos2018/
https://github.com/ctuning/ck-request-asplos18-results

dl.acm.org/doi/proceedings/10.1145/3229762

Published validated papers with reusable workflows in the ACM DL

https://dl.acm.org/doi/proceedings/10.1145/3229762

Shared public CK dashboards connected with research papers
Multi-objective results for all AI/SW/HW stacks are presented on a live scoreboard

and become available for public comparison and further customization, optimization and reuse!

cKnowledge.io/c/result/pareto-efficient-ai-co-design-tournament-request-acm-asplos-2018
cKnowledge.io/results

CK workflow1 with validated results
AWS with c5.18xlarge instance; Intel® Xeon® Platinum 8124M

From the authors: “The 8-bit optimized model is automatically generated
with a calibration process from FP32 model without the need of fine-
tuning or retraining. We show that the inference throughput and latency
with ResNet-50, Inception-v3 and SSD are improved by 1.38X-2.9X and
1.35X-3X respectively with negligible accuracy loss from IntelCaffe FP32
baseline and by 56X-75X and 26X-37X from BVLC Caffe.”

https://github.com/ctuning/ck-request-asplos18-caffe-intel

https://cknowledge.io/c/result/pareto-efficient-ai-co-design-tournament-request-acm-asplos-2018
https://cknowledge.io/results
https://github.com/ctuning/ck-request-asplos18-caffe-intel

DevOps and FAIR principles made it easier to adopt research in production

CK can also automatically generate a
Docker image with CK workflow

CK assists
AWS market place

with collaboratively
optimized AI/ML stacks

CK workflows and live papers enable a community effort
to unify, automate, systematize and crowdsource

development, optimization and comparison of efficient
software/hardware stacks for emerging AI/ML workloads

Colleagues from Amazon tested and reused REQUEST workflows, ported them to the Amazon cloud
and used CK API and JSON meta to connect them with Amazon SageMaker

conferences.oreilly.com/artificial-intelligence/ai-eu-2018/public/schedule/detail/71549.html

https://conferences.oreilly.com/artificial-intelligence/ai-eu-2018/public/schedule/detail/71549.html

cKnowledge.org/quantum

Results from the Quantum Machine
Learning Hackathon in Paris

cKnowledge.io/reproduced-results

Quantum ML hackathons using CK workflows and dashboards

https://cknowledge.io/reproduced-results
https://cknowledge.io/reproduced-results

Quantum ML hackathons using CK workflows and dashboards
cKnowledge.org/quantum

cKnowledge.io/reproduced-results

The most efficient design

https://cknowledge.io/reproduced-results
https://cknowledge.io/reproduced-results

Use Android app to crowdsource ML systems benchmarking and extend data sets

Winning solutions
on various frontiers

The number of distinct participated platforms:800+
The number of distinct CPUs: 260+
The number of distinct GPUs: 110+
The number of distinct OS: 280+
Power range: 1-10W

Volunteers help to validate research ideas similar to SETI@HOME

Collect more data sets from users for misclassifications
to build an open and continuously updated training set

Ti
m

e
pe

r i
m

ag
e

(s
ec

on
ds

)

Cost(euros)

cKnowledge.org/android-demo.html cKnowledge.org/repo-beta cKnowledge.io/negative-results

https://cknowledge.org/android-demo.html
https://cknowledge.org/repo-beta
https://cknowledge.io/negative-results

Crowd-tune whole ML/SW/HW stacks

“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”
(Andrew G. Howard et al., 2017, https://arxiv.org/abs/1704.04861):

● Parameterised CNN family using depthwise separable convolutions.
● Channel multiplier: 1.00, 0.75, 0.50, 0.25 - marker shape (see below).
● Input image resolution: 224, 192, 160, 128 - marker size.

cKnowledge.io/crowdsource-ml-sw-hw-co-design
cKnowledge.io/c/lib/9a927e4ce9be41b4

cKnowledge.io/reproduced-results
cKnowledge.io/reproduced-papers

Multi-objective auto-tuning
(speed, accuracy, size, energy, cost)

https://arxiv.org/abs/1704.04861
https://cknowledge.io/crowdsource-ml-sw-hw-co-design
https://cknowledge.io/reproduced-papers

Universal CK workflow to compile, run, auto-tune and model programs across diverse data sets, libraries and hardware

Conclusions and the current stateReuse CK auto-tuner to generate ML-based adaptive libraries for CNNs

Conv
Hardware

CK-powered adaptive library

Extract
input

features

Predict
optimization
parameters
at run-time

CPU

GPU

TPU

Acc

FPGA

CLBlast

cuBLAS

ARMCL

Math
libraries

Generate ~1K inputs
with random sizes or
extract from AlexNet,

GoogLeNet, SqueezDet

“On the Anatomy of Predictive Models for Accelerating GPU Convolution Kernels and Beyond”, ACM TACO, January 2021
doi.org/10.1145/3434402 cKnowledge.io/nn-components

Extract features

Auto-tune GEMM
for each input

Run off-the shelf conv
implementations

Test overall inference
speed using

Alexnet, FCN-16s,
GoogLeNet,

InceptionV3,Mobilenets,
ResNet-50, VGG-16

Train and optimize different ML
models in terms of RT prediction
speed (complexity) vs inference

speed: SVM, KNN, decision trees
(Random Forest, Gradient Tree

Boosting, Naive Bayesian classifier,
Multi Layer Perceptron

https://doi.org/10.1145/3434402
https://cknowledge.io/nn-components

Collaboratively benchmark and optimize Deep Learning Implementations

youtu.be/1ldgVZ64hEI

Presentation from General Motors
how to reuse CK workflows

to co-design efficient ML/SW/HW stacks
for self-driving cars

https://youtu.be/1ldgVZ64hEI

Support MLPerf and MLCommons

A broad ML benchmark suite for measuring performance of ML software
frameworks, ML hardware accelerators, and ML cloud platforms.

mlperf.org

MLCommons is an open engineering consortium with a mission
to accelerate machine learning innovation, raise all boats

and increase its positive impact on society.
mlcommons.org/en/news/mlcommons-launch

mlcommons.github.io/mlcube

Reusing CK AI workflows to automate and optimize ML inference submissions for edge devices
cKnowledge.io/solutions cKnowledge.io/nn-components

cKnowledge.io/adaptive-containers cKnowledge.io/reproduced-results

https://mlperf.org/
https://mlcommons.org/en/news/mlcommons-launch
https://mlcommons.github.io/mlcube
https://cknowledge.io/solutions
https://cknowledge.io/nn-components
https://cknowledge.io/adaptive-containers
https://cknowledge.io/reproduced-results

Conclusions: bridging the growing gap between research and production
50K papers every year
30K code repositories

3K Dashboards
3K Datasets

Numerous Colab/Jupyter Notebooks

Continuously changing SW/HW/ML from different vendors

landscape.lfai.foundation

Numerous tools and libraries

Conflicting design and optimization goals in the real world:
speed vs accuracy vs energy vs size vs costs …

Numerous
containerscKnowledge.io platform prototype

to deal with this Cambrian ML/SW/HW explosion:
Share portable and reusable workflow templates,
plug&play components, automations and SOTA

dashboards from reproduced papers

Tasks

Models

Data sets

Software Hardware
Time

Ac
cu

ra
cy

https://landscape.lfai.foundation/

Conclusions and the current state

• Sharing code, data, Docker containers and Colab/Jupyter notebooks is not enough! Invest into simple,
automated, sustainable, reusable and portable software to make it easier to use it in the real world:

• No hardwired paths – use CK-like database structure for projects
• Simple APIs and meta descriptions for shared artifacts (collective benchmarks and data sets)
• Reusable components (code, data and models) to avoid too much legacy code and technical debt
• Portable workflows to adapt to continuously changing software, hardware, models and data sets
• Apple-to-apple comparison of results

• Collective Knowledge framework and cKnowledge.io platform is a proof-of-concept that it is possible
to address above challenges based on DevOps and FAIR principles for code, data and models
and with the help of the community. But still a lot to be done!

• Share novel techniques as portable, customizable, reproducible, reusable and production-ready workflows
along with published papers that can be quickly validated in the real world and adopted in production.

• Connect and support existing projects, tools, data sets, models and platforms

• Support collaborative and reproducible R&D, improve the efficiency of ML Systems,
accelerate innovation and enable open science!

Conclusions

Conclusions and the current stateAcknowledgments
Sam Ainsworth, Erik Altman, Lorena Barba, Victor Bittorf, Unmesh D. Bordoloi, Steve Brierley, Luis Ceze, Milind Chabbi,

Bruce Childers, Nikolay Chunosov, Marco Cianfriglia, Albert Cohen, Cody Coleman, Chris Cummins, Jack Davidson,
Alastair Donaldson, Achi Dosanjh, Thibaut Dumontet, Debojyoti Dutta, Daniil Efremov, Nicolas Essayan, Todd Gamblin,

Leo Gordon, Wayne Graves, Christophe Guillon, Herve Guillou, Stephen Herbein, Michael Heroux, Patrick Hesse,
James Hetherignton, Kenneth Hoste, Robert Hundt, Ivo Jimenez, Tom St. John, Timothy M. Jones, David Kanter,

Yuriy Kashnikov, Gaurav Kaul, Sergey Kolesnikov, Shriram Krishnamurthi, Dan Laney, Andrei Lascu, Hugh Leather, Wei Li,
Anton Lokhmotov, Peter Mattson, Thierry Moreau, Dewey Murdick, Mircea Namolaru, Luigi Nardi, Cedric Nugteren,

Michael O'Boyle, Ivan Ospiov, Bhavesh Patel, Gennady Pekhimenko, Massimiliano Picone, Ed Plowman,
Ramesh Radhakrishnan, Ilya Rahkovsky, Vijay Janapa Reddi, Vincent Rehm, Catherine Roderick, Alka Roy,

Shubhadeep Roychowdhury, Dmitry Savenko, Aaron Smith, Jim Spohrer, Michel Steuwer, Victoria Stodden, Robert Stojnic,
Michela Taufer, Stuart Taylor, Olivier Temam, Eben Upton, Nicolas Vasilache, Flavio Vella, Davide Del Vento, Boris Veytsman,

Alex Wade, Pete Warden, Dave Wilkinson, Matei Zaharia, Alex Zhigarev

Artifact evaluation committee: cTuning.org/ae/committee.html

ACM REQUEST committee and advisory board: cKnowledge.io/c/event/repro-request-asplos2018

ACM taskforce and EIG on reproducibility: www.acm.org/publications/task-force-on-data-software-and-reproducibility

Co-organizers of CK-based hackathons and tournaments: cKnowledge.io/events

CK collaborators: cKnowledge.io/partners

Microsoft for Azure sponsorship

https://ctuning.org/ae/committee.html
https://cknowledge.io/c/event/repro-request-asplos2018/
https://www.acm.org/publications/task-force-on-data-software-and-reproducibility
https://cknowledge.io/events
https://cknowledge.io/partners

Future work: many possible directionsThank you!

cKnowledge.io/@gfursin

Recent papers
• “Collective Knowledge: organizing research projects as a database of reusable components

and portable workflows with common interfaces”.
To appear in Philosophical Transactions of the Royal Society A, March 2021 Pre-print: arxiv.org/pdf/2011.01149.pdf

• “On the Anatomy of Predictive Models for Accelerating GPU Convolution Kernels and Beyond”
ACM TACO (Transactions on Architecture and Code Optimization), January 2021 ACM DL: doi.org/10.1145/3434402

• “A Collective Knowledge workflow for collaborative research into multi-objective autotuning
and machine learning techniques” Live paper: cKnowledge.io/rpi-ml-crowd-tuning

https://arxiv.org/pdf/2011.01149.pdf
https://doi.org/10.1145/3434402
https://cknowledge.io/rpi-ml-crowd-tuning

The Learning Continues…

TechTalk Discourse Forum: https://on.acm.org
TechTalk Inquiries: learning@acm.org

TechTalk Archives: https://learning.acm.org/techtalks
Learning Center: https://learning.acm.org

ACM Selects: https://selects.acm.org/
ACM ByteCast: https://learning.acm.org/bytecast/

Professional Ethics: https://ethics.acm.org
Queue Magazine: https://queue.acm.org

ACM Reproducibility Task Force:
https://www.acm.org/publications/task-force-on-data-

software-and-reproducibility

https://on.acm.org/
mailto:learning@acm.org
https://learning.acm.org/techtalks
https://learning.acm.org/
https://selects.acm.org/
https://learning.acm.org/bytecast/
https://ethics.acm.org/
https://queue.acm.org/
https://www.acm.org/publications/task-force-on-data-software-and-reproducibility

	Slide Number 1
	��Reproducing 150 Research Papers and Testing Them in the Real World: �Challenges and Solutions���Speaker: Grigori Fursin�
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Outline
	1996: my first R&D project to test Hopefield Network in the real world
	1996: my first R&D project to test Hopefield Network in the real world
	1996-1999: Took a bit longer than expected 
	From research to production: many challenges and tradeoffs
	The methodology to design computer systems has hardly changed in decades
	Too many design and optimization choices
	How to accelerate design and optimization space exploration?
	What about using ML to improve system efficiency?
	What about using ML to improve system efficiency?
	Predict optimizations based on semantic and dynamic features
	Predict optimizations based on semantic and dynamic features
	MILEPOST project (2006-2009): test ML in a production compiler
	80% of time spent on development, benchmarking and feature engineering
	Promising research results on 22 benchmarks and 2 platforms
	cTuning.org (2009): collaborative platform to train ML compiler
	cTuning.org (2009): collaborative platform to train ML compiler
	2010-2014: Reproducibility studies and initiatives
	2015-now: ACM and NeurIPS/ICML initiatives
	2015: introduced unified appendix and reproducibility checklist
	Déjà vu: main challenges during Artifact Evaluation at ML and Systems conferences
	Started noticing some patterns across different projects
	Can convert ad-hoc scripts into micro-services with a unified API
	Can add UID, meta description and provenance info to all objects
	Can share research projects as a database of reusable components
	Started automating and sharing the most common actions from reproduced papers
	Enabled portable program workflows that can adapt to continuously changing SW/HW
	We can plug in and reuse compatible components from different projects now!
	We can plug in and reuse compatible components from different projects now!
	cKnowledge.io platform
	Collaboratively expose optimizations, characteristics and features in different components
	Enabled universal crowd-tuning and ML workflow connected with SOTA dashboards
	Apply Machine Learning (try different ML algorithms, features and hyperparameters)
	Apply Machine Learning (try different ML algorithms, features and hyperparameters)
	Expose unexpected behaviour and learn features with the community
	Expose unexpected behaviour and learn features with the community
	Expose unexpected behaviour and learn features with the community
	Started converting artifacts from deep learning papers to CK
	ACM ReQuEST: reproducible ML/SW/HW co-design tournaments
	Published validated papers with reusable workflows in the ACM DL
	Shared public CK dashboards connected with research papers
	DevOps and FAIR principles made it easier to adopt research in production
	Quantum ML hackathons using CK workflows and dashboards
	Quantum ML hackathons using CK workflows and dashboards
	Use Android app to crowdsource ML systems benchmarking and extend data sets
	Crowd-tune whole ML/SW/HW stacks
	Reuse CK auto-tuner to generate ML-based adaptive libraries for CNNs
	Collaboratively benchmark and optimize Deep Learning Implementations
	Support MLPerf and MLCommons
	Conclusions: bridging the growing gap between research and production
	Conclusions
	Acknowledgments
	Thank you!
	Slide Number 59

