
The LDBC Social Network Benchmark
(version 2.2.4-SNAPSHOT, commit

2216210)

The specification was built on the source code available at
https://github.com/ldbc/ldbc_snb_docs/tree/main

This work is licensed under a Creative Commons Attribution 4.0 License.

https://github.com/ldbc/ldbc_snb_docs/tree/main
https://creativecommons.org/licenses/by/4.0/

Abstract

LDBC’s Social Network Benchmark (LDBC SNB) is an effort intended to test various functionalities of systems
used for graph-like data management. For this, LDBC SNB uses the recognizable scenario of operating a social
network, characterized by its graph-shaped data.

LDBC SNB consists of two workloads that focus on different functionalities: the Interactive workload (in-
teractive transactional queries) and the Business Intelligence workload (analytical queries).

This document contains the definition of both workloads. This includes a detailed explanation of the data
used in the LDBC SNB benchmark, a detailed description for all queries, and instructions on how to generate
the data and run the benchmark with the provided software.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 2 of 164

Executive Summary

The new data economy era, based on complexly structured, distributed and large datasets, has brought on new
demands on data management and analytics. As a consequence, new industry actors have appeared, offering
technologies specially built for the management of graph-like data. Also, traditional database technologies, such
as relational databases, are being adapted to the new demands to remain competitive.

LDBC’s Social Network Benchmark (LDBC SNB) is an industrial and academic initiative, formed by prin-
cipal actors in the field of graph-like data management. Its goal is to define a framework where different graph
based technologies can be fairly tested and compared, that can drive the identification of systems’ bottlenecks
and required functionalities, and can help researchers to open new research frontiers.

The philosophy around which LDBC SNB is designed is to be easy to understand, flexible and cheap to
adopt. For all these reasons, LDBC SNB will propose different workloads representing all the usage scenarios
of graph-like database technologies, hence, targeting systems of different nature and characteristics. In order
increase its adoption by industry and research institutions, LDBC SNB provides all necessary software, which
are designed to be easy to use and deploy at a small cost.

This document contains:

• A detailed specification of the data used in the whole LDBC SNB benchmark.
• A detailed specification of the workloads.
• A detailed specification of the execution rules of the benchmark.
• A detailed specification of the auditing rules and the full disclosure report’s required contents.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 3 of 164

Table of Contents Table of Contents

Table of Contents

1 Introduction 14
1.1 Motivation for the Benchmark . 14
1.2 Relevance to the Industry . 14
1.3 General Benchmark Overview . 15
1.4 Related Projects . 16
1.5 Participation of Industry and Academia . 16
1.6 Technical Report . 16

2 Benchmark Specification 17

3 Data sets and data generation 18
3.1 Data Types . 18
3.2 Data Schema . 18

3.2.1 Entities (Nodes) . 19
3.2.2 Relations (Edges) . 22
3.2.3 Domain Concepts . 23

3.3 Data Generation . 23
3.3.1 Resource Files . 24
3.3.2 Graph Generation . 24
3.3.3 Distributions, Parameters, and Quirks . 26
3.3.4 Implementation Details . 27

3.4 Output Data . 27
3.4.1 Scale Factors . 28
3.4.2 Serializers . 29
3.4.3 Interactive Update Streams (Inserts) . 31
3.4.4 Substitution Parameters . 31

3.5 Introducing Delete Operations . 31
3.6 Lifespan Management . 33

3.6.1 General Rules . 34
3.6.2 Person . 34
3.6.3 Forum and Message . 35
3.6.4 Forum . 35
3.6.5 Message . 37
3.6.6 Complex Example . 38

3.7 Ensuring Realism . 38
3.8 Converting Delete Events into Delete Operations . 40

4 Workloads 43
4.1 Query Description Format . 43
4.2 Conventions for Query Definitions . 43
4.3 Substitution Parameters . 45
4.4 Return Values . 46

5 Update operations 47
5.1 Insert Operations . 47
5.2 Delete Operations . 52

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 4 of 164

Table of Contents Table of Contents

6 Interactive v1 Workload 57
6.1 Complex Reads . 58
6.2 Short Reads . 72
6.3 Workload Definition . 76

7 Interactive v2 Workload 79
7.1 Overview . 79
7.2 Operations . 79

7.2.1 Complex Reads . 80
7.2.2 Short Reads . 81
7.2.3 Insert Operations . 81
7.2.4 Delete Operations . 81

7.3 Parameter Curation . 81
7.3.1 Building Blocks for Parameter Curation . 81
7.3.2 Parameter Curation for Relational Queries . 81
7.3.3 Parameter Curation for Path-Finding Queries . 82
7.3.4 Query Variants . 82
7.3.5 Parameter Generator Implementation . 83

7.4 Workload Scheduling and Benchmark Driver . 83
7.4.1 Scheduling Operations . 83
7.4.2 Driver . 84

8 Business Intelligence Workload 85
8.1 Overview . 85
8.2 Read Query Templates . 85

8.2.1 Choke Point-Based Design Methodology . 86
8.2.2 Analysis of Selected Queries . 86

8.3 Parameter Curation for BI Queries . 87
8.3.1 The Need for Parameter Curation . 87
8.3.2 Parameter Generation Steps . 87
8.3.3 Parameter Curation for Graph Queries . 87
8.3.4 Query Variants . 88
8.3.5 Scalability and Reproducibility . 88

8.4 Reads . 89
8.5 Insert Operations . 109
8.6 Delete Operations . 109

9 Auditing Policies 110
9.1 Rationale and General Principles . 110
9.2 Auditing Rules Overview . 110

9.2.1 Auditor Training, Certification, and Selection . 110
9.2.2 Auditing Process Stages . 111
9.2.3 Challenge Procedure . 111

9.3 Auditable Properties of Systems and Benchmark Implementations 112
9.3.1 Validation of Query Results . 112
9.3.2 ACID Compliance . 112
9.3.3 Data Schema . 113
9.3.4 Data Format and Preprocessing . 114
9.3.5 Data Access Transparency . 114
9.3.6 Query Languages . 114
9.3.7 Materialization . 115
9.3.8 Steady State . 115

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 5 of 164

Table of Contents Table of Contents

9.3.9 Query Mix . 115
9.3.10 System Configuration and System Pricing . 116
9.3.11 Benchmark Specifics . 117

9.4 Auditing Rules for the Interactive Workload . 117
9.4.1 Scaling . 118
9.4.2 Data Model and Data Loading . 119
9.4.3 Precomputation . 120
9.4.4 Benchmark Software Components . 120
9.4.5 Implementation Language and Data Access Transparency 121
9.4.6 Correctness of Benchmark Implementation . 122
9.4.7 Benchmarking Workflow . 123
9.4.8 Full Disclosure Report . 124

9.5 Auditing Rules for the Business Intelligence Workload . 125
9.5.1 Overview . 125
9.5.2 Workflow . 125
9.5.3 Runtimes . 126
9.5.4 Scoring Metrics . 126
9.5.5 Implementation Rules . 127
9.5.6 Scaling . 127
9.5.7 Full Disclosure Report . 127

10 ACID Test Suite 128
10.1 Background . 128
10.2 Atomicity . 128
10.3 Isolation . 129

10.3.1 System Model . 130
10.3.2 General Design . 131
10.3.3 Dirty Write . 131
10.3.4 Dirty Reads . 132
10.3.5 Cut Anomalies . 133
10.3.6 Observed Transaction Vanishes . 135
10.3.7 Fractured Read . 135
10.3.8 Lost Update . 136
10.3.9 Write Skew . 136

10.4 Consistency and Durability Tests . 137

11 Related Work 138
11.1 ACID Tests in Other Benchmarks . 138
11.2 Graph Processing Benchmarks . 138
11.3 Scalable Graph Generators . 138

Bibliography 139

A Choke Points 144
A.1 Aggregation Performance . 144
A.2 Join Performance . 145
A.3 Data Access Locality . 147
A.4 Expression Calculation . 147
A.5 Correlated Sub-Queries . 148
A.6 Parallelism and Concurrency . 149
A.7 Graph Specifics . 149
A.8 Language Features . 150

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 6 of 164

Table of Contents Table of Contents

A.9 Update Operations . 152

B Scale Factor Statistics 153
B.1 Number of Entities for SNB Interactive v1.0 . 153
B.2 Number of Entities for SNB BI v1.0 . 153
B.3 Factor Tables . 153

C Benchmark Checklist 156

D Legacy Data Sets for the Interactive workload 157
D.1 Output Data . 157

D.1.1 Scale Factors . 157
D.1.2 Serializers . 158
D.1.3 Update Streams . 160
D.1.4 Substitution Parameters . 160

E Example graph 163

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 7 of 164

List of Figures List of Figures

List of Figures

3.1 UML class diagram-style depiction of the LDBC SNB graph schema. Note that the knows edges
should be treated as undirected (but are serialized only in a single direction). The cardinality of
the hasModerator edge has changed between version 1 (where it was exactly 1) and version 2
(where it is 0..1). 19

3.2 The Datagen generation process. 26
3.3 The power-law used to generate comments. 27
3.4 The distribution used to generate posts during flashmob events. 28
3.5 Example graph and its intervals. 35
3.6 Example graph and time intervals for selecting lifespan attributes, creation and deletion dates. . 39
3.7 Distribution for determining the probability a Person is deleted given their number of connections. 40
3.8 Probability a post is deleted given the number of comments in its thread. 41
3.9 Cumulative probability density function of when a post, comment, or like is deleted after it is

created (x = 0). 42
3.10 Possible dynamic entity creation ● and deletion ● dates with respect to simulation start, bulk

load cut off, simulation end, and network collapse. 42

4.1 Example graph pattern. 44

7.1 Components and workflow of the Interactive v2 workload. The corresponding sections are
shown in green circles § . Legend: Software component Data artifact 79

7.2 Example graph and distribution for path curation. 82
7.3 Workflow of driver modes in SNB Interactive v2. 84

8.1 Main software components and data artifacts of the benchmark and their connection to the work-
flow executed by the BI benchmark driver. 85

9.1 Benchmark execution and auditing workflow. For non-audited runs, the implementers perform
the steps of the auditor. 118

9.2 Warm-up and measurement window for benchmark run. 124
9.3 Tests and batches (power and throughput) executed in the BI workload’s workflow. 125

10.1 Graph schema for the ACID test queries. 129
10.2 Hierarchy of isolation levels as described in [11]. All anomalies are covered except G-Cursor(x). 129

E.1 Example graph snapshot (without update operations). 163
E.2 Example graph with update operations. 164

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 8 of 164

List of Tables List of Tables

List of Tables

3.1 Description of the data types. Some types such as 32-bit Float and 64-bit Integer are currently
not used in the benchmark. 18

3.2 Attributes of the Forum entity. 20
3.3 Attributes of the Message interface. 20
3.4 Attributes of the Organisation entity. 20
3.5 Attributes of the Person entity. 21
3.6 Attributes of the Place entity. 21
3.7 Attributes of the Post entity. 21
3.8 Attributes of the Tag entity. 21
3.9 Attributes of the TagClass entity. 22
3.10 Description of the data relations. Type – D: directed edge, U: undirected edge. 23
3.11 Resource files. 25
3.12 Properties of data sets for each scale factor for the raw data sets produced the Spark-based

generator, used as a basis of the data sets of SNB Interactive v2 and SNB BI. 29
3.13 Attributes and edges serialized to separate files the different CSV serializers. 29
3.14 Files output by the csv-composite-projected-fk serializer (31 in total). The first part of the table

contains the static entites, the second part contains the dynamic ones. Notation – C: entity
category, N: node, E: edge. 30

3.15 Files output by the csv-composite-merged-fk serializer (18 in total). The first part of the table
contains the static entites, the second part contains the dynamic ones. Notation – C: entity
category, N: node, E: edge. 31

3.16 Directories created by the raw serializer (18 in total). The first part of the table contains the static
entites, the second part contains the dynamic ones. Notation – C: entity category, N: node, E:
edge. The entities with the explicitlyDeleted attribute – Comment, Forum, Post nodes, and
hasMember, knows, likes (Comment/Post) edges – denote whether the entity is deleted as part
of an explicit delete operation or implicitly through a cascading delete operation. 32

3.17 Mapping of [2] message types to LDBC’s schema. 40

6.1 Frequencies for each Interactive complex query and SF. 77
6.2 Short read queries (columns) potentially triggered after given complex/short read queries (rows). 78

A.1 Coverage of choke points by queries. 144

B.1 The number of entities per SF and per file in the Interactive workload (produced by the Hadoop-
based generator and measured based on the output of the CsvBasic serializer). To derive these
numbers, 100% of the network was generated as an initial bulk data set with no update streams.
Notation – C: entity category, N: node, E: edge. 153

B.2 The number of entities per SF and per file in the initial data set used in the BI workload. Notation
– C: entity category, N: node, E: edge. 154

B.3 The number of entities per SF and per file in the update data sets used in the BI workload.
Notation – T: update type, I: insert, D: delete; C: entity category, N: node, E: edge. 154

B.4 The total size of the factor tables. 155

D.1 Properties of data sets for each scale factor in the Interactive workload produced by the Hadoop-
based generator. For detailed statistics, see Table B.1 . 158

D.2 Update stream statistics for SNB Interactive v1.0 . 158
D.3 Attributes and edges serialized to separate files the different CSV serializers. 158

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 9 of 164

List of Tables List of Tables

D.4 Files output by the CsvBasic serializer (33 in total). The first part of the table contains the static
entites, the second part contains the dynamic ones. Notation – C: entity category, N: node, E:
edge. 159

D.5 Files output by the CsvMergeForeign serializer (20 in total). The first part of the table contains
the static entites, the second part contains the dynamic ones. Notation – C: entity category, N:
node, E: edge. 160

D.6 Files output by the CsvComposite serializer (31 in total). The first part of the table contains the
static entites, the second part contains the dynamic ones. Notation – C: entity category, N: node,
E: edge. 161

D.7 Files output by the CsvCompositeMergeForeign serializer (18 in total). The first part of the
table contains the static entites, the second part contains the dynamic ones. Notation – C: entity
category, N: node, E: edge. 161

D.8 Generic schema of update (insert) stream files. The start time (ts) is identical to the creationDate
attribute (repeated later in the row). 162

D.9 Schemas of the lines in the update stream (insert stream) files. 162

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 10 of 164

List of Tables List of Tables

Acknowledgments

Special thanks to all the people that have contributed to the development of this benchmark suite:

• Renzo Angles (Universidad de Talca)
• János Benjamin Antal (Budapest University of Technology and Economics)
• Alex Averbuch (Neo4j)
• Altan Birler (TUM)
• Peter Boncz (Vrije Universiteit Amsterdam, CWI)
• Márton Búr (McGill University)
• Orri Erling (OpenLink Software)
• Andrey Gubichev (Technische Universität München)
• Vlad Haprian (Oracle Labs)
• Moritz Kaufmann (Technische Universität München)
• Josep Lluís Larriba Pey (Universitat Politècnica de Catalunya)
• Norbert Martínez (Huawei Technologies)
• József Marton (Budapest University of Technology and Economics)
• Marcus Paradies (SAP, DLR)
• Minh-Duc Pham (Altran)
• Arnau Prat-Pérez (DAMA UPC, Sparsity Technologies)
• David Püroja (CWI)
• Mirko Spasić (OpenLink Software)
• Benjamin A. Steer (Queen Mary University of London, Pometry)
• Dávid Szakállas
• Gábor Szárnyas (MTA-BME Lendület Research Group on Cyber-Physical Systems, Budapest University
of Technology and Economics, CWI)

• Jack Waudby (Newcastle University)
• Mingxi Wu (TigerGraph)
• Yuchen Zhang (TigerGraph)

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 11 of 164

List of Tables List of Tables

Definitions

This section defines fundamental concepts used in the LDBC benchmark terminology. Part of the definitions
below are repeated from the LDBC benchmark specification document.

LDBC SNB The Linked Data Benchmark Council’s Social Network Benchmark suite which currently consists
of the Interactive workload and a preliminary version of the Business Intelligence workload.

System Under Test (SUT) This is the totality of the hardware and software that participates in a benchmark
run, excluding parts that are exclusively used for driving the workload. If the parts driving the workload
are collocated on the same operating system instance as the SUT, then this is also considered a part of the
SUT. In client-server configurations where the test driver is not on a machine hosting any DBMS function
the SUT is not considered to encompass the hardware or software which exclusively serves to drive the
test workload.

Datagen This module is provided by LDBC SNB and produces the standard benchmark datasets to be loaded
into the SUT for the benchmark. The data generation phase is not part of running the benchmark.

Test Driver (Benchmark Driver, Driver) The test driver refers to the parts of the benchmark run that coordi-
nate query execution and, if prescribed by a given benchmark, data loading.

Workload (Benchmark) This is the totality of the tasks a particular benchmark performs against an SUT. This
includes data loading as well as the query/update workload. This does not include preparatory stages such
as generating benchmark data with a data generator or transferring the data to the platform constituting
the SUT. The terms workload and benchmark are synonyms in this context.

Time Compression Ratio (TCR) This parameter of the Interactive workload compresses (or stretches) dura-
tions between operation start times to increase (or decrease) operation rate, thereby allowing systems to
reach their maximum throughput for a given workload. The smaller this number is, the higher compres-
sion ratio it represents (e.g. 2.0 means run benchmark 2× slower, while 0.1 = run benchmark 10× faster).
Systems are expected to compete on achieving the lowest possible TCR (i.e. the highest TCR−1 = 1

TCR).
Query mix The ratio of read and update queries of a workload, and the frequency at which they are issued.
Scale Factor (SF) The LDBC SNB is designed to target systems of different size and scale. The scale factor

determines the size of the data used to run the benchmark. The scale factor refers to the measured size of
the data in Gigabytes when serialised in CsvSingularProjectedFK.

Validation Step The benchmark specifies a scale factor for which ACID test cases are executed and the query
results are compared to a reference result set (i.e. expected output). This step is required to use the very
same set of queries and data structures (this includes both PDS, IADS and EADS – defined below) that
are used in the actual benchmark runs.

Schema (Database Schema) A schema is the totality of the non-built-in declarations which are fed into the
SUT prior to running a workload. For a relational system, the schema consists of tables, indices, views,
materialised views and declarative constraints (e.g. foreign key and not null constraints). An ontology for
an RDF system counts as a schema if it is loaded on the SUT. An RDF SUT may have no schema at all
and still run the workload. However, any declaration or setting (e.g. indices) that is not on by default in
the SUT, but is used in at least one case of the benchmark run counts as part of the schema. The schema
does not include stored procedures, triggers, or other imperative (procedural) application specific code
that may reside on the SUT and could impact the benchmark results. The schema is required to be the
same across all benchmark runs using the same scale factor for a given workload.

Primary Data Structure (PDS) This is anything that may influence the result of a database query or may be
changed by an update of the database. These may be resident in RAM or durable media or both. Examples
of data structures are database base tables and adjacency lists.

Implicit Auxiliary Data Structure (IADS) This is a data structure for providing more efficient access to all
or parts of the primary data structure. IADS are created by the DBMS automatically and the system may
allow them to be turned off.

Some systems, such as many RDF stores have multiple covering indices on the primary data
structure. The definition in this case is that the primary data structure consists of all the dif-

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 12 of 164

List of Tables List of Tables

ferently ordered full copies of the base table; a table of subject predicate object graph (SPOG)
in the RDF case. In this same instance, Auxiliary data structures comprise any data structure
which materialise a subset of the SPOG.

Explicit Auxiliary Data Structure (EADS) These are any application or workload profile specific structures
that are declared in addition to the PDSs and IADSs managed by the SUT. These duplicate the data and
are created with explicit statements. Secondary indices, materialised views, with or without aggregates,
are all examples of this in a relational context. The decision about the used EADS is always part of the
schema declaration.

In the case of relational systems, an ADS may be an index from primary key values to a heap
table, if the system in question has such concepts. A secondary index of a relational table, in
its memory based and durable media based manifestations is an example for EADS. Such a
secondary index is not considered an ADS since it must be declared, which makes its creation
explicit. An ADS must be implicit and not created by any specific DDL statement or directive.
In the case of RDF systems, if the implementation supports user definable index schemes, as
long as these are defined once and apply to all triples/quads, such structures are designated as
ADS. If an RDF system selectively makes data structures which apply to some quads but not
to others, then such structures are designated as EADS.

SUT-Resident Logic This is any application specific code that is resident on the SUT, whether by static linking,
dynamic loading, JIT, interpretation or any other means of embedding application specific logic into a
generic DBMS. Examples of this are stored procedures, hosting Java, CLR or other run times in the SUT
process (or processes), loading application specific libraries to extend native functions or data structures
etc. A special case is that of a database exclusively accessed via an in-process API. In these cases, any
code that is not the test driver or a workload implementation expressed against a generally supported
API of the DBMS is deemed SUT resident logic in addition to any other code which may fit the above
definitions.

Test Sponsor The party which initiates an audit of a benchmark implementation over an SUT. This is typically
the vendor of a key component of the SUT, e.g. DBMS or hardware.

Full Disclosure Report (FDR) This is a document which allows reproduction of any audited benchmark result
by a third party. It contains complete description of the circumstances of the benchmark run, including
version and configuration of SUT, dataset and test driver.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 13 of 164

Chapter 1. Introduction

1 Introduction

1.1 Motivation for the Benchmark

The new era of data economy, based on large, distributed, and complexly structured datasets, has brought on
new and complex challenges in the field of data management and analytics. These datasets, usually modeled as
large graphs, have attracted both industry and academia, due to new opportunities in research and innovation
they offer. This situation has also opened the door for new companies to emerge, offering new non-relational
and graph-like technologies that are called to play a significant role in upcoming years.

The change in the data paradigm calls for new benchmarks to test these new emerging technologies, as
they set a framework where different systems can compete and be compared in a fair way, they let technology
providers identify the bottlenecks and gaps of their systems and, in general, drive the research and development
of new information technology solutions. Without them, the uptake of these technologies is at risk by not
providing the industry with clear, user-driven targets for performance and functionality.

The Linked Data Benchmark Council’s [80] Social Network Benchmark (LDBC SNB) aims at being a
comprehensive benchmark by setting the rules for the evaluation of graph-like data management technologies.
LDBC SNB is designed to be a plausible look-alike of all the aspects of operating a social network site, as one
of the most representative and relevant use cases of modern graph-like applications.

LDBC SNB includes the Interactive workload [24], which consists of user-centric transactional-like inter-
active queries, and the Business Intelligence workload, which includes analytic queries to respond to business-
critical questions. Initially, a graph analytics workload was also included in the roadmap of LDBC SNB, but this
was finally delegated to the Graphalytics benchmark project [38, 39], which was adopted as an official LDBC
graph analytics benchmark. LDBC SNB and Graphalytics combined target a broad range of systems with dif-
ferent nature and characteristics. LDBC SNB and Graphalytics aim at capturing the essential features of these
scenarios while abstracting away details of specific business deployments.

This document contains the definition of the Interactive workload and the first draft of the Business Intelli-
gence workload. This includes a detailed explanation of the data used in the LDBC SNB benchmark, a detailed
description for all queries, and instructions on how to generate the data and run the benchmark with the provided
software.

1.2 Relevance to the Industry

LDBC SNB is intended to provide the following value to different stakeholders:

• For end users facing graph processing tasks, LDBC SNB provides a recognizable scenario against which
it is possible to compare merits of different products and technologies. By covering a wide variety of
scales and price points, LDBC SNB can serve as an aid to technology selection.

• For vendors of graph database technology, LDBC SNB provides a checklist of features and performance
characteristics that helps in product positioning and can serve to guide new development.

• For researchers, both industrial and academic, the LDBC SNB dataset and workload provide interesting
challenges in multiple choke point areas, such as query optimization, (distributed) graph analysis, trans-
actional throughput, and provides a way to objectively compare the effectiveness and efficiency of new
and existing technology in these areas.

The technological scope of LDBC SNB comprises all systems that one might conceivably use to perform
social network data management tasks:

• Graph database management systems (e.g. Neo4j, TigerGraph, AWS Neptune) are novel technologies
aimed at storing property graphs, i.e. graphs with labels and properties (attributes) on nodes and edges.
They support graph traverals, typically by means of APIs, though some of them also support dedicated
graph-oriented query languages (e.g. Neo4j’s Cypher and TigerGraph’s GSQL, as well as the GQL and
SQL/PGQ standards). These systems’ internal structures are typically designed to store dynamic graphs

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 14 of 164

Chapter 1. Introduction 1.3. General Benchmark Overview

that change over time. They offer support for transactional queries with some degree of consistency,
and value-based indices to quickly locate nodes and edges. Finally, their architecture is typically single-
machine (non-cluster). These systems can potentially implement all three workloads, though Interactive
and Business Intelligence workloads are where they will presumably be more competitive.

• Graph processing frameworks (e.g. Giraph, Signal/Collect, GraphLab, Green Marl) are designed to
perform global graph computations, executed in parallel or in a lockstep fashion. These computations are
typically long latency, involving many nodes and edges and often consist of approximation answers to NP-
complete problems. These systems expose an API, sometimes following a vertex-centric paradigm, and
their architecture targets both single-machine and cluster systems. These systems will likely implement
the Graph Analytics workload.

• RDF database systems (e.g. OWLIM, Virtuoso, Stardog, AWS Neptune) are systems that implement
the SPARQL 1.1 query language, similar in complexity to SQL-92, which allows for structured queries,
and simple traversals. RDF database systems often come with additional support for simple reasoning
(sameAs, subClass), text search, and geospatial predicates. RDF database systems generally support
transactions, but not always with full concurrency and serializability and their supposed strength is in-
tegrating multiple data sources (e.g. DBpedia). Their architecture is both single-machine and clustered,
and they will likely target Interactive and Business Intelligence workloads.

• Relational database systems (e.g. PostgreSQL, MySQL, Oracle, IBM Db2, Microsoft SQL Server, Vir-
tuoso, MonetDB, Vectorwise, Vertica, DuckDB but also Hive and Impala) treat graph data relationally,
and queries are formulated in SQL and/or PL/SQL. Both single-machine and cluster systems exist. They
do not normally support recursion or stateful recursive algorithms, which makes them not at home in the
Graph Analytics workloads.

1.3 General Benchmark Overview

LDBC SNB aims at being a complete benchmark, designed with the following goals in mind:

• Rich coverage. LDBC SNB is intended to cover most demands encountered in the management of com-
plexly structured data.

• Modularity. LDBC SNB is broken into parts that can be individually addressed. In this manner LDBC
SNB stimulates innovation without imposing an overly high threshold for participation.

• Reasonable implementation cost. For a product offering relevant functionality, the effort for obtaining
initial results with SNB should be small, in the order of days.

• Relevant selection of challenges. Benchmarks are known to direct product development in certain di-
rections. LDBC SNB is informed by the state-of-the-art in database research so as to offer optimization
challenges for years to come while not having a prohibitively high threshold for entry.

• Reproducibility and documentation of results. LDBC SNB will specify the rules for full disclosure of
benchmark execution and for auditing of benchmark runs in accordance with the LDBC Byelaws [44].
The workloads may be run on any equipment but the exact configuration and price of the hardware and
software must be disclosed.

LDBC SNB benchmark is modeled around the operation of a real social network site. A social network site
represents a relevant use case for the following reasons:

• It is simple to understand for a large audience, as it is arguably present in our every-day life in different
shapes and forms.

• It allows testing a complete range of interesting challenges, by means of different workloads targeting
systems of different nature and characteristics.

• A social network can be scaled, allowing the design of a scalable benchmark targeting systems of different
sizes and budgets.

Chapter 2 summarizes LDBC’s benchmark design philosophy.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 15 of 164

Chapter 1. Introduction 1.4. Related Projects

In Chapter 3, we define the schema of the data used in the benchmark. The schema represents a realistic
social network, including people and their activities in the social network during a period of time. Personal
information of each person, such as name, birthday, interests or places where people work or study, is included.
A person’s activity is represented in the form of friendship relationships and content sharing (i.e. messages and
pictures). LDBC SNB provides a scalable synthetic data generator based on the MapReduce paradigm, which
produces networks with the described schema with distributions and correlations similar to those expected in a
real social network. Furthermore, the data generator is designed to be user-friendly. The proposed data schema
is shared by all the different proposed workloads, those we currently have, and those that will be proposed in
the future.

In Chapter 4, an overview of the workloads is provided. All SNB workloads are designed to mimic the dif-
ferent usage scenarios found in operating a real social network site, and each of them targets one or more types of
systems. Each workload defines a set of queries and query mixes, designed to stress the SUTs in different choke
point areas, while being credible and realistic. The Interactive workload reproduces the interaction between the
users of the social network by including lookups and transactions, which update small portions of the database.
These queries are designed to be interactive and target systems capable of responding to such queries with low
latency for multiple concurrent users. The Business Intelligence workload represents analytic queries a social
network company would like to perform in the social network, to take advantage of the data and to discover new
business opportunities. This workload explores moderate to large portions of the graph from different entities,
and performs more resource-intensive operations.

All workloads provide an execution test driver, which is responsible for executing the workloads and gath-
ering the results. The driver is designed with simplicity and portability in mind to ease the implementation on
systems with different nature and characteristics at a low implementation cost. Furthermore, it automatically
handles the validation of the queries by means of a validation dataset provided by LDBC. The overall philoso-
phy of LDBC SNB is to provide the necessary software tools to run the benchmark, and therefore to reduce the
benchmark’s entry point as much as possible.

Chapter 5 defines the update operations used in the SNB workloads. Chapter 6, Chapter 7, and Chapter 8
define the SNB Interactive v1, Interactive v2, and BI workloads, respectively. Chapter 9 contains the SNB
auditing policies. Chapter 10 defines the ACID test suite. Chapter 11 summarized the related work on graph
processing benchmarks.

1.4 Related Projects

Along the Social Network Benchmark, LDBC [7] provides other benchmarks as well:

• The Semantic Publishing Benchmark (SPB) [75] measures the performance of semantic databases oper-
ating on RDF datasets.

• The Graphalytics benchmark [38] measures the performance of graph analysis operations (e.g. PageRank,
local clustering coefficient).

1.5 Participation of Industry and Academia

The list of institutions that take part in the definition and development of LDBC SNB is formed by relevant
actors from both the industry and academia in the field of linked data management. All the participants have
contributed with their experience and expertise in the field, making a credible and relevant benchmark, which
meets all the desired needs.

1.6 Technical Report

This technical report is available on arXiv [6] and is updated upon new releases of the SNB.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 16 of 164

Chapter 2. Benchmark Specification

2 Benchmark Specification

LDBC SNB is designed to be flexible and to have an affordable entry point. From small single node and in
memory systems to large distributed multi-node clusters have its own place in LDBC SNB. Therefore, the re-
quirements to fulfill for executing LDBC SNB are limited to pure software requirements to be able to run the
tools. While the benchmark specification aims to be portable, the software provided by LDBC SNB have been
developed and tested under Linux-based operating systems. The driver and the clients for the reference imple-
mentations were implemented in Java. The generator has two versions: the Hadoop-based one was written in
Java, while the Spark-based one is written in a mix of Java and Scala.

LDBC SNB does not impose the usage of any specific type of system, as it targets systems of different
nature and characteristics, from graph databases, graph processing frameworks and RDF systems, to traditional
relational databasemanagement systems. Consequently, any language or API capable of expressing the proposed
queries can be used. Similarly, data can be stored in the most convenient manner the test sponsor may decide,
as long as it conforms with the execution rules. Finally, in order to have an official benchmark execution, the
results will have to be audited and all the required information disclosed.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 17 of 164

Chapter 3. Data sets and data generation

3 Data sets and data generation

This chapter introduces the data used by LDBC SNB. This includes the different data types, the data schema,
how it is generated and the different scale factors.

Warning. This chapter describes the latest variant of the data set. If you are looking for information on the
Interactive workload, please also check Appendix D.

3.1 Data Types

Table 3.1 describes the different data types used in the benchmark.

Type Description
ID integer type with 64-bit precision. All IDs within a single entity type (e.g. Person,

Message) are unique, but different entity types (e.g. a Forum and a Tag) might have
the same ID.

32-bit Integer integer type with 32-bit precision
64-bit Integer integer type with 64-bit precision
32-bit Float integer type with 32-bit precision
64-bit Float integer type with 64-bit precision
String variable length text of size 80 Unicode characters
Long String variable length text of size 256 Unicode characters
Text variable length text of size 2000 Unicode characters
Date date with a precision of a day, encoded as a string with the following format: yyyy-mm-

dd, where yyyy is a four-digit integer representing the year, the year, mm is a two-digit
integer representing the month and dd is a two-digit integer representing the day.

DateTime date with a precision of milliseconds, encoded as a string with the following for-
mat: yyyy-mm-ddTHH:MM:ss.sss+00:00, where yyyy is a four-digit integer representing
the year, the year, mm is a two-digit integer representing the month and dd is a two-digit
integer representing the day, HH is a two-digit integer representing the hour, MM is a two
digit integer representing the minute and ss.sss is a five digit fixed point real number
representing the seconds up to millisecond precision. Finally, the +00:00 of the end
represents the timezone, which should always be GMT (both for inputs and outputs).

Boolean logical type, taking the value of either True of False

Table 3.1: Description of the data types. Some types such as 32-bit Float and 64-bit Integer are currently not
used in the benchmark.

3.2 Data Schema

Figure 3.1 shows the data schema in UML. The schema defines the structure of the data used in the benchmark
in terms of entities and their relations. Data represents a snapshot of the activity of a social network during a
period of time. Data includes entities such as Persons, Organisations, and Places. The schema also models the
way persons interact, by means of the friendship relations established with other persons, and the sharing of
content such as Messages (both textual and images), replies to Messages and likes to Messages. People form
groups to talk about specific topics, which are represented as Tags1. An example graph conforming the SNB
schema is shown in Appendix E.

1Tags are basically equivalent to hashtags on contemporary social media sites. In this document, we occasionally use the term topic
to refer to tags

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 18 of 164

Chapter 3. Data sets and data generation 3.2. Data Schema

LDBC SNB has been designed to be flexible and to target systems of different nature and characteristics. As
such, it does not force any particular internal representation of the schema. The Datagen component supports
multiple output data formats to fit the needs of different types of systems, including RDF, relational DBMS and
graph DBMS.

Figure 3.1: UML class diagram-style depiction of the LDBC SNB graph schema. Note that the knows edges
should be treated as undirected (but are serialized only in a single direction). The cardinality of the hasModerator
edge has changed between version 1 (where it was exactly 1) and version 2 (where it is 0..1).

The schema specifies different entities, their attributes and their relations. All of them are described in the
following sections.

Textual Restrictions and Notes

• Messages always have a non-empty content attribute.
• Posts have either a content or an imageFile attribute (i.e. they always have exactly one of them.) The one
they do not have is represented with an empty string or with NULL.

• Posts in a forum can be created by a non-member person if and only if that person is the moderator of the
Forum.

3.2.1 Entities (Nodes)

City: a sub-class of a Place, and represents a city of the real world. City entities are used to specify where
persons live, as well as where universities operate.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 19 of 164

Chapter 3. Data sets and data generation 3.2. Data Schema

Comment: a sub-class of a Message, and represents a comment made by a person to an existing message (either
a Post or a Comment).

Company: a sub-class of an Organisation, and represents a company where persons work.

Continent: a sub-class of a Place, and represents a continent of the real world.

Country: a sub-class of a Place, and represents a country of the real world. Countries are selected as the place
of operation for Companies as well as the location of Messages.

Forum: a meeting point where people post messages. Forums are characterized by the topics (represented as
tags) people in the forum are talking about. Although from the schema’s perspective it is not evident, there exist
three different types of forums. They are distinguished by their titles:

• personal walls: “Wall of . . . ”
• image albums: “Album k of . . . ”
• groups: “Group for . . . ”

Table 3.2 shows the attributes of the Forum entity.

Attribute Type Description
id ID The identifier of the forum.
title Long String The title of the forum.
creationDate DateTime The date the forum was created.

Table 3.2: Attributes of the Forum entity.

Message: an abstract entity that represents a message created by a person. Table 3.3 shows the attributes of the
Message abstract entity.

Attribute Type Description
id ID The identifier of the message.
browserUsed String The browser used by the Person to create the message.
creationDate DateTime The date the message was created.
locationIP String The IP of the location from which the message was created.
content Text (optional) The content of the message.
length 32-bit Integer The length of the content.

Table 3.3: Attributes of the Message interface.

Organisation: an institution of the real world. Table 3.4 shows the attributes of the Organisation entity.

Attribute Type Description
id ID The identifier of the organisation.
name Long String The name of the organisation.
url Long String The URL of the organisation.

Table 3.4: Attributes of the Organisation entity.

Person: the avatar a real world person creates when he/she joins the network, and contains various information
about the person as well as network related information. Table 3.5 shows the attributes of the Person entity.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 20 of 164

Chapter 3. Data sets and data generation 3.2. Data Schema

Attribute Type Description
id ID The identifier of the person.
firstName String The first name of the person.
lastName String The last name of the person.
gender String The gender of the person.
birthday Date The birthday of the person.
email {Long String} The set of emails the person has (cardinality: at least one).
speaks {String} The set of languages the person speaks (cardinality: at least one).
browserUsed String The browser used by the person when he/she registered to the social

network.
locationIP String The IP of the location from which the person was registered to the

social network.
creationDate DateTime The date the person joined the social network.

Table 3.5: Attributes of the Person entity.

Place: a place in the world. Table 3.6 shows the attributes of the Place entity. Note, each Place has additional
parameters: longitude and latitude, which are not exposed. These are used internally for sorting places.

Attribute Type Description
id ID The identifier of the place.
name Long String The name of the place.
url Long String The URL of the place.

Table 3.6: Attributes of the Place entity.

Post: a sub-class of Message, that is posted in a forum. Posts are created by persons into the forums where they
belong. Posts contain either content or imageFile, always one of them but never both. The one they do not have
is an empty string. Table 3.7 shows the attributes of the Post entity.

Attribute Type Description
language String (optional) The language of the post. Mutually exclusive with imageFile.
imageFile String (optional) The image file of the post. Mutually exclusive with language.

Table 3.7: Attributes of the Post entity.

Tag: a topic or a concept. Tags are used to specify the topics of forums and posts, as well as the topics a person
is interested in. Table 3.8 shows the atltributes of the Tag entity.

Attribute Type Description
id ID The identifier of the tag.
name Long String The name of the tag.
url Long String The URL of the tag.

Table 3.8: Attributes of the Tag entity.

TagClass: a class used to build a hierarchy of tags. Table 3.9 shows the attributes of the TagClass entity.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 21 of 164

Chapter 3. Data sets and data generation 3.2. Data Schema

Attribute Type Description
id ID The identifier of the tagclass.
name Long String The name of the tagclass.
url Long String The URL of the tagclass.

Table 3.9: Attributes of the TagClass entity.

University: a sub-class of Organisation, and represents an institution where persons study.

3.2.2 Relations (Edges)

Relations (edges) connect entities of different types. The endpoint entities are defined by their “id” attribute.
Edge instances starting from or ending in a given node are treated as a set, i.e. no ordering is defined on the
edges. Multiple edges (i.e. edges of the same type between two entity instances) are not allowed in SNB graphs.

Name Source Destination Type Description
containerOf Forum[1] Post[0..*] D A Forum and a Post contained in it
hasCreator Message[0..*] Person[1] D A Message and its creator (Person)
hasInterest Person[0..*] Tag[1..*] D APerson and a Tag representing a topic the

person is interested in
hasMember Forum[0..*] Person[1..*] D A Forum and its member (Person)

In version 1:
Attribute joinDate
Type DateTime

Description The Date the person
joined the Forum

In version 2:
Attribute creationDate
Type DateTime

Description The Date the person
joined the Forum

hasModerator Forum[0..*] In version 1:
Person[1]
In version 2:
Person[0..1]

D A Forum and its moderator (Person)

hasTag Message[0..*] Tag[0..*] D AMessage and a Tag representing themes-
sage’s topic

hasTag Forum[0..*] Tag[1..*] D A Forum and a Tag representing the fo-
rum’s topic

hasType Tag[0..*] TagClass[1] D A Tag and a TagClass the tag belongs to
isLocatedIn Company[0..*] Country[1] D A Company and its home Country
isLocatedIn Message[0..*] Country[1] D A Message and the Country from which it

was issued
isLocatedIn Person[0..*] City[1] D A Person and their home City
isLocatedIn University[0..*] City[1] D A University and the City where the uni-

versity is
isPartOf City[1..*] Country[1] D A City and the Country it is part of
isPartOf Country[1..*] Continent[1] D A Country and the Continent it is part of
isSubclassOf TagClass[0..*] TagClass[0..1] D A TagClass and its parent TagClass

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 22 of 164

Chapter 3. Data sets and data generation 3.3. Data Generation

knows Person[0..*] Person[0..*] U Two Persons that know each other. Note
that (1) the knows edges are undirected (all
other edge types are directed and (2) to
avoid duplications, these edges are only se-
rialized to one direction and it is the re-
sponsibility of the loader/implementation
component to treat them as undirected.
In this specification document, we use the
terms “knows” and “friends (with/of/etc.)”
interchangeably.
Attribute creationDate
Type DateTime

Description The date the knows
relation was established

likes Person[0..*] Message[0..*] D A Person that likes a Message
Attribute creationDate
Type DateTime

Description The date the like was
issued

replyOf Comment[0..*] Message[1] D A Comment and the Message it replies
studyAt Person[0..*] University[0..*] D A Person and a University it has studied

Attribute classYear
Type 32-bit Integer

Description The year the person
graduated

workAt Person[0..*] Company[0..*] D A Person and a Company it works
Attribute workFrom
Type 32-bit Integer

Description
The year the person
started to work at that
Company

Table 3.10: Description of the data relations. Type – D: directed edge, U: undirected edge.

3.2.3 Domain Concepts

A thread consists of Messages, starting with a single Post and the Comments that – either directly or transitively
– reply to that Post.

3.3 Data Generation

LDBC SNB provides Datagen (Data Generator), which produces synthetic datasets following the schema de-
scribed above. Data produced mimics a social network’s activity during a period of time. Three parameters
determine the generated data: the number of persons, the number of years simulated, and the starting year of
simulation. Datagen is defined by the following characteristics:

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 23 of 164

Chapter 3. Data sets and data generation 3.3. Data Generation

• Realism. Data generated by Datagen mimics the characteristics of those found in a real social network. In
Datagen, output attributes, cardinalities, correlations and distributions have been finely tuned to reproduce
a real social network in each of its aspects. On the one hand, it is aware of the data and link distributions
found in a real social network such as Facebook. On the other hand, it uses real data from DBpedia, such
as property dictionaries, which are used to ensure that attribute values are realistic and correlated.

• Scalability. Since LDBC SNB targets systems of different scales and budgets, Datagen is capable of gen-
erating datasets of different sizes, from a few Gigabytes to Terabytes. Datagen is implemented following
the MapReduce parallel paradigm, allowing the generation of small datasets in single node machines, as
well as large datasets on commodity clusters.

• Determinism. Datagen is deterministic regardless of the number of cores/machines used to produce the
data. This important feature guarantees that all Test Sponsors will face the same dataset, thus, making the
comparisons between different systems fair and the benchmarks’ results reproducible.

• Usability. LDBCSNB is designed to have an affordable entry point. As such, Datagen’s design is severely
influenced by this philosophy, and therefore it is designed to be as easy to use as possible.

3.3.1 Resource Files

Datagen uses a set of resource files with data extracted from DBpedia. Conceptually, Datagen generates at-
tribute’s values following a property dictionary model that is defined by

• a dictionary D
• a ranking function R
• a probability function F

Dictionary D is a fixed set of values. The ranking function R is a bijection that assigns to each value in a
dictionary a unique rank between 1 and ∣D∣. The probability density function F specifies how the data generator
chooses values from dictionary D using the rank for each term in the dictionary. The idea to have a separate
ranking and probability function is motivated by the need of generating correlated values: in particular, the
ranking function is typically parameterized by some parameters: different parameter values result in different
rankings. For example, in the case of a dictionary of property firstName, the popularity of first names might
depend on the gender, country and birthday properties. Thus, the fact that the popularity of first names in
different countries and times is different, is reflected by the different ranks produced by function R over the full
dictionary of names. Datagen uses a dictionary for each literal property, as well as ranking functions for all
literal properties. These are materialized in a set of resource files, which are described in Table 3.11.

3.3.2 Graph Generation

Figure 3.2 conceptually depicts the full data generation process. The first step loads all the dictionaries and
resource files, and initializes the Datagen parameters. Second, it generates all the Persons in the graph, and the
minimum necessary information to operate. Part of this information are the interests of the persons, and the
number of knows relationships of every person, which is guided by a degree distribution function similar to that
found in Facebook [85].

The next three steps are devoted to the creation of knows relationships. An important aspect of real social
networks, is the fact that similar persons (with similar interests and behaviors) tend to be connected. This is
known as the Homophily principle [48, 14], and implies the presence of a larger amount of triangles than that
expected in a random network. In order to reproduce this characteristic, Datagen generates the edges by means
of correlation dimensions. Given a person, the probability to be connected to another person is typically skewed
with respect to some similarity between the persons. That is, for a person p and for a small set of persons that are
somehow similar to it, there is a high connectivity probability, whereas for most other persons, this probability
is quite low. This knowledge is exploited by Datagen to reproduce correlations.

Given a similarity function M(p) ∶ p → [0,∞) that gives a score to a person, with the characteristic that
two similar persons will have similar scores, we can sort all the persons by functionM and compare a person p

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 24 of 164

Chapter 3. Data sets and data generation 3.3. Data Generation

Resource Name Description
Browsers Contains a list of web browsers and their probability to be used. It is used to

set the browsers used by the users.
Cities by Country Contains a list of cites and the country they belong. It is used to assign cities

to users and universities.
Companies by Country Contains the set of companies per country. It is used to set the countries where

companies operate.
Countries Contains a list of countries and their populations. It is used to obtain the amount

of people generated for each country.
Emails Contains the set of email providers. It is used to generate the email accounts of

persons.
IP Zones Contains the set of IP ranges assigned to each country. It is used to assign the

IP addresses to users.
Languages by Country Contains the set of languages spoken in each country. It is used to set the lan-

guages spoken by each user.
Name by Country Contains the set of names and the probability to appear in each country. It is

used to assign names to persons, correlated with their countries.
Popular places by Country Contains the set of popular places per country. These are used to set where

images attached to posts are taken from.
Surnames’ by Country Contains the set of surnames and the probability to appear in each country. It

is used to assign surnames to persons, correlated with their countries.
Tags by Country Contains a set of tags and their probability to appear in each country. It is used

to assign the interests to persons and forums.
Tag Classes Contains, for each tag, the classes it belongs to.
Tag Hierarchies Contains, for each tagClass, their parent tagClass.
Tag Matrix Contains, for each tag, the correlation probability with the other tags. It is used

enrich the tags associated to messages.
Tag Text Contains, for each tag, a text. This is used to generate the text for messages.
Universities by City Contains the set of universities per city. It is used to set the cities where uni-

versities operate.

Table 3.11: Resource files.

against only the K neighbouring persons in the sorted array. The consequence of this approach is that similar
persons are grouped together, and the larger the distance between two persons indicates a monotonic increase
in their similarity difference. In order to choose the persons to connect, Datagen uses a geometric probability
distribution that provides a probability for picking persons to connect, that are between 1 andK positions apart
in the similarity ranking.

Similarity functions and probability distribution functions over ranked distance drive what kind of persons
will be connected with an edge, not how many. As stated above, the number of friends of a person is determined
by a Facebook-like distribution. The edges that will be connected to a person p, are selected by randomly picking
the required number of edges according to the correlated probability distributions as discussed before. In the
case that multiple correlations exist, another probability function is used to divide the intended number of edges
between the various correlation dimensions. In Datagen, three correlated dimensions are chosen: the first one
depends on where the person studied and when, and the second correlation dimension depends on the interests
of the person, and the third one is random (to reproduce the random noise present in real data). Thus, Datagen
has a Facebook-like distributed node degree, and a predictable (but not fixed) average split between the reasons
for creating edges.

In the next step, a person’s activity, in the form of forums, posts and comments is created. Datagen repro-
duces the fact that people with a larger number of friends have a higher activity, and hence post more photos

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 25 of 164

Chapter 3. Data sets and data generation 3.3. Data Generation

Figure 3.2: The Datagen generation process.

and comments to a larger number of posts. Another important characteristic of real persons’ activity in social
network, are time correlations. Usually, person’ posts creation in a social network is driven by real world events.
For instance, one may think about an important event such as the elections in a country, or a natural disaster.
Around the time these events occur, network activity about these events’ topics sees an increase in volume. Data-
gen reproduces these characteristics with the simulation of what we name as flashmob events. Several events are
generated randomly at the beginning of the generation process, which are assigned a random tag, and are given
a time and an intensity which represents the repercussion of the event in the real world. When persons’ posts
are created, some of them are classified as flashmob posts, and their topics and dates are assigned based on the
generated flashmob events. The volume of activity around this events is modeled following a model similar to
that described in [45]. Furthermore, in order to reproduce the more uniform every day person activity, Datagen
also generates posts uniformly distributed along all the simulated time.

Finally, in the last step the data is serialized into the output files.

3.3.3 Distributions, Parameters, and Quirks

Interesting quirks:

• A Person is not a member of their Wall but they are its moderator, they do not have a hasMember edge.
• Each Album generated for Person will have approximately 70% of their friends as members.
• A given Person has a 5% chance of being a moderator of a set of groups.
• Group membership is composed of 30% from the moderator’s friends and the remainder is chosen ran-
domly (from the block the person is in).

• Comments are only made in Walls and Groups.
• Messages can only receive likes during a 7-day window after their creation.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 26 of 164

Chapter 3. Data sets and data generation 3.4. Output Data

• Comments always occur within one day of Message they are replying to. The creation date is generated
following the power-law distribution in Figure 3.3. The mean delay between Comments and their parent
Message is 6.85 hours.

• Flashmob events span a 72-hour time window with a specific event time in the middle of the window;
there are 36 hours each side of the specific event time. Following the distribution in Figure 3.4 posts are
generated either side of flashmob event time, posts are clustered around the specific event time.

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25
x (hours)

F
(x

)
Empirical Inverse Power Law Cumulative Distribution

Figure 3.3: The power-law used to generate comments.

3.3.4 Implementation Details

Datagen is implemented using the MapReduce parallel paradigm. In MapReduce, a Map function runs on
different parts of the input data, in parallel and on many node clusters. This function processes the input data
and produces for each result a key. Reduce functions then obtain this data and Reducers run in parallel on many
cluster nodes. The produced key simply determines the Reducer to which the results are sent. The use of the
MapReduce paradigm allows the generator to scale considerably, allowing the generation of huge datasets by
using clusters of machines.

In the case of Datagen, the overall process is divided into three MapReduce jobs. In the first job, each
mapper generates a subset of the persons of the graph. A key is assigned to each person using one of the
similarity functions described above. Then, reducers receive the key-value pairs sorted by the key, generate
the knows relations following the described windowing process, and assign to each person a new key based
on another similarity function, for the next MapReduce pass. This process can be successively repeated for
additional correlation dimension. Finally, the last reducer generates the remaining information such as forums,
posts and comments.

3.4 Output Data

For each scale factor, Datagen produces three different artefacts:

• Dataset: The dataset to be bulk loaded by the SUT. In the Interactive workload, it corresponds to roughly
the 90% of the total generated network.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 27 of 164

Chapter 3. Data sets and data generation 3.4. Output Data

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

F
(x

)

Empirical Flashmob Cumulative Distribution

Figure 3.4: The distribution used to generate posts during flashmob events.

• Update Streams: A set of update streams containing update queries, which are used by the driver to
generate the update queries of the workloads. This update streams correspond to the remaining 10% of
the generated dataset.

• Substitution Parameters: A set of files containing the different parameter bindings that will be used by
the driver to generate the read queries of the workloads.

3.4.1 Scale Factors

LDBC SNB defines a set of scale factors (SFs), targeting systems of different sizes and budgets. SFs are com-
puted based on the ASCII size in Gibibytes of the generated output files using the csv-singular-merged-fk seri-
alizer (see Section 3.4.2).2 For both workloads, the SF1 data set is 1 GiB, SF100 is 100 GiB, and SF10 000 is
10 000 GiB (not 10 TiB).

However, note that the two SNB workloads have different data sets due with different folder structures.
The data sets sizes are established as follows: For both workloads, we use the default settings for the splitting

the data into an intial (bulk-loaded) data set and the later update operations (“streams”). For Interactive, both
the 90% initial data and the 10% update streams count towards the total size and the csv-singular-merged-fk
serializer is used. For BI, the sum of the initial snapshot (97%) and the update operations (daily inserts and
deletes) are measured and the default CSV serializers (composite-merged-fk) is used.

It is important to note that for a given workload and scale factor, data sets generated using different serializers
contain exactly the same data, the only difference is in how they are represented.

The currently available SFs are the following: 1, 3, 10, 30, 100, 300, 1 000, 3 000, 10 000, 30 000. Addi-
tionally, three small SFs, 0.003, 0.1, and 0.3 are provided to help initial testing and validation efforts.

The Test Sponsor may select the SF that better fits their needs, by properly configuring the Datagen, as
described in Section 3.3. The size of the resulting dataset is mainly affected by the following configuration
parameters: the number of persons and the number of years simulated. By default, all SFs are defined over a
period of three years, starting from 2010, and SFs are computed by scaling the number of Persons in the network.
Table 3.12 shows the number of entities for SFs 1, . . . , 30 000 data sets.

2This way of characterizing the size of the data set is identical to the scaling of TPC-H and TPC-DS.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 28 of 164

Chapter 3. Data sets and data generation 3.4. Output Data

File SF1 SF3 SF10 SF30 SF100 SF300 SF1 000 SF3 000 SF10 000 SF30 000

static/Organisation 7 955 7 955 7 955 7 955 7 955 7 955 7 955 7 955 7 955 7 955
static/Place 1 460 1 460 1 460 1 460 1 460 1 460 1 460 1 460 1 460 1 460
static/Tag 16 080 16 080 16 080 16 080 16 080 16 080 16 080 16 080 16 080 16 080
static/TagClass 71 71 71 71 71 71 71 71 71 71
dynamic/Comment 2 391 707 7 275 929 24 318 240 71 971 437 238 859 896 698 717 507 2 305 141 269 6 788 314 573 22 203 530 429 68 078 584 186
dynamic/Comment_hasTag_Tag 2 903 970 8 957 968 30 193 298 90 186 505 300 936 421 885 843 849 2 934 823 389 8 669 809 939 28 414 179 030 87 250 551 072
dynamic/Forum 106 594 259 629 705 629 1 754 332 4 876 750 12 314 071 35 084 033 92 411 437 272 234 669 770 847 855
dynamic/Forum_hasMember_Person 3 260 692 9 831 062 33 637 572 100 176 831 336 799 532 992 219 233 3 299 845 513 9 734 943 439 31 952 684 743 98 131 214 167
dynamic/Forum_hasTag_Tag 342 040 841 153 2 294 050 5 682 315 15 787 515 39 868 135 113 622 479 299 293 084 881 501 639 2 495 628 126
dynamic/Person 10 620 25 870 70 800 175 950 487 700 1 230 500 3 505 000 9 232 000 27 200 000 77 000 000
dynamic/Person_hasInterest_Tag 246 066 607 394 1 659 221 4 103 933 11 398 465 28 784 564 82 043 446 216 113 647 636 466 970 1 801 780 271
dynamic/Person_knows_Person 219 450 668 431 2 304 951 6 880 584 23 116 805 68 313 982 227 125 539 670 962 543 2 201 852 957 6 763 316 230
dynamic/Person_likes_Comment 1 616 891 5 469 630 20 401 119 66 391 084 243 335 846 776 234 551 2 796 244 391 8 801 761 184 30 518 383 179 97 396 567 634
dynamic/Person_likes_Post 844 544 2 659 885 9 328 362 29 137 595 105 650 858 335 953 318 1 210 202 589 3 822 741 245 13 258 168 236 42 113 297 722
dynamic/Person_studyAt_University 8 562 20 755 56 777 140 829 390 266 984 945 2 804 285 7 386 305 21 760 681 61 607 278
dynamic/Person_workAt_Company 22 766 55 826 154 122 383 107 1 061 627 2 678 190 7 627 121 20 093 569 59 188 556 167 544 307
dynamic/Post 1 192 942 3 056 157 8 781 335 22 948 816 67 764 850 181 024 990 548 192 276 1 516 905 453 4 693 293 319 13 820 145 527
dynamic/Post_hasTag_Tag 778 511 2 384 596 8 112 750 24 116 550 80 572 324 237 819 624 789 063 560 2 330 311 354 7 634 983 368 23 442 869 026

Table 3.12: Properties of data sets for each scale factor for the raw data sets produced the Spark-based generator,
used as a basis of the data sets of SNB Interactive v2 and SNB BI.

Serializer name (v2.x) Legacy serializer name (v0.x and v1.x) Nodes Attributes Edges
single-
valued

multi-
valued

one-
to-many

many-
to-many

csv-singular-projected-fk CsvBasic ⊗ ◯ ⊗ ⊗ ⊗
csv-composite-projected-fk CsvComposite ⊗ ◯ ◯ ⊗ ⊗
csv-singular-merged-fk CsvMergeForeign ⊗ ◯ ⊗ ◯ ⊗
csv-composite-merged-fk CsvCompositeMergeForeign ⊗ ◯ ◯ ◯ ⊗

Table 3.13: Attributes and edges serialized to separate files the different CSV serializers.

Table 3.13 shows how each CSV serializer handles attributes/edges of different cardinalities, demonstrating
why csv-singular-projected-fk has the most files and csv-composite-merged-fk has the least number of files.

3.4.2 Serializers

The datasets are generated in the social_network/ directory, split into static and dynamic parts (Figure 3.1). The
filenames (without the extension) end in _i_j where i is the block id and j is the partition id (set by numThreads).
The SUT has to take care only of the generated Dataset to be bulk loaded. Using NULL values for storing optional
values is allowed.

Datagen currently only supports CSV-based serializers. These produce CSV-like text files which use the
pipe character “|” as the primary field separator and the semicolon character “;” as a separator for multi-valued
attributes (for the composite serializers). The CSV files are stored in two subdirectories: static/ and dynamic/.
Depending on the number of threads used for generating the dataset, the number of files varies, since there is a
file generated per thread. We indicate this with “part-*” in the specification.

The following CSV variants are supported:

• csv-composite-projected-fk: Each relation with a cardinality larger than one are output in a separate file.
Generated files and their schemas as shown in Table 3.14.

• csv-composite-merged-fk: This serializer is similar to csv-composite-projected-fk, but relations that have
a cardinality of 1-to-N are merged in the entity files as a foreign keys. There are 13 such relations in total:

– Comment_hasCreator_Person, Comment_isLocatedIn_Country, Comment_replyOf_Comment,
Comment_replyOf_Post (merged to Comment);

– Forum_hasModerator_Person (merged to Forum);
– Organisation_isLocatedIn_Place (merged to Organisation);
– Person_isLocatedIn_City (merged to Person);
– Place_isPartOf_Place (merged to Place);
– Post_hasCreator_Person, Post_isLocatedIn_Country, Forum_containerOf_Post (merged to Post);
– Tag_hasType_TagClass (merged to Tag);
– TagClass_isSubclassOf_TagClass (merged to TagClass)

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 29 of 164

Chapter 3. Data sets and data generation 3.4. Output Data

C File Content
N static/Organisation/part-*.csv id | type | name | url
E static/Organisation_isLocatedIn_Place/part-*.csv OrganisationId | PlaceId
N static/Place/part-*.csv id | name | url | type
E static/Place_isPartOf_Place/part-*.csv Place1Id | Place2Id
N static/Tag/part-*.csv id | name | url
E static/Tag_hasType_TagClass/part-*.csv TagId | TagClassId
N static/TagClass/part-*.csv id | name | url
E static/TagClass_isSubclassOf_TagClass/part-*.csv TagClass1Id | TagClass2Id
N dynamic/Comment/part-*.csv creationDate | id | locationIP | browserUsed | content | length
E dynamic/Comment_hasCreator_Person/part-*.csv creationDate | CommentId | PersonId
E dynamic/Comment_hasTag_Tag/part-*.csv creationDate | CommentId | TagId
E dynamic/Comment_isLocatedIn_Country/part-*.csv creationDate | CommentId | CountryId
E dynamic/Comment_replyOf_Comment/part-*.csv creationDate | Comment1Id | Comment2Id
E dynamic/Comment_replyOf_Post/part-*.csv creationDate | CommentId | PostId
N dynamic/Forum/part-*.csv creationDate | id | title
E dynamic/Forum_containerOf_Post/part-*.csv creationDate | ForumId | PostId
E dynamic/Forum_hasMember_Person/part-*.csv creationDate | ForumId | PersonId
E dynamic/Forum_hasModerator_Person/part-*.csv creationDate | ForumId | PersonId
E dynamic/Forum_hasTag_Tag/part-*.csv creationDate | ForumId | TagId

N dynamic/Person/part-*.csv creationDate | id | firstName | lastName | gender | birthday | locationIP |
browserUsed | language | email

E dynamic/Person_hasInterest_Tag/part-*.csv creationDate | personId | interestId
E dynamic/Person_isLocatedIn_City/part-*.csv creationDate | PersonId | CityId
E dynamic/Person_knows_Person/part-*.csv creationDate | Person1Id | Person2Id
E dynamic/Person_likes_Comment/part-*.csv creationDate | PersonId | CommentId
E dynamic/Person_likes_Post/part-*.csv creationDate | PersonId | PostId
E dynamic/Person_studyAt_University/part-*.csv creationDate | PersonId | UniversityId | classYear
E dynamic/Person_workAt_Company/part-*.csv creationDate | PersonId | CompanyId | workFrom

N dynamic/Post/part-*.csv creationDate | id | imageFile | locationIP | browserUsed | language | content |
length

E dynamic/Post_hasCreator_Person/part-*.csv creationDate | PostId | PersonId
E dynamic/Post_hasTag_Tag/part-*.csv creationDate | PostId | TagId
E dynamic/Post_isLocatedIn_Country.csv creationDate | PostId | CountryId

Table 3.14: Files output by the csv-composite-projected-fk serializer (31 in total). The first part of the table
contains the static entites, the second part contains the dynamic ones. Notation – C: entity category, N: node,
E: edge.

Generated files and their schemas as shown in Table 3.15.
• csv-singular-merged-fk: Similar to the csv-composite-merged-fk but multi-valued attributes
(Person.email and Person.speaks) are stored as separate directories (Person_email_EmailAddress and
Person_speaks_Language, resp.).

• csv-singular-projected-fk: Similar to the csv-composite-projected-fk but multi-valued attributes
(Person.email and Person.speaks) are stored as separate directories (Person_email_EmailAddress and Per-
son_speaks_Language, resp.).

• rawmode: The file names are the same as in composite-merged-fk but there are two important differences:
(1) additional attributes, e.g. deletionDate, explicitlyDeleted, and weight (used for weighted graphs in
Graphalytics [39]), are included, (2) all data is included, i.e. if a Forum is created and deleted before
sampling the initial data set, it is included in this data set. Generated files and their schemas as shown in
Table 3.16.

Inheritance The inheritance hierarchies in the schema have two important characteristics (1) all subclasses
use the same id space, e.g. there cannot be a Comment and a Post with id 1 at the same time, (2) they are
serialized to CSVs using either the map hierarchy to single table or map each concrete class to its own table
strategies3:

Message = Comment | Post Map each concrete class to its own table is used i.e. separate CSV files are used
for the Comment and the Post classes.

3http://www.agiledata.org/essays/mappingObjects.html

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 30 of 164

http://www.agiledata.org/essays/mappingObjects.html

Chapter 3. Data sets and data generation 3.5. Introducing Delete Operations

C File Content
N static/Organisation/part-*.csv id | type | name | url | LocationPlaceId
N static/Place/part-*.csv id | name | url | type | PartOfPlaceId
N static/Tag/part-*.csv id | name | url | TypeTagClassId
N static/TagClass/part-*.csv id | name | url | SubclassOfTagClassId

N dynamic/Comment/part-*.csv creationDate | id | locationIP | browserUsed | content | length | CreatorPersonId |
LocationCountryId | ParentPostId | ParentCommentId

E dynamic/Comment_hasTag_Tag/part-*.csv creationDate | CommentId | TagId
N dynamic/Forum/part-*.csv creationDate | id | title | ModeratorPersonId
E dynamic/Forum_hasMember_Person/part-*.csv creationDate | ForumId | PersonId
E dynamic/Forum_hasTag_Tag/part-*.csv creationDate | ForumId | TagId

N dynamic/Person/part-*.csv creationDate | id | firstName | lastName | gender | birthday | locationIP |
browserUsed | LocationCityId | language | email

E dynamic/Person_hasInterest_Tag/part-*.csv creationDate | personId | interestId
E dynamic/Person_knows_Person/part-*.csv creationDate | Person1Id | Person2Id
E dynamic/Person_likes_Comment/part-*.csv creationDate | PersonId | CommentId
E dynamic/Person_likes_Post/part-*.csv creationDate | PersonId | PostId
E dynamic/Person_studyAt_University/part-*.csv creationDate | PersonId | UniversityId | classYear
E dynamic/Person_workAt_Company/part-*.csv creationDate | PersonId | CompanyId | workFrom

N dynamic/Post/part-*.csv creationDate | id | imageFile | locationIP | browserUsed | language | content |
length | CreatorPersonId | ContainerForumId | LocationCountryId

E dynamic/Post_hasTag_Tag/part-*.csv creationDate | PostId | TagId

Table 3.15: Files output by the csv-composite-merged-fk serializer (18 in total). The first part of the table contains
the static entites, the second part contains the dynamic ones. Notation – C: entity category, N: node, E: edge.

Place = City | Country | Continent Map hierarchy to single table is used, i.e. all Place node are serialized in
a single file. A discriminator attribute “type” is used with the value denoting the concrete class, e.g.
“Country”.

Organisation = Company | University Map hierarchy to single table is used, i.e. all Organisation nodes are
serialized in a single fiel. A discriminator attribute “type” is used with the value denoting the concrete
class, e.g. “Company”.

3.4.3 Interactive Update Streams (Inserts)

The generic schema for the Interactive update streams is given in Table D.8, while the concrete schemas of each
insert operations is given in Table D.9. The update stream files are generated in the social_network/ directory
and are grouped as follows:

• updateStream_*_person.csv files contain update operation 1: INS 1
• updateStream_*_forum.csv files contain update operations 2–8: INS 2 INS 3 INS 4 INS 5 INS 6

INS 7 INS 8

Remark: update streams in version 1 only contain inserts, while in version 2, they contain both inserts and
deletes.

3.4.4 Substitution Parameters

The substitution parameters are generated in the substitution_parameters/ directory. Each parameter file is
named {interactive|bi}_<id>_param.txt, corresponding to an operation of Interactive complex reads (IC 1
– IC 14v2) and BI reads (BI 1 – BI 20). The schemas of these files are defined by the operator, e.g. the
schema of IC 1 is “personId|firstName”.

3.5 Introducing Delete Operations

Challenge for systems To support deletion operations graph processing systems need to solve numerous tech-
nical challenges:

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 31 of 164

Chapter 3. Data sets and data generation 3.5. Introducing Delete Operations

C File Content
N static/Organisation/part-*.csv id | type | name | url | LocationPlaceId
N static/Place/part-*.csv id | name | url | type | PartOfPlaceId
N static/Tag/part-*.csv id | name | url | TypeTagClassId
N static/TagClass/part-*.csv id | name | url | SubclassOfTagClassId

N dynamic/Comment/part-*.csv
creationDate | deletionDate | explicitlyDeleted | id | locationIP | browserUsed |
content | length | CreatorPersonId | LocationCountryId | ParentPostId | ParentCommen-
tId

E dynamic/Comment_hasTag_Tag/part-*.csv creationDate | deletionDate | CommentId | TagId
N dynamic/Forum/part-*.csv creationDate | deletionDate | explicitlyDeleted | id | title | ModeratorPersonId
E dynamic/Forum_hasMember_Person/part-*.csv creationDate | deletionDate | explicitlyDeleted | ForumId | PersonId
E dynamic/Forum_hasTag_Tag/part-*.csv creationDate | deletionDate | ForumId | TagId

N dynamic/Person/part-*.csv creationDate | deletionDate | explicitlyDeleted | id | firstName | lastName | gender
| birthday | locationIP | browserUsed | LocationCityId | language | email

E dynamic/Person_hasInterest_Tag/part-*.csv creationDate | deletionDate | personId | interestId
E dynamic/Person_knows_Person/part-*.csv creationDate | deletionDate | explicitlyDeleted | Person1Id | Person2Id
E dynamic/Person_likes_Comment/part-*.csv creationDate | deletionDate | explicitlyDeleted | PersonId | CommentId
E dynamic/Person_likes_Post/part-*.csv creationDate | deletionDate | explicitlyDeleted | PersonId | PostId
E dynamic/Person_studyAt_University/part-*.csv creationDate | deletionDate | PersonId | UniversityId | classYear
E dynamic/Person_workAt_Company/part-*.csv creationDate | deletionDate | PersonId | CompanyId | workFrom

N dynamic/Post/part-*.csv
creationDate | deletionDate | explicitlyDeleted | id | imageFile | locationIP |
browserUsed | language | content | length | CreatorPersonId | ContainerForumId | Lo-
cationCountryId

E dynamic/Post_hasTag_Tag/part-*.csv creationDate | deletionDate | PostId | TagId

Table 3.16: Directories created by the raw serializer (18 in total). The first part of the table contains the static
entites, the second part contains the dynamic ones. Notation – C: entity category, N: node, E: edge. The
entities with the explicitlyDeleted attribute – Comment, Forum, Post nodes, and hasMember, knows, likes
(Comment/Post) edges – denote whether the entity is deleted as part of an explicit delete operation or implicitly
through a cascading delete operation.

1. Users should be able to express deletion operations using the database API, preferably using a high-level
declarative query language with clear semantics [31].

2. Deletion operations limit the algorithms and data structures that can be used by a system. Certain dynamic
graph algorithms are significantly more expensive to recompute in the presence of deletes [70] or only
support either insert or deletions but not both [71]. A number of updatable matrix storage formats only
support efficient insertions but not deletions [18]. Meanwhile some graph databases might be able to
exploit indices to speed up deletions [15, Sec. 4.4.2]

3. Distributed graph databases need to employ specialized protocols to enforce consistency of deletions [87].

Challenge for benchmarks Due to their importance and challenging nature, we found it necessary to incor-
porate delete operations into LDBC benchmarks. However, doing so is a non-trivial task as it impacts on each
component in the benchmark workflow: workload specifications, data generation, parameter curation, and the
workload driver. This section focuses primarily on data generation.

The initial step in generating delete operations is to define the semantics of the desired operations. To
understand common behaviour of deletes we informally surveyed several social networks, the findings of which
motivated the design of 8 delete operations described in Section 8.6.

The next step was to generate delete events within LDBC’s synthetic data generator and ensure that they
follow a logic order in the social network. For example, a delete knows edge event can only occur after both
Persons join the network and become friends, but before either Person leaves the network. To achieve this
Datagen was extended to support dynamic entities. Dynamic entities have a creation date and a deletion date,
which together comprise an entity’s lifespan. Once generated this allows for the extraction of deletion operations,
which can be utilized by LDBC workloads. Deriving valid lifespans for dynamic entities was the subject of a
short paper published at the GRADES-NDA 2020 workshop [88] and is presented in Section 3.6.

Next it was important to distinguish between implicit and explicit delete events. Continuing with the knows
edge example, once created the connection exists until either Person leaves the network, at which point the
connection is implicitly deleted, as per the semantics of delete Person (Section 5.2). Alternatively, at any time

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 32 of 164

Chapter 3. Data sets and data generation 3.6. Lifespan Management

up until this event, the friendship can be explicitly deleted, i.e. two people have a disagreement and “unfriend”
each other, but both continue using the social network. Distinguishing between these types of events is important
as only explicit delete events should become delete operations in the workload.

To achieve this each dynamic entity is assigned a probability of being explicitly deleted, if selected the
entity is marked as such; this is used to ensure the correct serialization of delete events into delete operations.
For entities selected for explicit deletion the next step is to determine a realistic time at which the event occurs.
For example, a post has a higher probability of being deleted soon after it was posted compared to after 5 days.
To achieve this each dynamic entity is assigned a realistic distribution to select delete event timestamps from,
which respects the bounds imposed by the valid lifespans. The probability distributions used to determine if a
dynamic entities is explicitly deleted and then when that event occurs is discussed in Section 3.7.

Once generated dynamic entities must be correctly serialized. Depending on its creation date, deletion date,
and if the entity is explicitly deleted it can, (i) spawn an insert and delete operation, (ii) be included in the bulk
load component and spawn a delete operation, (iii) just be included in the bulk load component, (iv) spawn only
an insert operation, and (v) not be serialized at all! The approach for doing this is presented in Section 3.8.

We summarize the numerous challenges supporting the generation of dynamic entities and thus delete op-
erations poses below:

1. Validity. The generator should produce valid lifespans, where each generated dynamic entity guarantees
that (a) events in the graph follow a logical order: e.g. in a social network, two people can become friends
only after both persons joined the network and before either person leaves the network, (b) the graph never
violates the cardinality constraints prescribed by its schema, and (c) the graph continuously satisfies the
semantic constraints required by the application domain (e.g. no isolated comments in a social network).

2. Realism. The generator should create a graph with a realistic correlations and distribution of entities over
time. For example, in a social network the distribution of activity is non-uniform over time, real-world
events such as elections or controversial posts can drive spikes of posts and unfollowings respectively [55].
In addition, deletions can be correlated with certain attributes: e.g. the likelihood a person leaves the net-
work may be correlated with their number of friends [47]. Also, there are often temporal correlations
between entity creation and deletion: e.g. posts have an increased chance of deletion immediately follow-
ing creation compared to after a 3 month period.

3. Serialization. Care must be taken to distinguish between implicit and explicit delete events when creating
the bulk load component, insert operations, and delete operations.

4. Scalability. A graph with dynamic entities should be generated at scale (up to billions of edges).

3.6 Lifespan Management

This section is based on the short paper published at the GRADES-NDA 2020 workshop [88] authored by the
task force members.

In this section, we define the constraints for generating dynamic entities in a social network. Each dynamic
entity gets a lifespan, represented by two lifespan attributes, a creation date and a deletion date. We first briefly
review the data generator, introduce our notation and define the parameters of the generation process. Then,
we define the semantic constraints which regulate the participation in certain relationships along with the con-
straints for selecting intervals. We illustrate an application of these with two examples, shown in Figure 3.5 and
Figure 3.6.

Graph schema The LDBC Datagen component [62, 63] is responsible for generating the graph used in the
benchmarks. It produces a synthetic dataset modelling a social network’s activity. Its graph schema has 11 con-
crete node types connected by 20 edge types, and its entities (nodes/edges) are classified as either dynamic or
static (Figure 3.1). The dynamic part of the graph comprises of a fully connected Person graph and a number
of Message trees under Forums.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 33 of 164

Chapter 3. Data sets and data generation 3.6. Lifespan Management

Notation To describe lifespans and related constraints, we use the following notation. Constants are uppercase
bold, e.g. NC. Entity types are monospaced, e.g. Person, hasMember. Variables are lowercase italic, e.g.
pers,hm . Entities are sans-serif, e.g. P1,HM. For an entity x, ∗x denotes its creation date, while †x denotes
its deletion date. In most cases, both the creation and the deletion date are selected from an interval, e.g.
∗x ∈ [d1, d2) means that entity x should be created between dates d1 (inclusive) and d2 (exclusive). The
selected creation and deletion dates together form an interval that represents the lifespan of its entity. If any of
the intervals for selecting the lifespan attributes of an entity are empty, i.e. d2 ≤ d1, the entity should be discarded.
As illustrated later, this interval is often used to determine the intervals where the creation and deletion dates of
dependant entities are selected.

Parameters We parameterize the generator as follows. The network is created in 2010 and exists for 10 years
at which point the network collapses (NC = 2020). Data is simulated for a 3-year period, between the simulation
start, SS = 2010 and the simulation end, SE = 2013. In order to allow windowed execution by the LDBC SNB
driver (used for multi-threaded and distributed operation), we define a sufficiently large amount of time that
needs to pass between consecutive operations on an entity as ∆ = 10s.

3.6.1 General Rules

In this section, we define general rules that must be satisfied by all entities in the graph. In subsequent sections,
we refine these with domain-specific constraints. For a node n1, we always require that:

• ∗n1 ∈ [SS, SE), the node must be created between the simulation start and the simulation end.
• †n1 ∈ [∗n1 +∆, NC), the node must exist for at least ∆ time and must be deleted before the network
collapse.

To enforce referential integrity constraints (i.e. prevent dangling edges), the lifespan of edge e between nodes
n1 and n2 must always satisfy the following criteria:

• ∗e ∈ [max(∗n1,∗n2), min(†n1,†n2,SE)), in other terms, the edge must be created no sooner than both
of its endpoints but before any of its endpoints are deleted.

• †e ∈ [∗e +∆, min(†n1,†n2)), i.e. the edge must exist for at least ∆ time and deleted no later than any
of its endpoints.

To further refine the constraints for edges, we distinguish between two main cases.
(1) The endpoints of edge e are existing node n1 and node n2 which is inserted at the same time as the edge:

• ∗e = ∗n2
• †e = min(†n1,†n2). In case of edges with containment semantics (node n1 contains n2 through edge e),
node n2 must always be deleted at the same time as edge e , therefore †e = †n2 and †n2 ≤ †n1.

(2) In other cases, the edge must be created when both of its endpoints already exist and must be deleted no
later than them:

• ∗e ∈ [max(∗n1,∗n2) +∆, min(†n1,†n2,SE))
• †e ∈ [∗e +∆, min(†n1,†n2))

These constraints capture the “minimum” (i.e. most relaxed) set of constraints that must be enforced in all
domains. Next, we introduce additional constraints specific to our social network schema.

3.6.2 Person

A Person p is the avatar a real-world person creates when they join the network. A Person joins the network,
∗p, during the simulation period and they leave the network, †p, during the network lifetime:

• ∗p ∈ [SS, SE)
• †p ∈ [∗p +∆, NC)

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 34 of 164

Chapter 3. Data sets and data generation 3.6. Lifespan Management

For the edges of Person nodes pointing to a static node (isLocatedIn, studyAt, workAt, and hasInterest), we
assign the creation and deletion date from ∗p and †p, resp.

P1 ∶ Person P2 ∶ Person

∗P1: Feb 22 2010
†P1: Jul 26 2014

∗P2: Mar 07 2010
†P2: Oct 17 2012

knows1,2 ∶ Knows

∗knows1,2: Dec 01 2011
†knows1,2: Jun 05 2012

(a) An instance of a knows edge connecting two Person nodes. Creation and deletion dates are shown for each entity.
SS NCSE

P1

P2

∗knows1,2max(∗P1,∗P2)+∆ min(†P1, †P2,SE)
∆
†knows1,2∗knows1,2 + ∆ min(†P1, †P2)

∆
knows1,2

(b) Illustration of the intervals in which the creation dates ● and the deletion dates ● can be selected. Thick black lines
represent entity lifespans and thin grey lines represent valid intervals that dates can be selected in; ● indicates the selected
times (spanning the lifespan interval of the given entity). On the thin grey lines, thicker sections represent the minimal
amount of time that must pass before selecting a value. In case of creation dates, this is used to ensure that the dependant
entity exists for at least ∆ time. In case of deletion dates, it is used to ensure that the entity exists for at least ∆ time.

Figure 3.5: Example graph and its intervals.

3.6.2.1 Knows

The knows edge connects two Persons pi and pj that know each other in the network. The intervals where the
creation and deletion dates can be generated in are illustrated in Figure 3.5b and defined below:

• ∗knows i ,j ∈ [max(∗pi,∗pj) +∆, min(†pi,†pj ,SE))
• †knows i ,j ∈ [∗knows i ,j +∆, min(†pi,†pj))

3.6.3 Forum and Message

The rules for Forum and Message nodes along with their edges are given in Section 3.6.4 and Section 3.6.5,
respectively, and illustrated in Figure 3.6.

3.6.4 Forum

A Forum is a meeting point where people post Messages. There exists three categories of Forums: Wall
(forumw), Album (foruma), and Group (forumg). Each Forum has a set of Persons connected via hasMember
edges, a set of Tags connected via hasTag edges, a single moderator connected by a hasModerator edge and a
set of Messages (discussed in Section 3.6.5). For all Forums the outgoing hasTag edges get their creation date
and deletion date from ∗forum and †forum , respectively.

3.6.4.1 Groups

Groups are public places for people that share interests, any Person can create a Group forumg during their
lifespan. A Group can be deleted anytime after it was created.

• ∗forumg ∈ [∗p +∆, min(†p,SE))

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 35 of 164

Chapter 3. Data sets and data generation 3.6. Lifespan Management

• †forumg ∈ [∗forumg +∆, NC)

Group Moderator The initial hasModerator hmdg is the Group creator. If the moderator leaves the Group,
the Group will have no moderator (this is allowed in the schema of version 0.4.0+, see Figure 3.1).

• ∗hmdg ∈ [∗forumg +∆, min(†forumg,†p,SE))
• †hmdg ∈ [∗hmdg +∆, min(†forumg,†p))

Group Membership Any Person p can become a member of a given group. The hasMember hmg creation
is generated from the interval in which the Person and Forum lifespans overlap. The deletion date is generated
from the interval between the membership creation date (incremented by ∆) and the minimum of the Person
and Forum deletion dates.

• ∗hmg ∈ [max(∗forumg,∗p) +∆, min(†forum,†p,SE))
• †hmg ∈ [∗hmg +∆, min(†forumg,†p))

3.6.4.2 Walls

Every Person p, has a Wall forumw which is created when the Person joins the social network. The wall is
deleted when the Person is deleted.

• ∗forumw = ∗p +∆
• †forumw = †p

Wall Moderator Each Person has a hasModerator hmdw edge to their wall, which gets the creation date
(incremented by ∆) and deletion date from forumw. Note, only the moderator can create Post nodes on the
wall and the connecting Tag nodes are set based on the interest of the moderator.

• ∗hmdw = ∗forumw +∆
• †hmdw = †forumw

Wall Membership For a Person pi, all their friends pj (Person nodes connected via a knows edge) become
members of forumw at the time the knows edge is created. Hence, a hasMember hmw edge gets the creation
date of knows incremented by ∆. The deletion date is derived from the minimum of the Forum deletion date
and knows deletion date.

• ∗hmw = ∗knows i ,j +∆
• †hmw = min(†forumw,†knows i ,j)

3.6.4.3 Albums

A Person can create multiple Albums (foruma) containing a set of Photos. Albums can be created and then
deleted at any point during the lifespan of the Person.

• ∗foruma ∈ [∗p +∆, min(†p,SE))
• †foruma ∈ [∗foruma +∆, †p)

AlbumModerator The Person is the moderator for any Album they create. Album ownership cannot change
hence hasModerator hmda gets the creation date (incremented by ∆) and deletion date from ∗foruma and
†foruma respectively.

• ∗hmda = ∗foruma +∆
• †hmda = †foruma

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 36 of 164

Chapter 3. Data sets and data generation 3.6. Lifespan Management

Album Membership Only friends pi of a Person pj can become members of Albums created by pj . The
hasMember hma edge creation date is derived from the Album and knows creation dates. The deletion is
derived from the Forum and knows deletion dates.

• ∗hma = max(∗foruma,∗knows i,j) +∆
• †hmw = min(†foruma,†knows i,j)

3.6.5 Message

AMessage is an abstract entity that represents a message created by a Person. There are twoMessage subtypes:
Post and Comment. A Post is created in a Forum and a Comment represents a comment made by a Person to
an existingMessage (either a Post or a Comment). In a Forum the set of Message nodes form a treewith a Post
node at the root and Comment nodes for the rest.

3.6.5.1 Post

A Post can be created by a Person in a Forum. Only the moderator (i.e. owner) can post on a Wall or in an
Album (hasModerator), whereas all members including the moderator (hasMember/hasModerator) can post
in a Group. These relationships are captured with the hm variable in the formulas. Posts are divided in three
categories, regular posts, photos, and flashmob posts.

Regular Posts and Photos Regular posts capture the standard daily activity in a Group or on a Wall. Photos
are created in Albums. (Interaction with Photos is limited to likes, see details in Section 3.6.5.3). The creation
date for these is determined as follows:

∗post ∈ [∗hm +∆, min(†hm,SE))

Flashmob Posts Flashmob posts are generated around events that attract significant interest (such as elections)
that result in a spike in activity. These events span a 2φ-hour time window centered around a specific event time,
flashmob event fme , in the middle of the window; there are φ hours each side of the specific event time.

∗post ∈ [max(∗hm +∆, fme − φ h), min(†hm, fme + φ h,SE))

The deletion dates for all categories of Posts are determined as:

†post ∈ [∗post +∆, †hm)

containerOf edge Each Post node has an incoming containerOf edge which gets the same lifespan attributes
as the Post.

3.6.5.2 Comment

A Comment comm is created by Person p as a reply to Message m . Comments are only made in Walls and
Groups. Comment always occur within γ days of their parent message following a power-law distribution with
mean 6.85 hours.

• ∗comm ∈ [max(∗m,∗hm) +∆, min(†m,†hm,∗m + γ d,SE))
• †comm ∈ [∗comm +∆, min(†m,†hm))

replyOf edge Comments always have an outgoing replyOf edge with containment semantics, i.e. the target
Message contains the Comment. These edges get the same lifespan as their source Comment.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 37 of 164

Chapter 3. Data sets and data generation 3.7. Ensuring Realism

3.6.5.3 likes

A likes edge likes can exist between Person p and Messagem . Messages can only receive likes during a µ-day
window after their creation at which point no more activity is generated.

• ∗likes ∈ [max(∗p,∗m) +∆, min(†p,†m,∗m + µ d,SE))
• †likes ∈ [∗likes +∆, min(†p,†m))

3.6.6 Complex Example

In Figure 3.6, a complex example graph is shown with the corresponding intervals. Both the intervals for
selecting the creation and deletion date attributes and the selected lifespan intervals are shown.

3.7 Ensuring Realism

Capturing realistic deletion behaviour was broken down into two dimensions. Firstly, each dynamic entity is
assigned a probability of being explicitly deleted. Second, if selected for explicit deletion, a deletion event date
is selected using a distribution bound by the valid lifespan of that entity. To make informed choices of deletion
probabilities and deletion date distributions, where possible, real-world data was used.

Delete Person Lorincz et al. [47] have analyzed iWiW, a now-defunct Hungarian social network, observing
that people with more connections are less likely to leave a social network. When a Person is generated they are
assigned amaxKnows value which indicates the amount of knows connections they will make across the lifetime
of the network. This information is then utilized to determine the probability a person is explicitly deleted using
the distribution provided in [47], reproduced in Figure 3.7. A deletion event date is then selected uniformly from
the person’s valid lifespan. On average 3.5% of Persons are deleted across the simulation period.

Delete Knows Myers and Leskovec [55] analysed 1.2 billion tweets from 13.1 million Twitter users. These
users made 112.3 million new connections, and deleted 39.2 million connections; a 3:1 follow:unfollow ratio.
As Datagen models a generic social media platform we have chosen a different ratio of 20:1 (on average 5% of
knows edges are deleted), rather than overcapture behavior that may be unique to a single site. [55] also finds a
constant background flux of follows and unfollows interleaved with bursts in such activity. Currently, Datagen
has no follow bursts, thus, we have decided not to incorporate unfollow bursts. They also find less similar friends
have a high probability of being unfollowed; modelling this relationship is work in progress. If a knows edge is
selected for explicit deletion then a deletion date is then selected uniformly from the edge’s valid lifespan.

Delete Post/Comment and Delete Post/Comment Like Posts in groups and walls are produced via a uniform
generator and a flashmob generator, capturing background events and bursts in events respectively. A comment
generator is then used to produce a tree of comments on each post. Posts in albums are referred to as photos,
they are produced by a different generator and do not have flashmob events nor do they have comment trees.
Additionally, all posts and comments have a number of likes generated for it.

Almuhimedi et al. [2] tracked 292K Twitter users for 1 week. They found 2.4% of 67.2M tweets were deleted
across 4 categories: status posts, retweets, replies, and mentions of other users that were not replies. In order
to apply these findings to Datagen and obtain the average percentage of Messages and likes deleted across the
simulation period, tweet categories were mapped to Datagen Message types. Table 3.17 gives the mapping and
the percentage deleted across the simulation period within each category.

Additionally, [2] identified not all users delete messages, with around 50% of users doing so. Thus, each
Person in the network has a 50% chance of being marked amessageDeleter, who subsequently, may or may not,
delete post, comments, or likes. [2] also identify a relationship between the depth of replies to a tweet and the
chance the tweet is deleted – a tweet with less replies is more likely to be deleted. We apply this relationship to

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 38 of 164

Chapter 3. Data sets and data generation 3.7. Ensuring Realism

F1 ∶ Forum Post1 ∶ Post C1 ∶ Comm C2 ∶ Comm

P1 ∶ Person

P2 ∶ Person

P3 ∶ Person

hmod ∶ hasModerator

∗hmod: Apr 01 2010
†hmod: Oct 02 2012

hmem
1 ∶ hasMember

hmem2 ∶ hasMember

∗hmem2: Jun 15 2010
†hmem2: Jul 26 2012

hmem3 ∶ hasMember
∗hmem3: Dec 08 2010
†hmem3: Feb 29 2012

cO ∶ containerOf rO1 ∶ replyOf rO2 ∶ replyOf

hC
1 ∶ hasCreator

hC2
∶ has

Creat
orhC3 ∶ ha

sCreato
r

∗C1: Dec 17 2010
†C1: Dec 18 2010

∗C2: Dec 18 2010
†C2: Dec 18 2010

∗Post1: Dec 16 2010
†Post1: Dec 12 2011

∗F1: Apr 01 2010
†F1: Oct 02 2012

∗P2: Jan 29 2010
†P2: Nov 15 2012

∗P1: Feb 08 2010
†P1: Dec 23 2016

∗P3: Jul 21 2010
†P3: Apr 17 2012

(a) Example graph with an instance of a Forum containing a Message tree of depth 3 and its Person members. Lifespan
attributes (creation and deletion dates) are shown for each dynamic entity. Edges in grey get their lifespan attributes as per
Figure 3.1 and Section 3.6.4.

SS NCSE

P1

∆
∗F1∗P1 + ∆ min(†P1,SE)

∆
†F1∗F1 + ∆ NC
F1

hmem1
P2

∆
∗hmem2max(∗F1,∗P2) + ∆ min(†F1, †P2,SE)

∆
†hmem2∗hmem2 + ∆ min(†F1, †P2)
hmem2

P3

∆
∗hmem3max(∗F1,∗P3) + ∆ min(†F1, †P3,SE)

∆
†hmem3∗hmem3 + ∆ min(†F1, †P3)
hmem3

∆
∗Post1∗hmem3 + ∆ min(†hmem3,SE)

∆
†Post1∗Post1 + ∆ †hmem3

Post1

∗C1max(∗Post1,∗hmem1) + ∆
min(∗Post1 +
γ d, †hmem1,SE)∆

†C1∗Post1 + ∆ min(†Post1, †hmem1)
∆

C1

∗C2max(∗C1,∗hmem2) + ∆ min(∗C1 + γ d, †hmem2,SE)
∆

†C2∗C1 + ∆ min(†C1, †hmem2)
∆

C2

(b) Illustration of the intervals in which the creation dates ● and the deletion dates ● of entities can be selected. Thick
black lines represent entity lifespans and thin grey lines represent valid intervals that dates can be selected in; ● indicates
the selected times (spanning the lifespan interval of the given entity). On the thin grey lines, thicker sections represent the
minimal amount of time that must pass before selecting a value. In case of creation dates, this is used to ensure that the
dependant entity exists for at least ∆ time. In case of deletion dates, it is used to ensure that the entity exists for at least ∆
time.

Figure 3.6: Example graph and time intervals for selecting lifespan attributes, creation and deletion dates.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 39 of 164

Chapter 3. Data sets and data generation 3.8. Converting Delete Events into Delete Operations

0.0

0.1

0.2

0.3

1 10 100 1000
x (knows)

pr
ob

ab
ili

ty

Figure 3.7: Distribution for determining the probability a Person is deleted given their number of connections.

Message type [2] Datagen % Deleted
Status updates Post/Photo 2.7
Non-reply mentions Post/Photo 2.7
Replies Comment 1.8
Retweets Post/Photo/Comment Likes 2.4

Table 3.17: Mapping of [2] message types to LDBC’s schema.

the number of Comments in a Posts thread using the distribution in Figure 3.8. Note, this distribution has an
average of 2.7% aligning with Table 3.17.

Almuhimedi et al. also observe a temporal relationship for when a tweet is deleted – a tweet has a higher
chance of being deleted soon after it was created. They found 50% of all deleted tweets where removed within
8 minutes of creation. We have recreated the temporal distribution in [2] and use it to generate deletion dates
from the valid lifespan intervals for posts, comments, and likes that are selected for explicit deletion Figure 3.9.

Delete Forum and Delete Forum Membership We currently do not have empirical evidence to motivate
realistic behaviour of Forum deletion. Forums have 3 types: walls, groups, and albums. Groups and albums
can be explicitly deleted, walls cannot. The target proportion of groups and albums that are deleted across the
simulation period is 1%.

Additionally, we currently do not have empirical evidence to motivate realistic behaviour of hasMember
edge deletion. Only membership of groups can be explicitly deleted. The target proportion of group member-
ships that are deleted across the simulation period is 5%.

3.8 Converting Delete Events into Delete Operations

Datagen supports 3 modes, each having different output:

• Interactive. Produces the data necessary for the Interactive workload. Includes a set of bulk load csv
files and a number of update streams, which contain only insert operations.

• BI. Produces the data necessary for the Business Intelligence workload. Includes a set of bulk load csv
files and a number of update batches, which contain insert and delete operations.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 40 of 164

Chapter 3. Data sets and data generation 3.8. Converting Delete Events into Delete Operations

●

●

●

● ● ● ●

● ● ●

● ● ● ● ● ● ● ● ● ● ●

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20
no comments in thread

pr
ob

ab
ili

ty

Figure 3.8: Probability a post is deleted given the number of comments in its thread.

• Raw. Produces a fully dynamic graph without insert or delete operations. Includes a set of bulk load
csv files (covering whole simulation period), with each dynamic entity having creation and deletion date
attributes serialized. This mode is not intended for use with any LDBC workload.

When run in Interactive mode Datagen produces a graph that monotonically increases in size over the sim-
ulation period with insert-only operations, e.g. once Person joins the network they never leave, not delete a post
nor unlike a picture. This is mode is supported for backward compatibility with the Interactive workload.

The modes BI and raw use the dynamic graph containing creation events and deletion events. Raw mode
effectively serializes the graph to a bulk component and has a slightly different schema, with each entity having
creation date and deletion date fields. This mode was developed for testing, yet may be useful to users that
require a dynamic graph data set for purposes other than benchmarking.

For the BI mode the generated data must be converted into a bulk load component and a series of update
batches (containing insert and delete operations). Figure 3.10 displays the possible creation and deletion dates
a dynamic entity can have with respect to the bulk load cut off, simulation end, and network collapse, which
determines the target file the entity should be serialized to. For example, if a Post is created after the bulk load
and deleted before the simulation end this should result in a insert and a delete operation in the update batch data
set. If an entity is marked for explicit deletion then, if the conditions in Figure 3.10 are satisfied then a deletion
operation is serialized into the update batches.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 41 of 164

Chapter 3. Data sets and data generation 3.8. Converting Delete Events into Delete Operations

0.00

0.25

0.50

0.75

1.00

0 2500 5000 7500 10000
x (minutes)

F
(x

)

Figure 3.9: Cumulative probability density function of when a post, comment, or like is deleted after it is created
(x = 0).

SS BL SE NC

(a) Dynamic entity has creation and deletion dates before the bulk load cut off. This entity is not serialized.
SS BL SE NC

(b) Dynamic entity has creation date before the bulk load cut off and a deletion date after the bulk load cut off, but before
the simulation end. Such an entity is serialized into the bulk load component and spawns a delete operation.

SS BL SE NC

(c) Dynamic entity has creation date before the bulk load cut off and a deletion date after the simulation end. Such an
entity is in serialized only into the bulk load component.

SS BL SE NC

(d) Dynamic entity has creation date after the bulk load cut off and a deletion date before the simulation end. Such an
entity produces an insert operation and a delete operation.

SS BL SE NC

(e) Dynamic entity has creation date after the bulk load cut off, but before the simulation end, and a deletion date after the
simulation end. Such an entity produces only an insert operation.

Figure 3.10: Possible dynamic entity creation ● and deletion ● dates with respect to simulation start, bulk load
cut off, simulation end, and network collapse.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 42 of 164

Chapter 4. Workloads

4 Workloads

4.1 Query Description Format

Queries are described in natural language using a well-defined structure that consists of three sections: descrip-
tion, a concise textual description of the query, parameters, a list of input parameters and their types; results, a
list of expected results and their types. Additionally, queries returning multiple results specify sorting criteria
and a limit (to return top-k results). For strings, the sorting criteria should be interpreted as a binary comparison
of the strings.12

We use the following notation:

• Node type: node type in the dataset. One word, possibly constructed by appending multiple words to-
gether, starting with an uppercase character and following the camel case notation, e.g. TagClass repre-
sents an entity of type “TagClass”.

• Edge type: edge type in the dataset. One word, possibly constructed by appending multiple words to-
gether, starting with a lowercase character and following the camel case notation e.g. workAt represents
an edge of type “workAt”.

• Attribute: attribute of a node or an edge in the dataset. One word, possibly constructed by appending
multiple words together, starting with a lowercase character and following the camel case notation, and
prefixed by a “.” to dereference the node/edge, e.g. person.firstName refers to “firstName” attribute on
the “person” entity, and studyAt.classYear refers to “classYear” attribute on the “studyAt” edge.

• Unordered Set: an unordered collection of distinct elements. Surrounded by { and } braces, with the
element type between them, e.g. {String} refers to a set of strings.

• Ordered List: an ordered collection where duplicate elements are allowed. Surrounded by [and] braces,
with the element type between them, e.g. [String] refers to a list of strings.

• Ordered Tuple: a fixed-length, fixed-order list of elements, where elements at each position of the tuple
have predefined, possibly different, types. Surrounded by < and > braces, with the element types between
them in a specific order e.g. <String, Boolean> refers to a 2-tuple containing a string value in the first
element and a boolean value in the second, and [<String, Boolean>] is an ordered list of those 2-tuples.

Categorization of results. Results are categorized according to their source of origin:

• Raw (R), if the result attribute is returned with an unmodified value and type.
• Calculated (C), if the result is calculated from attributes using arithmetic operators, functions, boolean
conditions, etc.

• Aggregated (A), if the result is an aggregated value, e.g. a count or a sum of another value. If a result
is both calculated and aggregated (e.g. count(x) + count(y) or avg(x + y)), it is considered an aggregated
result.

• Meta (M), if the result is based on type information, e.g. the type of a node.

4.2 Conventions for Query Definitions

Interval notations. Closed interval boundaries are denoted with [and], while open interval boundaries are
denoted with (and). For example, [0, 1) denotes an interval between 0 and 1, closed on the left and open on
the right.

Comparing Date and DateTime values. Some query specifications (e.g. BI 1) require implementations to
compare a DateTime value with a Date value. In these cases, the Date value should be implicitly converted
DateTime value with a time of 00:00:00.000+00:00 (i.e. with the timezone of GMT).

1C or POSIX collation in PostgreSQL, see https://www.postgresql.org/docs/13/locale.html
2BINARY collation in DuckDB, see https://duckdb.org/docs/sql/expressions/collations

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 43 of 164

https://www.postgresql.org/docs/13/locale.html
https://duckdb.org/docs/sql/expressions/collations

Chapter 4. Workloads 4.2. Conventions for Query Definitions

Matching semantics. Unless noted otherwise, the specification uses homomorphic matching semantics [4],
i.e. both nodes and edges can occur multiple times in a match. Note that for variable-length path, duplicate
edges are not allowed.

Aggregation semantics. The count aggregation always requires the query to determine the number of distinct
elements (nodes or edges). For example, this can be achieved in the Cypher, SPARQL and SQL query languages
with the count(DISTINCT ...) construct.

Graph patterns. To illustrate queries, we use graph patterns such as Figure 4.1 with the following notation:

Figure 4.1: Example graph pattern.

• Nodes in the pattern are shown with rectangular boxes with their type name stated at the top and empha-
sized with colour coding.

• A black square ∎ in the node’s top left corner and a bold italic condition denote that the node is uniquely
specified by the query parameters (e.g. by using an identifier or a unique attribute such as URL).

• Attributes of nodes and edges can be subject to range constraints (e.g. date within a given range, birthday
larger than a given date, etc.). These are denoted with the▼ symbol.

• Nodes in the pattern are captioned with entityName: EntityType (camel case notation for both, starting
with a lowercase character for the first and an uppercase character for the second). If the entityName is
neither returned in the query results (in raw, aggregated, or calculated form), nor referenced in the query
specification, the entityName can be omitted.

• Edges in the graph pattern use the following notation:

– Regular edges, i.e. edges that must be present in the subgraph, are denoted with solid black lines.
– Negative edges, i.e. edges that must not be present in the subgraph, are denoted with dashed red

lines and the «neg» keyword.
– Optional edges, i.e. edges that may or may not be in the subgraph, are denoted with dashed black

lines, the «opt» keyword, and a circle symbol ○ at the optional end of the edge.
– Edges without direction have no arrows. Their semantics is that there must be an edge in the least

one of the (incoming, outgoing) directions.

«neg» «opt»

• Edges with many-to-many cardinalities are denoted with thicker lines, emphasizing that they may con-
tribute more results in the result set.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 44 of 164

Chapter 4. Workloads 4.3. Substitution Parameters

• Filtering conditions are typeset in italic, e.g. id = $tag.
• Attributes that should be returned are denoted in sans-serif font, e.g. name.
• Variable length paths, i.e. edges that can be traversed multiple times are denoted with *min. . . max, e.g.
replyOf* or knows*1. . . 2. By default, the value of min is 1, and the value of max is unlimited.

• Aggregations are shown in boxes with a grey strip on their top describing the type of aggregation (count,
sum, average, etc.).

Keywords. The pattern notation uses a small set of keywords:

• Aggregation operations: avg, count, sum.
• Functions:

– floor(x): returns ⌊x⌋,
– year(date): extracts the year from a given date,
– month(date): extracts the month from a given date.
– day(date): extracts the day (of the month) from a given date.

Deletions. Deletions of a single element are denoted with a red cross , while recursive deletions are denoted
with a purple cross .

Resolving ambiguity. Note that if the textual description and the graph pattern are different for a particular
query (either due to an error or the lack of sophistication in the graphical syntax), the textual description takes
precedence.

4.3 Substitution Parameters

Together with the dataset, Datagen produces a set of parameters per query type. Parameter generation is designed
in such a way that for each query type, all of the generated parameters yield similar runtime behaviour of that
query.

Specifically, the selection of parameters for a query template guarantees the following properties of the
resulting queries:

P1: the query runtime has a bounded variance: the average runtime corresponds to the behavior of themajority
of the queries

P2: the runtime distribution is stable: different samples of (e.g. 10) parameter bindings used in different query
streams result in an identical runtime distribution across streams

P3: the optimal logical plan (optimal operator order) of the queries is the same: this ensures that a specific
query template tests the system’s behavior under the well-chosen technical difficulty (e.g. handling volu-
minous joins or proper cardinality estimation for subqueries, etc.)

As a result, the amount of data that the query touches is roughly the same for every parameter binding,
assuming that the query optimizer figures out a reasonable execution plan for the query. This is done to avoid
bindings that cause unexpectedly long or short runtimes of queries, or even result in a completely different
optimal execution plan. Such effects could arise due to the data skew and correlations between values in the
generated dataset.

In order to get the parameter bindings for each of the queries, we have designed a Parameter Curation
procedure that works in two stages:

1. for each query template for all possible parameter bindings, we determine the size of intermediate results
in the intended query plan. Intermediate result size heavily influences the runtime of a query, so two
queries with the same operator tree and similar intermediate result sizes at every level of this operator tree
are expected to have similar runtimes. This analysis is effectively a side effect of data generation, that is

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 45 of 164

Chapter 4. Workloads 4.4. Return Values

we keep all the necessary counts (number of friends per user, number of posts of friends etc.) as we create
the dataset.

2. then, a greedy algorithm selects (“curates”) those parameters with similar intermediate result counts from
the domain of all the parameters.

Parameter bindings are stored in the substitution_parameters folder inside the data generator directory. Each
query gets its bindings in a separate file. Every line of a parameter file is a JSON-formatted collection of key-
value pairs (name of the parameter and its value). For example, the Query 1 parameter bindings are stored in
file query_1_param.txt, and one of its lines may look like this:

{"PersonID": 1, "Name": "Lei", "PersonURI": "http://www.ldbc.eu/ldbc_socialnet/1.0/data/pers1"}

Depending on implementation, the SUT may refer to persons either by IDs (relational and graph databases)
or URIs (RDF systems), so we provide both values for the Person parameter. Finally, parameters for short reads
are taken from those in complex reads and inserts.

4.4 Return Values

Return values are subject to the following rules:

• DateTime andDate values should use GMT timezone (or they should be converted by the client to GMT).

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 46 of 164

Chapter 5. Update operations

5 Update operations

This chapter contains the specifications of the Insert and Delete operations in the SNB suite. Inserts are used in
the BI workload as well as the Interactive v1 and v2 workloads. Deletes are only used in the Interactive v2 and
BI workloads.

5.1 Insert Operations

Each insert operations creates

1. either a single node of a certain type, along with its edges to other existing nodes
2. or a single edge of a certain type between two existing nodes.

In Interactive v1, these operations were called “updates”. In Interactive v2, they are called “inserts”.

Updates / insert / 1
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 1
title Add person

pattern

description Add a Person node, connected to the network by 4 possible edge types.

params

1 $personId ID

2 $personFirstName String

3 $personLastName String

4 $gender String

5 $birthday Date

6 $creationDate DateTime

7 $locationIP String

8 $browserUsed String

9 $cityId ID

10 $languages {String}

11 $emails {Long String}

12 $tagIds {ID}

13 $studyAt {<ID, 32-bit
Integer>} {<universityId, classYear>}

14 $workAt {<ID, 32-bit
Integer>} {<companyId, workFrom>}

CPs 9.1, 9.2

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 47 of 164

Chapter 5. Update operations 5.1. Insert Operations

Updates / insert / 2
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 2
title Add like to post

pattern

description Add a likes edge to a Post.

params

1 $personId ID

2 $postId ID

3 $creationDate DateTime

CPs 9.2

Updates / insert / 3
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 3
title Add like to comment

pattern

description Add a likes edge to a Comment.

params

1 $personId ID

2 $commentId ID

3 $creationDate DateTime

CPs 9.2

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 48 of 164

Chapter 5. Update operations 5.1. Insert Operations

Updates / insert / 4
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 4
title Add forum

pattern

description Add a Forum node, connected to the network by 2 possible edge types.

params

1 $forumId ID

2 $forumTitle Long String

3 $creationDate DateTime

4 $moderatorId ID

5 $tagIds {ID}

CPs 9.1, 9.2

Updates / insert / 5
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 5
title Add forum membership

pattern

description Add a Forum membership edge (hasMember) to a Person.

params

1 $personId ID

2 $forumId ID

3 $creationDate DateTime

CPs 9.1, 9.2

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 49 of 164

Chapter 5. Update operations 5.1. Insert Operations

Updates / insert / 6
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 6
title Add post

pattern

description
Add a Post node connected to the network by 4 possible edge types (hasCreator, containerOf, isLo-
catedIn, hasTag).

params

1 $postId ID

2 $imageFile String

3 $creationDate DateTime

4 $locationIP String

5 $browserUsed String

6 $language String

7 $content Text

8 $length 32-bit Integer

9 $authorPersonId ID

10 $forumId ID

11 $countryId ID

12 $tagIds {ID}

CPs 9.1, 9.2

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 50 of 164

Chapter 5. Update operations 5.1. Insert Operations

Updates / insert / 7
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 7
title Add comment

pattern

description
Add a Comment node replying to a Post/Comment, connected to the network by 4 possible edge
types (replyOf, hasCreator, isLocatedIn, hasTag).

params

1 $commentId ID

2 $creationDate DateTime

3 $locationIP String

4 $browserUsed String

5 $content Text

6 $length 32-bit Integer

7 $authorPersonId ID

8 $countryId ID

9 $replyToPostId ID
old version: −1 if the Comment is a reply of a
Comment; new version: null if the Comment is a
reply of a Post

10 $replyToCommentId ID
old version: −1 if the Comment is a reply of a Post;
new version: null if the Comment is a reply of a
Post

11 $tagIds {ID}

CPs 9.1, 9.2

Updates / insert / 8
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 8
title Add friendship

pattern

description Add a friendship edge (knows) between two Persons.

params

1 $person1Id ID

2 $person2Id ID

3 $creationDate DateTime

CPs 9.2

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 51 of 164

Chapter 5. Update operations 5.2. Delete Operations

5.2 Delete Operations

Each delete operation removes

1. a single edge between two existing nodes
2. or a node, all its edges and, in certain cases, nodes and edges that are transitively reachable on a certain

path (thus performing a cascading delete).

Updates / delete / 1
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 1
title Remove person and its personal forums and message (sub)threads

pattern

description

Remove a Person with ID $personId and its edges (isLocatedIn, studyAt, workAt, hasInterest, likes,
knows, hasMember, hasModerator, hasCreator). Additionally, remove the Album and Wall Forums
whose moderator is the Person and remove all Messages the Person has created in the rest of the
Forums (Groups).

params 1 $personId ID

CPs 9.3, 9.4, 9.5

relevance

• Removal of a Person removes Forums of type “Walls” and “Albums” but not “Groups”, which can continue
if even the founder has left the network. For Groups, the hasModerator edge is deleted. We have discussed
various approaches to appoint a new moderator, e.g.

1. choose member at random from the set of existing group members or
2. the member with the oldest group join date becomes the moderator. However, to keep the generator

and the workload simple, currently no moderator is selected, leaving the group without a moderator.

• Removal of a Person removes all Posts/Comments they are creator of this could result in the removal of a
Comment in the middle of a thread.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 52 of 164

Chapter 5. Update operations 5.2. Delete Operations

Updates / delete / 2
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 2
title Remove post like

pattern

description Given a Person with ID $personId and a Post with ID $postId, remove the likes edge between them.

params
1 $personId ID

2 $postId ID

CPs 9.4

relevance Removal of a likes edge is a rare event, e.g. people accidently liking a Post, this can be reflected by the relative
frequency of the operation.

Updates / delete / 3
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 3
title Remove comment like

pattern

description
Given a Personwith ID $personId and a Commentwith ID $commentId, remove the likes edge between
them.

params
1 $personId ID

2 $commentId ID

CPs 9.4

relevance Removal of a likes edge is a rare event, e.g. people accidently liking a Comment, this can be reflected by the relative
frequency of the operation.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 53 of 164

Chapter 5. Update operations 5.2. Delete Operations

Updates / delete / 4
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 4
title Remove forum and its content

pattern

description
Remove a Forum with ID $forumId and its edges (hasModerator, hasMember, hasTag) and all Posts in
the Forum (connected by containerOf edges) and their direct and transitive Comments.

params 1 $forumId ID

CPs 9.3, 9.4, 9.5
relevance n/a

Updates / delete / 5
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 5
title Remove forum membership

pattern

description
Given a Forum with ID $forumId and a Person with ID $personId, remove the hasMember edge
between them.

params
1 $forumId ID

2 $personId ID

CPs 9.4
relevance n/a

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 54 of 164

Chapter 5. Update operations 5.2. Delete Operations

Updates / delete / 6
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 6
title Remove post thread

pattern

description
Remove a Post node with ID $postId and its edges (isLocatedIn, likes, hasCreator, hasTag, containerOf).
Remove all replies to the Post and the connecting replyOf edges. In addition, remove all transitive
reply Comments to the Post and their edges.

params 1 $postId ID

CPs 9.3, 9.4, 9.5
relevance n/a

Updates / delete / 7
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 7
title Remove comment subthread

pattern

description
Remove a Comment node with ID $commentId and its edges (isLocatedIn, likes, hasCreator, hasTag).
In addition, remove all replies to the Comment connected by replyOf and their edges.

params 1 $commentId ID

CPs 9.3, 9.4, 9.5
relevance n/a

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 55 of 164

Chapter 5. Update operations 5.2. Delete Operations

Updates / delete / 8
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 8
title Remove friendship

pattern

description
Given two Person nodes with IDs $person1Id and $person2Id, remove the knows edge between
them.

params
1 $person1Id ID

2 $person2Id ID

CPs 9.4
relevance n/a

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 56 of 164

Chapter 6. Interactive v1 Workload

6 Interactive v1 Workload

The Interactive v1 workload consists of a set of relatively complex read-only queries, that touch a significant
amount of data – often the two-step friendship neighbourhood and associated messages –, but typically in close
proximity to a single node. Hence, the query complexity is sublinear to the dataset size.

The LDBC SNB Interactive workload consists of three query classes:

• Complex read-only queries. See Section 6.1.
• Short read-only queries. See Section 6.2.
• Insert operations. See Section 5.1.

Related Publications

A detailed description of the workload (covering reads and inserts) is available in the paper published at
SIGMOD 2015 [24]. The ACID Test Suite was first published at TPCTC 2020 [89]. It is part of this specifica-
tion in Chapter 10.

Related Software Components

• Datagen (Hadoop-based): https://github.com/ldbc/ldbc_snb_datagen_hadoop
• Driver: https://github.com/ldbc/ldbc_snb_interactive_v1_driver
• Reference implementations: https://github.com/ldbc/ldbc_snb_interactive_v1_impls

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 57 of 164

https://github.com/ldbc/ldbc_snb_datagen_hadoop
https://github.com/ldbc/ldbc_snb_interactive_v1_driver
https://github.com/ldbc/ldbc_snb_interactive_v1_impls

Chapter 6. Interactive v1 Workload 6.1. Complex Reads

6.1 Complex Reads

Interactive / complex / 1
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 1
title Transitive friends with certain name

pattern

description

Given a start Person with ID $personId, find Persons with a given first name ($firstName) that the
start Person is connected to (excluding start Person) by at most 3 steps via the knows relationships.
Return Persons, including the distance (1..3), summaries of the Persons workplaces and places of
study.

params
1 $personId ID

2 $firstName String

result

1 otherPerson.id ID R
2 otherPerson.lastName String R
3 distanceFromPerson 32-bit Integer C
4 otherPerson.birthday Date R
5 otherPerson.creationDate DateTime R
6 otherPerson.gender String R
7 otherPerson.browserUsed String R
8 otherPerson.locationIP String R
9 otherPerson.email {Long String} R
10 otherPerson.speaks {String} R
11 locationCity.name String R

12 universities
{<String,
32-bit Integer,
String>}

A {<university.name, studyAt.classYear,
universityCity.name>}

13 companies
{<String,
32-bit Integer,
String>}

A {<company.name, workAt.workFrom,
companyCountry.name>}

sort

1 distanceFromPerson ↑
2 otherPerson.lastName ↑
3 otherPerson.id ↑

limit 20
CPs 2.1, 5.3, 8.2

relevance

This query is a representative of a simple navigational query. It is interesting for several aspects. (1) It requires for
a complex aggregation for returning the concatenation of universities, companies, languages and email information
of the Person. (2) It tests the ability of the optimizer to move the evaluation of sub-queries functionally dependant
on the Person, after the evaluation of the top-k. (3) Its performance is highly sensitive to properly estimating the
cardinalities in each transitive path, and paying attention not to explore already visited Persons.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 58 of 164

Chapter 6. Interactive v1 Workload 6.1. Complex Reads

Interactive / complex / 2
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 2
title Recent messages by your friends

pattern

description
Given a start Person with ID $personId, find the most recent Messages from all of that Person’s
friends (friend nodes). Only consider Messages created before the given $maxDate (excluding that
day).

params
1 $personId ID

2 $maxDate Date

result

1 friend.id ID R
2 friend.firstName String R
3 friend.lastName String R
4 message.id ID R

5

message.content or
message.imageFile (for
photos)

Text R

6 message.creationDate DateTime R

sort
1 message.creationDate ↓
2 message.id ↑

limit 20
CPs 1.1, 2.2, 2.3, 3.2, 8.5

relevance

This is a navigational query looking for paths of length two, starting from a given Person, going to their friends and
from them, moving to their published Posts and Comments. This query exercices both the optimizer and how data
is stored. It tests the ability to create execution plans taking advantage of the orderings induced by some operators to
avoid performing expensive sorts. This query requires selecting Posts and Comments based on their creation date,
whichmight be correlated with their identifier and therefore, having intermediate results with interesting orders. Also,
messages could be stored in an order correlated with their creation date to improve data access locality. Finally, as
many of the attributes required in the projection are not needed for the execution of the query, it is expected that the
query optimizer will move the projection to the end.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 59 of 164

Chapter 6. Interactive v1 Workload 6.1. Complex Reads

Interactive / complex / 3
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 3
title Friends and friends of friends that have been to given countries

pattern

description

Given a start Person with ID $personId, find Persons that are their friends and friends of friends
(excluding the start Person) that have made Posts / Comments in both of the given Countries (named
$countryXName and $countryYName), within [$startDate, $startDate + $durationDays) (closed-
open interval). Only Persons that are foreign to these Countries are considered, that is Persons
whose location Country is neither named $countryXName nor $countryYName.

params

1 $personId ID

2 $countryXName String
In SNB Interactive v2, this query has two variants:
(a) Correlated Countries
(b) Anti-correlated Countries

3 $countryYName String

4 $startDate Date Beginning of requested period

5 $durationDays 32-bit Integer
Duration of requested period, in days. The interval
[$startDate, $startDate + $durationDays) is
closed-open

result

1 otherPerson.id ID R
2 otherPerson.firstName String R
3 otherPerson.lastName String R

4 xCount 32-bit Integer A
Number of Messages from Country named
$countryXName created by the Person within
the given time

5 yCount 32-bit Integer A
Number of Messages from Country named
$countryYName created by the Person within
the given time

6 count 32-bit Integer A count = xCount + yCount

sort
1 count ↓
2 otherPerson.id ↑

limit 20
CPs 2.1, 3.1, 5.1, 8.2, 8.5

relevance

This query looks for paths of length two and three, starting from a Person, going to friends or friends of friends, and
then moving toMessages. This query tests the ability of the query optimizer to select the most efficient join ordering,
which will depend on the cardinalities of the intermediate results. Many friends of friends can be duplicate, then it
is expected to eliminate duplicates and those people prior to access the Post and Comments, as well as eliminate
those friends from Countries named $countryXName and $countryYName, as the size of the intermediate results can be
severely affected. A possible structural optimization could be to materialize the number of Posts and Comments
created by a Person, and progressively filter those people that could not even fall in the top 20 even having all their
posts in the Countries named $countryXName and $countryYName.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 60 of 164

Chapter 6. Interactive v1 Workload 6.1. Complex Reads

Interactive / complex / 4
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 4
title New topics

pattern

description

Given a start Personwith ID $personId, find Tags that are attached to Posts that were created by that
Person’s friends. Only include Tags that were attached to friends’ Posts created within a given time
interval [$startDate, $startDate + $durationDays) (closed-open) and that were never attached
to friends’ Posts created before this interval.

params

1 $personId ID

2 $startDate Date

3 $durationDays 32-bit Integer
Duration of requested period, in days. The interval
[$startDate, $startDate + $durationDays) is
closed-open

result

1 tag.name Long String R

2 postCount 32-bit Integer A Number of Posts made within the given time interval
that have tag

sort
1 postCount ↓
2 tag.name ↑

limit 10
CPs 2.3, 8.2, 8.5

relevance

This query looks for paths of length two, starting from a given Person, moving to Posts and then to Tags. It tests
the ability of the query optimizer to properly select the usage of hash joins or index based joins, depending on the
cardinality of the intermediate results. These cardinalities are clearly affected by the input Person, the number of
friends, the variety of Tags, the time interval and the number of Posts.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 61 of 164

Chapter 6. Interactive v1 Workload 6.1. Complex Reads

Interactive / complex / 5
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 5
title New groups

pattern

description

Given a start Person with ID $personId, denote their friends and friends of friends (excluding the
start Person) as otherPerson.
Find Forums that any Person otherPerson became a member of after a given date ($minDate). For
each of those Forums, count the number of Posts that were created by the Person otherPerson.

params
1 $personId ID

2 $minDate Date

result

1 forum.title Long String R

2 postCount 32-bit Integer A Number of Posts made in forum that were created by
the Person otherPerson

sort
1 postCount ↓
2 forum.id ↑

limit 20
CPs 2.3, 3.3, 8.2, 8.5

relevance

This query looks for paths of length two and three, starting from a given Person, moving to friends and friends
of friends, and then getting the Forums they are members of. Besides testing the ability of the query optimizer to
select the proper join operator, it rewards the usage of indices, but their accesses will be presumably scattered due to
the two/three-hop search space of the query, leading to unpredictable and scattered index accesses. Having efficient
implementations of such indices will be highly beneficial.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 62 of 164

Chapter 6. Interactive v1 Workload 6.1. Complex Reads

Interactive / complex / 6
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 6
title Tag co-occurrence

pattern

description

Given a start Person with ID $personId and a Tag with name $tagName, find the other Tags that
occur together with this Tag on Posts that were created by start Person’s friends and friends of
friends (excluding start Person). Return top 10 Tags, and the count of Posts that were created by
these Persons, which contain both this Tag and the given Tag.

params
1 $personId ID

2 $tagName Long String

result

1 otherTag.name Long String R

2 postCount 32-bit Integer A Number of Posts that were created by friends and
friends of friends, which have the Tag otherTag

sort
1 postCount ↓
2 otherTag.name ↑

limit 10
CPs 5.1, 8.2

relevance This query looks for paths of lengths three or four, starting from a given Person, moving to friends or friends of
friends, then to Posts and finally ending at a given Tag.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 63 of 164

Chapter 6. Interactive v1 Workload 6.1. Complex Reads

Interactive / complex / 7
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 7
title Recent likers

pattern

description

Given a start Person with ID $personId, find the most recent likes on any of start Person’s Mes-
sages. Find Persons that liked (likes edge) any of start Person’s Messages, the Messages they liked
most recently, the creation date of that like, and the latency in minutes (minutesLatency) between
creation of Messages and like. Additionally, for each Person found return a flag indicating (isNew)
whether the liker is a friend of start Person. In case that a Person liked multiple Messages at the
same time, return the Message with lowest identifier.
Validation rule: Depending on whether the system-under-test supports leap seconds or uses
UTC-SLS (UTC with Smoothed Leap Seconds), a difference of 1 minute can occur between the
minutesLatency results of two correct implementations when the time interval includes June 30,
2012, when there was a leap second. Therefore, the minutesLatency value is validated using a
tolerance of 1 minute.

params 1 $personId ID

result

1 friend.id ID R friend.id = personId is allowed
2 friend.firstName String R
3 friend.lastName String R
4 likes.creationDate DateTime R
5 message.id ID R

6

message.content or
message.imageFile (for
photos)

Text R

7 minutesLatency 32-bit Integer C
Duration between the creation of the
Message and the creation of the like, in
minutes.

8 isNew Boolean C False if person and friend know each
other, True otherwise

sort
1 likes.creationDate ↓
2 friend.id ↑

limit 20
CPs 2.2, 2.3, 3.3, 5.1, 8.1, 8.3

relevance

This query looks for paths of length two, starting from a given Person, moving to its published messages and then
to Persons who liked them. It tests several aspects related to join optimization, both at query optimization plan level
and execution engine level. On the one hand, many of the columns needed for the projection are only needed in
the last stages of the query, so the optimizer is expected to delay the projection until the end. This query implies
accessing two-hop data, and as a consequence, index accesses are expected to be scattered. We expect to observe
variate cardinalities, depending on the characteristics of the input parameter, so properly selecting the join operators
will be crucial. This query has a lot of correlated sub-queries, so it is testing the ability to flatten the query execution
plans.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 64 of 164

Chapter 6. Interactive v1 Workload 6.1. Complex Reads

Interactive / complex / 8
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 8
title Recent replies

pattern

description
Given a start Person with ID $personId, find the most recent Comments that are replies to Messages
of the start Person. Only consider direct (single-hop) replies, not the transitive (multi-hop) ones.
Return the reply Comments, and the Person that created each reply Comment.

params 1 $personId ID

result

1 commentAuthor.id ID R
2 commentAuthor.firstName String R
3 commentAuthor.lastName String R
4 comment.creationDate DateTime R
5 comment.id ID R
6 comment.content Text R

sort
1 comment.creationDate ↓
2 comment.id ↑

limit 20
CPs 2.4, 3.3, 5.3

relevance
This query looks for paths of length two, starting from a given Person, going through its created Messages and
finishing at their replies. In this query there is temporal locality between the replies being accessed. Thus the top-k
order by this can interact with the selection, i.e. do not consider older Posts than the 20th oldest seen so far.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 65 of 164

Chapter 6. Interactive v1 Workload 6.1. Complex Reads

Interactive / complex / 9
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 9
title Recent messages by friends or friends of friends

pattern

description
Given a start Person with ID $personId, find the most recent Messages created by that Person’s
friends or friends of friends (excluding the start Person). Only consider Messages created before
the given $maxDate (excluding that day).

params
1 $personId ID

2 $maxDate Date

result

1 otherPerson.id ID R
2 otherPerson.firstName String R
3 otherPerson.lastName String R
4 message.id ID R

5

message.content or
message.imageFile (for
photos)

Text R

6 message.creationDate DateTime R

sort
1 message.creationDate ↓
2 message.id ↑

limit 20
CPs 1.1, 1.2, 2.2, 2.3, 3.2, 3.3, 8.5

relevance

This query looks for paths of length two or three, starting from a given Person, moving to its friends and friends of
friends, and ending at their created Messages. This is one of the most complex queries, as the list of choke points
indicates. This query is expected to touch variable amounts of data with entities of different characteristics, and
therefore, properly estimating cardinalities and selecting the proper operators will be crucial.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 66 of 164

Chapter 6. Interactive v1 Workload 6.1. Complex Reads

Interactive / complex / 10
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 10
title Friend recommendation

pattern

description

Given a start Person with ID $personId, find that Person’s friends of friends (foaf) – excluding the
start Person and his/her immediate friends –, who were born on or after the 21st of a given $month
(in any year) and before the 22nd of the following month. Calculate the similarity between each
friend and the start person, where commonInterestScore is defined as follows:

• common = number of Posts created by friend, such that the Post has a Tag that the start person
is interested in

• uncommon = number of Posts created by friend, such that the Post has no Tag that the start
person is interested in

• commonInterestScore = common - uncommon

params

1 $personId ID

2 $month 32-bit Integer
Between 1 and 12. Implementations may also pass the next
month as an additional $nextMonth parameter

result

1 foaf.id ID R
2 foaf.firstName String R
3 foaf.lastName String R
4 commonInterestScore 32-bit Integer A
5 foaf.gender String R
6 city.name String R

sort
1 commonInterestScore ↓
2 foaf.id ↑

limit 10
CPs 2.3, 3.3, 4.1, 4.2, 5.1, 5.2, 6.1, 7.1, 8.6

relevance

This query looks for paths of length two, starting from a Person and ending at the friends of their friends. It does
widely scattered graph traversal, and one expects no locality of in friends of friends, as these have been acquired over
a long time and have widely scattered identifiers. The join order is simple but one must see that the anti-join for “not
in my friends” is better with hash. Also the last pattern in the scalar sub-queries joining or anti-joining the Tags of
the candidate’s Posts to interests of self should be by hash.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 67 of 164

Chapter 6. Interactive v1 Workload 6.1. Complex Reads

Interactive / complex / 11
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 11
title Job referral

pattern

description
Given a start Person with ID $personId, find that Person’s friends and friends of friends (excluding
start Person) who started working in some Company in a given Country with name $countryName,
before a given date ($workFromYear).

params

1 $personId ID

2 $countryName String

3 $workFromYear 32-bit Integer

result

1 otherPerson.id ID R
2 otherPerson.firstName String R
3 otherPerson.lastName String R
4 company.name String R
5 workAt.workFrom 32-bit Integer R

sort

1 workAt.workFrom ↑
2 otherPerson.id ↑
3 company.name ↓

limit 10
CPs 1.3, 2.3, 2.4, 3.3, 4.2

relevance
This query looks for paths of length two or three, starting from a Person, moving to friends or friends of friends,
and ending at a Company. In this query, there are selective joins and a top-k order by that can be exploited for
optimizations.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 68 of 164

Chapter 6. Interactive v1 Workload 6.1. Complex Reads

Interactive / complex / 12
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 12
title Expert search

pattern

description

Given a start Person with ID $personId, find the Comments that this Person’s friends made in reply
to Posts, considering only those Comments that are direct (single-hop) replies to Posts, not the
transitive (multi-hop) ones. Only consider Posts with a Tag in a given TagClass with name $tag-
ClassName or in a descendent of that TagClass. Count the number of these reply Comments, and
collect the Tags that were attached to the Posts they replied to, but only collect Tags with the given
TagClass or with a descendant of that TagClass. Return Persons with at least one reply, the reply
count, and the collection of Tags.

params
1 $personId ID

2 $tagClassName Long String

result

1 friend.id ID R
2 friend.firstName String R
3 friend.lastName String R
4 tagNames {Long String} A
5 replyCount 32-bit Integer A

sort
1 replyCount ↓
2 friend.id ↑

limit 20
CPs 3.3, 7.2, 7.3, 8.2

relevance

This query starts at a Person, moves to its friends, and the to their Comments and their root Posts. Then, it gets
the Tag of each Post and checks whether it (directly or transitively) belongs to the specified TagClass. This can be
thought of a bidirectional search between the Person and the TagClass. The difficulty of this query is determining
the optimal direction of this traversal.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 69 of 164

Chapter 6. Interactive v1 Workload 6.1. Complex Reads

Interactive / complex / 13
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 13
title Single shortest path

pattern

description

Given two Persons with IDs $person1Id and $person2Id, find the shortest path between these two
Persons in the subgraph induced by the knows edges. Return the length of this path:

• −1: no path found
• 0: start person = end person
• > 0: path found (start person ≠ end person)

params
1 $person1Id ID

In SNB Interactive v2, this query has two variants:
(b) Guaranteed that there is no path between the two
Persons
(b) Guaranteed that there is a 4-hop path between the two
Persons

2 $person2Id ID

result 1 shortestPathLength 32-bit Integer C

CPs 3.3, 7.2, 7.3, 7.5, 7.8, 8.1, 8.6

relevance
This query looks for a variable length path, starting at a given Person and finishing at an another given Person.
Proper cardinality estimation and search space pruning, will be crucial. This query also allows for possible parallel
implementations.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 70 of 164

Chapter 6. Interactive v1 Workload 6.1. Complex Reads

Interactive / complex / 14v1
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 14v1
title Trusted connection paths (v1)

pattern

description

This query is used in SNB Interactive v1.
Given two Persons with IDs $person1Id and $person2Id, find all (unweighted) shortest paths be-
tween these two Persons, in the subgraph induced by the knows relationship.
Then, for each path calculate a weight. The nodes in the path are Persons, and the weight of a
path is the sum of weights between every pair of consecutive Person nodes in the path.
The weight for a pair of Persons is calculated based on their interactions:

• Every direct reply (by one of the Persons) to a Post (by the other Person) is 1.0.
• Every direct reply (by one of the Persons) to a Comment (by the other Person) is 0.5.

Note that interactions are counted both ways (e.g. if Alice writes 2 Post replies and 1 Comment
reply to Bob, while Bob writes 3 Post replies and 4 Comment replies to Alice, their interaction
score is 2 × 1.0 + 1 × 0.5 + 3 × 1.0 + 4 × 0.5 = 7.5).
Return all the paths with shortest length and their weights. Do not return any rows if there is no
path between the two Persons.

params
1 $person1Id ID

2 $person2Id ID

result
1 personIdsInPath [ID] C Identifiers representing an ordered sequence of

the Persons in the path
2 pathWeight 64-bit Float C

sort 1 pathWeight ↓ The order of paths with the same weight is unspecified

CPs 3.3, 5.3, 7.2, 7.3, 7.5, 7.7, 8.1, 8.2, 8.3, 8.6

relevance

This query looks for a variable length path, starting at a given Person and finishing at an another given Person. This
is a more complex query as it not only requires computing the path length, but returning it and computing a weight.
To compute this weight one must look for smaller sub-queries with paths of length three, formed by the two Persons
at each step, a Post and a Comment.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 71 of 164

Chapter 6. Interactive v1 Workload 6.2. Short Reads

6.2 Short Reads

Interactive / short / 1
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 1
title Profile of a person

pattern

description
Given a start Person with ID $personId, retrieve their first name, last name, birthday, IP address,
browser, and city of residence.

params 1 $personId ID

result

1 person.firstName String R
2 person.lastName String R
3 person.birthday Date R
4 person.locationIP String R
5 person.browserUsed String R
6 city.id ID R
7 person.gender String R
8 person.creationDate DateTime R

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 72 of 164

Chapter 6. Interactive v1 Workload 6.2. Short Reads

Interactive / short / 2
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 2
title Recent messages of a person

pattern

description

Given a start Person with ID $personId, retrieve the last 10 Messages created by that user. For each
Message, return that Message, the original Post in its conversation (post), and the author of that Post
(originalPoster). If any of the Messages is a Post, then the original Post (post) will be the same
Message, i.e. that Message will appear twice in that result.

params 1 $personId ID

result

1 message.id ID R

2

message.content or
message.imageFile (for
photos)

Text R

3 message.creationDate DateTime R
4 post.id ID R
5 originalPoster.id ID R
6 originalPoster.firstName String R
7 originalPoster.lastName String R

sort
1 message.creationDate ↓
2 message.id ↓

limit 10

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 73 of 164

Chapter 6. Interactive v1 Workload 6.2. Short Reads

Interactive / short / 3
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 3
title Friends of a person

pattern

description
Given a start Person with ID $personId, retrieve all of their friends, and the date at which they
became friends.

params 1 $personId ID

result

1 friend.id ID R
2 friend.firstName String R
3 friend.lastName String R
4 knows.creationDate DateTime R

sort
1 knows.creationDate ↓
2 friend.id ↑

Interactive / short / 4
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 4
title Content of a message

pattern

description Given a Message with ID $messageId, retrieve its content and creation date.

params 1 $messageId ID

result

1 message.creationDate DateTime R messageCreationDate

2

message.content or
message.imageFile (for
photos)

Text R messageContent

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 74 of 164

Chapter 6. Interactive v1 Workload 6.2. Short Reads

Interactive / short / 5
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 5
title Creator of a message

pattern

description Given a Message with ID $messageId, retrieve its author.

params 1 $messageId ID

result

1 person.id ID R
2 person.firstName String R
3 person.lastName String R

Interactive / short / 6
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 6
title Forum of a message

pattern

description
Given a Message with ID $messageId, retrieve the Forum that contains it and the Person that mod-
erates that Forum. Since Comments are not directly contained in Forums, for Comments, return the
Forum containing the original Post in the thread which the Comment is replying to.

params 1 $messageId ID

result

1 forum.id ID R
2 forum.title Long String R
3 moderator.id ID R
4 moderator.firstName String R
5 moderator.lastName String R

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 75 of 164

Chapter 6. Interactive v1 Workload 6.3. Workload Definition

Interactive / short / 7
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 7
title Replies of a message

pattern

description

Given a Message with ID $messageId, retrieve the (1-hop) Comments that reply to it.
In addition, return a boolean flag knows indicating if the author of the reply (replyAuthor) knows
the author of the original message (messageAuthor). If author is same as original author, return
False for knows flag.

params 1 $messageId ID

result

1 comment.id ID R
2 comment.content Text R
3 comment.creationDate DateTime R
4 replyAuthor.id ID R
5 replyAuthor.firstName String R
6 replyAuthor.lastName String R

7 knows Boolean C

True if the knows edge exists between the
replyAuthor and the messageAuthor nodes,
False otherwise (including the case when
the two nodes are the same)

sort
1 comment.creationDate ↓
2 replyAuthor.id ↑

6.3 Workload Definition

The Test Driver is in charge of the execution of the Interactive Workload. At the beginning of the execution, the
Test Driver creates a query mix by assigning to each query instance, a query issue time and a set of parameters
taken from the generated substitution parameter set described above.

Query issue times have to be carefully assigned. Although substitution parameters are chosen in such a way
that queries of the same type take similar time, not all query types have the same complexity and touch the same
amount of data, which causes them to scale differently for the different scale factors. Therefore, if all query
instances, regardless of their type, are issued at the same rate, those more complex queries will dominate the
execution’s result, making faster query types purposeless. To avoid this situation, each query type is executed at
a different rate. The way the execution rate is decided, also depends on the nature of the query: complex read,
short read or update.

Update queries’ issue times are taken from the update streams generated by the data generator. These are
the times where the actual event happened during the simulation of the social network. Complex reads’ times
are expressed in terms of update operations. For each complex read query type, a frequency value is assigned

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 76 of 164

Chapter 6. Interactive v1 Workload 6.3. Workload Definition

which specifies the relation between the number of updates performed per complex read. Table 6.1 shows the
frequencies for each complex query and SF used in the Interactive v1 workload (Chapter 6).

Query SF1 SF3 SF10 SF30 SF100 SF300 SF1 000
1 26 26 26 26 26 26 26
2 37 37 37 37 37 37 37
3 69 79 92 106 123 142 165
4 36 36 36 36 36 36 36
5 57 61 66 72 78 84 91
6 129 172 236 316 434 580 796
7 87 72 54 48 38 32 25
8 45 27 15 9 5 3 1
9 157 209 287 384 527 705 967
10 30 32 35 37 40 44 47
11 16 17 19 20 22 24 26
12 44 44 44 44 44 44 44
13 19 19 19 19 19 19 19
14 49 49 49 49 49 49 49

Table 6.1: Frequencies for each Interactive complex query and SF.

Finally, short reads are inserted in order to balance the ratio between reads and writes, and to simulate the
behavior of a real user of the social network. For each complex read instance, a sequence of short reads is
planned. There are two types of short read sequences: Person centric and Message centric. Depending on the
type of the complex read, one of them is chosen. Each sequence consists of a set of short reads which are issued
in a row. The issue time assigned to each short read in the sequence is determined at run time, and is based on
the completion time of the complex read it depends on. The substitution parameters for short reads are taken
from the results of previously executed queries, including both complex and short reads:

• Complex reads: IC 1 IC 2 IC 3 IC 7 IC 8 IC 9 IC 10 IC 11 IC 12 IC 14v1 IC 14v2
• Short reads: IS 2 IS 3 IS 5 IS 6 IS 7

To see which short and complex queries can potentially trigger additional short query queries, see Table 6.2.
Once a short read sequence is issued (and provided that sufficient substitution parameters exist), there is a

probability that another short read sequence is issued. This probability decreases for each new sequence issued.1
Since the same random number generator seed is used across executions, the workload is deterministic.

The specified frequencies, implicitly define the query ratios between queries of different types, as well as
a default target throughput. However, the Test Sponsor may specify a different target throughput to test, by
“squeezing” together or “stretching” apart the queries of the workload. This is achieved by means of the “Time
Compression Ratio” that is multiplied by the frequencies (see Table 6.1). Therefore, different throughputs can
be tested while maintaining the relative ratios between the different query types.

Warning. Note that in the current implementation of SNB Interactive v1, short queries are only produced
if updates are enabled. In the absence of updates, no short queries will be executed.

1The probability can be adjusted using the ldbc.snb.interactive.short_read_dissipation configuration option.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 77 of 164

Chapter 6. Interactive v1 Workload 6.3. Workload Definition

IS 1 IS 2 IS 3 IS 4 IS 5 IS 6 IS 7
IC 1 ⊗ ⊗ ⊗
IC 2 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IC 3 ⊗ ⊗ ⊗
IC 7 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IC 8 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IC 9 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IC 10 ⊗ ⊗ ⊗
IC 11 ⊗ ⊗ ⊗
IC 12 ⊗ ⊗ ⊗
IC 14 ⊗ ⊗ ⊗
IS 2 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IS 3 ⊗ ⊗ ⊗
IS 5 ⊗ ⊗ ⊗
IS 6 ⊗ ⊗ ⊗
IS 7 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

Table 6.2: Short read queries (columns) potentially triggered after given complex/short read queries (rows).

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 78 of 164

Chapter 7. Interactive v2 Workload

7 Interactive v2 Workload

This chapter is based on the TPCTC 2023 paper “The LDBC Social Network Benchmark Interactive
Workload v2: A Transactional Graph Query Benchmark with Deep Delete Operations” [65], co-
authored by several members of the SNB task force.

Work-in-Progress

The Interactive v2 workload is currently work-in-progress. As of January 2024, commissioning audits for this
workload is not yet possible.

Related Software Components

• Datagen (Spark-based): https://github.com/ldbc/ldbc_snb_datagen_spark
• Driver: https://github.com/ldbc/ldbc_snb_interactive_v2_driver
• Reference implementations: https://github.com/ldbc/ldbc_snb_interactive_v2_impls

7.1 Overview

Figure 7.1: Components and workflow of the Interactive v2 workload. The corresponding sections are shown
in green circles § . Legend: Software component Data artifact

7.2 Operations

The LDBC SNB Interactive v2 workload uses four types of operations. There are 14 complex and 7 short read
queries. Update operations include 8 inserts and, newly introduced in the Interactive v2 workload, 8 deletes.
The workload mix consists of approximately 8% complex read, 72% short read, 20% insert, and 0.2% delete
operations. The complex reads and the short reads are identical to the ones in Interactive v1, except for query
14, which was replaced to cover the Cheapest path-finding choke point.1

Cheapest path-finding While we strived to keep the changes to the queries minimal, we replaced Q14 due to
two reasons. First, we found the original query in Interactive v1 to be ill-suited to the workload as it required
the enumeration of all shortest paths between two Persons, which can be prohibitively expensive on large scale
factors. Second, we introduced a new choke point, CP-7.6 Cheapest path-finding, a key computational kernel
and a language opportunity for GQL [20]. Therefore, we changed Q14 to use cheapest paths instead of all
shortest paths.

1The term shortest paths refers to the problem of finding unweighted shortest paths, which can be computed with BFS. The term
cheapest paths refers to the weighted shortest paths problem, which can be solved using e.g. Dijkstra’s algorithm.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 79 of 164

https://github.com/ldbc/ldbc_snb_datagen_spark
https://github.com/ldbc/ldbc_snb_interactive_v2_driver
https://github.com/ldbc/ldbc_snb_interactive_v2_impls

Chapter 7. Interactive v2 Workload 7.2. Operations

7.2.1 Complex Reads

Interactive / complex / 14v2
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 14v2
title Trusted connection paths (v2)

pattern

description

This query is used in SNB Interactive v2.
Find a cheapest path between two given Persons with IDs $person1Id and $person2Id in the in-
teraction subgraph. If there are multiple cheapest paths, any of them can be returned. Do not
return any rows if there is no path between the Persons. The interaction subgraph is based on a
projection of the Person-knows-Person graph. In this projection, only those knows edges are kept
whose endpoint Persons have at least one interaction between them. An interaction is defined as
a direct reply Comment (by one of the Persons) to a Message (by the other Person). The weights are
defined as: max(round(40 −

√
numInteractions),1)

Note: Interactions are counted both ways, e.g. if Alice knows Bob, Alice writes 2 reply Comments
to Bob’s Messages and Bob writes 3 reply Comments to Alice’s Messages, their total number of
interactions is 5 and the weight of the knows edge is 38.
Remark: Determinism is ensured by using square root followed by rounding. For all integers
between 1 and 100 000, the square root’s fractional part is more than 10e-5 from 0.5, where the
rounding could be non-deterministic based on floating point inaccuracies. As 10e-5 is signifi-
cantly larger than the machine epsilon of IEEE 754 floats (both 32- and 64-bit), the floating point
inaccuracies have no chance to affect the derived integer edge weights.

params
1 $person1Id ID

(b) There are no paths between the two Persons
(b) There is a 4-hop path between the two Persons

2 $person2Id ID

result
1 personIdsInPath [ID] C Identifiers representing an ordered sequence of

the Persons in the path
2 pathWeight 64-bit Integer C

CPs 3.3, 5.3, 7.6, 7.7, 7.8, 8.1, 8.2, 8.3, 8.6
relevance This query tests the performance of cheapest path (weighted shortest path) computation.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 80 of 164

Chapter 7. Interactive v2 Workload 7.3. Parameter Curation

7.2.2 Short Reads

The short reads operations are identical to the ones in Interactive v1, see Section 6.2.

7.2.3 Insert Operations

See Section 5.1.

7.2.4 Delete Operations

See Section 5.2.

7.3 Parameter Curation

To prevent caching query results, the SNB Interactive v2 driver instantiates the parameterized complex read
(IC) query templates with different substitution parameters (a.k.a. parameter bindings). However, the naïve ap-
proach (using a uniform random sampling of parameters and ignoring updates) leads to unstable runtimes, which
compromise both the benchmark’s understandability and reproducibility. To ensure stable runtimes, LDBC in-
vented parameter curation techniques, which select parameters that produce query runtimes with a unimodal
(preferably Gaussian) distribution [32, 79].

7.3.1 Building Blocks for Parameter Curation

Temporal bucketing To ensure that operations are always executable, i.e. they avoid targeting nodes that are
yet to be inserted or ones that are already deleted, the parameter curation process in Interactive v2 employs
temporal bucketing. Namely, we create a parameter bucket for each day in the simulation time of the update
streams, i.e. each day in the simulation time has its own distinct set of parameters. This is a novel feature in
Interactive v2 – previous SNB benchmarks lacked this feature and only selected parameters from the initial
snapshot.

Factor tables As shown in Figure 7.1, the parameter generation is a two-step process. The factor generator
produces factor tables, which contain data cube-like summary statistics [29] of the temporal graph such as the
number of Messages for friends. The factor generator is executed in a distributed setup using Spark as this com-
putation includes expensive joins over large tables, e.g. knows(person, friend) & hasCreator(person, comment).

7.3.2 Parameter Curation for Relational Queries

For relational queries (without path-finding), we based our parameter generation on two techniques.

(1) Selecting windows To select the parameters that are expected to yield similar runtimes, we look for win-
dows with the smallest variance for a given value using SQL window functions. The parameters are first sorted
and grouped together based on their difference in frequency. Groups that are smaller than a given minimum
threshold are discarded to select a group of parameters large enough to generate a sufficient amount of parame-
ters. From the latter, we select the group with the smallest standard deviation.

(2) Selecting distributions For queries where we want to select parameters that are correlated or anti-
correlated, we use factor tables encoding possible combinations (e.g. countryPairsNumFriends for IC 3): we select
values near a high percentile for the correlated and a low percentile for the anti-correlated case.

Generating the parameters The parameter candidates discovered by the previous approaches are stored in
temporary tables. The parameter generation step uses these tables to select parameters for each day in the update
stream.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 81 of 164

Chapter 7. Interactive v2 Workload 7.3. Parameter Curation

7.3.3 Parameter Curation for Path-Finding Queries

The effect of deletes A key distinguishing feature of graph data management systems is their first-class sup-
port for path queries [4]. We demonstrate why ensuring stable query runtimes for path queries is particularly
challenging through the example of Figure 7.2a, where we query for the (unweighted) shortest path between
Ada and Bob over a dynamic graph. Initially, at t = 1, the length of the shortest path is 4 hops. Then, the edge
between Carl and Dan is deleted, making Ada and Bob unreachable from each other at t = 2. Finally, a new
edge is inserted between Carl and Bob, yielding a shortest path of length 3 at t = 3. This illustrates how a
given input parameter (a pair of Persons) can oscillate between being reachable and being in disjoint connected
components over a short period. To ensure stable query runtimes for path queries in the presence of inserts and
deletes, Interactive v2 introduces a novel path curation algorithm, which produces pairs of Person nodes whose
shortest path length from each other is guaranteed to be exactly k hops at any point during a given day.

Graph construction The parameter curation algorithm builds two variants of the Person–knows–Person sub-
graph for each day based on the temporal graph: graph G1 has the inserts applied until the beginning of the
day and the deletes applied until the end of the day, while G2 has the deletes applied until the beginning of the
day and the inserts applied until the end of the day. For a given pair of Person nodes, their shortest path length
in G1 is an upper bound kupper on their shortest path length at any point in the day – when the inserts during
the day are gradually applied, the shortest path length can only become shorter. Conversely, G2 gives a lower
bound klower for the shortest path – the deletes can only make the shortest path length become longer.

Parameter selection The bounds provided byG1 andG2 guarantee for the shortest path length k that klower ≤
k ≤ kupper will hold at any point during the day. We can ensure that k will stay constant during the day by
selecting Person pairs where klower = kupper holds. To this end, we select pairs who are exactly 4 hops apart in
both G1 and G2, hence they will be always 4 hops apart during the given day. Unreachable pairs of nodes can
be generated by calculating the connected components of G2 and selecting nodes from disjoint components.
The path curation for both the reachable and the unreachable cases is implemented using the NetworKit graph
algorithm library [76].

(a) Shortest path (denoted with thick lines) be-
tween Ada and Bob in the presence of updates.

100 101 102 103

Country Pair Index

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
rie

nd
sh

ip
s

Frequency of friendships between country pairs
High correlation
Low correlation

(b) Pairs of Countries in the countryPairsNumFriends factor table repre-
senting the number of friendships between both Countries.

Figure 7.2: Example graph and distribution for path curation.

7.3.4 Query Variants

The new workload introduces variants for three queries: IC 3 , IC 13 , IC 14v2 .

Complex read 3: Correlated vs. anti-correlatedCountries For IC 3 , variant IC 3(a) starts from Countries
that have a high correlation in the friendship network, while variant IC 3(b) starts from Countries that have a

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 82 of 164

Chapter 7. Interactive v2 Workload 7.4. Workload Scheduling and Benchmark Driver

low correlation of friendships between. To generate these inputs, we use the countryPairsNumFriends factor table
visualized in Figure 7.2b and select values at percentile 1.00 for variant (a) and percentile 0.01 for variant (b).

Complex reads 13 and 14: Reachable vs. unreachable Persons Path queries are expected to have different
runtimes if there is a path vs. when there is no path. While the performance characteristics vary highly between
systems, in principle, the “no path” case should be simpler in the SNB graph, where one of the nodes is always in
a small connected component. To distinguish between these cases, we have two variants for the two path queries
IC 13 and IC 14v2 . For variants (a) we select Person pairs which do not have a path, and for variants (b)
we select pairs which have a path of length 4.

7.3.5 Parameter Generator Implementation

The parameter generator is implemented in Python using NetworKit [76] and SQL queries executed by
DuckDB [67]. Based on our experiments in [64, Figure 4.3], the new parameter generator is scalable. Even
with the significant extra work performed for temporal bucketing, it outperforms the old parameter generator by
more than 100× on SF1 000, and finishes in less than 1.5 hours on SF10 000.

7.4 Workload Scheduling and Benchmark Driver

In this section, we explain how operations are scheduled in the SNB Interactive workload, how the driver oper-
ates, and how the final throughput metric is determined. In all cases, we assume that the system-under-test has
been populated with the initial snapshot using a bulk loader before the driver runs the operations.

7.4.1 Scheduling Operations

TCR (total compression ratio) The scheduling follows the simulation time of the temporal social network
graph. The user-provided total compression ratio (TCR) value controls the speed at which the simulation is
replayed. For example, a TCR value of 0.02 means that the simulation is replayed 50× faster, i.e. for every
20 milliseconds in wall clock time, 1 second passes in the simulation time.

Update operations The driver replays the update operations starting from the cutoff date, Nov 29, 2012. The
operations are scheduled according to the distance of their start time from this date, adjusted by the TCR. They
are then used to set the cadence of the schedule for the complex reads and, in turn, the short read queries, as we
will explain momentarily.

Complex read queries The complex read queries differ significantly in their expected runtimes as they touch
on different amounts of data. As each query instance contributes equally to the output metric,2 we balance them
such that each query type is expected to take the same amount of time to execute. For example, IC 14 (new) is
expected to be more difficult than IC 13, therefore it is scheduled less frequently. Frequencies vary based on the
SF as the relative difficulties of queries change with the data size (e.g. three-hop neighbourhood queries grow
faster on larger SFs than one-hop ones).

Short read queries Short read queries are triggered by complex read queries and other short read queries,
and use their output as their input. For example, both IC 3 and IC 14 trigger IS 2, which also triggers itself. This
mimics the real-life scenario of a user retrieving more information about Person profiles based on the result of
the earlier queries. To see which short read queries are potentially triggered after given short read and complex
read queries, see Table 6.2.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 83 of 164

Chapter 7. Interactive v2 Workload 7.4. Workload Scheduling and Benchmark Driver

(a) Validation workflow running on a single thread.

(b) Benchmark workflow using multiple threads.

Figure 7.3: Workflow of driver modes in SNB Interactive v2.

7.4.2 Driver

Driver modes The SNB driver has two key modes of operation. In cross-validation mode (Figure 7.3a)m the
driver tests an implementation against the output of another implementation. To ensure deterministic results,
operations in this mode are executed sequentially with no overlap between queries and updates. In benchmark
mode (Figure 7.3b), the driver performs a benchmark run where queries and updates are issued concurrently
from multiple threads. The run starts with a 30-minute warm-up period, followed by a 2-hour measurement
window. This mode does not perform validation as query results may differ (slightly) due to concurrent updates.

Dependency tracking To ensure that updates are executable, concurrent threads must be synchronized so
that an operation is only executed when its dependencies exist in the network (e.g. two Persons can only become
friends if both of them already exist). This is achieved viamaintaining a global clock in the driver and performing
dependency tracking for the updates [24]: each update operation has a timestamp denoting the creation time of
the last operation it depends on. The data generator calculates these timestamp during generation and ensures
that there is a minimum time separation, Tsafe, between dependent entities to reduce synchronization overhead
in the driver when executing operations. The driver then only needs to check every Tsafe time whether a given
update operation can be executed. By default, Tsafe is set to 10 seconds in the simulation time.

Latency requirements The workload simulates a highly transactional scenario where operations are subject
to (soft) latency requirements. To incorporate this in the workload, it prescribes the 95% on-time requirement:
for a benchmark run to be successful, 95% of the operations must start on-time, i.e. within 1 second of their
scheduled start time. Benchmark runs where the system-under-test falls behind too much from the schedule are
considered invalid.

Throughput The throughput of a run is the total number of operations (IC , IS , INS, DEL) executed per second.
A lower TCR value implies a higher throughput.

Individual execution times To facilitate deeper analyis, the benchmark driver also collects all individual
query execution times. Based on these, the benchmark reports must include statics for each operation type (min,
max, mean, P50, P90, P95, and P99 of the execution times).

Driver implementation in v2 The Interactive v2 is implemented in Java 17. It consists of 26 500 lines of
code for the core project and an additional 18 000 lines of test code. The new version contains several patches
including bug fixes, usability improvements, and performance optimizations.

2Unlike in TPC-H [83] and SNB BI [79], which use geometric mean in their metrics.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 84 of 164

Chapter 8. Business Intelligence Workload

8 Business Intelligence Workload

The Business Intelligence (BI) workload is the SNB’s analytical (OLAP) workload. As such, it defines complex
read queries that touch a significant portion of the data (see Section 8.4). Additionally, it defines daily batches
of updates over a 33-day period (see Section 8.5 for inserts and Section 8.6 for deletes).

Related Publications

The BI workload was published in PVLDB 2022 [79].

Related Software Components

• Datagen (Spark-based): https://github.com/ldbc/ldbc_snb_datagen_spark
• Driver and reference implementations: https://github.com/ldbc/ldbc_snb_bi

8.1 Overview

Figure 8.1: Main software components and data artifacts of the benchmark and their connection to the workflow
executed by the BI benchmark driver.

An overview of the BI workload is shown in Figure 8.1. The rules for auditing workload implementations
are given in Section 9.5.

8.2 Read Query Templates

SNB BI consists of 20 parameterized read query templates, referred to as queries. These search for graph pat-
terns (often implying join-heavy operations onmany-to-many edges), traverse hierarchies, and compute cheapest
paths (a.k.a. weighted shortest paths). Additionally, they include filtering, grouping, aggregation, and sorting
operators. While all queries explore a large portion of the graph, they only return the top-k (typically 20 or 100)
results, keeping their result sizes compact to avoid emphasizing the client-server network protocol’s role in the
benchmark [66].

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 85 of 164

https://github.com/ldbc/ldbc_snb_datagen_spark
https://github.com/ldbc/ldbc_snb_bi

Chapter 8. Business Intelligence Workload 8.2. Read Query Templates

8.2.1 Choke Point-Based Design Methodology

LDBC’s query design process relies on the use of choke points (Appendix A), i.e. challenging aspects of query
processing. SNB BI includes 38 choke points divided into 9 categories: aggregation performance, join perfor-
mance, data access locality, expression calculation, correlated subqueries, parallelism and concurrency, graph
specifics, language features, and update operations. Their coverage is shown in Table A.1. In the following, we
discuss two challenges that are particularly prevalent in graph workloads.

8.2.1.1 Explosive and redundant multi-joins

In recent years it has become clear that graph pattern matching, or equivalent multi-join queries over many-
to-many relationships, typically generate very large intermediate results when executed with traditional join
algorithms. This is especially the case for cyclical join graphs (corresponding to cyclic graph queries). It was
proven in theory [58] and shown in practice [86, 50, 27] that “worst-case optimal” multi-join algorithms can
avoid these large intermediates and outperform traditional joins. Following this, there has been increased atten-
tion on redundancy in join results (even when produced by worst-case optimal joins), which can be eliminated
using factorized query processing techniques [12, 59, 35]. Graph pattern matching queries that contain large
join patterns will trigger these phenomena.

8.2.1.2 Expressive path finding

SNB BI contains queries that require an efficient implementation of shortest path finding between many pairs.
Expressing such queries requires a query language which supports either path finding or recursion. The under-
lying system implementation must then handle this with an optimized execution strategy, as recursing to try all
paths will not scale. As some of this path finding includes on-the-fly computed edges (joins) between nodes,
the queries can benefit from path expressions, as proposed in Oracle’s PGQL language [69] and as part of the
GQL and SQL/PGQ languages [20]. The path finding required by SNB BI not only tests connectivity (as sup-
ported in SPARQL), but also requires returning the cheapest cost along weighted paths (necessitating SPARQL
extensions [52]).

8.2.2 Analysis of Selected Queries

In order to defeat trivializing complex query performance by query caching, benchmarks can use both frequent
updates (which require invalidating caches or maintaining cached intermediates) as well as parameterized query
templates. The BI workload features update batches, so parametrized read query templates are necessary to
guard against this between the batches. In this section, we analyze four read query templates.

Notation: We denote the query parameters with the $ symbol and discuss their generation in Section 8.3.

8.2.2.1 Q11: Friend triangles

BI 11 imposes two key difficulties. First, systems should efficiently filter the knows edges based on the loca-
tion of their endpoint Persons (Country $country) and the date range. Second, given a large number of knows
edges even after filtering, efficient enumeration of personA–personB–personC triangles (a cyclic subgraph query)
requires worst-case optimal multi-joins.

8.2.2.2 Q14: International dialog

BI 14 imposes different challenges depending on whether Countries $country1 and $country2 are correlated or
anti-correlated (Section 8.3.3.1). For the ranking, top-k pushdown can be exploited: once a result for a City in
$country1 is obtained, extra restrictions in a selection can be added based on the value of this element. As the
score of two Persons does not depend on any query parameters, precomputing and maintaining it as an attribute
on the knows edge can be beneficial.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 86 of 164

Chapter 8. Business Intelligence Workload 8.3. Parameter Curation for BI Queries

8.2.2.3 Q18: Friend recommendation

BI 18 is inspired by Twitter’s recommendation algorithm [34]. Implementations of this query can exploit
factorization: systems can count the number of mutual friends without explicitly enumerating all <person1,
personM, person2> tuples.

8.2.2.4 Q20: Recruitment

BI 20 performs graph projection [5]. Instead of materializing this graph in the database, systemsmay represent
it using a compact in-memory structure such as CSR (Compressed Sparse Row) [72]. To perform the cheapest
path computation, a single-source shortest path algorithm (starting from $person2), such as Dijkstra’s algorithm,
can be used. As the projected graph is independent of query parameters, precomputing and maintaining it can
be beneficial.

8.3 Parameter Curation for BI Queries

8.3.1 The Need for Parameter Curation

A disadvantage of executing the same read query template with different parameters is that the intermediate
results and runtimes can be severely influenced by the parameter values. This is particularly the case in SNB
BI with its explosive joins, skewed out-degrees, skewed value distributions, correlated value distributions, and
structural correlations. Moreover, the updates (including cascading deletes) can significantly change the portion
of the graph reached by the same query executed at different times. In order to keep query performance un-
derstandable we need to actively curate parameters, such that different parameters executed at different logical
times still lead to stable and, therefore, understandable results. We achieve this through parameter curation [32,
24], a data mining process of looking for parameter values with suitably similar characteristics.

8.3.2 Parameter Generation Steps

Our parameter curation process is a two-step process: we first generate factors followed by the parameters
(Figure 8.1). These components are executed for each scale factor and are independent of the serialization
format/layout of the data set.

8.3.2.1 Factor Generator

The factor generator produces 21 factor tables containing summary statistics from the temporal graph, e.g. the
number of Persons per City or the number of Messages per day for each Tag.

8.3.2.2 Parameter Generation

To find suitable substitution parameters that (presumably) lead to the same amount of data access and thus
similar runtimes, we first identify the factor table containing the summary statistics of the query’s parameters.
For example, Q14’s template uses the parameters Country $country1 and Country $country2. Therefore, we use
the countryPairsNumFriends factor table which contains $country1, $country2 pairs and the number of friendships
on Person lives in $country1 and the other lives in $country2. Using this table, we select the pth percentile from
the distribution as the anchor, then rank the rest of the distribution based on their absolute difference from the
anchor and take the top-k values. We shuffle the values using a hash function to avoid introducing artificial
locality, where e.g. subsequent queries start in nodes from the same ID range. Listing 8.1 shows the SQL query
implementing the parameter generation for Q14a.

8.3.3 Parameter Curation for Graph Queries

We discuss two parameter curation cases that are particularly important in graph data management.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 87 of 164

Chapter 8. Business Intelligence Workload 8.3. Parameter Curation for BI Queries

8.3.3.1 Correlated vs. Anti-Correlated Parameters

Our parameter curation provides a straightforward way of selecting start entities which are affected by (structural
or attribute-level) correlation vs. anti-correlation: corresponding parameters can be found by selecting a high vs.
low percentile as the anchor in the parameter generation query. For example, for Q14 (Section 8.4), we selected
variant a to p = 0.98 (correlated) and variant b to p = 0.03 (anti-correlated).

8.3.3.2 Path Queries

SNBBI queries Q15, Q19, Q20 include cheapest path finding queries computed between given (sets of)Persons.
These queries are particularly challenging for parameter curation: if there is no path between the two endpoints,
query runtimes are significantly higher as the search has to traverse an entire connected component to ensure
that no path exists. Moreover, the presence of a path between two nodes at a given time does not guarantee that
it will always exist during the benchmark execution as deletions can render the endpoints of a path unreachable.

8.3.4 Query Variants

12 queries have a single variant, while 8 queries have two variants, yielding a total of 28 query variants. As a
rule of thumb, variants a are expected to produce a longer runtime while variants b are expected to be simpler.
Variants of Q2, Q8, Q16 are parametrized with a flashmob vs. a non-flashmob date. Variants of Q14 and Q19
select correlated vs. non-correlated Countries/Cities. Q10’s variants differ in degree (a start Person with an
average number of friends vs. only a few friends), while Q15’s variants have different path lengths and time
intervals (4 hops and one week vs. 2 hops and one month). Q20a selects endpoints where it is guaranteed that
no path exists, while Q20b selects ones where there is guaranteed that a path exists.

8.3.5 Scalability and Reproducibility

8.3.5.1 Scalability

The factor generator is part of the SNB Datagen and runs after the temporal graph has been created. It is
implemented in Spark for distributed execution. While its computations use expensive, aggregration-heavy
queries, the derived factor tables are compact, e.g. SF10 000 has only 20 GiB of factors in compressed Parquet
format, the equivalent of approximately 100 GiB in CSV format, i.e. 1% of the total data set size. The parameter
generator queries are executed in DuckDB [67], which supports vertical scalability and is capable of running
the parameter generation for SF10 000 using less than 512 GiB memory.

SELECT country1, country2
FROM (
SELECT

country1,
country2,
abs(frequency - (
SELECT percentile_disc(0.98) WITHIN GROUP (ORDER BY frequency) AS anchor FROM countryPairsNumFriends

)) AS diff
FROM countryPairsNumFriends
ORDER BY diff, country1, country2

)
ORDER BY md5(concat(country1, country2))
LIMIT 50

Listing 8.1: Parameter generation SQL query for Q14a.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 88 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

8.3.5.2 Reproducibility

It is important to guarantee that the parameter curation process is reproducible. To this end, we leverage that
the Datagen and, consequently, the factor generator are reproducible. To ensure that the parameter generation
queries yield deterministic results we define a total ordering in each query. To provide deterministic shuffling
we base the ordering on MD5 hashes (instead of the actual attribute values), see Listing 8.1.

8.4 Reads

BI / read / 1
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 1
title Posting summary

pattern

description

Given a $datetime, find all Messages created before that moment. Group them by a 3-level group-
ing:

1. by year of creation
2. for each year, group into Message types: is Comment or not
3. for each year-type group, split into four groups based on length of their content

• 0: 0 ≤ length < 40 (short)
• 1: 40 ≤ length < 80 (one liner)
• 2: 80 ≤ length < 160 (tweet)
• 3: 160 ≤ length (long)

params 1 $datetime DateTime

result

1 year 32-bit Integer R year(message.creationDate)
2 isComment Boolean M True for Comments, False for Posts

3 lengthCategory 32-bit Integer C 0 for short, 1 for one-liner, 2 for tweet, 3 for
long

4 messageCount 64-bit Integer A Total number of Messages in that group

5 averageMessageLength 32-bit Float A Average length of the Message content in
that group

6 sumMessageLength 64-bit Integer A Sum of all Message content lengths

7 percentageOfMessages 32-bit Float A
Number of Messages in group as a
percentage of all messages created before
the given date

sort

1 year ↓
2 isComment ↑ False < True, i.e. Posts come first and Comments second
3 lengthCategory ↑

limit n/a
CPs 1.2, 3.2, 4.1, 4.2, 8.5

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 89 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 2
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 2
title Tag evolution

pattern

description
Find the Tags under a given $tagClass that were used in Messages during in the 100-day time
window starting at $date and compare it with the 100-day time window that follows. For the
Tags and for both time windows, compute the count of Messages.

params

1 $date Date

Based on the creation day – TagClass – number of Messages
factor table:
(a) A flashmob date
(b) A non-flashmob date

2 $tagClass Long String
For both (a) and (b), TagClasses with a similar amount of
Messages are selected

result

1 tag.name Long String R
2 countWindow1 32-bit Integer A Occurrences of the tag during the first time window

3 countWindow2 32-bit Integer A Occurrences of the tag during the second time
window

4 diff 32-bit Integer A Absolute difference of countWindow1 and
countWindow2

sort
1 diff ↓
2 tag.name ↑

limit 100
CPs 2.4, 3.1, 3.2, 4.1, 4.2, 4.3, 5.3, 6.1, 8.2, 8.5

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 90 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 3
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 3
title Popular topics in a country

pattern

description

Given a $tagClass and a $country, find all the Forums created in the given $country, containing at
least one Message with Tags belonging directly to the given $tagClass, and count the Messages by
the Forum which contains them.
The location of a Forum is identified by the location of the Forum’s moderator.

params
1 $tagClass Long String TagClasses with a similar amount of Messages are selected
2 $country Long String Big Countries are selected

result

1 forum.id ID R
2 forum.title Long String R
3 forum.creationDate DateTime R
4 person.id ID R
5 messageCount 32-bit Integer A

sort
1 messageCount ↓
2 forum.id ↑

limit 20
CPs 1.1, 1.2, 1.3, 2.1, 2.2, 2.4, 3.3, 8.2

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 91 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 4
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 4
title Top message creators by country

pattern

description

Find the most popular Forums by Country, where the popularity of a Forum is measured by the
number of members that Forum has from a given Country and the Forum was created after a given
$date.
Calculate the top 100 most popular Forums. If a Forum is popular in multiple countries, it should
only be calculated once with its largest membership. In case of a tie, the Forum with the smaller
id value should be selected.
For each member Person of the 100 most popular Forums, count the number of Messages
(messageCount) they made in any of those (most popular) Forums. Also include those member
Persons who have not posted any Messages (have a messageCount of 0).

params 1 $date Date Selected from the first 30 days of the network

result

1 person.id ID R
2 person.firstName String R
3 person.lastName String R
4 person.creationDate DateTime R
5 messageCount 32-bit Integer A

sort
1 messageCount ↓
2 person.id ↑

limit 100
CPs 1.2, 1.3, 2.1, 2.2, 2.3, 2.4, 3.3, 5.3, 6.1, 8.2, 8.4

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 92 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 5
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 5
title Most active posters of a given topic

pattern

description

Get each Person (person) who has created a Message (message) with a given $tag (direct relation,
not transitive). Considering only these Messages, for each Person node:

• Count its Messages (messageCount).
• Count likes (likeCount) to its Messages.
• Count Comments (replyCount) in reply to its Messages.

The score is calculated according to the following formula: 1 × messageCount + 2 × replyCount +
10 × likeCount.

params 1 $tag Long String
Tags with a similar amount of Messages are selected. To avoid
caching, different Tags should be used than the ones in Q6 and
Q7.

result

1 person.id ID R
2 replyCount 32-bit Integer A
3 likeCount 32-bit Integer A
4 messageCount 32-bit Integer A
5 score 32-bit Integer A

sort
1 score ↓
2 person.id ↑

limit 100
CPs 1.2, 2.3, 2.6, 8.2

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 93 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 6
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 6
title Most authoritative users on a given topic

pattern

description

Given a $tag, find all Persons (person1) that ever created a Message with the $tag. For each of these
Persons (person1) compute their “authority score” as follows:

• The “authority score” is the sum of “popularity scores” of the Persons (person2) that liked
any of that Person’s Messages with the given $tag (same criterion as for message1).

• A Person’s (person2) “popularity score” is defined as the total number of likes (by any Person
person3) on any of their Messages (message2).

params 1 $tag Long String
Tags with a similar amount of Messages are selected. To avoid
caching, different Tags should be used than the ones in Q5 and
Q7.

result
1 person1.id ID R
2 authorityScore 32-bit Integer A

sort
1 authorityScore ↓
2 person1.id ↑

limit 100
CPs 1.2, 2.3, 2.6, 3.3, 6.1, 8.2

relevance Computing the authority scores might involve computing the popularity score for the same Person multiple times.
Implementations are advised to avoid such redundant computations.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 94 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 7
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 7
title Related topics

pattern

description
Find all Messages that have a given $tag. Find the related Tags attached to (direct) reply Comments
of these Messages, but only of those reply Comments that do not have the given $tag.
Group the related Tags by name, and get the count of replies in each group.

params 1 $tag Long String
Tags with a similar amount of Messages are selected. To avoid
caching, different Tags should be used than the ones in Q5 and
Q6.

result
1 relatedTag.name Long String R
2 count 32-bit Integer A

sort
1 count ↓
2 relatedTag.name ↑

limit 100
CPs 1.4, 3.3, 5.2, 8.1

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 95 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 8
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 8
title Central person for a tag

pattern

description

Given a $tag, find all Persons that are interested in the $tag and/or have written a Message (Post or
Comment) with a creationDate after a given $startDate and that has a given $tag. For each Person,
compute the score as the sum of the following two aspects:

• 100, if the Person has this $tag as their interest, or 0 otherwise
• number of Messages by this Person with the given $tag

Also, for each Person, compute the sum of the score of the Person’s friends (friendsScore).

params

1 $tag Long String Tags with a similar amount of Messages are selected

2 $startDate Date
(a): A range during which a flashmob event happened (it
should yield at least a 5× difference)
(b): A regular range (does not include a flashmob event)

3 $endDate Date

result

1 person.id ID R
2 score 32-bit Integer A
3 friendsScore 32-bit Integer A The sum of the score of the person’s friends

sort
1 score + friendsScore ↓
2 person.id ↑

limit 100
CPs 1.2, 2.1, 2.3, 3.2, 5.3, 8.2, 8.4, 8.5

relevance

Similarly to BI 16, there are two major ways to compute this query: (1) creating an induced subgraph of the interested
Persons and their friends and performing the scoring on this graph or (2) performing the scoring without creating
an induced subgraph and scoring the friends of a Person on-the-fly. The first approach is more efficient as it avoids
redundant computations, however, specifying it needs support for composable graph queries.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 96 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 9
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 9
title Top thread initiators

pattern

description

For each Person, count the number of Posts they created in the time interval [$startDate, $end-
Date] (equivalent to the number of threads they initiated) and the number of Messages in each
of their (transitive) reply trees, including the root Post of each tree. When calculating Message
counts only consider Messages created within the given time interval.
Return each Person, number of Posts they created, and the count of all Messages that appeared in
the reply trees (including the Post at the root of tree).

params
1 $startDate Date Selected around the same date
2 $endDate Date 80-100 days after the $startDate

result

1 person.id ID R
2 person.firstName String R
3 person.lastName String R

4 threadCount 32-bit Integer A The number of Posts created by that Person (the
number of threads initiated)

5 messageCount 32-bit Integer A The number of Messages created in all the
threads this Person initiated

sort
1 messageCount ↓
2 person.id ↑

limit 100
CPs 1.2, 2.2, 2.3, 2.6, 3.2, 7.2, 7.3, 7.4, 8.1, 8.5

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 97 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 10
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 10
title Experts in social circle

pattern

description

Given a Person startPerson with ID $personID, find all other Persons (expertCandidatePerson) that
live in a given $country and are connected to the startPerson on a shortest path with length in
range [$minPathDistance, $maxPathDistance] through the knows relation.
For each of these expertCandidatePerson nodes, retrieve all of their Messages that contain at least
one Tag belonging to a given $tagClass (direct relation not transitive). For each Message, retrieve
all of its Tags.
Group the results by Persons and Tags, then count the Messages by a certain Person having a certain
Tag.

params

1 $personId ID

(a) Persons with an average degree of knows edges
are selected
(b) Persons who have only one friend and that Person
has two friends in total (including the original
Person)

2 $country String Select mid-sized Countries

3 $tagClass Long String
TagClasses with a similar degree of hasType edges
are selected

4 $minPathDistance 32-bit Integer 3
5 $maxPathDistance 32-bit Integer 4

result

1 expertCandidatePerson.id ID R
2 tag.name Long String R

3 messageCount 32-bit Integer A Number of Messages created by that
Person containing that Tag

sort

1 messageCount ↓
2 tag.name ↑
3 expertCandidatePerson.id ↑

limit 100
CPs 1.2, 1.3, 2.3, 2.4, 2.6, 3.3, 5.3, 7.1, 7.2, 7.3, 8.1, 8.6

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 98 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 11
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 11
title Friend triangles

pattern

description

For a given $country, count all the distinct triples of Persons such that:

• personA is friend of personB,
• personB is friend of personC,
• personC is friend of personA,

and these friendships were created in the range [$startDate, $endDate].
Distinct means that given a triple t1 in the result set R of all qualified triples, there is no triple
t2 in R such that t1 and t2 have the same set of elements.

params

1 $country Long String Selected from the largest Countries (India, China)

2 $startDate Date
Selected from a 30-day interval towards the end of the
simulation time

3 $endDate Date Selected to yield around a 100-day interval

result 1 count 64-bit Integer A

limit n/a
CPs 2.3, 2.5, 3.2

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 99 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 12
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 12
title How many persons have a given number of messages

pattern

description

For each Person, count the number of Messages they made (messageCount). Only count Messages
with the following attributes:

• Its content is not empty (and consequently, the imageFile attribute is empty for Posts).
• Its creationDate is after $startDate (exclusive, equality is not allowed).
• Its length is below the $lengthThreshold (exclusive, equality is not allowed).
• It is written in any of the given $languages.

– The language of a Post is defined by its language attribute.
– The language of a Comment is that of the Post that initiates the thread where the Com-

ment replies to.

The Post and Comments in the reply tree’s path (from the Message to the Post) do not have to
satisfy the constraints for content, length, and creationDate.

For each messageCount value, count the number of Persons with exactly messageCount Messages
(with the required attributes).

params

1 $startDate Date Selected randomly from a 60-day interval.

2 $lengthThreshold 32-bit Integer

Balanced against startDate to filter around 30% of
the Messages within a language and keep the
variance low.
The selection of this parameter uses a factor table
of bucketed Message lengths and creation dates.

3 $languages {String} Only the most frequently used languages

result
1 messageCount 32-bit Integer A Number of Messages created
2 personCount 32-bit Integer A Number of Persons with messageCount Messages

sort
1 personCount ↓
2 messageCount ↓

limit n/a
CPs 1.1, 1.2, 1.4, 2.6, 3.2, 4.2, 4.3, 8.1, 8.2, 8.3, 8.4, 8.5

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 100 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 13
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 13
title Zombies in a country

pattern

description

Find zombies within the given $country, and return their zombie scores. A zombie is a Person
created before the given $endDate, which has created an average of [0, 1) Messages per month,
during the time range between profile’s creationDate and the given $endDate. The number of
months spans the time range from the creationDate of the profile to the $endDate with partial
months on both end counting as one month (e.g. a creationDate of Jan 31 and an $endDate of
Mar 1 result in 3 months).
For each zombie, calculate the following:

• zombieLikeCount: the number of likes received from other zombies.
• totalLikeCount: the total number of likes received.
• zombieScore: zombieLikeCount / totalLikeCount. If the value of totalLikeCount is 0, the
zombieScore of the zombie should be 0.0.

For both zombieLikeCount and totalLikeCount, only consider likes received from profiles that were
created before the given $endDate.

params
1 $country Long String Selected from the largest Countries (India, China)
2 $endDate Date Selected from the last days of the initial data set

result

1 zombie.id ID R
2 zombieLikeCount 32-bit Integer A
3 totalLikeCount 32-bit Integer A
4 zombieScore 32-bit Float A Determined as zombieLikeCount / totalLikeCount

sort
1 zombieScore ↓
2 zombie.id ↑

limit 100
CPs 1.2, 2.1, 2.3, 2.4, 2.6, 3.2, 3.3, 4.2, 5.1, 5.3, 8.2, 8.4, 8.5

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 101 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 14
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 14
title International dialog

pattern

description

Consider all pairs of people (person1, person2) such that (1) they know each other, (2) one is
located in a City of $country1, and (3) the other is located in a City of $country2. For each City of
$country1, return the highest scoring pair. If there are multiple top-scoring pairs in a city, return
the pair with the lowest (person1.id, person2.id) using a lexicographical ordering.
The score of a pair is defined as the sum of the subscores awarded for the following kinds of
interaction. The initial value is score = 0.

1. person1 has created a reply Comment to at least one Message by person2: score += 4
2. person1 has created at least one Message that person2 has created a reply to: score += 1
3. person1 liked at least one Message by person2: score += 10
4. person1 has created at least one Message that was liked by person2: score += 1

Consequently, the maximum score a pair can obtain is: 4 + 1 + 10 + 1 = 16.

params
1 $country1 Long String

(a) Correlated with parameter country2, i.e. the Countries
are close and there are many Persons knowing each other
(b) Uncorrelated with parameter country2, i.e. the Countries
are afar and there are few Persons knowing each other

2 $country2 Long String

result

1 person1.id ID R
2 person2.id ID R
3 city1.name Long String R
4 score 32-bit Integer C

sort

1 score ↓
2 person1.id ↑
3 person2.id ↑

limit 100
CPs 1.3, 1.4, 2.1, 3.1, 3.3, 5.1, 5.2, 5.3, 8.3, 8.4

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 102 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 15
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 15
title Trusted connection paths through forums created in a given timeframe

pattern

description

Given two Persons with IDs $person1Id and $person2Id, calculate the cost of the weighted shortest
path between these two Persons, in the subgraph induced by the knows relationship. The interaction
score of a knows edge is calculated based on the interactions of its Person endpoints:

• Every direct reply (by one of the Persons) to a Post (by the other Person) is 1.0 point.
• Every direct reply (by one of the Persons) to a Comment (by the other Person) is 0.5 points.

Only consider Messages that were created in a Forum that was created within the timeframe (inter-
val) [$startDate, $endDate]. Note that for Comments, the containing Forum is that of the Post that
the comment (transitively) replies to. Also note that interactions are counted both ways.
The weight for the shortest path algorithm is determined as 1

interaction score+1 .
The result of the query is a single number, the cost of the weighted shortest path. If no such path
exists, the query should return −1.0.

params

1 $person1Id ID
(a) $person1Id – $person2Id pair with a distance of 4 hops
(b) $person1Id – $person2Id pair with a distance of 2 hops

2 $person2Id ID

3 $startDate Date
(a) Small interval (approx. one week)
(b) Big interval (approx. one month)

4 $endDate Date

result 1 weight 32-bit Float C

limit n/a
CPs 1.2, 2.1, 2.2, 2.4, 3.3, 5.1, 5.3, 7.2, 7.3, 7.6, 7.7, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 103 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 16
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 16
title Fake news detection

pattern

description

Given two Tag/date pairs ($tagA/$dateA and $tagB/$dateB), for each pair $tagX/$dateX:

• Create an induced subgraph between Personswhere for each pair of Persons person1/person2,
both have created a Message on the day of $dateX with Tag $tagX.

• In the induced subgraph, only keep pairs of Persons who have at most maxKnowsLimit friends
(in the induced subgraph).

• For these Persons, count the number of Messages created on $dateX with Tag $tagX.

Return Persons who had at least one Messages for both $tagA/$dateA and $tagB/$dateB ranked by
their total number of Messages (descending).

params

1 $tagA Long String

(a) $tagA/$dateA, $tagB/$dateB are both selected to be
a flashmob Tag/date combination
(b) $tagA/$dateA, $tagB/$dateB are both selected to be
a non-flashmob Tag/date combination

2 $dateA Date

3 $tagB Long String

4 $dateB Date

5 $maxKnowsLimit 32-bit Integer Selected between 3 and 6

result

1 person.id ID R
2 messageCountA 32-bit Integer A Message count for $tagA/$dateA
3 messageCountB 32-bit Integer A Message count for $tagB/$dateB

sort
1

messageCountA +
messageCountB ↓

2 person.id ↑

limit 20
CPs 5.3, 8.4, 8.5

relevance

There are two major ways to compute this query: (1) create the induced subgraph as suggested by the specification
(either as a view or in materialized form), or (2) skip creating the induced subgraph and perform on-the-fly check
for the number of friends (who also posted at least one Message with the given Tag on the given date). The latter
approach is easier to express in systems which do not provide graph views but might result in redundant computations
(the query engine might repeatedly check whether a Person has at least one Message that satifies the conditions).

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 104 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 17
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 17
title Information propagation analysis

pattern

description

This query aims to identify instances of “information propagation” when a Person (person1) sub-
mits a Message (message1) with a given $tag to a Forum (forum1). This is read by other members
of forum1, Persons person2 and person3 (who must be different Persons). Some time later (speci-
fied by the $delta parameter), these persons have a discussion with the same $tag in a different
Forum (forum2) where person1 is not a member. The discussion consists of a Message (message2)
by person2 and a direct reply Comment (comment) by person3.
Return IDs of person1 with the number of interactions their Messages (might have) caused.

params
1 $tag Long String Tags with a similar amount of Messages are selected
2 $delta 32-bit Integer Measured in hours, selected to be between 8 and 16 hours.

result
1 person1.id ID R
2 messageCount 32-bit Integer A

sort
1 messageCount ↓
2 person1.id ↑

limit 10
CPs 2.1, 2.3, 2.5, 2.6, 8.1

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 105 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 18
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 18
title Friend recommendation

pattern

description

For a given $tag, for each person1 interested in $tag, recommend new friends (person2) who

• do not yet know person1
• have at least one mutual friend with person1
• are also interested in $tag.

Rank Persons person2 based on the number of mutual friends with person1.

params 1 $tag Long String Tags with a similar amount of Persons are selected

result

1 person1.id ID R
2 person2.id ID R
3 mutualFriendCount 32-bit Integer A

sort

1 mutualFriendCount ↓
2 person1.id ↑
3 person2.id ↑

limit 20
CPs 2.5, 2.6, 8.1

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 106 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 19
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 19
title Interaction path between cities

pattern

description

Given two Cities with IDs $city1Id, $city2Id, find Persons person1, person2 living in these Cities
(respectively) with the cheapest interaction path between them.
The cheapest path is equivalent to the weighted shortest path. It is computed on a subgraph of
the Person-knows-Person graph with the edge weights based on the number of interactions. An
interaction is a direct reply Comments from one Person to Messages by the other Person. Only knows
edges with at least one interaction between their endpoint Persons are considered. For these, the
weight of a knows edge is defined as: max(round(40 −

√
numInteractions),1)

If there are multiple pairs of people with cheapest paths that have the same total weight, return
all of them.
Note: Interactions are counted both ways, e.g. if Alice knows Bob, Alice writes 2 reply Comments
to Bob’s Messages and Bob writes 3 reply Comments to Alice’s Messages, their total number of
interactions is 5 and the weight of the knows edge is 38.
Remark: Determinism is ensured by using square root followed by rounding. For all integers
between 1 and 100 000, the square root’s fractional part is more than 10e-5 from 0.5, where the
rounding could be non-determinstic based on floating point inaccuracies. As 10e-5 is signif-
icantly larger than the machine epsilon of IEEE 754 floats (both 32- and 64-bit), the floating
point inaccuracies have no chance to affect the derived integer edge weights.

params
1 $city1Id ID

(a) Small Cities within the same Country
(b) Larger Cities from different Countries

2 $city2Id ID

result

1 person1.id ID R
2 person2.id ID R
3 totalWeight 32-bit Integer C

sort
1 person1.id ↑
2 person2.id ↑

limit n/a
CPs 3.3, 7.6, 7.7, 8.4, 8.6

relevance To find the weighted shortest paths efficiently, the system can use e.g. a bidirectional Dijkstra algorithm. As the edge
weights do not depend on any parameter, systems can pre-compute them (if they do not interleave reads and writes).

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 107 of 164

Chapter 8. Business Intelligence Workload 8.4. Reads

BI / read / 20
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 20
title Recruitment

pattern

description

Consider knows edges where the endpoint Persons attended the same University and set the weight
of the edge to the absolute difference between the year of enrolment plus 1. If the Persons attended
multiple universities, we select the smallest (min) value. Formally:

w = min
studyAtA,studyAtB

∣studyAtA.classYear − studyAtB.classYear∣ + 1

Given a $company and a Person person2with ID $person2Id (who is not working and has not worked
at $company), find a different Person (person1) who works or at some point worked in $company
and is reachable from person2 through people who have studied together through the shortest
weighted path.
If there are multiple Person person1 nodes with the same shortest path length, return all of them.

params

1 $company Long String
Companies with a similar number of employees (former or
current) are selected

2 $person2Id ID

(a) There is guaranteed to be no path between any
person1 working at company and person2
(b) There is guaranteed to be a 2-hop path between at
least one person1 working at company and person

result
1 person1.id ID R
2 totalWeight 32-bit Integer C

sort
1 totalWeight ↑
2 person1.id ↑

limit 20
CPs 3.3, 7.6, 7.7, 7.8, 8.4, 8.6

relevance To find the weighted shortest paths efficiently, the system can use e.g. a bidirectional Dijkstra algorithm. As the edge
weights do not depend on any parameter, systems can pre-compute them (if they do not interleave reads and writes).

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 108 of 164

Chapter 8. Business Intelligence Workload 8.5. Insert Operations

8.5 Insert Operations

Insert operations consist of individual inserts for each entity type. Implementations typically use the same format
as the one for loading the initial snapshot of the data set.

8.6 Delete Operations

See Section 5.2.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 109 of 164

Chapter 9. Auditing Policies

9 Auditing Policies

This chapter contains the auditing policies for the LDBC Social Network Benchmark. The initial
draft of the auiting policies were published in the EU project deliverable D6.3.3 “LDBCBenchmark
Auditing Policies”.

This chapter is divided in the following parts:

• Motivation of benchmark result auditing
• General discussion of auditable aspects of benchmarks
• Specific checklists and running rules for the Social Network Benchmark’s workloads (Interactive, Busi-
ness Intelligence)

Many definitions and general considerations are shared between the benchmarks, hence it is justified to
present the principles first and to refer to these in the context of the benchmark specific rules.

The auditing process, including the auditor certification exams, the possibility of challenging audited results,
etc., are defined in the LDBCByelaws [44]. Please refer to the latest Byelaws document when conducting audits.

9.1 Rationale and General Principles

The purpose of benchmark auditing is to improve the credibility and reproducibility of benchmark claims by
involving a set of detailed execution rules and third party verification of compliance with these.

Rules may exist separately of auditing but auditing is not meaningful unless the rules are adequately precise.
Aspects like auditor training and qualification cannot be addressed separately from a discussion of thematters the
auditor is supposed to verify. Thus the credibility of the entire process hinges on clear and shared understanding
of what a benchmark is expected to demonstrate and on the auditor being capable of understanding the process
and of verifying that the benchmark execution is fair and does not abuse the rules or pervert the objectives of
the benchmark.

Due to the open-ended nature of technology and the agenda of furthering innovation via measurement, it is
not feasible or desirable to over-specify the limits of benchmark implementation. Hence there will always remain
judgement calls for borderline cases. In this respect auditing and the LDBC are not separate. It is expected that
issues of compliance as well as of maintenance of rules will come before the LDBC as benchmark claims are
made.

9.2 Auditing Rules Overview

9.2.1 Auditor Training, Certification, and Selection

9.2.1.1 Auditor Training

Auditor training consists of familiarisation with the benchmark and existing implementations thereof. This
involves the auditor candidate running the reference implementations of the benchmark in order to see what is
normal behaviour and practice in the workload. The training and practice may involve communication with the
benchmark task force for clarifying intent and details of the benchmark rules. This produces feedback for the
task force for further specification of the rules.

9.2.1.2 Auditor Certification

The auditor certification and qualification is done in the form of an examination administered by the task force
responsible for the benchmark being audited. The examination may be carried out by teleconference. The task
force will subsequently vote on accepting each auditor, by simple majority. An auditor is certified for a particular
benchmark by the task force maintaining the benchmark in question.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 110 of 164

Chapter 9. Auditing Policies 9.2. Auditing Rules Overview

9.2.1.3 Auditor Selection

In the default auditor selection, the task force responsible for the benchmark being audited appoints a third party,
impartial auditor. The task force may in special cases appoint itself as auditor of a particular result. This is not,
however, the preferred course of action but may be done if no suitable third party auditor is available

9.2.2 Auditing Process Stages

9.2.2.1 Getting Ready for a Benchmark Audit

A benchmark result can be audited if it is a complete implementation of an LDBC benchmark workload. This
includes implementing all operations (reads and updates) correctly, using official data sets, using the official
LDBC driver (if available), and complying with the auditing rules of the workload (e.g. workloads may have
different rules regarding query languages, the allowance of materialized views, etc.). Workloads may specify
further requirements such as ACID-compliance (checked using the LDBC ACID test suite).

9.2.2.2 Performing a Benchmark Audit

A benchmark result is to be audited by an LDBC appointed auditor or the LDBC task force managing the
benchmark. An LDBC audit may be performed by remote login and does not require the auditor’s physical
presence on site. The test sponsor shall grant the auditor any access necessary for validating the benchmark run.
This will typically include administrator access to the SUT hardware.

9.2.2.3 Benchmark-Specific Checklist

Each benchmark specifies a checklist to be verified by the auditor. The benchmark run shall be performed by
the auditor. The auditor shall take copies of relevant configuration files and test results for future checking and
insertion into the full disclosure report.

9.2.2.4 Producing the FDR

The FDR is produced by the auditor or auditors, with any required input from the test sponsor. Each non-default
configuration parameter needs to be included in the FDR and justification needs to be provided why the given
parameter was changed. The auditor produces an attestation letter that verifies authenticity of the presented
results. This letter is to be included into the FDR as an addendum. The attestation letter has no specific format
requirements but shall state that the auditor has established compliance with a specified version of the benchmark
specification.

9.2.2.5 Publishing the FDR

The FDR and any benchmark specific summaries thereof shall be published on the LDBC website, https://
ldbcouncil.org/.

9.2.3 Challenge Procedure

A benchmark result may be challenged for non-compliance with LDBC rules. The benchmark task force respon-
sible for maintenance of the benchmark will rule on matters of compliance. A result found to be non-compliant
will be withdrawn from the list of official LDBC benchmark results.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 111 of 164

https://ldbcouncil.org/
https://ldbcouncil.org/

Chapter 9. Auditing Policies 9.3. Auditable Properties of Systems and Benchmark Implementations

9.3 Auditable Properties of Systems and Benchmark Implementations

9.3.1 Validation of Query Results

A benchmark should be published with a deterministically reproducible validation data set. Validation queries
applied to the validation data set will deterministically produce a set of correct answers. This is used in the first
stage of benchmark run to test for the correctness of an SUT or benchmark implementation. This validation
stage is not timed.

Inputs for validation The validation takes the form of a set of data generator parameters, a set of test queries
that at least include one instance of each of the workload query templates and the expected results.

Approximate results and error margin In certain cases the results may be approximate. This may happen
in cases of non-unique result ordering keys, imprecise numeric data types, random behaviours in certain graph
analytics algorithms etc. Therefore, a validation set shall specify the degree of allowable error: For example,
for counts, the value must be exact, for sums, averages and the like, at least 8 significant digits are needed, for
statistical measures like graph centralities, the result must be within 1% of the reference result. Each benchmark
shall specify its expectation in an unambiguously verifiable manner.

9.3.2 ACID Compliance

As part of the auditing process for the Interactive workload and for certain systems in the BI workload, the
auditors ascertain that the SUT satisfies the ACID properties, i.e. it provides atomic transactions, complies
with its claimed isolation level, and ensures durability in case of failures. This section outlines transactional
behaviours of SUTs which are checked in the course of auditing an SUT in a given benchmark.

A benchmark specifies transactional semantics that may be required for different parts of the workload. The
requirements will typically be different for initial bulk load of data and for the workload itself. Different sections
of the workload may further be subject to different transactionality requirements.

No finite series of tests can prove that the ACID properties are fully supported. Passing the specified tests is
a necessary, but not sufficient, condition for meeting the ACID requirements. However, for fairness of reporting,
only the tests specified here are required and must appear in the FDR for a benchmark. (This is taken exactly
from the TPC-C specification [82].)

The properties for ACID compliance are defined as follows:

Atomicity Either all of the effects of the transaction are in effect after the transaction or none of the effects is
in effect. This is by definition only verifiable after a transaction has finished.

Consistency ADS such as secondary indices will be consistent among themselves as well as with the table
or other PDS, if any. Such a consistency (compliance to all constraints, if these are declared in the schema,
e.g. primary key constraint, foreign key constraints and cardinality constraints) may be verified after the commit
or rollback of a transaction. If a single thread of control runs within a transaction, then subsequent operations
are expected to see consistent state across all data indices pertaining to a table or similar object. Multiple
threads which may share a transaction context are not required to observe a consistent state at all times during
the execution of the transaction. Consistency will however always be verifiable after the commit or rollback
of any transaction, regardless of the number of threads that have either implicitly or explicitly participated in
the transaction. Any intra-transaction parallelism introduced by the SUT will preserve transactional semantics
statement-by-statement. If explicit, application created sessions share a transaction context, then this definition
of consistency does not hold: for example, if two threads insert into the same table at the same time in the same
transaction context, these may or may not see a consistent image of (E)ADS for the parts affected by the other
thread. All things will be consistent after the commit or rollback, however, regardless of the number of threads,
implicit or explicit that have participated in the transaction.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 112 of 164

Chapter 9. Auditing Policies 9.3. Auditable Properties of Systems and Benchmark Implementations

Isolation Isolation is defined as the set of phenomena that may (or may not) be observed by operations running
within a single transaction context. The levels of isolation are defined as follows:

Read uncommitted No guarantees apply.
Read committed A transaction will never read a value that has at no point in time been part of a committed

state.
Repeatable read If a transaction reads a value several times during its execution, then it will see the original

state with its own modifications so far applied to it. If the transaction itself consists of multiple reading
and updating threads then the ambiguities that may arise are beyond the scope of transaction isolation.

Serializable The transactions see values that correspond to a fully serial execution of all client transactions.
This is like repeatable read except that if the transaction reads something, and repeats the read, it is
guaranteed that no new values will appear for the same search condition on a subsequent read in the
same transaction context. For example, a row that was seen not to exist when first checked will not be
seen by a subsequent read. Likewise, counts of items will not be seen to change.

Durability Durability means that once the SUT has confirmed a successful commit, the committed state will
survive any instantaneous failure of the SUT (e.g. a power failure, software crash, reboot or the like). Durability
is tied to atomicity in that if one part of the changes made by a transaction survives then all parts must survive.

9.3.3 Data Schema

A benchmark may specify restrictions on schema. For example, TPC-H and TPC-DS specify that only certain
indices may be declared. In the LDBC context, the matter is more complex since the range of possible SUTs is
much broader, including diverse combinations of schema first and schema-less systems and configurations.

9.3.3.1 Schema Declaration

By default, a system may declare no schema at all, as may be the case with RDF or graph DBMSs. If EADSs
are declared, then these must be consistently applied to all data within the same workload for a given scale
factor. The nature of prohibited EADSs, if any, depends on the benchmark and may be stated in the benchmark
specification.

9.3.3.2 Schema-Optional

RDF and graph databases may sometimes be adopted due to their support for schema-last or schema-less op-
eration. It is known that for many cases of RDF with a regular structure, a 1:1 mapping to a relational schema
may exist. A benchmark may prohibit the use of such a mapping with the rationale that if the data were purely
relational in structure then there would be no point in using RDF or graph DB in the first place. The example of
such mapping is Sparqlify (or D2RQ), where SPARQL is directly translated to SQL and run against a relational
database.

Use of EADS in a schema-less data model A benchmark may allow use of EADS with a schema-less data
model such as RDF with the condition that whilst some data structures may become more efficient, no data
structure is prohibited. The schema-less nature may persist but some common structures may benefit from more
efficient physical representation.

Benchmarks enforcing schema-first semantics A benchmark may also state that it allows strict schema-first
semantics, e.g. SQL, and that the SUT need not make any specific provisions for schema change during the run.
For an RDF system this would mean a priori imposing compliance with a data shape or ontology, not with OWL
semantics but with semantics close to those of SQL DDL. In such a case, the ontology or data shape may as
such be construed to be a valid hint for creation of application specific EADS.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 113 of 164

Chapter 9. Auditing Policies 9.3. Auditable Properties of Systems and Benchmark Implementations

Disclosure of data schema in the FDR In any case, a benchmark must state its policy concerning presence
or absence of schema and enforcement thereof. If implementations declare a schema then any schema must be
disclosed in full as part of the FDR.

9.3.4 Data Format and Preprocessing

When producing the data sets, implementers are allowed to use custom formatting options (e.g. use or omission
of quotes, separator character, datetime format, etc.). It is also allowed to convert the output of the Datagen
into a format (e.g. Parquet) that is loadable by the test-specific implementation of the data importer. Additional
preprocessing steps are also allowed, including adjustments to the CSV files (e.g. with shell scripts), splitting
and concatenating files, compressing and decompressing files, etc. However, the preprocessing step shall not
include a precomputation of (partial) query results.

9.3.5 Data Access Transparency

A benchmark may specify that an implementation is not allowed the use of explicit access paths. For example,
explicitly specifying which EADS or IADS should be used for any given operation may be prohibited. Fur-
thermore, in scale-out systems, explicit references to data location (other than via values of partitioning keys)
may be prohibited. In general, references to internal data representation of an entity, e.g. row in a table, should
be prohibited. Reference should take place via column names in a schema or property URIs in RDF, not via
physical offsets or the like.

9.3.6 Query Languages

In typical RDBMS benchmarks, online transaction processing (OLTP) benchmarks are allowed to be imple-
mentated via stored procedures, effectively amounting to explicit query plans. Meanwhile, online analytical
processing (OLAP) benchmarks prohibit the use of using general-purpose programming languages (e.g. C, C++,
Java) for query implementations and only allow domain-specific query languages.

In the graph processing space, there is currently (as of 2022) no standard query language and the systems
are considerably more heterogeneous. Therefore, the LDBC situation regarding declarativity is not as simple
as that of for example the TPC-H (where queries should be specified in SQL with the additional constraint of
omitting any hints for OLAP workloads) and individual SNB workloads specify their policy of either requiring
a domain-specific query language or allowing the implementation of the queries in a general-purpose program-
ming language.

In the case of domain-specific languages, systems are allowed to implement an SNB query as a sequence of
multiple queries. A typical example of this is the following sequence: (1) create projected graph, (2) run query,
(3) drop projected graph. However, it is not allowed to use subqueries in an unrealistic and contrived manner, i.e.
the goal of overcoming optimization issue, e.g. hard-coding a certain join order in a declarative query language.
It is the responsibility of the auditor to determine whether a sequence of queries can be considered realistic w.r.t.
how a user would formulate their queries in the language provided by the system.

9.3.6.1 Rules for Imperative Implementations Using a General-Purpose Programming Language

An implementation where the queries are written in a general-purpose programming language (including im-
perative and “API-based” implementations) may choose between semantically equivalent implementations of
an operation based on the query parameters. This simulates the behaviour of a query optimizer in the presence
of literal values in the query. If an implementation does this, all the code must be disclosed as part of the FDR
and the decision must be based on values extracted from the database, not on hard-coded threshold values in the
implementation.

The auditor must be able to reliably assess the compliance of an implementation to guidelines specifying
these matters. The actual specification remains benchmark-dependent. Borderline cases may be brought to the
task force responsible for arbitration.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 114 of 164

Chapter 9. Auditing Policies 9.3. Auditable Properties of Systems and Benchmark Implementations

9.3.6.2 Disclosure of Query Implementations in the FDR

Benchmarks allowing imperative expression of workload should require full disclosure of all query implemen-
tation code.

9.3.7 Materialization

The mix of read and update operations in a workload will determine to which degree precomputation of results
is beneficial. The auditor must check that materialised results are kept consistent at the end of each transaction.

9.3.8 Steady State

An online workload must be able to indefinitely keep up the reported throughput. The benchmark definition
may put specific restrictions on the duration of individual parts of the workload.

9.3.8.1 Bringing the SUT into Steady State

One implication of this is that an SUTmust be able to accommodate inserts at a specific rate for a realistic length
of time. For example, if the workload is of an online nature then the SUT should be sized so as not to run out
of space for new data for a reasonable duration of time. The TPC-C 180-day rule is an example of this. An
analytical benchmark that primarily bulk loads data does not need to reserve as much space for new data. Each
benchmark shall state its specific requirements in this respect.

9.3.9 Query Mix

A benchmark consists of multiple different operations that may vary in frequency and duration of individual
instances of each operation may vary in function of parameter selection. A benchmark must specify an operation
mix and a minimum count of operations that constitutes a compliant benchmark execution.

The auditor must ascertain from the records of a benchmark execution that a sufficient number of operations
has indeed taken place for the report. For example, a 1000 GB TPC-H must have at least 7 streams in the
throughput test and the workload is to be run twice following bulk load. For LDBC SNB, the run must be at
least 2 hours of wall clock, measured time and the count of successful transactions of each type must be in a
strictly set ratio with the count of other operations.

Benchmarks shall each specify a minimum count of operations and relative frequencies of operations for a
qualifying execution.

9.3.9.1 Post-Processing of Query Results and Compression During Transmission

All computing required for a given query needs to happen in the DBMS. The SUT’s test driver shall not post-
process query results in a way that changes their value. For example, it is not allowed to return floating-point
values with a precision of 0.5 that are encoded as integers and divided by 2 on the client side.

Note that lossless compression during the communication between the test driver and the DBMS is allowed.
For instance, as long as the DBMS uses a data type that conforms with the schema requirements for a given
attribute, one can apply compression to send it back to/from the driver and decompress it. For example, for
complex query Q14 in the Interactive v1 workload, the implementation should ultimately produce a floating
point score.

The same applies for query parameters. At both the client’s and the server’s endpoint, the correct fully
qualified datatype must occur, but during transmission, it is allowed to apply compression.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 115 of 164

Chapter 9. Auditing Policies 9.3. Auditable Properties of Systems and Benchmark Implementations

9.3.10 System Configuration and System Pricing

A benchmark execution shall produce a full disclosure report which specifies the hardware and software of the
SUT, the benchmark implementation version and any specifics that are detailed in the benchmark specification.
This clause gives a general minimum for disclosure for the SUT.

9.3.10.1 Details of Machines Driving and Running the Workload

An SUT may consist of one or more pieces of physical hardware. An SUT may include virtual or bare-metal
machines in a cloud service. For each distinct configuration, the FDR shall disclose the number of units of the
type as well as the following:

1. The used cloud provider (including the region where machines reside, if applicable).
2. Common name of the item, e.g. Dell PowerEdge xxxx or i3.2xlarge instance.
3. Type and number of CPUs, cores & threads per CPU, clock frequency, cache size.
4. Amount of memory, type of memory and memory frequency, e.g. 64GB DDR3 1333MHz.
5. Disk controller or motherboard type if disk controller is on the motherboard.
6. For each distinct type of secondary storage device, the number and specification of the device, e.g. 4xSea-

gate Constellation 2TB SATA 6Gbit/s.
7. Number and type of network controllers, e.g. 1x Mellanox QDR InfiniBand HCA, PCIE 2.0, 2x1GbE on

motherboard. If the benchmark execution is entirely contained on a single machine, it must be stated, and
the description of network controllers can be omitted.

8. Number and type of network switches. If multiple switches are used, the wiring between the switches
should be disclosed. Only the network switches and interfaces that participate in the run need to be
reported. If the benchmark execution is entirely contained on a single machine, it must be stated, and the
description of network switches can be omitted.

9. Date of availability of the system as a whole, i.e. the latest date of availability of any part.

9.3.10.2 System Pricing

The price of the hardware in question must be disclosed. For cloud setups, the price of a dedicated instance
for 3 years must be disclosed. The price should reflect the single quantity list price that any buyer could expect
when purchasing one system with the given specification. The price may be either an item by item price or a
package price if the system is sold as a package. Reported prices should adhere the TPC Pricing Specification
2.9.0 [40, 84]. It is particularly important to ensure that the maintenance contract guarantees 24/7 support and
4 hour response time for problem recognition. If the benchmark driver is running on a separate machine, the
price of this machine should not be included in the total system price.

9.3.10.3 Details of Software Components in the System

The SUT software must be described at least as follows:

1. The units of the SUT software are typically the DBMS and operating system.
2. Name and version of each separately priced piece of the SUT software.
3. If the price of the SUT software is tied to platform or count of concurrent users, these parameters must

be disclosed.
4. Price of the SUT software.
5. Date of availability.

Reported prices should adhere the TPC Pricing Specification 2.5.0 [40, 84].
The configuration of the SUT must be reported so as to include the following:

1. The used LDBC specification, driver and data generator version.
2. Complete configuration files of the DBMS, including any general server configuration files, any configu-

ration scripts run on the DBMS for setting up the benchmark run etc.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 116 of 164

Chapter 9. Auditing Policies 9.4. Auditing Rules for the Interactive Workload

3. Complete schema of the DBMS, including eventual specification of storage layout.
4. Any OS configuration parameters if other than default, e.g. vm.swappiness, vm.max_map_count in Linux.
5. Complete source code of any server-side logic, e.g. stored procedures, triggers.
6. Complete source code of driver-side benchmark implementation.
7. Description of the benchmark environment, including software versions, OS kernel version, DBMS ver-

sion as well as versions of other major software components used for running the benchmark (Docker,
Java Virtual Machine, Python, etc.).

8. The SUT’s highest configurable isolation level and the isolation level used for running the benchmark.

9.3.10.4 Audit of System Configuration

The auditor must ascertain that a reported run has indeed taken place on the SUT in the disclosed configuration.
The full disclosure shall contain any relevant parameters of the benchmark execution itself, including:

1. Parameters, switches, configuration file for data generation.
2. Complete text of any data loading script or program.
3. Parameters, switches, configuration files for any test driver. If the test driver is not an LDBC supplied

open source package or is a modification of such, then the complete text or diff against a specific LDBC
package must be disclosed.

4. Test driver output files shall be part of the disclosure. In general, these must at least detail the following:

i) Time and duration of data load and the timed portion of the benchmark execution.
ii) Count of each workload item (e.g. query, transaction) successfully executed within the measurement

window.
iii) Min/average/max execution time of each workload item, the specific benchmark shall specify addi-

tional details.

Given this information, the number of concurrent database sessions at each point in the execution must be
clearly stated. In the case of a cluster database, the possible spreading of connections across multiple server
processes must be disclosed.

All parameters included in this section must be reported in the full disclosure report to guarantee that the
benchmark run can be reproduced exactly in the future. Similarly, the test sponsor will inform the auditor the
scale factor to test. Finally, a clean test system with enough space to store the initial data set, the update streams,
substitution parameters and anything that is part of the input and output as well as the benchmark run must be
provided.

9.3.11 Benchmark Specifics

Similarly to TPC benchmarks, the LDBC benchmarks prohibit so-called benchmark specials (i.e. extra software
modules implemented in the core DBMS logic just to make a selected benchmark run faster are disallowed).
Furthermore, upon request of the auditor, the test sponsor must provide all the source code relevant to the
benchmark.

9.4 Auditing Rules for the Interactive Workload

This section specifies a checklist (in the form of individual sections) that a benchmark audit shall cover in case of
the SNB Interactive workload. An overview of the benchmark audit workflow is shown in Figure 9.1. The three
major phases of the audit are preparing the input data and validation query results (captured by Preparations in
the figure), validating the correctness of query results returned by the SUT using the validation scale factor and
running the benchmark with all the prescribed workloads (Benchmarking), and creating the FDR (Finalization).
The colour codes capture the responsibilities of performing a step or providing some data in the workflow.

A key objective of the auditing guidelines for the Interactive workload is to allow a broad range of systems
to implement the benchmark. Therefore, they do not impose constraints on the data model (graph, relational,

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 117 of 164

Chapter 9. Auditing Policies 9.4. Auditing Rules for the Interactive Workload

Figure 9.1: Benchmark execution and auditing workflow. For non-audited runs, the implementers perform the
steps of the auditor.

triple, etc. representations are allowed) or on the query language (both declarative and imperative languages are
allowed).

9.4.1 Scaling

9.4.1.1 Scale Factors

The scale factor of an SNB data set is the size of the data set in GiB of CSV (comma-separated values) files.
The size of a data set is characterized by scale factors: SF10, SF30, SF100 etc. (see Section 3.4.1). All data sets
contain data for three years of social network activity.

The validation run shall be performed on the SF10 data set (see Section 9.4.6.1) and use at least 100 000
operations. Note that the auditor may perform additional validation runs of the benchmark implementation using

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 118 of 164

Chapter 9. Auditing Policies 9.4. Auditing Rules for the Interactive Workload

smaller data sets (e.g. SF1) and issue queries.1
Audited benchmark runs of the Interactive workload shall use SF30 or larger data sets. The rationale behind

this decision is to ensure that there is a sufficient number of update operations available to guarantee 2.5 hours
of continuous execution (see Section 9.4.7.2).

9.4.1.2 Social Network data sets

Initial data set The data set is divided into a bulk loadable initial database population (90%) and an update
stream (10%). These are generated by the SNB data generator. The data generator has options for splitting the
data set into any number of files.

Dependencies between messages in the update stream The update stream contains the latest 10% of the
events in the simulated social network. These events form a single serializable sequence in time. Some events
will depend on preceding events, for example a message must exist before a reply comment to the message is
created. The data generator guarantees that these are separated by at least 10 seconds of simulation time.

Parallel updates The update stream may be broken into arbitrarily many sub-streams. The partition scheme
is created by the Datagen. During benchmark execution, the driver preserves dependencies between update
operations, such as ensuring not to refer to non-existent entities in updates (e.g. a like is not added to a message
which has not been inserted yet).

9.4.2 Data Model and Data Loading

9.4.2.1 Supported Data Models

SNB may be implemented with different data models (e.g. relational, RDF, and different graph data models).
The reference schema is provided in the specification using a UML-like notation.

9.4.2.2 Generated Input Data

Storage The data generator produces comma-separated values (CSV) for all data models.

Data format A single attribute has a single data type, as follows:

Identifier This is an integer value foreign key or a URI in RDF. If this is an integer column, the implementation
data type should support at least 250 distinct values.

Date A date should support a date range from 0000 to 9999 in the year field.
DateTime A datetime should support a date range from 0000 to 9999 in the year field, with at least millisecond

precision.
Short string The string column for names may have a variable length and may have a declared maximum

length, e.g. 40 characters.
Long string For example a message content may be a long string that is often short in the data but may not

declare a maximum length and must support data sizes of up to 1 MB.

The above is stated in further detail in the benchmark specification, and it shall take precedence over the
above in the case of conflict.

A single attribute in the reference schema may not be divided into multiple attributes in the target schema.
1An example test could be to issue complex reads with parameters such as personId and messageId selected from the Person/Message

entities inserted from the update streams and cross-validate these against other systems. (The substitution parameters are taken from the
initial snapshot of the graph so these nodes are not targeted by the regular workload executed by the driver.)

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 119 of 164

Chapter 9. Auditing Policies 9.4. Auditing Rules for the Interactive Workload

Database schema A schema on the DBMS is optional. An RDF implementation for example may work
without one. An RDF implementation is allowed to load the RDF reference schema and to take advantage of
the data type and cardinality statements therein.

Configuration parameters Datagen configuration parameters, including SF, distributions, number of per-
sons, serialiser (e.g. CsvSingularMergedFK) should be reported.

Primary data structures An RDF, relational, or graph schema may specify system specific options affecting
DBMS storage layout. Thesemay for example specify vertical partitioning. Vertical partitioningmeans anything
from a column store layout with per-column allocated storage space to use of explicit column groups. Any mix
of row or column-wise storage structures is allowed as long as this is declaratively specified on a per data
structure-basis.

Auxiliary data structures Covering indices and clustered indices are allowed. If these are defined, then all
replications of data implied by these must be maintained statement by statement, i.e. each auxiliary data structure
must be consistent with any other data structures of the table after each data manipulation operation.

A covering index is an index which materialises a specific order of a specific subset or possibly all columns
of a table. A clustered index is an index which materialises all columns of a table in a specific order, which
order may or may not be that of the primary key of the table. A clustered or covering index may be the primary
or only representation of a table.

Any subset of the columns on a covering or clustered index may be used for ordering the data. A hash based
index or a combination of a hash based and tree based index are all allowed, in row or column-wise or hybrid
forms.

Loading the data We expect the SUT to provide some means to bulk load the data set either in the form
of a dedicated offline loader component or an online loader that allows bulk inserting into a database. The
total of the bulk load time and the time for subsequent operations (indexing, computing statistics, etc.) must be
reported in the FDR (see Section 9.4.7). As loading can be an expensive operation, it is allowed to conduct the
audit such that the loading is only performend once, and the validation/benchmarking phases use the resulting
database instance. In practice, this can look like as follows: (1) load the data, (2) compute statistics, uniqueness
constraints, keys, indices, etc., (3) shut down the SUT, (4) create a backup of the database (e.g. by copying the
directory of the database). For all subsequent runs, the database shall be restored from the backup.

9.4.3 Precomputation

Precomputation of query results (both interim and end results) is allowed. However, systems must ensure that
precomputed results (e.g. materialized views) are kept consistent upon updates.

9.4.4 Benchmark Software Components

LDBC provides a test driver, data generator, and summary reporting scripts. Benchmark implementations shall
use a stable version (e.g. 0.3.6) of the test driver. The SUT’s database software should be a stable version that
is available publicly or can be purchased at the time of the release of the audit.

9.4.4.1 Adaptation of the Test Driver to a DBMS

A qualifying run must use a test driver that adapts the provided test driver to interface with the SUT. Such an
implementation, if needed, must be provided by the test sponsor. The parameter generation, result recording,
and workload scheduling parts of the test driver should not be changed. The auditor must be given access to the
test driver source code used in the reported run.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 120 of 164

Chapter 9. Auditing Policies 9.4. Auditing Rules for the Interactive Workload

The test driver produces the following artefacts for each execution as a by product of the run: Start and end
timestamps in wall clock time, recorded with microsecond precision. The identifier of the operation and any
substitution parameters.

9.4.4.2 Summary of Benchmark Results

A separate test summary tool provided with the test driver analyses the test driver log(s) after a measurement
window is completed.

The tool produces for each of the distinct queries and transactions the following summary:

• Run time of query in wall clock time.
• Count of executions.
• Minimum/mean/percentiles/maximum execution time.
• Standard deviation from the average execution time.

The tool produces for the complete run the following summary:

• Operations per second for a given SF (throughput). This is the primary metric of this workload.
• The total execution time in wall clock time.
• The total number of completed operations.

9.4.5 Implementation Language and Data Access Transparency

The queries and updates may be implemented in a domain-specific query language or as procedural code written
in a general-purpose programming language (e.g. using the API of the database).

9.4.5.1 Implementations Using a Domain-Specific Query Language

If a domain-specific query language is used, e.g. SPARQL, SQL, Cypher, or Gremlin, then explicit query plans
are prohibited in all the read-only queries.2 The update transactions may still consist of multiple statements,
effectively amounting to explicit plans.

Explicit query plans include but are not limited to:

• Directives or hints specifying a join order or join type
• Directives or hints specifying an access path, e.g. which index to use
• Directives or hints specifying an expected cardinality, selectivity, fanout or any other information that
pertains to the expected number or results or cost of all or part of the query.

Rationale behind the applied restrictions. The updates are effectively OLTP and, therefore, the
customary freedoms apply, including the use of stored procedures, however subject to access trans-
parency. Declarative queries in a benchmark implementation should be such that they could plausi-
bly be written by an application developer. Therefore, their formulation should not contain system
specific aspects that an application developer would be unlikely to know. In other words, making a
benchmark implementation should not require uncommon sophistication on behalf of the developer.
This is regular practice in analytical benchmarks, e.g. TPC-H.

9.4.5.2 Implementations Using a General-Purpose Programming Language

Implementations using a general-purpose programming language for specifying the queries (including proce-
dural, imperative, and API-based implementations) are expected to respect the rules described in Section 9.3.6.
For these implementations, the rules in Section 9.4.5.1 do not apply.

2If the queries are not clearly declarative, the auditor must ensure that they do not specify explicit query plans by investigating their
source code and experimenting with the query planner of the system (e.g. using SQL’s EXPLAIN command).

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 121 of 164

Chapter 9. Auditing Policies 9.4. Auditing Rules for the Interactive Workload

9.4.6 Correctness of Benchmark Implementation

9.4.6.1 Validation data set

The scale factor 10 shall be used as validation data set.

9.4.6.2 ACID Compliance

The Interactiveworkload requires full ACID support (Section 9.3.2) from the SUT. This is tested using the LDBC
ACID test suite. For the specification of this test suite, see Chapter 10 and the related software repository at
https://github.com/ldbc/ldbc_acid.

Expected level of isolation If a transaction reads the database with intent to update, the DBMSmust guarantee
that repeating the same read within the same transaction will return the same data. This also means that no more
and no less data rows must be returned. In other words, this corresponds to snapshot or to serializable isolation.
If the database is accessedwithout transaction context or without intent to update, then the DBMS should provide
read committed semantics, e.g. repeating the same read may produce different results but these results may never
include effects of pending uncommitted transactions.

Durability and checkpoints A checkpoint is defined as the operation which causes data persisted in a trans-
action log to become durable outside of the transaction log. Specifically, this means that an SUT restart after
instantaneous failure following the completion of the checkpoint may not have recourse to transaction log entries
written before the end of the checkpoint.

A checkpoint typically involves a synchronisation barrier at which all data committed prior too themoment is
required to be in durable storage that does not depend on the transaction log. Not all DBMSs use a checkpointing
mechanism for durability. For example a system may rely on redundant storage of data for durability guarantees
against instantaneous failure of a single server.

The measurement window may contain a checkpoint. If the measurement window does not contain one,
then the restart test will involve redoing all the updates in the window as part of the recovery test.

The timed window ends with an instantaneous failure of the SUT. Instantaneously killing all the SUT pro-
cess(es) is adequate for simulating instantaneous failure. All these processes should be killed within one second
of each other with an operating system action equivalent to the Unix kill -9. If such is not available, then
powering down each separate SUT component that has an independent power supply is also possible.

The restart test consists of restarting the SUT process(es) and finishes when the SUT is back online with all
its functionality and the last successful update logged by the driver can be seen to be in effect in the database.

If the SUT hardware was powered down, the recovery period does not include the reboot and possible file
system check time. The recovery time starts when the DBMS software is restarted.

Recovery The SUT is to be restarted after the measurement window and the auditor will verify that the SUT
contains the entirety of the last update recorded by the test driver(s) as successfully committed. The driver or
the implementation have to make this information available. The auditor may also check the audit log of the
SUT (if available) to confirm that the operations issued by the driver were saved.

Once an official run has been validated, the recovery capabilities of the system must be tested. The system
and the driver must be configured in the same way as in during the benchmark execution. After a warm-up
period, an execution of the benchmark will be performed under the same terms as in the previous measured run.

Measuring recovery time At an arbitrary point close to 2 hours of wall clock time during the run, the machine
will be shut down. Then, the auditor will restart the database system andwill check that the last committed update
(in the driver log file) is actually in the database. The auditor will measure the time taken by the system to recover
from the failure. Also, all the information about how durability is ensured must be disclosed. If checkpoints are
used, these must be performed with a period of 10 minutes at most.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 122 of 164

https://github.com/ldbc/ldbc_acid

Chapter 9. Auditing Policies 9.4. Auditing Rules for the Interactive Workload

9.4.7 Benchmarking Workflow

A benchmark execution is divided into the following processes (these processes are also shown in Figure 9.1):

Generate data This includes running the data generator, placing the generated files in a staging area, config-
uring storage, setting up the SUT configuration and preparing any data partitions in the SUT. This may
include preallocating database space but may not include loading any data or defining any schema having
to dowith the benchmark. The ldbc.snb.interactive.update_interleave driver parameter must come from
the updateStream.properties file, which is created by the data generator. That parameter should never be
set manually. This parameter signifies the average distance of update operations in the workload.

Preprocessing If needed, the output from the data generator is to preprocess the data set (Section 9.3.4).
Create validation data Using one of the reference implementations of the benchmark, the reference validation

data is obtained in .json format.
Data loading The test sponsor must provide all the necessary documentation and scripts to load the data set

into the database to test. This includes defining the database schema, if any, loading the initial database
population, making this durably stored and gathering any optimiser statistics. The system under test must
support the different data types needed by the benchmark for each of the attributes at their specified
precision. No data can be filtered out, everything must be loaded. The test sponsor must provide a tool
to perform arbitrary checks of the data or a shell to issue queries in a declarative language if the system
supports it.

Run cross-validation This step uses the data loader to populate the database, but the load is not timed. The
validation data set is used to verify the correctness of the SUT. The auditor must load the provided data
set and run the driver in validation mode, which will test that the queries provide the official results. The
benchmarking workflow will not go beyond this point unless results match the expected output.

Warm-up Benchmark runs are preceded by a warm-up which must be performed using the LDBC driver.
Run benchmark The bulk load time is reported and is equal to the amount of elapsed wall clock time between

starting the schema definition and receiving the confirmation message of the end of statistics gathering.
The workflow runs begin after the bulk load is completed. If the run does not directly follow the bulk
load, it must start at a point in the update stream that has not previously been played into the database.
In other words, a run may only include update events whose timestamp is later than the latest message
creation date in the database prior to start of run. The run starts when the first of the test drivers send its
first message to the SUT. If the SUT is running in the same process as the driver, the window starts when
the driver starts. Also, make sure that the -rl/--results_log is enabled. Make sure that all operations
are enabled and the frequencies are those for the selected scale factor (see the exact specification of the
frequencies in Appendix B).

9.4.7.1 Query Timing During Benchmark Run

A valid benchmark run must last at least 2 hours of wall clock time and at most 2 hours and 15 minutes. In order
to be valid, a benchmark run needs to meet the “95% on-time requirement”. The results_log.csv file contains
the actual_start_time and the scheduled_start_time of each of the issued queries. In order to have a valid run,
95% of the queries must meet the following condition:

actual_start_time − scheduled_start_time < 1 second

If the execution of the benchmark is valid, the auditor must retrieve all the files from directory specified by
--results_dir which includes configuration settings used, results log and results summary. All of which must
be disclosed.

9.4.7.2 Measurement Window

Benchmark runs execute the workload on the SUT in two phases (Figure 9.2). First, the SUT must undergo a
warm-up period that takes at least 30 minutes and at most 35 minutes. The goal of this is to put the system in

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 123 of 164

Chapter 9. Auditing Policies 9.4. Auditing Rules for the Interactive Workload

a steady state which reflects how it would behave in a normal operating environment. The performance of the
operations during warm-up is not considered. Next, the SUT is benchmarked during a two-hour measurement
window. Operation times are recorded and checked to ensure the “95% on-time requirement” is satisfied.

Figure 9.2: Warm-up and measurement window for benchmark run.

The SNB Datagen produces 3 years worth data of which 10% is used for updates (Section 9.4.1.2), i.e.
approximately 3 × 365 × 0.1 = 109.5 days = 2628 hours. To ensure that the 2.5 hour wall clock period has
enough input data, the lower bound of TCR is defined as 0.001 (if 2628 hours of updates are played back at
more than 1000× speed, the benchmark framework runs out of updates to execute). System that can achieve a
better compression (i.e. lower TCR value) on a given scale factor should use larger SFs for their benchmark runs
– otherwise their total runs will be less than 2.5 hours, making them unsuitable for auditing.

9.4.8 Full Disclosure Report

Upon successful completion of the audit, an FDR is compiled. In addition to the general requirements, the full
disclosure shall cover the following:

• General terms: an executive summary and declaration of the credibility of the audit
• System description and pricing summary: see Section 9.3.10
• Data generation and data loading: see Section 9.4.2.2
• Test driver details: see Section 9.4.4.1
• Performance metrics: see Section 9.4.4.2
• Validation results: see Section 9.4.6.1
• ACID compliance: see Section 9.3.2
• List of supplementary materials

To ensure reproducibility of the audited results, a supplementary package is attached to the full disclosure
report. This package should contain:

• A README file with instructions specifying how to set up the system and run the benchmark
• Configuration files of the database, including database-level configuration such as buffer size and schema
descriptors (if necessary)

• Source code or binary of a generic driver that can be used to interact with the DBMS
• SUT-specific LDBC driver implementation (similarly to the projects in https://github.com/
ldbc/ldbc_snb_interactive_v1_impls, https://github.com/ldbc/ldbc_snb_interactive_v2_impls,
https://github.com/ldbc/ldbc_snb_bi)

• Script or instructions to compile the LDBC Java driver implementation
• Instructions on how to the reach the server through CLI and/or web UI (if applicable), e.g. the URL
(including port number), user name and password

• LDBC configuration files (.properties), including the time_compression_ratio values used in the audited
runs

• Scripts to preprocess the input files (if necessary) and to load the data sets into the database
• Scripts to create validation data sets and to run the benchmark
• The implementations of the queries and the update operations, including their complete source code (e.g.
declarative queries specifications, stored procedures, etc.)

• Implementation of the ACID test suite
• Binary package of the DBMS (e.g. .deb or .rpm)

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 124 of 164

https://github.com/ldbc/ldbc_snb_interactive_v1_impls
https://github.com/ldbc/ldbc_snb_interactive_v1_impls
https://github.com/ldbc/ldbc_snb_interactive_v2_impls
https://github.com/ldbc/ldbc_snb_bi

Chapter 9. Auditing Policies 9.5. Auditing Rules for the Business Intelligence Workload

9.5 Auditing Rules for the Business Intelligence Workload

The following section describes the auditing rules specific to the Business Intelligence (BI) workload.

9.5.1 Overview

Implementing the BI workload requires the following key capabilities:

• Loading the initial snapshot of the social network graph
• Evaluating the BI read queries (Section 8.4)
• Evaluating the BI write operations: inserts (Section 8.5) and deletes (Section 8.6)
• Performing concurrent reads and writes (Section 9.5.2) (optional, only allowed if ACID compliance is
guaranteed)

9.5.2 Workflow

Figure 9.3: Tests and batches (power and throughput) executed in the BI workload’s workflow.

The write operations and read queries are run in daily batches. In each batch, each query variant (Q1, Q2a,
Q2b, Q3, . . . , Q20a, Q20b) is executed using 30 different substitution parameters. The BI workflow (Figure 9.3)
consists of two key parts: the power test (Section 9.5.2.1) and the throughput test (Section 9.5.2.2).

9.5.2.1 Power Test

The power test runs a single power batch. This test first runs the write operations, followed by a sequential
execution of individual read query variants. The writes perform a day of inserts and deletes in the simulated
social network, while a total of 28 × 30 = 840 read queries are executed.

9.5.2.2 Throughput Test

The throughput test consists of multiple throughput batches. Each throughput batch runs the same type and the
same amount of operations as the power batch. However, they allow concurrent execution of the write operations
and read queries in a given batch.

The execution of the throughput test during audits is the throughput measurement window. This window
must span at least for 1 hour and it must include at least one fully completed batch (see Figure 9.3).

The workload defines two execution modes for the throughput batches:

Disjoint RW mode In disjoint RW (read-write) mode the system performs the reads and writes separately. It
first executes the writes, then evaluates the read queries. Concurrency between the read operations is
allowed.
This mode is aimed at read-optimized data analytical systems which do not support concurrent reads and
writes. Implementations may also opt to use this mode for simplicity. For these implementations, passing
the LDBC ACID compliance test (Chapter 10) is not required.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 125 of 164

Chapter 9. Auditing Policies 9.5. Auditing Rules for the Business Intelligence Workload

Concurrent RW mode In concurrent RW (read-write) mode the system is allowed to run reads and writes
concurrently. This requires the systems to be capable of handling transactions. Implementations using
this mode are required to pass the LDBC ACID compliance test (Chapter 10).

9.5.3 Runtimes

The runtimes should be reported as follows:

• The load time (tload) denotes the time to load the data into the SUT and initialize auxiliary data structures
(if applicable). For audited runs, we require that tload < 24 hours.

• The power test time (tpower test) denotes the time to perform the power test.
• The throughput measurement window time (tthroughput measurement) denotes the time to perform the through-
put test, including the last (potentially unfinished) batch.

• The full throughput batches time (tfull throughput batches) denotes the time to evaluate the fully completed
batches during the throughput measurement window.

Note that a warm-up period is not allowed (unlike the Interactive workload where such a period is required,
see Section 9.4.7.2).

9.5.4 Scoring Metrics

SNBI BI provides four scoring metrics: the power score, the throughput score, and their price-adjusted variants,
the per-$ power score and the per-$ throughput score. All scores include the scale factor, denoted with “@SF”.

9.5.4.1 Price

We follow TPC’s specification for reporting prices [84]. The price is established as the total cost of ownership
(TCO) for the SUT used in the benchmark, reported as a breakdown of machine cost, software license costs, and
maintenance costs for 3 years. In case of cloud deployments, the cost of running a 3-year reserved instance should
be reported. When establishing the price, the “upfront payment” option available at certain cloud providers
should not be considered.

9.5.4.2 Power Scores

The definition of SNB BI’s power score follows TPC-H in using a geometric mean, ensuring that there is an
incentive to improve all queries, no matter their running time. Formally, the power score is based on the time
to perform the writes and the time spent for executing each variant with 30 different substitution parameters,
measured in seconds:

power@SF = 3 600
29
√
w ⋅ q1 ⋅ q2a ⋅ q2b ⋅ . . . ⋅ q18 ⋅ q19a ⋅ q19b ⋅ q20a ⋅ q20b

⋅ SF

To determine the price-adjusted power score, we factor in the TCO:

power@SF/$ = power@SF ⋅ 1 000

TCO

9.5.4.3 Throughput Scores

The throughput score is based on tload, measured in hours, and the cumulative execution time and number of
the throughput batches executed:

throughput@SF = (24 hours − tload) ⋅
nbatches
tbatches

⋅ SF

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 126 of 164

Chapter 9. Auditing Policies 9.5. Auditing Rules for the Business Intelligence Workload

The subtraction of tload ensures that the scoring rewards systems with efficient bulk loaders (unlike in TPC-H
and TPC-DS which do not include load performance in their metrics). The price-adjusted throughput score is
determined analogously:

throughput@SF/$ = throughput@SF ⋅ 1 000

TCO

9.5.5 Implementation Rules

9.5.5.1 Correctness

The SUT shall evaluate all operators correctly. The auditor shall ascertain correctness on the SF10 data set.
However, they are allowed to also use data sets of different scale factors, as well as issue custom operations
(both reads and writes) to test for the correctness of the implemenation.

The validation of correctness is performed on the output of the power test step. The rationale for using
this only step is that during concurrent execution of R/W operations in the throughput test, it is not possible
to guarantee deterministic query results, making validation impossible. Moreover, this step already includes a
write batch, therefore the query results indirectly test the correctness of the implementation of write operations.

9.5.5.2 Auxiliary Data Structures

Using auxiliary data structures (e.g. indices, materialized views) is allowed if they are kept in an up-to-date state
after each write operation. The full disclosure report should enumerate the auxiliary data structures used by the
SUT.

9.5.5.3 Query Declarativity

Systems should use a domain-specific query language (e.g. Cypher, Gremlin, GSQL) for the implementation,
including the read queries and the update operations. General-purpose programming languages (e.g. C, C++,
Java, Julia) are not allowed.

Implementations shall not use query-specific stored procedures written in a general-purpose programming
language (e.g. a given procedure which implements BI Q5). Using the stored procedure libraries considered
to be the “standard libraries” of the SUT is allowed.3 Implementations may use stored procedures written
in a domain-specific language. In cases when the categorization of the approach used by the SUT’s query
implementations is uncertain, it is the auditor’s responsibility to decide whether the SUT complies with this
rule.

9.5.5.4 Query Variants

Several queries (e.g. BI 14) use a and b variants with different sets of input parameters. The SUT should not
receive any hints on which variant it is currently evaluating (e.g. Q14a or Q14b). Moreover, it is not allowed for
the query implementations to contain code that aims to detect the query variant used.

9.5.6 Scaling

Audited benchmark runs of the BI workload shall use SF30 or larger data sets. The rationale behind this decision
is to ensure that there should be a sufficient number of write operations available to guarantee the execution
during the duration of the measurement window (see Figure 9.3).

9.5.7 Full Disclosure Report

The full disclosure report (FDR) and the supplementary package shall contain the same information as for SNB
Interactive (Section 9.4.8), including, if applicable (Section 9.5.5), the ACID compliance report (Section 9.3.2).

3These libraries often include features such as weighted shortest path algorithms.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 127 of 164

Chapter 10. ACID Test Suite

10 ACID Test Suite

This chapter is based on the TPCTC 2020 paper “Towards Testing ACID Compliance in the LDBC
Social Network Benchmark” [89], co-authored by several members of the SNB task force.
The framework and reference implementations of the ACID test suite are available at https:
//github.com/ldbc/ldbc_acid.

Verifying ACID compliance is an important step in the benchmarking process for enabling fair comparison
between systems. The performance benefits of operating with weaker safety guarantees are well established [30]
but this can come at the cost of application correctness. To enable apples vs. apples performance comparisons
between systems it is expected they uphold the ACID properties. Currently, LDBC provides no mechanism for
validating ACID compliance within the SNB Interactive workflow. A simple solution would be to outsource the
responsibility of demonstrating ACID compliance to benchmark implementors. However, the safety properties
claimed by a system often do not match observable behaviour [41]. To mitigate this problem, benchmarks such
as TPC-C [82] include a number of ACID tests to be executed as part of the benchmarking auditing process.
However, we found these tests cannot readily be applied to our context, as they assume lock-based concurrency
control and an interactive query API that provides clients with explicit control over a transaction’s lifecyle.
Modern data systems often use optimistic concurrency control mechanisms [61] and offer a restricted query
API, such as only executing transactions as stored procedures [77]. Further, tests that trigger and test row-level
locking phenomena, for instance, do not readily map on graph database systems. Lastly, we found these tests
are limited in the range of isolation anomalies they cover.

This chapter presents the design of an implementation-agnostic ACID-compliance test suite for the Interac-
tive workload1. Our guiding design principle was to be agnostic of system-level implementation details, relying
solely on client observations to determine the occurrence of non-transactional behaviour. Thus all systems can
be subjected to the same tests and fair comparisons between SNB Interactive performance results can be drawn.
Tests are described in the context of a graph database employing the property graph data model [4]. Reference
implementations are given in Cypher [26], the de facto standard graph query language.

Particular emphasis is given to testing isolation, covering 10 known anomalies including recently discovered
anomalies such as Observed Transaction Vanishes [10] and Fractured Reads [11]. The test suite has been
implemented for 5 database systems.2 A conscious decision was made to keep tests relatively lightweight, as to
not add significant overhead to the benchmarking process.

10.1 Background

The tests presented in this chapter are defined on a small core of LDBC SNB schema (extended with properties
for versioning) given in Figure 10.1.

10.2 Atomicity

Atomicity ensures that either all of a transaction’s actions are performed, or none are. Two atomicity tests have
been developed. Atomicity-C checks for every successful commit message a client receives that any data items
inserted or modified are subsequently visible. Atomicity-RB checks for every aborted transaction that all its
modifications are not visible. Tests are executed as follows: (i) load a graph of Person nodes (Listing 10.1)
each with a unique id and a set of emails; (ii) a client executes a full graph scan counting the number of nodes,
edges and emails (Listing 10.4) using the result to initialize a counter committed; (iii) N transaction instances
(Listing 10.2, Listing 10.3) of the required test are then executed, committed is incremented for each successful

1We acknowledge verifying ACID-compliance with a finite set of tests is not possible. However, the goal is not an exhaustive quality
assurance test of a system’s safety properties but rather to demonstrate that ACID guarantees are supported.

2Available at https://github.com/ldbc/ldbc_acid.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 128 of 164

https://github.com/ldbc/ldbc_acid
https://github.com/ldbc/ldbc_acid
https://github.com/ldbc/ldbc_acid

Chapter 10. ACID Test Suite 10.3. Isolation

Figure 10.1: Graph schema for the ACID test queries.

Read Uncommitted
G0

Read Committed
+ G1{a-c}

Item Cut Isolation
IMP

Predicate Cut Isolation
+ PMP

Monotonic
Atomic
View
+ OTV

Cursor Stability
+ G-Cursor(x), LU

Read Atomic
+ FR

Snapshot Isolation
+ LU

Repeatable Read
+ WS (G2-Item)

Serializability

Figure 10.2: Hierarchy of isolation levels as described in [11]. All anomalies are covered except G-Cursor(x).

commit; (iii) repeat the full graph scan, storing the result in the variable finalState; (iv) perform the anomaly
check: committed=finalState.

The Atomicity-C transaction (Listing 10.2) randomly selects a Person, creates a new Person, inserts a KNOWS
edge and appends an email. The Atomicity-RB transaction (Listing 10.3) randomly selects a Person, appends
an email and attempts to insert a Person only if it does not exist. Note, for Atomicity-RB if the query API does
not offer a ROLLBACK statement constraints such as node uniqueness can be utilized to trigger an abort.

10.3 Isolation

The gold standard isolation level is Serializability, which offers protection against all possible anomalies that can
occur from the concurrent execution of transactions. Anomalies are occurrences of non-serializable behaviour.
Providing Serializability can be detrimental to performance [30]. Thus systems offer numerous weak isolation
levels such as Read Committed and Snapshot Isolation that allow a higher degree of concurrency at the cost
of potential non-serializable behaviour. As such, isolation levels are defined in terms of the anomalies they
prevent [30, 10]. Figure 10.2 relates isolation levels to the anomalies they proscribe.

SNB Interactive does not require systems to provide Serializability. However, to allow fair comparison
systems must disclose the isolation level used during benchmark execution. The purpose of these isolation
tests is to verify that the claimed isolation level matches the expected behaviour. To this end, tests have been
developed for each anomaly presented in [11]. Formal definitions for each anomaly are reproduced from [1, 11]
using their system model which is described below. General design considerations are discussed before each
test is described.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 129 of 164

Chapter 10. ACID Test Suite 10.3. Isolation

CREATE (:Person {id: 1, name: ’Alice’, emails: [’alice@aol.com’]}),
(:Person {id: 2, name: ’Bob’, emails: [’bob@hotmail.com’, ’bobby@yahoo.com’]})

Listing 10.1: Cypher query for creating initial data for the Atomicity transactions.

«BEGIN»
MATCH (p1:Person {id: $person1Id})
CREATE (p1)-[k:KNOWS]->(p2:Person)
SET

p1.emails = p1.emails + [$newEmail],
p2.id = $person2Id,
k.creationDate = $creationDate

«COMMIT»

Listing 10.2: Atomicity-C Tx.

«BEGIN»
MATCH (p1:Person {id: $person1Id})
SET p1.emails = p1.emails + [$newEmail]
«IF» MATCH (p2:Person {id: $person2Id}) exists
«THEN» «ABORT» «ELSE»
CREATE (p2:Person {id: $person2Id, emails: []})
«END»
«COMMIT»

Listing 10.3: Atomicity-RB Tx.

MATCH (p:Person)
RETURN count(p) AS numPersons, count(p.name) AS numNames, sum(size(p.emails)) AS numEmails

Listing 10.4: Atomicity-C/Atomicity-RB: counting entities in the graph.

10.3.1 System Model

Transactions consist of an ordered sequence of read and write operations to an arbitrary set of data items, book-
ended by a BEGIN operation and a COMMIT or an ABORT operation. In a graph database data items are nodes, edges
and properties. The set of items a transaction reads from and writes to is termed its item read set and item write
set. Each write creates a version of an item, which is assigned a unique timestamp taken from a totally ordered
set (e.g. natural numbers) version i of item x is denoted xi. All data items have an initial unborn version �
produced by an initial transaction T�. The unborn version is located at the start of each item’s version order. An
execution of transactions on a database is represented by a history, H, consisting of (i) each transaction’s read
and write operations, (ii) data item versions read and written and (iii) commit or abort operations.

There are three types of dependencies between transactions, which capture the ways in which transactions
can directly conflict. Read dependencies capture the scenario where a transaction reads another transaction’s
write. Antidependencies capture the scenario where a transaction overwrites the version another transaction
reads. Write dependencies capture the scenario where a transaction overwrites the version another transaction
writes. Their definitions are as follows:

Read-Depends Transaction Tj directly read-depends (wr) on Ti if Ti writes some version xk and Tj reads xk.
Anti-Depends Transaction Tj directly anti-depends (rw) on Ti if Ti reads some version xk and Tj writes x’s

next version after xk in the version order.
Write-Depends Transaction Tj directly write-depends (ww) on Ti if Ti writes some version xk and Tj writes

x’s next version after xk in the version order.

Using these definitions, from a historyH a direct serialization graph DSG(H) is constructed. Each node in
the DSG corresponds to a committed transaction and edges correspond to the types of direct conflicts between
transactions. Anomalies can then be defined by stating properties about the DSG.

The above item-based model can be extended to handle predicate-based operations [1]. Database operations
are frequently performed on set of items provided a certain condition called the predicate, P holds. When a
transaction executes a read or write based on a predicate P , the database selects a version for each item to which
P applies, this is called the version set of the predicate-based denoted as Vset(P). A transaction Tj changes the
matches of a predicate-based read ri(Pi) if Ti overwrites a version in Vset(Pi).

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 130 of 164

Chapter 10. ACID Test Suite 10.3. Isolation

10.3.2 General Design

Isolation tests begin by loading a test graph into the database. Configurable numbers of write clients and read
clients then execute a sequence of transactions on the database for some configurable time period. After exe-
cution, results from read clients are collected and an anomaly check is performed. In some tests an additional
full graph scan is performed after the execution period in order to collect information required for the anomaly
check.

The guiding principle behind test design was the preservation of data item’s version history – the key ingre-
dient needed in the system model formalization which is often not readily available to clients, if preserved at all.
Several anomalies are closely related, tests therefore had to be constructed such that other anomalies could not
interfere with or mask the detection of the targeted anomaly. Test descriptions provide (i) informal and formal
anomaly definitions, (ii) the required test graph, (iii) description of transaction profiles write and read clients
execute, and (iv) reasoning for why the test works.

10.3.3 Dirty Write

Informally, a Dirty Write (Adya’s G0 [1]) occurs when updates by conflicting transactions are interleaved. For
example, say Ti and Tj both modify items {x, y}. If version xi precedes version xj and yj precedes version yi
a G0 anomaly has occurred. Preventing G0 is especially important in a graph database in to order to maintain
Reciprocal Consistency [87].

Definition. A historyH exhibits phenomenon G0 if DSG(H) contains a directed cycle consisting entirely of
write-dependency edges.

Test. Load a test graph containing pairs of Person nodes connected by a KNOWS edge. Assign each Person a
unique id and each Person and KNOWS edge a versionHistory property of type list (initially empty). During the
execution period, write clients execute a sequence of G0 TW instances, Listing 10.5. This transaction appends
its ID to the versionHistory property for each entity in the Person pair it matches. Note, transaction IDs are
assumed to be globally unique. After execution, a read client issues a G0 TR for each Person pair in the graph,
Listing 10.6. Retrieving the versionHistory for each entity (2 Persons and 1 KNOWS edge) in a Person pair.

Anomaly check. For each Person pair in the test graph: (i) prune each versionHistory list to remove any
version numbers that do not appear in all lists; needed to account for interference from Lost Update anomalies
(Section 10.3.8), (ii) perform an element-wise comparison between versionHistory lists for each entity, (iii) if
lists do not agree a G0 anomaly has occurred.

Why it works. Each G0 TW effectively creates a new version of a Person pair. Appending the transaction ID
preserves the version history of each entity in the Person pair. In a system that prevents G0, each entity of the
Person pair should experience the same updates, in the same order. Hence, each position in the versionHistory
lists should be equivalent. The additional pruning step is needed as Lost Updates overwrite a version, effectively
erasing it from the history of a data item.

MATCH
(p1:Person {id: $person1Id})
-[k:KNOWS]->(p2:Person {id: $person2Id})

SET p1.versionHistory = p1.versionHistory + [$tId]
SET p2.versionHistory = p2.versionHistory + [$tId]
SET k.versionHistory = k.versionHistory + [$tId]

Listing 10.5: Dirty Write (G0) TW.

MATCH (p1:Person {id: $person1Id})
-[k:KNOWS]->(p2:Person {id: $person2Id})
RETURN

p1.versionHistory AS p1VersionHistory,
k.versionHistory AS kVersionHistory,
p2.versionHistory AS p2VersionHistory

Listing 10.6: Dirty Write (G0) TR.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 131 of 164

Chapter 10. ACID Test Suite 10.3. Isolation

10.3.4 Dirty Reads

Aborted Reads

Informally, an Aborted Read (G1a) anomaly occurs when a transaction reads the updates of a transaction that
later aborts.

Definition. A history H exhibits phenomenon G1a if H contains an aborted transaction Ti and a committed
transaction Tj such that Tj reads a version written by Ti.

Test. Load a test graph containing only Person nodes into the database. Assign each Person a unique id and
version initialized to 1; any odd number will suffice. During execution, write clients execute a sequence of G1a
TW instances, Listing 10.7. Selecting a random Person id to populate each instance. This transaction attempts
to set version=2 (any even number will suffice) but always aborts. Concurrently, read clients execute a sequence
of G1a TR instances, Listing 10.8. This transaction retrieves the version property of a Person. Read clients store
results, which are pooled after execution has finished.

Anomaly check. Each read should return version=1 (or any odd number). Otherwise, a G1a anomaly has
occurred.

Why it works. Each transaction that attempts to set version to an even number always aborts. Therefore, if a
transaction reads version to be an even number, it must have read the write of an aborted transaction.

MATCH (p:Person {id: $personId})
SET p.version = 2
«SLEEP($sleepTime)»
«ABORT»

Listing 10.7: Aborted Read (G1a) TW.

MATCH (p:Person {id: $personId})
RETURN p.version

Listing 10.8: Aborted Read (G1a) TR.

MATCH (p:Person {id: $personId})
SET p.version = $even
«SLEEP($sleepTime)»
SET p.version = $odd

Listing 10.9: Interm. Read (G1b) TW.

MATCH (p:Person {id: $personId})
RETURN p.version

Listing 10.10: Interm. Read (G1b) TR.

Intermediate Reads

Informally, an Intermediate Read (Adya’s G1b [1]) anomaly occurs when a transaction reads the intermediate
modifications of other transactions.

Definition. A history H exhibits phenomenon G1b if H contains a committed transaction Ti that reads a
version of an object xm written by transaction Tj , and Tj also wrote a version xn such thatm < n in x’s version
order.

Test. Load a test graph containing only Person nodes into the database. Assign each Person a unique id and
version initialized to 1; any odd number will suffice. During execution, write clients execute a sequence of
G1b TW instances, Listing 10.9. This transaction sets version to an even number, then an odd number before
committing. Concurrently read-clients execute a sequence of G1b TR instances, Listing 10.10. Selecting a
Person by id and retrieving its version property. Read clients store results which are collected after execution
has finished.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 132 of 164

Chapter 10. ACID Test Suite 10.3. Isolation

MATCH (p1:Person {id: $person1Id}) SET p1.version = $transactionId
MATCH (p2:Person {id: $person2Id}) RETURN p2.version

Listing 10.11: G1c TRW.

Anomaly check. Each read of version should be an odd number. Otherwise, a G1b anomaly has occurred.

Why it works. The final version installed by an G1b TW instance is never an even number. Therefore, if a
transaction reads version to be an even number it must have read an intermediate version.

Circular Information Flow

Informally, a Circular Information Flow (Adya’s G1c [1]) anomaly occurs when two transactions affect each
other; i.e. both transactions write information the other reads. For example, transaction Ti reads a write by
transaction Tj and transaction Tj reads a write by Ti.

Definition. A historyH exhibits phenomenon G1c if DSG(H) contains a directed cycle that consists entirely
of read-dependency and write-dependency edges.

Test. Load a test graph containing only Person nodes into the database. Assign each Person a unique id and
version initialized to 0. Read-write clients are required for this test, executing a sequence of G1c TRW, List-
ing 10.11. This transaction selects two different Person nodes, setting the version of one Person to the transaction
ID and retrieving the version from the other. Note, transaction IDs are assumed to be globally unique. Transac-
tion results are stored in format (txn.id, versionRead) and collected after execution.

Anomaly check. For each result, check the result of the transaction the versionRead corresponds to, did not
read the transaction of that result. If so a G1c anomaly has occurred.

Why it works. Consider the result set: {(T1, T2), (T2, T3), (T3, T2)}. T1 reads the version written by T2
and T2 reads the version written by T3. Here information flow is unidirectional from T1 to T2. However, T2
reads the version written by T3 and T3 reads the version written by T2. Here information flow is circular from
T2 to T3 and T3 to T2. Thus a G1c anomaly has been detected.

10.3.5 Cut Anomalies

Item-Many-Preceders

Informally, an Item-Many-Preceders (IMP) anomaly [10] occurs if a transaction observes multiple versions of
the same item (e.g. transaction Ti reads versions x1 and x2). In a graph database this can be multiple reads
of a node, edge, property or label. Local transactions (involving a single data item) occur frequently in graph
databases, e.g. in “Retrieve content of a message” IS 4 .

Definition. A history H exhibits IMP if DSG(H) contains a transaction Ti such that Ti directly item-read-
depends on x by more than one other transaction.

Test. Load a test graph containing Person nodes. Assign each Person a unique id and version initialized to 1.
During execution write clients execute a sequence of IMP TW instances, Listing 10.12. Selecting a random id
and installing a new version of the Person. Concurrently read clients execute a sequence of IMP TR instances,
Listing 10.13. Performing multiple reads of the same Person; successive reads can be separated by some arti-
ficially injected wait time to make conditions more favourable for detecting an anomaly. Both reads within an
IMP TR transaction are returned, stored and collected after execution.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 133 of 164

Chapter 10. ACID Test Suite 10.3. Isolation

Anomaly check. Each IMP TR result set (firstRead, secondRead) should contain the same Person version.
Otherwise, an IMP anomaly has occurred.

Why it works. By performing successive reads within the same transaction this test checks that a system
ensures consistent reads of the same data item. If the version changes then a concurrent transaction has modified
the data item and the reading transaction is not protected from this change.

MATCH (p:Person {id: $personId})
SET p.version = p.version + 1

Listing 10.12: IMP TW.

MATCH (p1:Person {id: $personId})
WITH p1.version AS firstRead
«SLEEP($sleepTime)»
MATCH (p2:Person {id: $personId})
RETURN firstRead,
p2.version AS secondRead

Listing 10.13: IMP TR.

MATCH (pe:Person {id: $personId}), (po:Post {id: $postId)
CREATE (pe)-[:LIKES]->(po)

Listing 10.14: PMP TW.

MATCH (po1:Post {id: $postId})<-[:LIKES]-(pe1:Person)
WITH count(pe1) AS firstRead
«SLEEP($sleepTime)»
MATCH (po2:Post {id: $postId})<-[:LIKES]-(pe2:Person)
RETURN firstRead,

count(pe2) AS secondRead

Listing 10.15: PMP TR.

Predicate-Many-Preceders

Informally, a Predicate-Many-Preceders (PMP) anomaly [10] occurs if a transaction observes different versions
resulting from the same predicate read (e.g. Ti reads Vset(Pi) = {x1} and Vset(Pi) = {x1, y2}). Pattern match-
ing is a common predicate read operation in a graph database, e.g. query “Find friends and friends of friends
that have been to given countries” IC 3 .

Definition. A historyH exhibits the phenomenon PMP if, for all predicate-based reads ri(Pi ∶ Vset(Pi)) and
rj(Pj ∶ Vset(Pj)) in Tk such that the logical ranges of Pi and Pj overlap (call it Po), the set of transactions that
change the matches of Po for ri and rj differ.

Test. Load a test graph containing Person and Post nodes. Within each node type assign unique IDs. During
execution write clients execute a sequence of PMP TW instances, inserting a LIKES edge between a randomly
selected Person and Post, shown in Listing 10.14. Concurrently read clients execute a sequence of PMP TR
instances, Listing 10.15. Performing multiple reads of the pattern (po:Post)<-[:LIKES]-(p:Person) and counting
the number of LIKES edges; successive reads can be separated by some artificially injected wait time to make
conditions more favourable for detecting an anomaly. Both predicate reads within a PMP TR transaction are
returned, stored and collected after test execution.

Anomaly check. For each PMP TR transaction result set (firstRead, secondRead), the firstRead should be
equal to secondRead. Otherwise, a PMP anomaly has occurred.

Why it works. By performing successive predicate reads and counting the number of LIKES edges within the
same transaction this test checks that a system ensures consistent reads of the same predicate. If the number of
LIKES edges changes then a concurrent transaction has inserted a new LIKES edge and the reading transaction is
not protected from this change.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 134 of 164

Chapter 10. ACID Test Suite 10.3. Isolation

10.3.6 Observed Transaction Vanishes

Informally, an Observed Transaction Vanishes (OTV) anomaly [10] occurs when a transaction observes part
of another transaction’s updates but not all of them (e.g. T1 writes x1 and y1 and T2 reads x1 and y�). Before
formally defining OTV the Unfolded Serialization Graph (USG) must be introduced [1]. The USG is specified
for an individual transaction, Ti and a history, H and is denoted by USG(H,Ti). In a USG the Ti node is split
into multiple nodes, one for each action read ri(⋅) or write wi(⋅) within the transaction. The dependency edges
are now incident on the relevant event of Ti. Additionally, actions within Ti are connected by an order edge e.g.
if Ti reads object yj then immediately writes on object x an order edge exists from wi(xi) to ri(yj).

Definition. A history H exhibits phenomenon OTV if USG(H,Ti) contains a directed cycle consisting of
(i) exactly one read dependency edge induced by data item x from Tj to Ti and (ii) a set of edges induced by
data item y containing at least one anti dependency edge from Ti to Tj . Additionally, Ti’s read from y precedes
its read from x.

Test. Load a test graph containing a set of cycles of length 4 of Persons with same name connected by Knows
edges. Assign each Person an id, name and version property (initialized to 1). Note, id must be unique across
nodes and name must be unique across cycles. During execution write clients select a name, id and executes a
sequence of OTV TW instances, Listing 10.16. This transaction effectively creates a new version of a given
cycle. Concurrently read-clients execute a sequence of OTV TR instances, Listing 10.17. Matching a given
cycle and performing multiple reads. Both reads within an OTV TR are returned, stored and collected after
execution.

Anomaly check. For each OTV TR result set (firstRead,secondRead), the maximum version in the firstRead
should be less than or equal to the minimum version in the secondRead. Otherwise, an OTV anomaly has oc-
curred.

Why it works. OTV TW installs a new version of a cycle by updating the version property of each Person.
Therefore when matching a cycle once a transaction has observed some version it should at least observe this
version for every remaining entity in the cycle. Unfortunately, this cannot be deduced from a single read of the
cycle as results frommatching cycles often does not preserve the order in which graph entities were read. This is
solved by making multiple reads of the cycle. The maximum version of the firstRead determines the minimum
version of secondRead. If this condition is violated then a transaction has observed the effects of a transaction in
the firstRead then subsequently failed to observe it in the secondRead – the observed transaction has vanished!

MATCH path =
(n:Person {id: $personId})
-[:KNOWS*..4]->(n)

UNWIND nodes(path)[0..4] AS p
SET p.version = p.version + 1

Listing 10.16: OTV/FR TW.

MATCH p1=(n1:Person {id: $personId})-[:KNOWS*..4]->(n1)
RETURN extract(p IN nodes(p1) | p.version) AS firstRead
«SLEEP($sleepTime)»
MATCH p2=(n2:Person {id: $personId})-[:KNOWS*..4]->(n2)
RETURN extract(p IN nodes(p2) | p.version) AS secondRead

Listing 10.17: OTV/FR TR.

10.3.7 Fractured Read

Informally, a Fractured Read (FR) anomaly [11] occurs when a transaction reads across transaction boundaries.
For example, if T1 writes x1 and y1 and T3 writes x3. If T2 reads x1 and y1, then repeats its read of x and reads
x3 a fractured read has occurred.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 135 of 164

Chapter 10. ACID Test Suite 10.3. Isolation

Definition. A transaction Tj exhibits phenomenon FR if transaction Ti writes versions xa and yb (in any order,
where x and y may or may not be distinct items), Tj reads version xa and version yc, and c < b.

Test. Same as the OTV test.

Anomaly check. For each FR TR (Listing 10.17) result set (firstRead, secondRead), all versions across both
version sets should be equal. Otherwise, an FR anomaly has occurred.

Why it works. FR TW installs a new version of a cycle by updating the version properties on each Person.
When FR TR observes a version every subsequent read in that cycle should read the same version as FR TW
(Listing 10.16) installs the same version for all Person nodes in the cycle. Thus, if it observes a different version
it has observed the effect of a different transaction and has read across transaction boundaries.

10.3.8 Lost Update

Informally, a Lost Update (LU) anomaly [11] occurs when two transactions concurrently attempt to make con-
ditional modifications to the same data item(s).

Definition. A history H exhibits phenomenon LU if DSG(H) contains a directed cycle having one or more
antidependency edges and all edges are induced by the same data item x.

Test. Load a test graph containing Person nodes. Assign each Person a unique id and a property numFriends
(initialized to 0). During execution write clients execute a sequence of LU TW instances, Listing 10.18. Choos-
ing a random Person and incrementing its numFriends property. Clients store local counters (expNumFriends) for
each Person, which is incremented each time a Person is selected and the LU TW instance successfully com-
mits. After the execution period the numFriends is retrieved for each Person using LU TR in Listing 10.19 and
expNumFriends are pooled from write clients for each Person.

Anomaly check. For each Person its numFriends property should be equal to the (global) expNumFriends for that
Person.

Why it works. Clients know how many successful LU TW instances were issued for a given Person. The
observable numFriends should reflect this ground truth, otherwise, an LU anomaly must have occurred.

MATCH (p:Person {id: $personId})
SET p.numFriends = p.numFriends + 1

Listing 10.18: Lost Update TW.

MATCH (p:Person {id: $personId})
RETURN p.numFriends AS numFriends

Listing 10.19: Lost Update TR.

10.3.9 Write Skew

Informally, Write Skew (WS) occurs when two transactions simultaneously attempted to make disjoint condi-
tional modifications to the same data item(s). It is referred to as G2-Item in [1, 25].

Definition. A historyH exhibits WS ifDSG(H) contains a directed cycle having one or more antidependency
edges.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 136 of 164

Chapter 10. ACID Test Suite 10.4. Consistency and Durability Tests

Test. Load a test graph containing n pairs of Person nodes (p1, p2) for k = 0, . . . , n − 1, where the kth pair
gets IDs p1.id = 2*k+1 and p2.id = 2*k+2, and values p1.value = 70 and p2.value = 80. There is a constraint:
p1.value + p2.value > 0. During execution write clients execute a sequence ofWS TW instances, Listing 10.20.
Selecting a random Person pair and decrementing the value property of one Person provided doing so would not
violate the constraint. After execution the database is scanned using WS TR, Listing 10.21.

Anomaly check. For each Person pair the constraint should hold true, otherwise, a WS anomaly has occurred.

Why it works. Under no Serializable execution of WS TW instances would the constraint p1.value + p2.value
> 0 be violated. Therefore, if WS TR returns a violation of this constraint it is clear a WS anomaly has occurred.

MATCH (p1:Person {id: $person1Id}),
(p2:Person {id: $person2Id})

«IF (p1.value+p2.value < 100)» «THEN» «ABORT» «END»
«SLEEP($sleepTime)»
pId = «pick randomly between personId1, personId2»
MATCH (p:Person {id: $pId})
SET p.value = p.value - 100
«COMMIT»

Listing 10.20: WS TW.

MATCH (p1:Person),
(p2:Person {id: p1.id+1})

WHERE p1.value + p2.value <= 0
RETURN

p1.id AS p1id,
p1.value AS p1value,
p2.id AS p2id,
p2.value AS p2value

Listing 10.21: WS TR.

10.4 Consistency and Durability Tests

While this chapter mainly focused on atomicity and isolation from the ACID properties, we provide a short
overview of the other two aspects.

Durability is a hard requirement for SNB Interactive and checking it is part of the auditing process. The
durability test requires the execution of the SNB Interactive workload and uses the LDBCworkload driver. Note,
the database and the driver must be configured in the same way as would be used in the performance run. First,
the database is subject to a warm-up period. Then after 2 hours of simulation execution, the database processes
will be terminated, possibly by disconnecting the entire machine or by a hard process kill. Note that turning
the machine off may not be possible in cloud tests. The database system is then restarted and each client issues
a read for the value of the last entity (node or edge) it received a successful commit message for, that should
produce a correct response.

Consistency is defined in terms of constraints: the database remains consistent under updates; i.e. no
constraint is violated. Relational database systems usually support primary- and foreign-key constraints, as
well as domain constraints on column values and sometimes also support simple within-row constraints. Graph
database systems have a diversity of interfaces and generally do not support constraints, beyond sometimes
domain and primary key constraints (in case indices are supported). As such, we leave them out of scope
for LDBC SNB. However, we do note that we anticipate that graph database systems will evolve to support
constraints in the future. Beyond equivalents of the relational ones, property graph systems might introduce
graph-specific constraints, such as (partial) compliance to a schema formulated on top of property graphs, rules
that guide the presence of labels or structural graph constraints such as connectedness of the graph, absence of
cycles, or arbitrary well-formedness constraints [74].

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 137 of 164

Chapter 11. Related Work

11 Related Work

A detailed list of LDBC publications is curated at https://ldbcouncil.org/publications.

11.1 ACID Tests in Other Benchmarks

The challenge of verifying ACID-compliance has been addressed before by transactional benchmarks. For
example, TPC-C [82] provides a suite of ACID tests. However, the isolation tests are reliant on lock-based
concurrency control, hence are not generalizable across systems. Also, the transactional anomaly test coverage
is limited to only four anomalies. The authors of [21] augment the popular YCSB framework for benchmarking
transactional NewSQL systems, including a validation phase that detects and quantifies consistency anomalies.
They permit the definition of arbitrary integrity constraints, checking they hold before and after a benchmark run.
Such an approach is not possible within SNB Interactive due to the restrictive nature of transactional updates
and the distinct lack of application-level constraints.

The Hermitage project [43] with the goal of improving understanding of weak isolation, developed a range
of hand-crafted isolation tests. This test suite has much higher anomaly coverage but suffers from a problem
similar to TPC-C. Test execution is performed by hand, opening multiple terminals to step through the tests.1
The Jepsen project [41] is not a benchmark rather it addresses correctness testing, traditionally focusing on
distributed systems under various failure modes. Most of Jepsen’s transactional tests adopt a similar approach
to us, executing a suite of transactions with hand-proven invariants. However recently, the project has spawned
Elle [42] a black-box transactional anomaly checker. Elle does not rely on hand-crafted tests and can detect
every anomaly in [1] (except for predicate-based anomalies) from an arbitrary transaction history.

11.2 Graph Processing Benchmarks

Recent graph benchmarking initiatives focus on three key areas:

1. transactional workloads consisting of interactive read and update queries (OLTP) aiming at graph
databases that explore small portions of the graph in each query [13, 8, 19, 24, 46],

2. graph analysis algorithms (e.g. PageRank) computed in bulk, typically expressed in cluster frameworks
with graph APIs, rather than high-level queries [9, 23, 56, 38],

3. pattern matching and inferencing on semantic data [33, 73, 54, 3, 81].

The SIGMOD 2014 Programming Contest defined queries on the Social Network Benchmark schema with
a mix of subgraph projection and graph analytics [22].

The challenges of using benchmarks correctly are described in [68].
The Interactive queries were used in paper [60] to compare the performance of Gremlin, Cypher, SQL and

SPARQL query engines.
The Labelled Subgraph Query Benchmark (LSQB) [51] uses graphs produced by the LDBC SNB Datagen

but simplifies them by omitting all attributes. It defines join-heavy subgraph queries to perform graph pattern
matching.

11.3 Scalable Graph Generators

A recent survey [17] studied 38 graph generators, finding that only 4 of them supported generating updates and,
intriguingly, even these generators only yield insertions and simple deletions at best. LinkBench [8] defines
primitive delete operations targeting a single node or a single edge. XGDBench [19] defines an operation that
deletes a single node. The Social Network Intelligence BenchMark (SIB) [16] (a precursor to LDBC SNB)
requires the deletion of individual nodes (posts/photos).

1We initially experimented with Hermitage but found it difficult to induce anomalies that relied on fast timings due to some graph
databases offering limited client-side control over transactions, with all statements submitted in one batch.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 138 of 164

https://ldbcouncil.org/publications

Bibliography Bibliography

Bibliography

[1] Atul Adya. “Weak consistency: A generalized theory and optimistic implementations for distributed trans-
actions”. Ph.D. dissertation. MIT, 1999.

[2] Hazim Almuhimedi et al. “Tweets are forever: a large-scale quantitative analysis of deleted tweets”. In:
Computer Supported Cooperative Work, CSCW 2013, San Antonio, TX, USA, February 23-27, 2013. Ed.
by Amy S. Bruckman et al. ACM, 2013, pp. 897–908. doi: 10.1145/2441776.2441878.

[3] Günes Aluç et al. “Diversified Stress Testing of RDF Data Management Systems”. In: ISWC. 2014,
pp. 197–212. doi: 10.1007/978-3-319-11964-9_13.

[4] Renzo Angles et al. “Foundations of Modern Query Languages for Graph Databases”. In: ACM Comput.
Surv. 50.5 (2017), 68:1–68:40. doi: 10.1145/3104031.

[5] Renzo Angles et al. “G-CORE: A Core for Future Graph Query Languages”. In: SIGMOD. ACM, 2018,
pp. 1421–1432. doi: 10.1145/3183713.3190654.

[6] Renzo Angles et al. “The LDBC Social Network Benchmark”. In: CoRR abs/2001.02299 (2020). url:
http://arxiv.org/abs/2001.02299.

[7] Renzo Angles et al. “The Linked Data Benchmark Council: A graph and RDF industry benchmarking
effort”. In: SIGMOD Record 43.1 (2014), pp. 27–31. doi: 10.1145/2627692.2627697.

[8] Timothy G. Armstrong et al. “LinkBench: A database benchmark based on the Facebook social graph”.
In: SIGMOD. 2013, pp. 1185–1196. doi: 10.1145/2463676.2465296.

[9] David A. Bader and KameshMadduri. “Design and Implementation of the HPCS Graph Analysis Bench-
mark on Symmetric Multiprocessors”. In: HiPC. 2005, pp. 465–476. doi: 10.1007/11602569_48.

[10] Peter Bailis et al. “Highly Available Transactions: Virtues and Limitations”. In: VLDB (2013). doi: 10.
14778/2732232.2732237.

[11] Peter Bailis et al. “Scalable Atomic Visibility with RAMP Transactions”. In: ACM Trans. Database Syst.
(2016). doi: 10.1145/2909870.

[12] Nurzhan Bakibayev, Dan Olteanu, and Jakub Zavodny. “FDB: A Query Engine for Factorised Relational
Databases”. In: Proc. VLDB Endow. 5.11 (2012), pp. 1232–1243. doi: 10.14778/2350229.2350242.

[13] Sumita Barahmand and Shahram Ghandeharizadeh. “BG: A Benchmark to Evaluate Interactive Social
Networking Actions”. In: CIDR. 2013. url: http://cidrdb.org/cidr2013/Papers/CIDR13_Paper93.pdf.

[14] Mauro Barone and Michele Coscia. “Birds of a feather scam together: Trustworthiness homophily in a
business network”. In: Social Networks 54 (2018), pp. 228–237. doi: 10.1016/j.socnet.2018.01.009.

[15] Maciej Besta et al. “Demystifying Graph Databases: Analysis and Taxonomy of Data Organization, Sys-
tem Designs, and Graph Queries”. In: CoRR abs/1910.09017 (2019). url: http://arxiv.org/abs/1910.
09017.

[16] Peter Boncz et al. Social Network Intelligence BenchMark. 2013. url: https://www.w3.org/wiki/Social_
Network_Intelligence_BenchMark.

[17] Angela Bonifati et al. “Graph Generators: State of the Art and Open Challenges”. In: ACMComput. Surv.
53.2 (2020), 36:1–36:30. doi: 10.1145/3379445.

[18] Federico Busato et al. “Hornet: An Efficient Data Structure for Dynamic Sparse Graphs and Matrices on
GPUs”. In: HPEC. IEEE, 2018, pp. 1–7. doi: 10.1109/HPEC.2018.8547541.

[19] Miyuru Dayarathna and Toyotaro Suzumura. “Graph database benchmarking on cloud environments with
XGDBench”. In: Autom. Softw. Eng. 21.4 (2014), pp. 509–533. doi: 10.1007/s10515-013-0138-7.

[20] Alin Deutsch et al. “Graph Pattern Matching in GQL and SQL/PGQ”. In: SIGMOD. ACM, 2022,
pp. 2246–2258. doi: 10.1145/3514221.3526057.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 139 of 164

https://doi.org/10.1145/2441776.2441878
https://doi.org/10.1007/978-3-319-11964-9_13
https://doi.org/10.1145/3104031
https://doi.org/10.1145/3183713.3190654
http://arxiv.org/abs/2001.02299
https://doi.org/10.1145/2627692.2627697
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1007/11602569_48
https://doi.org/10.14778/2732232.2732237
https://doi.org/10.14778/2732232.2732237
https://doi.org/10.1145/2909870
https://doi.org/10.14778/2350229.2350242
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper93.pdf
https://doi.org/10.1016/j.socnet.2018.01.009
http://arxiv.org/abs/1910.09017
http://arxiv.org/abs/1910.09017
https://www.w3.org/wiki/Social_Network_Intelligence_BenchMark
https://www.w3.org/wiki/Social_Network_Intelligence_BenchMark
https://doi.org/10.1145/3379445
https://doi.org/10.1109/HPEC.2018.8547541
https://doi.org/10.1007/s10515-013-0138-7
https://doi.org/10.1145/3514221.3526057

Bibliography Bibliography

[21] Akon Dey et al. “YCSB+T: Benchmarking web-scale transactional databases”. In: ICDE. IEEE Computer
Society, 2014, pp. 223–230. doi: 10.1109/ICDEW.2014.6818330.

[22] Márton Elekes, János Benjamin Antal, and Gábor Szárnyas. “An analysis of the SIGMOD 2014 Program-
ming Contest: Complex queries on the LDBC social network graph”. In: CoRR abs/2010.12243 (2020).
url: https://arxiv.org/abs/2010.12243.

[23] Benedikt Elser and Alberto Montresor. “An evaluation study of BigData frameworks for graph process-
ing”. In: Big Data. 2013, pp. 60–67. doi: 10.1109/BigData.2013.6691555.

[24] Orri Erling et al. “The LDBC Social Network Benchmark: Interactive Workload”. In: SIGMOD. 2015,
pp. 619–630. doi: 10.1145/2723372.2742786.

[25] Alan Fekete et al. “Making snapshot isolation serializable”. In: ACM Trans. Database Syst. 30.2 (2005),
pp. 492–528. doi: 10.1145/1071610.1071615.

[26] Nadime Francis et al. “Cypher: An Evolving Query Language for Property Graphs”. In: SIGMOD. ACM,
2018, pp. 1433–1445. doi: 10.1145/3183713.3190657.

[27] Michael J. Freitag et al. “AdoptingWorst-Case Optimal Joins in Relational Database Systems”. In: VLDB
13.11 (2020), pp. 1891–1904. url: http://www.vldb.org/pvldb/vol13/p1891-freitag.pdf.

[28] Goetz Graefe. “Query Evaluation Techniques for Large Databases”. In: ACM Comput. Surv. 25.2 (1993),
pp. 73–170. doi: 10.1145/152610.152611.

[29] Jim Gray et al. “Data Cube: A Relational Aggregation Operator Generalizing Group-by, Cross-Tab, and
Sub Totals”. In: Data Min. Knowl. Discov. 1.1 (1997), pp. 29–53. doi: 10.1023/A:1009726021843.

[30] Jim Gray et al. “Granularity of Locks and Degrees of Consistency in a Shared Data Base”. In: IFIP
Working Conference on Modelling in Data Base Management Systems. 1976, pp. 365–394.

[31] Alastair Green et al. “Updating Graph Databases with Cypher”. In: PVLDB 12.12 (2019), pp. 2242–2253.
doi: 10.14778/3352063.3352139.

[32] Andrey Gubichev and Peter A. Boncz. “Parameter Curation for Benchmark Queries”. In: TPCTC.
Vol. 8904. Lecture Notes in Computer Science. Springer, 2014, pp. 113–129.

[33] YuanboGuo, Zhengxiang Pan, and JeffHeflin. “LUBM:Abenchmark forOWLknowledge base systems”.
In: J. Web Sem. 3.2-3 (2005), pp. 158–182. doi: 10.1016/j.websem.2005.06.005.

[34] Pankaj Gupta et al. “WTF: The who to follow service at Twitter”. In: WWW. International World Wide
Web Conferences Steering Committee / ACM, 2013, pp. 505–514. doi: 10.1145/2488388.2488433.

[35] Pranjal Gupta, Amine Mhedhbi, and Semih Salihoglu. “Columnar Storage and List-based Processing
for Graph Database Management Systems”. In: Proc. VLDB Endow. 14.11 (2021), pp. 2491–2504. doi:
10.14778/3476249.3476297.

[36] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. “Graph Grammars with Negative Application
Conditions”. In: Fundam. Inform. 26.3/4 (1996), pp. 287–313. doi: 10.3233/FI-1996-263404.

[37] Torsten Hoefler and Roberto Belli. “Scientific benchmarking of parallel computing systems: Twelve ways
to tell the masses when reporting performance results”. In: SC. ACM, 2015, 73:1–73:12. doi: 10.1145/
2807591.2807644.

[38] Alexandru Iosup et al. “LDBC Graphalytics: A Benchmark for Large-Scale Graph Analysis on Parallel
and Distributed Platforms”. In: VLDB 9.13 (2016), pp. 1317–1328. doi: 10.14778/3007263.3007270.

[39] Alexandru Iosup et al. “The LDBC Graphalytics Benchmark”. In: CoRR abs/2011.15028 (2020). url:
https://arxiv.org/abs/2011.15028.

[40] Moritz Kaufmann. Examining the TPC Pricing Specification 2.0.0. Presented at the 9th LDBC TUC.
2017. url: https://ldbcouncil.org/event/ninth-tuc-meeting/attachments/59277315/75431947.pdf.

[41] Kyle Kingsbury. Jepsen Analyses. http://jepsen.io/analyses. 2020.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 140 of 164

https://doi.org/10.1109/ICDEW.2014.6818330
https://arxiv.org/abs/2010.12243
https://doi.org/10.1109/BigData.2013.6691555
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.1145/3183713.3190657
http://www.vldb.org/pvldb/vol13/p1891-freitag.pdf
https://doi.org/10.1145/152610.152611
https://doi.org/10.1023/A:1009726021843
https://doi.org/10.14778/3352063.3352139
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1145/2488388.2488433
https://doi.org/10.14778/3476249.3476297
https://doi.org/10.3233/FI-1996-263404
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.14778/3007263.3007270
https://arxiv.org/abs/2011.15028
https://ldbcouncil.org/event/ninth-tuc-meeting/attachments/59277315/75431947.pdf
http://jepsen.io/analyses

Bibliography Bibliography

[42] Kyle Kingsbury and Peter Alvaro. “Elle: Inferring Isolation Anomalies fromExperimental Observations”.
In: CoRR abs/2003.10554 (2020). url: https://arxiv.org/abs/2003.10554.

[43] Martin Kleppmann. Hermitage: Testing transaction isolation levels. https://github.com/ept/hermitage.
2020.

[44] LDBC.Byelaws of the LinkedData Benchmark Council v1.3. https://ldbcouncil.org/docs/LDBC.Byelaws.
1.3.ADOPTED.2021-01-14.pdf. 2021.

[45] Jure Leskovec et al. “Microscopic evolution of social networks”. In: KDD. 2008, pp. 462–470. doi: 10.
1145/1401890.1401948.

[46] Matteo Lissandrini, Martin Brugnara, and Yannis Velegrakis. “Beyond Macrobenchmarks:
Microbenchmark-based Graph Database Evaluation”. In: PVLDB 12.4 (2018), pp. 390–403. url:
http://www.vldb.org/pvldb/vol12/p390-lissandrini.pdf.

[47] László Lőrincz et al. “Collapse of an online social network: Burning social capital to create it?” In: Soc.
Networks 57 (2019), pp. 43–53. doi: 10.1016/j.socnet.2018.11.004.

[48] M. McPherson, L. Smith-Lovin, and J. M. Cook. “Birds of a feather: Homophily in social networks”. In:
Annual Review of Sociology (2001), pp. 415–444.

[49] Ulrich Meyer and Peter Sanders. “Delta-stepping: A parallelizable shortest path algorithm”. In: J. Algo-
rithms 49.1 (2003), pp. 114–152. doi: 10.1016/S0196-6774(03)00076-2.

[50] Amine Mhedhbi and Semih Salihoglu. “Optimizing Subgraph Queries by Combining Binary and Worst-
Case Optimal Joins”. In: Proc. VLDB Endow. 12.11 (2019), pp. 1692–1704. doi: 10.14778/3342263.
3342643.

[51] Amine Mhedhbi et al. “LSQB: A large-scale subgraph query benchmark”. In: GRADES-NDA at SIG-
MOD. ACM, 2021, 8:1–8:11. doi: 10.1145/3461837.3464516.

[52] DavidMizell, Kristyn J.Maschhoff, and Steven P. Reinhardt. “Extending SPARQLwith graph functions”.
In: BigData. IEEE Computer Society, 2014, pp. 46–53. doi: 10.1109/BigData.2014.7004371.

[53] Guido Moerkotte. “Small Materialized Aggregates: A Light Weight Index Structure for Data Warehous-
ing”. In: PVLDB. 1998, pp. 476–487. url: http://www.vldb.org/conf/1998/p476.pdf.

[54] Mohamed Morsey et al. “DBpedia SPARQL Benchmark - Performance Assessment with Real Queries
on Real Data”. In: ISWC. 2011, pp. 454–469. doi: 10.1007/978-3-642-25073-6_29.

[55] Seth A. Myers and Jure Leskovec. “The bursty dynamics of the Twitter information network”. In:WWW.
ACM, 2014, pp. 913–924. doi: 10.1145/2566486.2568043.

[56] Lifeng Nai et al. “GraphBIG: Understanding graph computing in the context of industrial solutions”. In:
SC. 2015, 69:1–69:12. doi: 10.1145/2807591.2807626.

[57] Thomas Neumann and Guido Moerkotte. “A Framework for Reasoning about Share Equivalence and Its
Integration into a Plan Generator”. In: BTW. 2009, pp. 7–26. url: http://subs.emis.de/LNI/Proceedings/
Proceedings144/article5220.html.

[58] Hung Q. Ngo, Christopher Ré, and Atri Rudra. “Skew strikes back: New developments in the theory of
join algorithms”. In: SIGMOD Rec. 42.4 (2013), pp. 5–16. doi: 10.1145/2590989.2590991.

[59] Dan Olteanu andMaximilian Schleich. “Factorized Databases”. In: SIGMOD Rec. 45.2 (2016), pp. 5–16.
doi: 10.1145/3003665.3003667.

[60] Anil Pacaci et al. “DoWeNeed Specialized Graph Databases? Benchmarking Real-Time Social Network-
ing Applications”. In: GRADES at SIGMOD. 2017, 12:1–12:7. doi: 10.1145/3078447.3078459.

[61] Andrew Pavlo and Matthew Aslett. “What’s Really New with NewSQL?” In: SIGMOD Rec. (2016). doi:
10.1145/3003665.3003674.

[62] Minh-Duc Pham, Peter A. Boncz, and Orri Erling. “S3G2: A Scalable Structure-Correlated Social Graph
Generator”. In: TPCTC. Vol. 7755. Springer, 2012, pp. 156–172. doi: 10.1007/978-3-642-36727-4_11.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 141 of 164

https://arxiv.org/abs/2003.10554
https://github.com/ept/hermitage
https://ldbcouncil.org/docs/LDBC.Byelaws.1.3.ADOPTED.2021-01-14.pdf
https://ldbcouncil.org/docs/LDBC.Byelaws.1.3.ADOPTED.2021-01-14.pdf
https://doi.org/10.1145/1401890.1401948
https://doi.org/10.1145/1401890.1401948
http://www.vldb.org/pvldb/vol12/p390-lissandrini.pdf
https://doi.org/10.1016/j.socnet.2018.11.004
https://doi.org/10.1016/S0196-6774(03)00076-2
https://doi.org/10.14778/3342263.3342643
https://doi.org/10.14778/3342263.3342643
https://doi.org/10.1145/3461837.3464516
https://doi.org/10.1109/BigData.2014.7004371
http://www.vldb.org/conf/1998/p476.pdf
https://doi.org/10.1007/978-3-642-25073-6_29
https://doi.org/10.1145/2566486.2568043
https://doi.org/10.1145/2807591.2807626
http://subs.emis.de/LNI/Proceedings/Proceedings144/article5220.html
http://subs.emis.de/LNI/Proceedings/Proceedings144/article5220.html
https://doi.org/10.1145/2590989.2590991
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/3078447.3078459
https://doi.org/10.1145/3003665.3003674
https://doi.org/10.1007/978-3-642-36727-4_11

Bibliography Bibliography

[63] Arnau Prat-Pérez. “LDBC SNB Datagen: Under the hood”. In: 9th LDBC TUC Meeting. 2017. url:
https://ldbcouncil.org/event/ninth-tuc-meeting/attachments/59277315/75431942.pdf.

[64] David Püroja. “LDBC Social Network Benchmark Interactive v2”. https://ldbcouncil.org/docs/papers/
msc-thesis-david-puroja-snb-interactive-v2-2023.pdf. Master’s thesis. Universiteit van Amsterdam,
2023.

[65] David Püroja et al. “The LDBC Social Network Benchmark Interactive workload v2: A transactional
graph query benchmark with deep delete operations”. In: CoRR abs/2307.04820 (2023). doi: 10.48550/
arXiv.2307.04820.

[66] Mark Raasveldt and Hannes Mühleisen. “Don’t Hold My Data Hostage - A Case For Client Protocol
Redesign”. In: Proc. VLDB Endow. 10.10 (2017), pp. 1022–1033. doi: 10.14778/3115404.3115408.

[67] Mark Raasveldt and Hannes Mühleisen. “DuckDB: An Embeddable Analytical Database”. In: SIGMOD.
ACM, 2019, pp. 1981–1984. doi: 10.1145/3299869.3320212.

[68] Mark Raasveldt et al. “Fair Benchmarking Considered Difficult: Common Pitfalls In Database Perfor-
mance Testing”. In: DBTest at SIGMOD. ACM, 2018, 2:1–2:6. doi: 10.1145/3209950.3209955.

[69] Oskar van Rest et al. “PGQL: a property graph query language”. In: GRADES at SIGMOD. 2016. doi:
10.1145/2960414.2960421.

[70] Liam Roditty. “Decremental maintenance of strongly connected components”. In: SODA. SIAM, 2013,
pp. 1143–1150. doi: 10.1137/1.9781611973105.82.

[71] Liam Roditty and Uri Zwick. “On Dynamic Shortest Paths Problems”. In: ESA. Vol. 3221. Lecture Notes
in Computer Science. Springer, 2004, pp. 580–591. doi: 10.1007/978-3-540-30140-0_52.

[72] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003. isbn: 978-0-89871-534-7. doi:
10.1137/1.9780898718003.

[73] Michael Schmidt et al. “SP2Bench: A SPARQL Performance Benchmark”. In: Semantic Web Information
Management - A Model-Based Perspective. Springer, 2009, pp. 371–393. doi: 10.1007/978-3-642-04329-
1_16.

[74] Oszkár Semeráth et al. “Formal validation of domain-specific languages with derived features and well-
formedness constraints”. In: Softw. Syst. Model. 16.2 (2017), pp. 357–392. doi: 10.1007/s10270- 015-
0485-x.

[75] Mirko Spasic, Milos Jovanovik, and Arnau Prat-Pérez. “An RDF Dataset Generator for the Social Net-
work Benchmark with Real-World Coherence”. In: BLINK at ISWC. 2016. url: http://ceur-ws.org/Vol-
1700/paper-02.pdf.

[76] Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. “NetworKit: A tool suite for large-
scale complex network analysis”. In: Netw. Sci. 4.4 (2016), pp. 508–530. doi: 10.1017/nws.2016.20.

[77] Michael Stonebraker et al. “The End of an Architectural Era (It’s Time for a Complete Rewrite)”. In:
VLDB. ACM, 2007, pp. 1150–1160. url: http://www.vldb.org/conf/2007/papers/industrial/p1150-
stonebraker.pdf.

[78] Gábor Szárnyas. LDBC Social Network Benchmark graphs. https://hdl.handle.net/11112/e6e00558-
a2c3-9214-473e-04a16de09bf8. doi: 10.25606/SURF.8f3ac424d6694282.

[79] Gábor Szárnyas et al. “The LDBC Social Network Benchmark: Business Intelligence Workload”. In:
Proc. VLDB Endow. 16.4 (2022), pp. 877–890. url: https://ldbcouncil.org/docs/papers/ldbc-snb-bi-
vldb-2022.pdf.

[80] Gábor Szárnyas et al. “The Linked Data Benchmark Council (LDBC): Driving competition and collab-
oration in the graph data management space”. In: CoRR abs/2307.04350 (2023). doi: 10.48550/arXiv.
2307.04350.

[81] Gábor Szárnyas et al. “The Train Benchmark: Cross-technology performance evaluation of continuous
model queries”. In: Softw. Syst. Model. 17.4 (2018), pp. 1365–1393. doi: 10.1007/s10270-016-0571-8.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 142 of 164

https://ldbcouncil.org/event/ninth-tuc-meeting/attachments/59277315/75431942.pdf
https://ldbcouncil.org/docs/papers/msc-thesis-david-puroja-snb-interactive-v2-2023.pdf
https://ldbcouncil.org/docs/papers/msc-thesis-david-puroja-snb-interactive-v2-2023.pdf
https://doi.org/10.48550/arXiv.2307.04820
https://doi.org/10.48550/arXiv.2307.04820
https://doi.org/10.14778/3115404.3115408
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3209950.3209955
https://doi.org/10.1145/2960414.2960421
https://doi.org/10.1137/1.9781611973105.82
https://doi.org/10.1007/978-3-540-30140-0_52
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1007/978-3-642-04329-1_16
https://doi.org/10.1007/978-3-642-04329-1_16
https://doi.org/10.1007/s10270-015-0485-x
https://doi.org/10.1007/s10270-015-0485-x
http://ceur-ws.org/Vol-1700/paper-02.pdf
http://ceur-ws.org/Vol-1700/paper-02.pdf
https://doi.org/10.1017/nws.2016.20
http://www.vldb.org/conf/2007/papers/industrial/p1150-stonebraker.pdf
http://www.vldb.org/conf/2007/papers/industrial/p1150-stonebraker.pdf
https://hdl.handle.net/11112/e6e00558-a2c3-9214-473e-04a16de09bf8
https://hdl.handle.net/11112/e6e00558-a2c3-9214-473e-04a16de09bf8
https://doi.org/10.25606/SURF.8f3ac424d6694282
https://ldbcouncil.org/docs/papers/ldbc-snb-bi-vldb-2022.pdf
https://ldbcouncil.org/docs/papers/ldbc-snb-bi-vldb-2022.pdf
https://doi.org/10.48550/arXiv.2307.04350
https://doi.org/10.48550/arXiv.2307.04350
https://doi.org/10.1007/s10270-016-0571-8

Bibliography Bibliography

[82] TPC (Transaction Processing Performance Council). TPC Benchmark C, revision 5.11. 2010. url: http:
//www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf.

[83] TPC (Transaction Processing Performance Council). “TPC Benchmark H, revision 2.18.0”. In: (2017),
pp. 1–138. url: http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf.

[84] TPC (Transaction Processing Performance Council). TPC Pricing Specification, revision 2.9.0. 2023.
url: https://www.tpc.org/tpc_documents_current_versions/pdf/TPC-Pricing_v2.9.0.pdf.

[85] Johan Ugander et al. “The Anatomy of the Facebook Social Graph”. In: CoRR abs/1111.4503 (2011).
[86] Todd L. Veldhuizen. “Leapfrog Triejoin: a worst-case optimal join algorithm”. In: CoRR abs/1210.0481

(2012). url: http://arxiv.org/abs/1210.0481.
[87] Jack Waudby et al. “Preserving Reciprocal Consistency in Distributed Graph Databases”. In: PaPoC at

EuroSys. ACM, 2020. doi: 10.1145/3380787.3393675.
[88] Jack Waudby et al. “Supporting Dynamic Graphs and Temporal Entity Deletions in the LDBC Social

Network Benchmark’s Data Generator”. In: GRADES-NDA at SIGMOD. ACM, 2020, 8:1–8:8. doi: 10.
1145/3398682.3399165.

[89] Jack Waudby et al. “Towards Testing ACID Compliance in the LDBC Social Network Benchmark”. In:
TPCTC. Ed. by Raghunath Nambiar and Meikel Poess. Vol. 12752. Lecture Notes in Computer Science.
Springer, 2020, pp. 1–17. doi: 10.1007/978-3-030-84924-5_1.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 143 of 164

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/TPC-Pricing_v2.9.0.pdf
http://arxiv.org/abs/1210.0481
https://doi.org/10.1145/3380787.3393675
https://doi.org/10.1145/3398682.3399165
https://doi.org/10.1145/3398682.3399165
https://doi.org/10.1007/978-3-030-84924-5_1

Appendix A. Choke Points

A Choke Points

Introduction

Choke points capture particularly challenging aspects of queries. The correlations between choke points and
read queries are displayed in Table A.1.

1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 2.5 2.6 3.1 3.2 3.3 4.1 4.2 4.3 5.1 5.2 5.3 6.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 8.1 8.2 8.3 8.4 8.5 8.6
BI 1 ⊗ ⊗ ⊗ ⊗ ⊗
BI 2 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 3 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 4 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 5 ⊗ ⊗ ⊗ ⊗
BI 6 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 7 ⊗ ⊗ ⊗ ⊗
BI 8 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 9 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 10 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 11 ⊗ ⊗ ⊗
BI 12 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 13 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 14 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 15 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 16 ⊗ ⊗ ⊗
BI 17 ⊗ ⊗ ⊗ ⊗ ⊗
BI 18 ⊗ ⊗ ⊗
BI 19 ⊗ ⊗ ⊗ ⊗ ⊗
BI 20 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IC 1 ⊗ ⊗ ⊗
IC 2 ⊗ ⊗ ⊗ ⊗ ⊗
IC 3 ⊗ ⊗ ⊗ ⊗ ⊗
IC 4 ⊗ ⊗ ⊗
IC 5 ⊗ ⊗ ⊗ ⊗
IC 6 ⊗ ⊗
IC 7 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IC 8 ⊗ ⊗ ⊗
IC 9 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IC 10 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IC 11 ⊗ ⊗ ⊗ ⊗ ⊗
IC 12 ⊗ ⊗ ⊗ ⊗
IC 13 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IC 14v1 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IC 14v2 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

Table A.1: Coverage of choke points by queries.

A.1 Aggregation Performance

CP-1.1: [QOPT] Interesting orders TPC-H 1.2

This choke point tests the ability of the query optimizer to exploit the interesting orders induced by some op-
erators. Apart from clustered indices providing key order, other operators also preserve or even induce tuple
orderings. Sort-based operators create new orderings, typically the probe-side of a hash join conserves its order,
etc.

Queries BI 3 BI 12 IC 2 IC 9

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 144 of 164

Appendix A. Choke Points A.2. Join Performance

CP-1.2: [QEXE] High cardinality group-by performance TPC-H 1.1

This choke point tests the ability of the execution engine to parallelize group-by operationswith a large number of
groups. Some queries require performing large group-by operations. In such a case, if an aggregation produces
a significant number of groups, intra-query parallelization can be exploited as each thread may make its own
partial aggregation. Then, to produce the result, these have to be re-aggregated. In order to avoid this, the tuples
entering the aggregation operator may be partitioned by a hash of the grouping key and be sent to the appropriate
partition. Each partition would have its own thread so that only that thread would write the aggregation, hence
avoiding costly critical sections as well. A high cardinality distinct modifier in a query is a special case of this
choke point. It is amenable to the same solution with intra-query parallelization and partitioning as the group-by.
We further note that scale-out systems have an extra incentive for partitioning since this will distribute the CPU
and memory pressure over multiple machines, yielding better platform utilization and scalability.

Queries BI 1 BI 3 BI 4 BI 5 BI 6 BI 8 BI 9 BI 10 BI 12 BI 13 BI 15 IC 9

CP-1.3: [QOPT] Top-k pushdown

This choke point tests the ability of the query optimizer to perform optimizations based on top-k selections.
Many times queries demand for returning the top-k elements based on some property. Engines can exploit that
once k results are obtained, extra restrictions in a selection can be added based on the properties of the kth
element currently in the top-k, being more restrictive as the query advances, instead of sorting all elements and
picking the highest k.

Queries BI 3 BI 4 BI 10 BI 14 IC 11

CP-1.4: [QEXE] Low cardinality group-by performance TPC-H 1.3

This choke point tests the ability to efficiently perform group-by evaluation when only a very limited set of
groups is available. This can require special strategies for parallelization, e.g. pre-aggregation when possible.
This case also allows using special strategies for grouping like using array lookup if the domain of keys is small.

Queries BI 7 BI 12 BI 14

A.2 Join Performance

CP-2.1: [QOPT] Rich join order optimization TPC-H 2.3

This choke point tests the ability of the query optimizer to find optimal join orders. A graph can be traversed in
different ways. In the relational model, this is equivalent to different join orders. The execution time of these
ordersmay differ by orders ofmagnitude. Therefore, finding an efficient join (traversal) order is important, which
in general, requires enumeration of all the possibilities. The enumeration is complicated by operators that are not
freely re-orderable like semi-, anti-, and outer-joins. Because of this difficulty most join enumeration algorithms
do not enumerate all possible plans, and therefore can miss the optimal join order. Therefore, this choke point
tests the ability of the query optimizer to find optimal join (traversal) orders.

Queries BI 3 BI 4 BI 8 BI 13 BI 14 BI 15 BI 17 IC 1 IC 3

CP-2.2: [QOPT] Late projection TPC-H 2.4

This choke point tests the ability of the query optimizer to delay the projection of unneeded attributes until late
in the execution. Queries where certain columns are only needed late in the query. In such a situation, it is better
to omit them from initial table scans, as fetching them later by row-id with a separate scan operator, which is

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 145 of 164

Appendix A. Choke Points A.2. Join Performance

joined to the intermediate query result, can save temporal space, and therefore I/O. Late projection does have
a trade-off involving locality, since late in the plan the tuples may be in a different order, and scattered I/O in
terms of tuples/second is much more expensive than sequential I/O. Late projection specifically makes sense in
queries where the late use of these columns happens at a moment where the amount of tuples involved has been
considerably reduced; for example after an aggregation with only few unique group-by keys or a top-k operator.

Queries BI 3 BI 4 BI 9 BI 15 IC 2 IC 7 IC 9

CP-2.3: [QOPT] Join type selection

This choke point tests the ability of the query optimizer to select the proper join operator type, which implies
accurate estimates of cardinalities. Depending on the cardinalities of both sides of a join, a hash or an index-
based join operator is more appropriate. This is especially important with column stores, where one usually
has an index on everything. Deciding to use a hash join requires a good estimation of cardinalities on both the
probe and build sides. In TPC-H, the use of hash join is almost a foregone conclusion in many cases, since
an implementation will usually not even define an index on foreign key columns. There is a break even point
between index and hash based plans, depending on the cardinality on the probe and build sides.

Queries BI 4 BI 5 BI 6 BI 8 BI 9 BI 10 BI 11 BI 13 BI 17 IC 2 IC 4 IC 5 IC 7
IC 9 IC 10 IC 11

CP-2.4: [QOPT] Sparse foreign key joins TPC-H 2.2

This choke point tests the performance of join operators when the join is sparse. Sometimes joins involve
relations where only a small percentage of rows in one of the tables is required to satisfy a join. When tables are
larger, typical join methods can be sub-optimal. Partitioning the sparse table, using Hash Clustered indices or
implementing Bloom-filter tests inside the join are techniques to improve the performance in such situations [28].

Queries BI 2 BI 3 BI 4 BI 10 BI 13 BI 15 IC 8 IC 11

CP-2.5: [QEXE] Worst-case optimal joins

This choke point tests the query engine’s ability to use multi-way, worst-case optimal joins to evaluate cyclic
queries which are required to efficiently compute some dense subgraphs such as the triangle, the 4-cycle, and
the diamond (4-cycle with a cross-edge). The absence of multi-way joins (e.g. in systems which only support
binary joins), implies that join performance will be provably suboptimal for cyclic queries.

Queries BI 11 BI 17 BI 18

CP-2.6: [QEXE] Factorized query execution

Query results produced by many-to-many joins often have redundancies when represented as tuples. Factor-
ization [59] provides a more compact (relational) representation by eliminating repetitions, while still allowing
some operations (e.g. aggregation) to be performed without flattening the relation.

Queries BI 5 BI 6 BI 9 BI 10 BI 12 BI 13 BI 17 BI 18

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 146 of 164

Appendix A. Choke Points A.3. Data Access Locality

A.3 Data Access Locality

CP-3.1: [QOPT] Detecting correlation TPC-H 3.3

This choke point tests the ability of the query optimizer to detect data correlations and exploiting them. If a
schema rewards creating clustered indices, the question then is which of the date or data columns to use as key.
In fact it should not matter which column is used, as range-propagation between correlated attributes of the
same table is relatively easy. One way is through the creation of multi-attribute histograms after detection of
attribute correlation. With MinMax indices, range-predicates on any column can be translated into qualifying
tuple position ranges. If an attribute value is correlated with tuple position, this reduces the area to scan roughly
equally to predicate selectivity.

Queries BI 2 BI 14 IC 3

CP-3.2: [STORAGE] Dimensional clustering

This choke point tests suitability of the identifiers assigned to entities by the storage system to better exploit data
locality. A data model where each entity has a unique synthetic identifier, e.g. RDF or graph models, has some
choice in assigning a value to this identifier. The properties of the entity being identified may affect this, e.g.
type (label), other dependent properties, e.g. geographic location, date, position in a hierarchy, etc., depending
on the application. Such identifier choice may create locality which in turn improves efficiency of compression
or index access.

Queries BI 1 BI 2 BI 8 BI 9 BI 11 BI 12 BI 13 IC 2 IC 9

CP-3.3: [QEXE] Scattered index access patterns

This choke point tests the performance of indices when scattered accesses are performed. The efficiency of
index lookup is very different depending on the locality of keys coming to the indexed access. Techniques like
vectoring non-local index accesses by simply missing the cache in parallel on multiple lookups vectored on the
same thread may have high impact. Also detecting absence of locality should turn off any locality dependent
optimizations if these are costly when there is no locality. A graph neighbourhood traversal is an example of an
operation with random access without predictable locality.

Queries BI 3 BI 4 BI 6 BI 7 BI 10 BI 13 BI 14 BI 15 BI 19 BI 20 IC 5 IC 7
IC 8 IC 9 IC 10 IC 11 IC 12 IC 13 IC 14v1 IC 14v2

A.4 Expression Calculation

CP-4.1: [QOPT] Common subexpression elimination TPC-H 4.2a

This choke point tests the ability of the query optimizer to detect common sub-expressions and reuse their
results. A basic technique helpful in multiple queries is common subexpression elimination (CSE). CSE should
recognize also that avg aggregates can be derived afterwards by dividing a sum by the count when those have been
computed.

Queries BI 1 BI 2 IC 10

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 147 of 164

Appendix A. Choke Points A.5. Correlated Sub-Queries

CP-4.2: [QOPT] Complex boolean expression joins and selections TPC-H 4.2d

This choke point tests the ability of the query optimizer to reorder the execution of boolean expressions to
improve the performance. Some boolean expressions are complex, with possibilities for alternative optimal
evaluation orders. For instance, the optimizer may reorder conjunctions to test first those conditions with larger
selectivity [53].

Queries BI 1 BI 2 BI 12 BI 13 IC 10 IC 11

CP-4.3: [QEXE] Low overhead expressions interpretation

This choke point tests the ability of efficiently evaluating simple expressions on a large number of values. A
typical example could be simple arithmetic expressions, mathematical functions like floor and absolute or date
functions like extracting a year.

Queries BI 2 BI 12

A.5 Correlated Sub-Queries

CP-5.1: [QOPT] Flattening sub-queries TPC-H 5.1

This choke point tests the ability of the query optimizer to flatten execution plans when there are correlated
sub-queries. Many queries have correlated sub-queries and their query plans can be flattened, such that the
correlated sub-query is handled using an equi-join, outer-join or anti-join. In TPC-H Q21, for instance, there is
an EXISTS clause (for orders with more than one supplier) and a NOT EXISTS clauses (looking for an item that was
received too late). To execute this query well, systems need to flatten both sub-queries, the first into an equi-join
plan, the second into an anti-join plan. Therefore, the execution layer of the database system will benefit from
implementing these extended join variants.

The ill effects of repetitive tuple-at-a-time sub-query execution can also be mitigated if execution systems by
using vectorized, or blockwise query execution, allowing to run sub-queries with thousands of input parameters
instead of one. The ability to look up many keys in an index in one API call creates the opportunity to benefit
from physical locality, if lookup keys exhibit some clustering.

Queries BI 13 BI 14 BI 15 IC 3 IC 6 IC 7 IC 10

CP-5.2: [QEXE] Overlap between outer and sub-query TPC-H 5.3

This choke point tests the ability of the execution engine to reuse results when there is an overlap between the
outer query and the sub-query. In some queries, the correlated sub-query and the outer query have the same
joins and selections. In this case, a non-tree, rather DAG-shaped [57] query plan would allow to execute the
common parts just once, providing the intermediate result stream to both the outer query and correlated sub-
query, which higher up in the query plan are joined together (using normal query decorrelation rewrites). As
such, the benchmark rewards systems where the optimizer can detect this and the execution engine supports an
operator that can buffer intermediate results and provide them to multiple parent operators.

Queries BI 7 BI 14 IC 10

CP-5.3: [QEXE] Intra-query result reuse TPC-H 5.2

This choke point tests the ability of the execution engine to reuse sub-query results when two sub-queries are
mostly identical. Some queries have almost identical sub-queries, where some of their internal results can be
reused in both sides of the execution plan, thus avoiding to repeat computations.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 148 of 164

Appendix A. Choke Points A.6. Parallelism and Concurrency

Queries BI 2 BI 4 BI 8 BI 10 BI 13 BI 14 BI 15 BI 16 IC 1 IC 8 IC 14v1 IC 14v2

A.6 Parallelism and Concurrency

CP-6.1: [QEXE] Inter-query result reuse TPC-H 6.3

This choke point tests the ability of the query execution engine to reuse results from different queries. Some-
times with a high number of streams a significant amount of identical queries emerge in the resulting workload.
The reason is that certain parameters, as generated by the workload generator, have only a limited amount of
parameters bindings. This weakness opens up the possibility of using a query result cache, to eliminate the
repetitive part of the workload. A further opportunity that detects even more overlap is the work on recycling,
which does not only cache final query results, but also intermediate query results of a “high worth”. Here,
worth is a combination of partial-query result size, partial-query evaluation cost, and observed (or estimated)
frequency of the partial-query in the workload.

Queries BI 2 BI 4 BI 6 IC 10

A.7 Graph Specifics

CP-7.1: [QEXE] Incremental path computation

This choke point tests the ability of the execution engine to reuse work across graph traversals. For example,
when computing paths within a range of distances, it is often possible to incrementally compute longer paths by
reusing paths of shorter distances that were already computed.

Queries BI 10 IC 10

CP-7.2: [QOPT] Cardinality estimation of transitive paths

This choke point tests the ability of the query optimizer to properly estimate the cardinality of intermediate
results when executing transitive paths. A transitive path may occur in a “fact table” or a “dimension table”
position. A transitive path may cover a tree or a graph, e.g. descendants in a geographical hierarchy vs. graph
neighbourhood or transitive closure in a many-to-many connected social network. In order to decide proper
join order and type, the cardinality of the expansion of the transitive path needs to be correctly estimated. This
could for example take the form of executing on a sample of the data in the cost model or of gathering special
statistics, e.g. the depth and fan-out of a tree. In the case of hierarchical dimensions, e.g. geographic locations
or other hierarchical classifications, detecting the cardinality of the transitive path will allow one to go to a star
schema plan with scan of a fact table with a selective hash join. Such a plan will be on the other hand very bad
for example if the hash table is much larger than the “fact table” being scanned.

Queries BI 9 BI 10 BI 15 IC 12 IC 13 IC 14v1

CP-7.3: [QEXE] Execution of a transitive step

This choke point tests the ability of the query execution engine to efficiently execute transitive steps. Graph
workloads may have transitive operations, for example finding a shortest path between nodes. This involves
repeated execution of a short lookup, often on many values at the same time, while usually having an end
condition, e.g. the target node being reached or having reached the border of a search going in the opposite
direction. For the best efficiency, these operations can be merged or tightly coupled to the index operations
themselves. Also parallelization may be possible but may need to deal with a global state, e.g. set of visited
nodes. There are many possible tradeoffs between generality and performance.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 149 of 164

Appendix A. Choke Points A.8. Language Features

Queries BI 9 BI 10 BI 15 IC 12 IC 13 IC 14v1

CP-7.4: [QEXE] Efficient evaluation of termination criteria for transitive queries

This tests the ability of a system to express termination criteria for transitive queries so that not the whole
transitive relation has to be evaluated as well as efficient testing for termination.

Queries BI 9

CP-7.5: [QEXE] Unweighted shortest paths

A common problem in graph queries is determining the distance between a node and a set of nodes. To compute
the distance values, systems may employ BFS or a single-source shortest path algorithm with uniform weights.
To compute the distance between two given node, systems can use bidirectional search algorithms.

Queries IC 13 IC 14v1

CP-7.6: [QEXE] Cheapest paths (weighted shortest paths)

Computing cheapest paths (weighted shortest paths) is a fundamental problem in graph queries. While there are
well-known algorithms to compute it, e.g. Dijkstra’s algorithm, Bellman–Ford, and delta-stepping [49], system
often use naïve approaches such as enumerating all paths which makes these queries unnecessarily complex.

Queries BI 15 BI 19 BI 20 IC 14v2

CP-7.7: [QEXE] Composition of graph queries

In many cases, it is desirable to specify multiple graph queries, where the first one defines an induced subgraph
or an overlay graph on the original graph, which is then passed two the next query, and so on. Expressing such
computations as a sequence of composable graph queries would be desirable from both usability, optimization,
and execution aspects. However, currently many graph dabases lack support for composable graph queries.

The G-CORE [5] design language tackled problem this by introducing the path property graph data model
(consisting of nodes, edges, and paths) and defining queries such that they return a graph (while also providing
means to return a tabular output).

Queries BI 15 BI 19 BI 20 IC 14v1 IC 14v2

CP-7.8: [QEXE] Reachability between disconnected components

For path finding queries, the result is often that the specified path does not exist in the graph. For example, for
a single-source single-destination search, when one of the endpoints is in a small component (e.g. the endpoint
is an isolated node), systems using a bidirectional search algorithm can quickly determine that there is no path
to be found.

Queries BI 20 IC 13 IC 14v2

A.8 Language Features

CP-8.1: [LANG] Complex patterns

Description. A natural requirement for graph query systems is to be able to express complex graph patterns.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 150 of 164

Appendix A. Choke Points A.8. Language Features

Transitive edges. Transitive closure-style computations are common in graph query systems, both with fixed
bounds (e.g. get nodes that can be reached through at least 3 and at most 5 knows edges), and without fixed
bounds (e.g. get all Messages that a Comment replies to).

Negative edge conditions. Some queries define negative pattern conditions. For example, the condition that a
certainMessage does not have a certain Tag is represented in the graph as the absence of a hasTag edge between
the two nodes. Thus, queries looking for cases where this condition is satisfied check for negative patterns, also
known as negative application conditions (NACs) in graph transformation literature [36].

Queries BI 7 BI 9 BI 10 BI 12 BI 15 BI 17 BI 18 IC 7 IC 13 IC 14v1 IC 14v2

CP-8.2: [LANG] Complex aggregations

Description. BI workloads are heavy on aggregation, including queries with subsequent aggregations, where
the results of an aggregation serves as the input of another aggregation. Expressing such operations requires
some sort of query composition or chaining (see also CP-8.4). It is also common to filter on aggregation results
(similarly to the HAVING keyword of SQL).

Queries BI 2 BI 3 BI 4 BI 5 BI 6 BI 8 BI 12 BI 13 BI 15 IC 1 IC 3 IC 4 IC 5
IC 6 IC 12 IC 14v1 IC 14v2

CP-8.3: [LANG] Ranking-style queries

Description. Along with aggregations, BI workloads often usewindow functions, which perform aggregations
without grouping input tuples to a single output tuple. A common use case for windowing is ranking, i.e.
selecting the top element with additional values in the tuple (nodes, edges or attributes).1

Queries BI 12 BI 14 BI 15 IC 7 IC 14v1 IC 14v2

CP-8.4: [LANG] Query composition

Description. Numerous use cases require composition of queries, including the reuse of query results (e.g.
nodes, edges) or using scalar subqueries (e.g. selecting a threshold value with a subquery and using it for sub-
sequent filtering operations).

Queries BI 4 BI 8 BI 12 BI 13 BI 14 BI 15 BI 16 BI 19 BI 20

CP-8.5: [LANG] Dates and times

Description. Handling dates and times is a fundamental requirement for production-ready database systems.
It is particularly important in the context of BI queries as these often calculate aggregations on certain periods
of time (e.g. on entities created during the course of a month).

Queries BI 1 BI 2 BI 8 BI 9 BI 12 BI 13 BI 15 BI 16 IC 2 IC 3 IC 4 IC 5 IC 9
1PostgreSQL defines the OVER keyword to use aggregation functions as window functions, and the rank() function to produce

numerical ranks, see https://www.postgresql.org/docs/9.1/static/tutorial-window.html for details.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 151 of 164

https://www.postgresql.org/docs/9.1/static/tutorial-window.html

Appendix A. Choke Points A.9. Update Operations

CP-8.6: [LANG] Handling paths

Description. Handling paths as first-class citizens is one of the key distinguishing features of graph database
systems [5]. Hence, additionally to reachability-style checks, a language should be able to express queries that
operate on elements of a path, e.g. calculate a score on each edge of the path. Also, some use cases specify
uniqueness constraints on paths [4]: arbitrary path, shortest path, no-repeated-node semantics (also known as
simple paths), and no-repeated-edge semantics (also known as trails). Other variants are also used in rare cases,
such as maximal (non-expandable) or minimal (non-contractable) paths.

Note on terminology. The Glossary of graph theory terms page of Wikipedia2 defines paths as follows: “A
path may either be a walk (a sequence of nodes and edges, with both endpoints of an edge appearing adjacent
to it in the sequence) or a simple path (a walk with no repetitions of nodes or edges), depending on the source.”
In this work, we use the first definition, which is more common in modern graph database systems and is also
followed in a recent survey on graph query languages [4].

Queries BI 10 BI 15 BI 19 BI 20 IC 10 IC 13 IC 14v1 IC 14v2

A.9 Update Operations

CP-9.1: [UPD] Insert node

This choke point tests the ability of the database to insert a node.

Queries INS 1 INS 4 INS 5 INS 6 INS 7

CP-9.2: [UPD] Insert edge

This choke point tests the ability of the database to insert an edge.

Queries INS 1 INS 2 INS 3 INS 4 INS 5 INS 6 INS 7 INS 8

CP-9.3: [UPD] Delete node

This choke point tests the ability of the database to delete a node.

Queries DEL 1 DEL 4 DEL 6 DEL 7

CP-9.4: [UPD] Delete edge

This choke point tests the ability of the database to delete an edge.

Queries DEL 1 DEL 2 DEL 3 DEL 4 DEL 5 DEL 6 DEL 7 DEL 8

CP-9.5: [UPD] Delete recursively

This choke point tests the ability of the database to recursively perform a delete operation, e.g. delete an entire
message thread.

Queries DEL 1 DEL 4 DEL 6 DEL 7

2https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 152 of 164

https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms

Appendix B. Scale Factor Statistics

B Scale Factor Statistics

B.1 Number of Entities for SNB Interactive v1.0

C File SF0.1 SF0.3 SF1 SF3 SF10 SF30 SF100 SF300 SF1 000

N organisation 7 955 7 955 7 955 7 955 7 955 7 955 7 955 7 955 7 955
E organisation_isLocatedIn_place 7 955 7 955 7 955 7 955 7 955 7 955 7 955 7 955 7 955
N place 1 460 1 460 1 460 1 460 1 460 1 460 1 460 1 460 1 460
E place_isPartOf_place 1 454 1 454 1 454 1 454 1 454 1 454 1 454 1 454 1 454
N tag 16 080 16 080 16 080 16 080 16 080 16 080 16 080 16 080 16 080
E tag_hasType_tagclass 16 080 16 080 16 080 16 080 16 080 16 080 16 080 16 080 16 080
N tagclass 71 71 71 71 71 71 71 71 71
E tagclass_isSubclassOf_tagclass 70 70 70 70 70 70 70 70 70

N comment 203 354 682 061 2 581 736 7 882 971 26 540 464 80 390 821 261 475 982 767 719 169 2 550 634 137
E comment_hasCreator_person 203 354 682 061 2 581 736 7 882 971 26 540 464 80 390 821 261 475 982 767 719 169 2 550 634 137
E comment_hasTag_tag 232 524 807 266 3 145 443 9 688 491 32 922 873 100 818 244 330 756 583 975 122 821 3 253 337 649
E comment_isLocatedIn_place 203 354 682 061 2 581 736 7 882 971 26 540 464 80 390 821 261 475 982 767 719 169 2 550 634 137
E comment_replyOf_comment 103 552 346 553 1 310 385 3 997 838 13 465 094 40 789 548 132 671 059 389 555 963 1 294 311 108
E comment_replyOf_post 99 802 335 508 1 271 351 3 885 133 13 075 370 39 601 273 128 804 923 378 163 206 1 256 323 029
N forum 16 818 38 050 110 347 271 226 727 502 1 835 458 4 982 966 12 560 110 36 086 326
E forum_containerOf_post 168 873 404 531 1 237 554 3 200 561 9 119 229 24 346 116 70 420 477 188 400 071 575 768 804
E forum_hasMember_person 266 965 861 079 3 345 548 10 352 102 35 510 056 110 335 311 362 933 964 1 070 304 327 3 570 974 603
E forum_hasModerator_person 16 818 38 050 110 347 271 226 727 502 1 835 458 4 982 966 12 560 110 36 086 326
E forum_hasTag_tag 54 288 124 186 354 943 878 307 2 364 249 5 941 428 16 147 466 40 642 813 116 757 400
N person 1 700 3 900 11 000 27 000 73 000 184 000 499 000 1 254 000 3 600 000
A person_email_emailaddress 3 690 8 393 23 372 57 419 155 585 392 497 1 064 135 2 675 881 7 681 772
E person_hasInterest_tag 39 170 90 036 255 596 634 081 1 709 747 4 289 970 11 663 500 29 336 703 84 271 074
E person_isLocatedIn_place 1 700 3 900 11 000 27 000 73 000 184 000 499 000 1 254 000 3 600 000
E person_knows_person 18 074 57 179 226 515 704 246 2 431 407 7 514 541 24 842 767 73 448 777 245 296 255
E person_likes_comment 96 865 412 010 1 946 260 6 868 912 25 596 818 84 821 954 301 042 048 947 303 146 3 357 196 350
E person_likes_post 97 638 328 473 1 303 778 4 120 299 14 228 924 44 582 924 149 809 880 451 827 331 1 540 438 666
A person_speaks_language 3 771 8 595 24 246 59 609 160 992 405 234 1 099 519 2 763 100 7 933 284
E person_studyAt_organisation 1 337 3 089 8 808 21 586 58 439 147 527 399 487 1 003 543 2 880 284
E person_workAt_organisation 3 732 8 561 24 079 58 912 159 511 401 230 1 086 041 2 730 945 7 836 570
N post 168 873 404 531 1 237 554 3 200 561 9 119 229 24 346 116 70 420 477 188 400 071 575 768 804
E post_hasCreator_person 168 873 404 531 1 237 554 3 200 561 9 119 229 24 346 116 70 420 477 188 400 071 575 768 804
E post_hasTag_tag 59 862 207 814 816 048 2 521 635 8 584 195 26 346 801 86 600 144 255 541 805 852 679 225
E post_isLocatedIn_place 168 873 404 531 1 237 554 3 200 561 9 119 229 24 346 116 70 420 477 188 400 071 575 768 804

Total nodes 416 311 1 154 108 3 966 203 11 407 324 36 485 761 106 781 961 337 403 991 969 958 916 3 166 114 833
Total edges 2 031 213 6 226 978 23 031 794 69 422 952 231 371 359 701 455 758 2 286 478 782 6 729 459 600 22 450 588 784

Table B.1: The number of entities per SF and per file in the Interactive workload (produced by the Hadoop-based
generator and measured based on the output of the CsvBasic serializer). To derive these numbers, 100% of the
network was generated as an initial bulk data set with no update streams. Notation – C: entity category, N: node,
E: edge.

B.2 Number of Entities for SNB BI v1.0

B.3 Factor Tables

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 153 of 164

Appendix B. Scale Factor Statistics B.3. Factor Tables

C File SF1 SF3 SF10 SF30 SF100 SF300 SF1 000 SF3 000 SF10 000 SF30 000
N Organisation 7 955 7 955 7 955 7 955 7 955 7 955 7 955 7 955 7 955 7 955
E Organisation_isLocatedIn_Place 7 955 7 955 7 955 7 955 7 955 7 955 7 955 7 955 7 955 7 955
N Place 1 460 1 460 1 460 1 460 1 460 1 460 1 460 1 460 1 460 1 460
E Place_isPartOf_Place 1 454 1 454 1 454 1 454 1 454 1 454 1 454 1 454 1 454 1 454
N Tag 16 080 16 080 16 080 16 080 16 080 16 080 16 080 16 080 16 080 16 080
E Tag_hasType_TagClass 16 080 16 080 16 080 16 080 16 080 16 080 16 080 16 080 16 080 16 080
N TagClass 71 71 71 71 71 71 71 71 71 71
E TagClass_isSubclassOf_TagClass 70 70 70 70 70 70 70 70 70 70

N Comment 1 739 438 5 343 582 18 196 074 54 737 515 185 495 476 554 017 340 1 876 785 283 5 656 073 047 18 880 439 325 58 666 958 815
E Comment_hasCreator_Person 1 739 438 5 343 582 18 196 074 54 737 515 185 495 476 554 017 340 1 876 785 283 5 656 073 047 18 880 439 325 58 666 958 815
E Comment_hasTag_Tag 2 176 131 6 754 220 23 113 520 70 035 650 238 074 593 714 772 017 2 426 657 766 7 330 444 735 24 505 161 117 76 236 094 545
E Comment_isLocatedIn_Country 1 739 438 5 343 582 18 196 074 54 737 515 185 495 476 554 017 340 1 876 785 283 5 656 073 047 18 880 439 325 58 666 958 815
E Comment_replyOf_Comment 789 020 2 425 043 8 274 158 25 130 258 85 829 276 258 292 038 883 936 628 2 688 432 865 9 045 050 101 28 244 723 682
E Comment_replyOf_Post 950 418 2 918 539 9 921 916 29 607 257 99 666 200 294 572 950 992 848 655 2 967 640 182 9 835 389 224 30 422 235 133
N Forum 100 827 245 524 667 545 1 659 632 4 611 436 11 642 786 33 168 124 87 364 322 257 338 738 728 629 666
E Forum_containerOf_Post 1 121 226 2 873 419 8 273 491 21 651 342 64 029 217 171 283 445 519 738 978 1 440 235 348 4 461 342 990 13 148 296 221
E Forum_hasMember_Person 2 909 768 8 780 738 30 201 123 90 198 118 303 838 931 898 932 504 3 004 740 356 8 909 683 066 29 398 116 490 90 652 090 014
E Forum_hasModerator_Person 100 827 245 524 667 545 1 659 632 4 611 436 11 642 786 33 168 124 87 364 322 257 338 738 728 629 666
E Forum_hasTag_Tag 328 584 809 991 2 207 525 5 467 942 15 195 472 38 372 330 109 341 702 288 057 168 848 359 157 2 401 607 343
N Person 10 295 25 066 68 673 170 654 473 001 1 193 579 3 399 580 8 955 552 26 384 952 74 689 437
E Person_hasInterest_Tag 238 052 589 533 1 608 653 3 978 964 11 057 039 27 923 123 79 573 188 209 648 434 617 405 426 1 747 667 501
E Person_isLocatedIn_City 10 295 25 066 68 673 170 654 473 001 1 193 579 3 399 580 8 955 552 26 384 952 74 689 437
E Person_knows_Person 173 014 528 896 1 839 354 5 524 302 18 655 515 55 656 915 187 247 788 559 360 185 1 854 528 925 5 734 470 022
E Person_likes_Comment 1 109 813 3 826 649 14 586 377 48 651 549 184 325 690 605 620 715 2 249 224 980 7 279 159 053 25 779 776 654 83 352 563 279
E Person_likes_Post 760 455 2 417 873 8 546 995 26 908 834 98 423 296 314 778 935 1 140 808 487 3 619 661 715 12 593 759 314 40 072 928 363
E Person_studyAt_University 8 309 20 113 55 066 136 614 378 582 955 425 2 719 877 7 165 145 21 108 848 59 758 459
E Person_workAt_Company 22 044 54 135 149 581 371 634 1 029 492 2 598 384 7 398 286 19 491 928 57 416 114 162 518 922
N Post 1 121 226 2 873 419 8 273 491 21 651 342 64 029 217 171 283 445 519 738 978 1 440 235 348 4 461 342 990 13 148 296 221
E Post_hasCreator_Person 1 121 226 2 873 419 8 273 491 21 651 342 64 029 217 171 283 445 519 738 978 1 440 235 348 4 461 342 990 13 148 296 221
E Post_hasTag_Tag 751 933 2 305 927 7 865 279 23 426 338 78 380 259 231 621 916 769 380 657 2 273 989 086 7 454 473 533 22 896 875 734
E Post_isLocatedIn_Country 1 121 226 2 873 419 8 273 491 21 651 342 64 029 217 171 283 445 519 738 978 1 440 235 348 4 461 342 990 13 148 296 221

Total nodes 2 997 352 8 513 157 27 231 349 78 244 709 254 634 696 738 162 716 2 433 117 531 7 192 653 835 23 625 531 571 72 618 599 705
Total edges 17 196 776 51 035 227 170 343 945 505 722 361 1 703 042 944 5 078 844 191 17 203 259 133 51 881 931 133 173 439 201 772 539 565 683 952

Table B.2: The number of entities per SF and per file in the initial data set used in the BI workload. Notation –
C: entity category, N: node, E: edge.

T C File SF1 SF3 SF10 SF30 SF100 SF300 SF1 000 SF3 000 SF10 000 SF30 000
I N Comment 652 269 1 932 347 6 122 166 17 233 922 53 364 420 144 700 167 428 355 986 1 132 241 525 3 323 091 103 9 411 625 366
I E Comment_hasCreator_Person 652 269 1 932 347 6 122 166 17 233 922 53 364 420 144 700 167 428 355 986 1 132 241 525 3 323 091 103 9 411 625 366
I E Comment_hasTag_Tag 727 839 2 203 748 7 079 778 20 150 855 62 861 828 171 071 832 508 165 623 1 339 365 204 3 909 017 913 11 014 456 527
I E Comment_isLocatedIn_Country 652 269 1 932 347 6 122 166 17 233 922 53 364 420 144 700 167 428 355 986 1 132 241 525 3 323 091 103 9 411 625 366
I E Comment_replyOf_Comment 408 491 1 216 510 3 872 589 10 961 292 33 981 364 92 048 927 272 358 361 718 336 661 2 102 670 076 5 946 782 323
I E Comment_replyOf_Post 243 778 715 837 2 249 577 6 272 630 19 383 056 52 651 240 155 997 625 413 904 864 1 220 421 027 3 464 843 043
I N Forum 5 767 14 105 38 084 94 700 265 314 671 285 1 915 909 5 047 113 14 895 929 42 218 181
I E Forum_containerOf_Post 71 716 182 738 507 826 1 297 451 3 735 615 9 741 528 28 453 210 76 669 773 231 949 432 671 846 867
I E Forum_hasMember_Person 350 924 1 050 322 3 436 445 9 978 585 32 960 000 93 286 265 295 103 572 825 253 679 2 554 550 825 7 479 070 111
I E Forum_hasModerator_Person 5 767 14 105 38 084 94 700 265 314 671 285 1 915 909 5 047 113 14 895 929 42 218 181
I E Forum_hasTag_Tag 13 456 31 162 86 525 214 373 592 043 1 495 805 4 280 777 11 235 864 33 142 429 94 020 588
I N Person 325 804 2 127 5 296 14 699 36 921 105 420 276 448 815 048 2 310 563
I E Person_hasInterest_Tag 8 014 17 861 50 568 124 969 341 426 861 441 2 470 258 6 465 213 19 061 544 54 112 770
I E Person_isLocatedIn_City 325 804 2 127 5 296 14 699 36 921 105 420 276 448 815 048 2 310 563
I E Person_knows_Person 46 436 139 535 465 597 1 356 282 4 461 290 12 657 067 39 877 751 111 602 193 347 323 797 1 028 845 782
I E Person_likes_Comment 507 078 1 642 981 5 814 742 17 739 535 59 010 156 170 613 836 547 019 411 1 522 602 131 4 738 606 525 14 044 004 355
I E Person_likes_Post 84 089 242 012 781 367 2 228 761 7 227 562 21 174 383 69 394 102 203 079 530 664 408 922 2 040 369 359
I E Person_studyAt_University 253 642 1 711 4 215 11 684 29 520 84 408 221 160 651 833 1 848 819
I E Person_workAt_Company 722 1 691 4 541 11 473 32 135 79 806 228 835 601 641 1 772 442 5 025 385
I N Post 71 716 182 738 507 826 1 297 451 3 735 615 9 741 528 28 453 210 76 669 773 231 949 432 671 846 867
I E Post_hasCreator_Person 71 716 182 738 507 826 1 297 451 3 735 615 9 741 528 28 453 210 76 669 773 231 949 432 671 846 867
I E Post_hasTag_Tag 26 578 78 669 247 471 690 212 2 192 065 6 197 708 19 682 903 56 322 268 180 509 835 545 993 292
I E Post_isLocatedIn_Country 71 716 182 738 507 826 1 297 451 3 735 615 9 741 528 28 453 210 76 669 773 231 949 432 671 846 867
Total insert node operations 730 077 2 129 994 6 670 203 18 631 369 57 380 048 155 149 901 458 830 525 1 214 234 859 3 570 751 512 10 128 000 977
Total insert edge operations 3 943 436 11 768 787 37 898 932 108 193 375 341 270 307 941 500 954 2 858 756 557 7 708 806 338 23 129 878 647 66 602 692 431
Total insert operations 4 673 513 13 898 781 44 569 135 126 824 744 398 650 355 1 096 650 855 3 317 587 082 8 923 041 197 26 700 630 159 76 730 693 408

D N Comment 11 966 35 147 110 712 309 712 959 810 2 597 282 7 704 534 20 373 985 59 821 497 169 401 271
D N Forum 212 459 1 252 3 220 8 975 22 699 64 932 172 181 506 906 1 440 207
D E Forum_hasMember_Person 2 004 5 002 12 857 31 647 86 820 221 834 609 738 1 565 418 4 544 009 12 773 538
D N Person 54 122 264 510 1 265 2 827 7 285 18 234 48 251 123 926
D E Person_knows_Person 5 548 16 704 57 638 168 900 560 741 1 604 444 5 140 980 14 599 090 46 275 390 139 258 201
D E Person_likes_Comment 12 220 39 660 138 268 420 001 1 394 595 4 040 199 12 955 551 36 066 934 112 313 459 332 839 378
D E Person_likes_Post 1 992 5 869 18 835 52 070 169 649 498 070 1 634 887 4 788 019 15 655 650 48 054 670
D N Post 1 908 5 004 13 566 34 948 100 375 263 354 767 998 2 067 056 6 267 076 18 141 667
Total delete node operations 14 140 40 732 125 794 348 390 1 070 425 2 886 162 8 544 749 22 631 456 66 643 730 189 107 071
Total delete edge operations 21 764 67 235 227 598 672 618 2 211 805 6 364 547 20 341 156 57 019 461 178 788 508 532 925 787
Total delete operations 35 904 107 967 353 392 1 021 008 3 282 230 9 250 709 28 885 905 79 650 917 245 432 238 722 032 858

Table B.3: The number of entities per SF and per file in the update data sets used in the BI workload. Notation
– T: update type, I: insert, D: delete; C: entity category, N: node, E: edge.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 154 of 164

Appendix B. Scale Factor Statistics B.3. Factor Tables

Scale Factor Size
1 8.6M
3 18M
10 41M
30 100M

100 259M
300 656M

1 000 1.9G
3 000 5.1G
10 000 16G
30 000 47G

Table B.4: The total size of the factor tables.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 155 of 164

Appendix C. Benchmark Checklist

C Benchmark Checklist

We expect LDBC benchmarks to be used in many scenarios. For most research papers, fully audited results are
unrealistic and even unaudited results can provide insight into the performance of the systems under test (SUT).
However, we ask authors to include the following information in their papers:

• Were the results cross-validated for at least one scale factor?
• Were the results cross-validated for all scale factors used in the benchmark?
• Does the SUT have a persistent storage?
• Does the SUT provide ACID transactions?
• Does the SUT provide any level of fault-tolerance?
• How many warm-up rounds were performed?
• How many execution rounds were performed?
• How were the execution times summarized?1
• Is the loading phase included in the query execution times?2
• If the SUT is not your own system, did you contact its developers or experts to help optimizing the
queries?3

These results will help the reader to put the results in context. For example, a non-ACID compliant, non-
fault-tolerant system working on read-only graphs and offering no persistent storage is expected to have signifi-
cantly better results than a fully-fledged disk-based DBMS.

We also suggest the reader to take a look at the checklist presented in [68].

1Paper [37] provides an excellent overview on how to summarize benchmark results.
2This might be relevant for systems without persistent storage, or systems providing lazy/incremental computation.
3For a research prototype tool, the tuning knobs are usually not well documented. Hence, it is worth contacting the tool’s authors,

who are generally keen to help. For more mature systems (e.g. most established RDBMSs), there is a large body of knowledge available,
in the form of books and online forums, which should help your optimization efforts. It is also possible to contact experienced DBAs
who can assist with fine tuning the system.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 156 of 164

Appendix D. Legacy Data Sets for the Interactive workload

D Legacy Data Sets for the Interactive workload

The Interactive workload uses the legacy version of the data sets. These can be generated using the Hadoop-
based Datagen hosted at https://github.com/ldbc/ldbc_snb_datagen_hadoop/. This chapter documents these data
sets.

The SNB data sets are available in the SURF/CWI LDBC SNB data repository [78] at https://repository.
surfsara.nl/datasets/cwi/ldbc-snb-interactive-v1-datagen-v100.

• Serializers: csv_basic, csv_basic-longdateformatter, csv_composite, csv_composite-longdateformatter,
csv_composite_merge_foreign, csv_composite_merge_foreign-longdateformatter, csv_merge_foreign,
csv_merge_foreign-longdateformatter, ttl

• Partition numbers: 2k (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024) and 6 × 2k (24, 48, 96, 192, 384, 768).

The key differences from the latest (BI and Interactive v2) data sets are the following:

• DateTime values follow the format yyyy-mm-ddTHH:MM:ss.sss+0000, i.e. their offset string is 0000 instead of
00:00. This implies that they are not compatible with the recommendations of RFC-33391.

• The Forum-hasModerator-Person edge type has an exactly one cardinality on the Person’s end.

D.1 Output Data

For each scale factor, Datagen produces three different artefacts:

• Dataset: The dataset to be bulk loaded by the SUT. In the Interactive workload, it corresponds to roughly
the 90% of the total generated network.

• Update Streams: A set of update streams containing update queries, which are used by the driver to
generate the update queries of the workloads. This update streams correspond to the remaining 10% of
the generated dataset.

• Substitution Parameters: A set of files containing the different parameter bindings that will be used by
the driver to generate the read queries of the workloads.

D.1.1 Scale Factors

LDBC SNB defines a set of scale factors (SFs), targeting systems of different sizes and budgets. SFs are com-
puted based on the ASCII size in Gibibytes of the generated output files using the CsvMergeForeign serializer
(see Section D.1.2) and default settings, i.e. both the 90% initial data and the 10% update streams count towards
the total size. For example, SF1 takes roughly 1 GiB in CSV format, SF3 weighs roughly 3 GiB and so on and
so forth. It is important to note that for a given scale factor, data sets generated using different serializers contain
exaclty the same data, the only difference is in how they are represented.2 The provided SFs are the following:
1, 3, 10, 30, 100, 300, 1000. Additionally, two small data sets, 0.1, and 0.3 are provided to help initial validation
efforts.

The Test Sponsor may select the SF that better fits their needs, by properly configuring the Datagen, as
described in Section 3.3. The size of the resulting dataset is mainly affected by the following configuration
parameters: the number of persons and the number of years simulated. By default, all SFs are defined over a
period of three years, starting from 2010, and SFs are computed by scaling the number of Persons in the network.
Table D.1 shows some metrics of SFs 0.1, . . . , 1000 data sets.

Table D.3 show how each CSV serializer handles attributes/edges of different cardinalities. The data shows
why CsvBasic has the most files and CsvCompositeMergeForeign has the least number of files.

1https://tools.ietf.org/html/rfc3339
2Naturally, there are slight differences in the disk usage of the data sets created with different serializers. For example, for a given

scale factor, the disk usage of the data set serialized with the CsvBasic serializer is expected to be higher, while with the CsvMergeFor-
eignComposite, it is expected to be lower.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 157 of 164

https://github.com/ldbc/ldbc_snb_datagen_hadoop/
https://repository.surfsara.nl/datasets/cwi/ldbc-snb-interactive-v1-datagen-v100
https://repository.surfsara.nl/datasets/cwi/ldbc-snb-interactive-v1-datagen-v100
https://tools.ietf.org/html/rfc3339

Appendix D. Legacy Data Sets for the Interactive workload D.1. Output Data

Scale Factor SF0.1 SF0.3 SF1 SF3 SF10 SF30 SF100 SF300 SF1 000
Persons 1.5K 3.5K 11K 27K 73K 182K 499K 1.25M 3.6M
nodes 327.6K 908K 3.2M 9.3M 30M 88.8M 282.6M 817.3M 2.7B
edges 1.5M 4.6M 17.3M 52.7M 176.6M 540.9M 1.8B 5.3B 17B

Table D.1: Properties of data sets for each scale factor in the Interactive workload produced by the Hadoop-
based generator. For detailed statistics, see Table B.1

INS Operation SF0.1 SF0.3 SF1 SF3 SF10 SF30 SF100 SF300 SF1 000
1 Add person 172 386 1 108 2 672 7 355 18 570 50 374 125 931 360 960
2 Add like to post 44 313 132 041 494 410 1 460 471 4 875 874 14 378 128 45 633 086 129 721 727 410 899 721
3 Add like to comment 30 395 105 061 460 487 1 450 891 5 210 730 16 114 277 54 990 638 163 624 084 539 128 029
4 Add forum 3 059 6 913 19 757 49 223 131 439 330 288 898 185 2 257 347 6 479 509
5 Add forum membership 126 615 405 441 1 566 914 4 874 316 16 647 977 51 095 793 165 881 862 478 826 826 1 543 247 540
6 Add post 32 610 78 164 229 614 592 875 1 655 168 4 304 447 12 236 177 32 109 577 96 023 955
7 Add comment 46 969 144 917 490 328 1 372 420 4 414 427 12 588 582 39 547 415 112 862 922 362 292 612
8 Add friendship 3 197 10 337 40 124 122 714 431 916 1 304 053 4 252 839 12 047 072 36 762 818

Total insert operations 287 330 883 260 3 302 742 9 925 582 33 374 886 100 134 138 323 490 576 931 575 486 2 995 195 144

Table D.2: Update stream statistics for SNB Interactive v1.0

D.1.2 Serializers

The datasets are generated in the social_network/ directory, split into static and dynamic parts (Figure 3.1). The
filenames (without the extension) end in _i_j where i is the block id and j is the partition id (set by numThreads).
The SUT has to take care only of the generated Dataset to be bulk loaded. Using NULL values for storing optional
values is allowed.

Datagen’s CSV (Comma Separated Values) serializers produce text files which use the pipe character “|”
as the primary field separator and the semicolon character “;” as a separator for multi-valued attributes (for the
composite serializers). The CSV files are stored in two subdirectories: static/ and dynamic/. Depending on the
number of threads used for generating the dataset, the number of files varies, since there is a file generated per
thread. We indicate this with “*” in the specification.

The following CSV variants are supported:

• CsvBasic: Each entity, relation and attribute with a cardinality larger than one (including attributes Per-
son.email and Person.speaks), are output in a separate file. Generated files are summarized in Table D.4.

• CsvMergeForeign: This serializer is similar to CsvBasic, but relations that have a cardinality of 1-to-N
are merged in the entity files as a foreign keys. There are 13 such relations in total:

– comment_hasCreator_person, comment_isLocatedIn_place, comment_replyOf_comment, com-
ment_replyOf_post (merged to Comment);

– forum_hasModerator_person (merged to Forum);
– organisation_isLocatedIn_place (merged to Organisation);
– person_isLocatedIn_place (merged to Person);
– place_isPartOf_place (merged to Place);

Serializer Nodes Attributes Edges
single-valued multi-valued one-to-many many-to-many

CsvBasic ⊗ ◯ ⊗ ⊗ ⊗
CsvComposite ⊗ ◯ ◯ ⊗ ⊗
CsvMergeForeign ⊗ ◯ ⊗ ◯ ⊗
CsvCompositeMergeForeign ⊗ ◯ ◯ ◯ ⊗

Table D.3: Attributes and edges serialized to separate files the different CSV serializers.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 158 of 164

Appendix D. Legacy Data Sets for the Interactive workload D.1. Output Data

C File Content
N organisation_*.csv id | type | name | url
E organisation_isLocatedIn_place_*.csv Organisation.id | Place.id
N place_*.csv id | name | url | type
E place_isPartOf_place_*.csv Place.id | Place.id
N tag_*.csv id | name | url
E tag_hasType_tagclass_*.csv Tag.id | TagClass.id
N tagclass_*.csv id | name | url
E tagclass_isSubclassOf_tagclass_*.csv TagClass.id | TagClass.id

N comment_*.csv creationDate | id | locationIP | browserUsed | content | length
E comment_hasCreator_person_*.csv creationDate | Comment.id | Person.id
E comment_hasTag_tag_*.csv creationDate | Comment.id | Tag.id
E comment_isLocatedIn_place_*.csv creationDate | Comment.id | Place.id
E comment_replyOf_comment_*.csv creationDate | Comment.id | ParentComment.id
E comment_replyOf_post_*.csv creationDate | Comment.id | ParentPost.id
N forum_*.csv creationDate | id | title | type
E forum_containerOf_post_*.csv creationDate | Forum.id | Post.id
E forum_hasMember_person_*.csv creationDate | Forum.id | Person.id | type
E forum_hasModerator_person_*.csv creationDate | Forum.id | Person.id
E forum_hasTag_tag_*.csv creationDate | Forum.id | Tag.id
N person_*.csv creationDate | id | firstName | lastName | gender | birthday | locationIP | browserUsed
A person_email_emailaddress_*.csv creationDate | Person.id | email
E person_hasInterest_tag_*.csv creationDate | Person.id | Tag.id
E person_isLocatedIn_place_*.csv creationDate | Person.id | Place.id
E person_knows_person_*.csv creationDate | Person1.id | Person2.id
E person_likes_comment_*.csv creationDate | Person.id | Comment.id
E person_likes_post_*.csv creationDate | Person.id | Post.id
A person_speaks_language_*.csv creationDate | Person.id | language
E person_studyAt_organisation_*.csv creationDate | Person.id | Organisation.id | classYear
E person_workAt_organisation_*.csv creationDate | Person.id | Organisation.id | workFrom

N post_*.csv creationDate | id | imageFile | locationIP | browserUsed | language | content | length | Fo-
rum.id

E post_hasCreator_person_*.csv creationDate | Post.id | Person.id
E post_hasTag_tag_*.csv creationDate | Post.id | Tag.id
E post_isLocatedIn_place_*.csv creationDate | Post.id | Place.id

Table D.4: Files output by the CsvBasic serializer (33 in total). The first part of the table contains the static
entites, the second part contains the dynamic ones. Notation – C: entity category, N: node, E: edge.

– post_hasCreator_person, post_isLocatedIn_place, forum_containerOf_post (merged to Post);
– tag_hasType_tagclass (merged to Tag);
– tagclass_isSubclassOf_tagclass (merged to TagClass)

Generated files are summarized in Table D.5.
• CsvComposite: Similar to the CsvBasic format but each entity, and relations with a cardinality larger
than one, are output in a separate file. Multi-valued attributes (Person.email and Person.speaks) are stored
as composite values. Generated files are summarized in Table D.6.

• CsvCompositeMergeForeign: Has the traits of both the CsvComposite and the CsvMergeForeign for-
mats. Multi-valued attributes (Person.email and Person.speaks) are stored as composite values. Generated
files are summarized in Table D.7.

Additionally, the Hadoop Datagen can generate files in Turtle format (.ttl).

Inheritance The inheritance hierarchies in the schema have two important characteristics (1) all subclasses
use the same id space, e.g. there cannot be a Comment and a Post with id 1 at the same time, (2) they are
serialized to CSVs using either the map hierarchy to single table or map each concrete class to its own table
strategies3:

3http://www.agiledata.org/essays/mappingObjects.html

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 159 of 164

http://www.agiledata.org/essays/mappingObjects.html

Appendix D. Legacy Data Sets for the Interactive workload D.1. Output Data

C File Content
N organisation_*.csv id | type | name | url | place
N place_*.csv id | name | url | type | isPartOf
N tag_*.csv id | name | url | hasType
N tagclass_*.csv id | name | url | isSubclassOf

N comment_*.csv id | creationDate | locationIP | browserUsed | content | length | creator | place | replyOfPost
| replyOfComment

E comment_hasTag_tag_*.csv Comment.id | Tag.id
N forum_*.csv id | title | creationDate | moderator
E forum_hasMember_person_*.csv Forum.id | Person.id | joinDate
E forum_hasTag_tag_*.csv Forum.id | Tag.id
N person_*.csv id | firstName | lastName | gender | birthday | creationDate | locationIP | browserUsed | place
A person_email_emailaddress_*.csv Person.id | email
E person_hasInterest_tag_*.csv Person.id | Tag.id
E person_knows_person_*.csv Person.id | Person.id | creationDate
E person_likes_comment_*.csv Person.id | Post.id | creationDate
E person_likes_post_*.csv Person.id | Post.id | creationDate
A person_speaks_language_*.csv Person.id | language
E person_studyAt_organisation_*.csv Person.id | Organisation.id | classYear
E person_workAt_organisation_*.csv Person.id | Organisation.id | workFrom

N post_*.csv id | imageFile | creationDate | locationIP | browserUsed | language | content | length | creator
| Forum.id | place

E post_hasTag_tag_*.csv Post.id | Tag.id

Table D.5: Files output by the CsvMergeForeign serializer (20 in total). The first part of the table contains the
static entites, the second part contains the dynamic ones. Notation – C: entity category, N: node, E: edge.

Message = Comment | Post Map each concrete class to its own table is used i.e. separate CSV files are used
for the Comment and the Post classes.

Place = City | Country | Continent Map hierarchy to single table is used, i.e. all Place node are serialized in
a single file. A discriminator attribute “type” is used with the value denoting the concrete class, e.g.
“Country”.

Organisation = Company | University Map hierarchy to single table is used, i.e. all Organisation nodes are
serialized in a single fiel. A discriminator attribute “type” is used with the value denoting the concrete
class, e.g. “Company”.

D.1.3 Update Streams

The generic schema is given in Table D.8, while the concrete schema of each insert operation is given in Ta-
ble D.9. The update stream files are generated in the social_network/ directory and are grouped as follows:

• updateStream_*_person.csv files contain update operation 1: INS 1
• updateStream_*_forum.csv files contain update operations 2–8: INS 2 INS 3 INS 4 INS 5 INS 6

INS 7 INS 8

Remark: update streams in Interactive v1 only contain inserts. Delete operations are being designed and
will be released later.

D.1.4 Substitution Parameters

The substitution parameters are generated in the substitution_parameters/ directory. Each parameter file is
named {interactive|bi}_<id>_param.txt, corresponding to an operation of Interactive complex reads (IC 1
– IC 14v1) and BI reads (BI 1 – BI 20). The schemas of these files are defined by the operator, e.g. the
schema of IC 1 is “personId|firstName”.

Warning. Note that the substitution parameter files use UNIX epoch timestamps (which should be converted
to a datetime value in GMT+0).

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 160 of 164

Appendix D. Legacy Data Sets for the Interactive workload D.1. Output Data

C File Content
N organisation_*.csv id | type | name | url
E organisation_isLocatedIn_place_*.csv Organisation.id | Place.id
N place_*.csv id | name | url | type
E place_isPartOf_place_*.csv Place.id | Place.id
N tag_*.csv id | name | url
E tag_hasType_tagclass_*.csv Tag.id | TagClass.id
N tagclass_*.csv id | name | url
E tagclass_isSubclassOf_tagclass_*.csv TagClass.id | TagClass.id

N comment_*.csv id | creationDate | locationIP | browserUsed | content | length
E comment_hasCreator_person_*.csv Comment.id | Person.id
E comment_hasTag_tag_*.csv Comment.id | Tag.id
E comment_isLocatedIn_place_*.csv Comment.id | Place.id
E comment_replyOf_comment_*.csv Comment.id | Comment.id
E comment_replyOf_post_*.csv Comment.id | Post.id
N forum_*.csv id | title | creationDate
E forum_containerOf_post_*.csv Forum.id | Post.id
E forum_hasMember_person_*.csv Forum.id | Person.id | joinDate
E forum_hasModerator_person_*.csv Forum.id | Person.id
E forum_hasTag_tag_*.csv Forum.id | Tag.id

N person_*.csv id | firstName | lastName | gender | birthday | creationDate | locationIP | browserUsed |
language | email

E person_hasInterest_tag_*.csv Person.id | Tag.id
E person_isLocatedIn_place_*.csv Person.id | Place.id
E person_knows_person_*.csv Person.id | Person.id | creationDate
E person_likes_comment_*.csv Person.id | Post.id | creationDate
E person_likes_post_*.csv Person.id | Post.id | creationDate
E person_studyAt_organisation_*.csv Person.id | Organisation.id | classYear
E person_workAt_organisation_*.csv Person.id | Organisation.id | workFrom
N post_*.csv id | imageFile | creationDate | locationIP | browserUsed | language | content | length
E post_hasCreator_person_*.csv Post.id | Person.id
E post_hasTag_tag_*.csv Post.id | Tag.id
E post_isLocatedIn_place.csv Post.id | Place.id

Table D.6: Files output by the CsvComposite serializer (31 in total). The first part of the table contains the static
entites, the second part contains the dynamic ones. Notation – C: entity category, N: node, E: edge.

C File Content
N organisation_*.csv id | type | name | url | place
N place_*.csv id | name | url | type | isPartOf
N tag_*.csv id | name | url | hasType
N tagclass_*.csv id | name | url | isSubclassOf

N comment_*.csv id | creationDate | locationIP | browserUsed | content | length | creator | place | replyOfPost
| replyOfComment

E comment_hasTag_tag_*.csv Comment.id | Tag.id
N forum_*.csv id | title | creationDate | moderator
E forum_hasMember_person_*.csv Forum.id | Person.id | joinDate
E forum_hasTag_tag_*.csv Forum.id | Tag.id

N person_*.csv id | firstName | lastName | gender | birthday | creationDate | locationIP | browserUsed | place
| language | email

E person_hasInterest_tag_*.csv Person.id | Tag.id
E person_knows_person_*.csv Person.id | Person.id | creationDate
E person_likes_comment_*.csv Person.id | Post.id | creationDate
E person_likes_post_*.csv Person.id | Post.id | creationDate
E person_studyAt_organisation_*.csv Person.id | Organisation.id | classYear
E person_workAt_organisation_*.csv Person.id | Organisation.id | workFrom

N post_*.csv id | imageFile | creationDate | locationIP | browserUsed | language | content | length | creator
| Forum.id | place

E post_hasTag_tag_*.csv Post.id | Tag.id

Table D.7: Files output by the CsvCompositeMergeForeign serializer (18 in total). The first part of the table
contains the static entites, the second part contains the dynamic ones. Notation – C: entity category, N: node,
E: edge.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 161 of 164

Appendix D. Legacy Data Sets for the Interactive workload D.1. Output Data

start time (ts) dependant time (td) operation id . . .

Table D.8: Generic schema of update (insert) stream files. The start time (ts) is identical to the creationDate
attribute (repeated later in the row).

ts | td | 1 | personId | personFirstName | personLastName | gender | birthday | creationDate | locationIP | browserUsed | cityId | languages | emails | tagIds | studyAt | workAt
ts | td | 2 | personId | postId | creationDate
ts | td | 3 | personId | commentId | creationDate
ts | td | 4 | forumId | forumTitle | creationDate | moderatorPersonId | tagIds
ts | td | 5 | forumId | personId | creationDate
ts | td | 6 | postId | imageFile | creationDate | locationIP | browserUsed | language | content | length | authorPersonId | forumId | countryId | tagIds
ts | td | 7 | commentId | creationDate | locationIP | browserUsed | content | length | authorPersonId | countryId | replyToPostId | replyToCommentId | tagIds
ts | td | 8 | person1Id | person2Id | creationDate

Table D.9: Schemas of the lines in the update stream (insert stream) files.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 162 of 164

Appendix E. Example graph

E Example graph

Figure E.1 shows a static snapshot of an example graph, while Figure E.2 shows an example graph with update
operations. Insertions are denoted with a green asterisk . Deletions of a single element are denoted with a red
cross , while recursive deletions are denoted with a purple cross .

Figure E.1: Example graph snapshot (without update operations).

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 163 of 164

Appendix E. Example graph

Figure E.2: Example graph with update operations.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 2216210 Page 164 of 164

	Introduction
	Motivation for the Benchmark
	Relevance to the Industry
	General Benchmark Overview
	Related Projects
	Participation of Industry and Academia
	Technical Report

	Benchmark Specification
	Data sets and data generation
	Data Types
	Data Schema
	Entities (Nodes)
	Relations (Edges)
	Domain Concepts

	Data Generation
	Resource Files
	Graph Generation
	Distributions, Parameters, and Quirks
	Implementation Details

	Output Data
	Scale Factors
	Serializers
	Interactive Update Streams (Inserts)
	Substitution Parameters

	Introducing Delete Operations
	Lifespan Management
	General Rules
	Person
	Forum and Message
	Forum
	Message
	Complex Example

	Ensuring Realism
	Converting Delete Events into Delete Operations

	Workloads
	Query Description Format
	Conventions for Query Definitions
	Substitution Parameters
	Return Values

	Update operations
	Insert Operations
	Delete Operations

	Interactive v1 Workload
	Complex Reads
	Short Reads
	Workload Definition

	Interactive v2 Workload
	Overview
	Operations
	Complex Reads
	Short Reads
	Insert Operations
	Delete Operations

	Parameter Curation
	Building Blocks for Parameter Curation
	Parameter Curation for Relational Queries
	Parameter Curation for Path-Finding Queries
	Query Variants
	Parameter Generator Implementation

	Workload Scheduling and Benchmark Driver
	Scheduling Operations
	Driver

	Business Intelligence Workload
	Overview
	Read Query Templates
	Choke Point-Based Design Methodology
	Analysis of Selected Queries

	Parameter Curation for BI Queries
	The Need for Parameter Curation
	Parameter Generation Steps
	Parameter Curation for Graph Queries
	Query Variants
	Scalability and Reproducibility

	Reads
	Insert Operations
	Delete Operations

	Auditing Policies
	Rationale and General Principles
	Auditing Rules Overview
	Auditor Training, Certification, and Selection
	Auditing Process Stages
	Challenge Procedure

	Auditable Properties of Systems and Benchmark Implementations
	Validation of Query Results
	ACID Compliance
	Data Schema
	Data Format and Preprocessing
	Data Access Transparency
	Query Languages
	Materialization
	Steady State
	Query Mix
	System Configuration and System Pricing
	Benchmark Specifics

	Auditing Rules for the Interactive Workload
	Scaling
	Data Model and Data Loading
	Precomputation
	Benchmark Software Components
	Implementation Language and Data Access Transparency
	Correctness of Benchmark Implementation
	Benchmarking Workflow
	Full Disclosure Report

	Auditing Rules for the Business Intelligence Workload
	Overview
	Workflow
	Runtimes
	Scoring Metrics
	Implementation Rules
	Scaling
	Full Disclosure Report

	ACID Test Suite
	Background
	Atomicity
	Isolation
	System Model
	General Design
	Dirty Write
	Dirty Reads
	Cut Anomalies
	Observed Transaction Vanishes
	Fractured Read
	Lost Update
	Write Skew

	Consistency and Durability Tests

	Related Work
	ACID Tests in Other Benchmarks
	Graph Processing Benchmarks
	Scalable Graph Generators

	Bibliography
	Choke Points
	Aggregation Performance
	Join Performance
	Data Access Locality
	Expression Calculation
	Correlated Sub-Queries
	Parallelism and Concurrency
	Graph Specifics
	Language Features
	Update Operations

	Scale Factor Statistics
	Number of Entities for SNB Interactive v1.0
	Number of Entities for SNB BI v1.0
	Factor Tables

	Benchmark Checklist
	Legacy Data Sets for the Interactive workload
	Output Data
	Scale Factors
	Serializers
	Update Streams
	Substitution Parameters

	Example graph

