Bayesian analysis for speech scientists

INSTRUCTORS

Joseph Casillas Stefano Coretta Timo Roettger

- StefanoCoretta

#LearnB4SS

To our materials

https://learnb4ss.github.io/learnB4SS/

Bayesian analysis for speech scientists

INSTRUCTORS

Joseph Casillas Stefano Coretta Timo Roettger

- StefanoCoretta

#LearnB4SS

To our materials

https://learnb4ss.github.io/learnB4SS/

INSTRUCTORS

Joseph Casillas Stefano Coretta Timo Roettger

- 🗩 @jvcasill
- @StefanoCoretta
- @TimoRoettger

#LearnB4SS

To our materials

https://learnb4ss.github.io/learnB4SS/

tta er

INSTRUCTORS

Joseph Casillas Stefano Coretta Timo Roettger

- 🗩 @jvcasill
- @StefanoCoretta
- @TimoRoettger

#LearnB4SS

To our materials

https://learnb4ss.github.io/learnB4SS/

tta er

Zoom chat

Google Slides

Slack chat

WHY ARE WE HERE TODAY?

100%

REPLICATED

47%

REPLICATED

Open Science Collaboration (2015)

NOT

CRISIS IN CONFIDENCE

Open Science Collaboration (2015)

60000 Cancer Research

Nosek & Errington (2017)

43%

Social Sciences Camerer et al. (2018)

1. Set up a Null-Hypothesis (H0).

2. Calculate the probability of the results under H0 (p value).

1. Set up a Null-Hypothesis (H0).

2. Calculate the probability of the results under H0 (p value).

3. Reject H0 when p < 0.05, else don't reject.

p < 0.05

often does not allow appropriate use,

Warning message: In checkConv(attr(opt, "derivs"), opt\$par, ctrl = control\$checkConv, : Model failed to converge with max|grad| = 0.0139723 (tol = 0.002, component 1)

often does not allow appropriate use,

is not intuitive,

often does not allow appropriate use,

is not intuitive,

and cannot provide an answer to the questions we are interested in.

Bayesian Inference

intuitive

Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan. *Journal of statistical software*, *80*(1), 1-28.

brms

EXPECTATIONS

What we will cover and what we won't cover

EXPECTATIONS

What we will cover

- The conceptual framework of Bayesian inference
- How to run (generalized) linear models using brms
- How to specify priors and interpret results
- How to draw probabilistic inferences from results

what we won't cover

- Introduction to R / data carpentry in R
- Introduction to (generalized) linear models

GET THE MOST

Have your machine prepared for brms

Relax! All materials will be available

- Use the Slack channel
- (videos + Rmarkdowns)

Don't panic!

1st Bayesian Model

Run your first Bayesian Model

Bayes Theorem

What does it mean to think like a Bayesian?

Priors - Part 1

What are priors?

Priors - Part 2 How do I specify priors?

NHST vs. Bayes

Why are we doing this again?

Review Day 1 in a nutshell

Inference

How do I answer my research question without a p-value?

More on priors

Why is it a good idea to specify priors?

Mixed Models

with brms

Sampling What happens under the hood?

Run linear mixed effects models

1:1 sessions

1:1 sessions

1:1 sessions

