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FIGURE 4 Calculated one-phonon structure factors 𝐹1𝑗 𝐪, 𝑡
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visualized as weighted dispersion curves for

selected in-plane modes of graphite. The color saturation of dispersion curves is proportional to the one-phonon

structure factor of the associated mode, at 300 K (𝑡 = 𝑡0). The left and right paths are shown in a diagram on the

bottom left. This figure highlights that one-phonon structure factors values are highly variable, and that their

values can differ significantly even when comparing neighbouring Brillouin zones. A striking example of this is the

relative strengths of the one-phonon structure factors of LA and TA modes near Γ(010) and Γ(ഥ110). At these

locations, the ratio of one-phonon structure factors completely flips, even though the paths are equivalent in the

reduced zone scheme.

Ultrafast electron diffuse scattering
Our inability to fully characterize the nature of elementary excitations and to quantify the strength of

their momentum-dependent interactions has been one of the primary barriers to our understanding

of these phenomena, particularly in complex anisotropic materials. Ultrafast pump-probe techniques

provide an opportunity to study couplings between elementary excitations directly. Photoexcitation

can prepare a nonequilibrium distribution of quasiparticles whose subsequent relaxation dynamics

and coupling to other degrees of freedom can be followed in the time domain.

In this work we provide a description of the signals contained in ultrafast electron diffuse scattering

(UEDS) measurements and a comprehensive and broadly applicable computational method for

UEDS data reduction based on density functional perturbation theory (DFPT). Specifically, we

present a procedure to recover phonon population dynamics as a function of the phonon branch

and wave vector, and a determination of wavevector-dependent (or mode-projected) electron-

phonon coupling constants from those phonon population measurements.

Theory
Similar to x-ray scattering, under the kinematical approximation the measurement of the total

scattering intensity 𝐼(𝐪, 𝑡) of an electron bunch interacting with a thin film of crystalline material, can

be separated into Bragg (elastic) scattering 𝐼0(𝐪, 𝑡) diffuse (nearly-elastic) scattering 𝐼1 𝐪, 𝑡 , where

the intensity 𝐼𝑛(𝐪, 𝑡) represents the scattered intensity of an electron that interacted with 𝑛 phonons:
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Phonon population dynamics
A more robust procedure, must be employed to extract wave-vector- and mode-dependent phonon

populations from UEDS intensities. The transient wave-vector-dependent phonon population

dynamics Δ𝑛𝑗,𝐤(𝑡) by combining the measurements of 𝐼1(𝐪, 𝑡) with the calculations of one-phonon

structure factors and associated quantities presented above.

In graphite, the one-phonon structure factors and phonon frequencies are essentially constant for 𝐤
away from Γ, where there is no elastic scattering contribution [1]. Then:

Δ𝐼(𝐪, 𝑡)

𝑁𝑐𝐼𝑒
=

𝑗

Δ𝑛𝑗,𝐤(𝑡)

𝜔𝑗,𝐤(𝑡0)
𝐹1𝑗 𝐪, 𝑡0

2

for 𝐤 away from Γ. Considering phonon modes 𝑗 ∈ 1…𝑁 , 𝑀 Brillouin zones are required to make

the following system of equations solvable (𝑀 ≥ 𝑁):
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ΤΔ𝑛1,𝐤 𝑡 𝜔1,𝐤 𝑡0
⋮
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The system of equations above must be repeated for every reduced scattering vector 𝐤. The

solution for the system of equations above, across most of the Brillouin zone, is presented in FIGURE

6 for a few relevant phonon modes.

The fit to a nonthermal lattice model results in the coupling strengths above. In particular, the

coupling strength 𝐺𝑒,𝐴1′ between electrons and the 𝐴1
′ mode corresponds to a mode-projected

electron-phonon coupling value of 0.035 ± 0.001 eV2. These results are in excellent agreement

with recent tr-ARPES measurements and simulations [4].

Conclusion
UEDS provides direct access to wave-vector-resolved, nonequilibrium phonon populations and is, in

this sense, a lattice-dynamical analog of time-resolved angle-resolved photoelectron spectroscopy

(tr-ARPES). A robust and generally applicable UEDS data reduction method has been described that

provides detailed information on transient changes in phonon populations across the entire Brillouin

zone that follow photoexcitation in single-crystalline materials.
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FIGURE 6 Experimental change in transient population, across the Brillouin zone, of relevant in-plane modes of

graphite following photoexcitation. The decomposition of transient diffuse intensity change (FIGURE 1) yields

stable solutions for 𝐤 > 0.45 Å−1 . The Brillouin zone midpoints are shown with a dashed hexagon. The

differential 𝐴1
′ phonon population is highlighted by a circular arc centered at 𝐊 in the TO2 phonon population

images; its dynamics are discussed below.

FIGURE 7 Evolution of the 𝐴1
′ mode

population in graphite after ultrafast

photoexcitation. Differential population

measurement of 𝐴1
′ , shown in black (circle), is

obtained from the integration of the TO2

mode population in a circular arc centered at

𝐊 , visible in FIGURE 6. The fit to the

population change is shown in pink (solid).

The effective temperature of the modes in

which the 𝐴1
′ phonon can decay is shown as

an orange (dotted) line. Inset: temperature

dynamics at early times show that

thermalization between the electronic

system (purple, dashed) and the 𝐴1
′ phonon

population (pink, solid) is very fast, indicative

of strong electron-phonon coupling.

Mode-projected couplings
Phonon population transients are related to mode-specific effective temperatures 𝑇𝑝ℎ,𝑗 after initial

electron thermalization (𝑡 > 100 fs):

𝑛𝑗,𝑘 𝑡 ∝ exp
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This relation can be used to describe the exchange of energy between electrons and specific

phonons modes by making use of a generalized two-temperature model, the nonthermal lattice

model [3]. The case of coupling to/from the 𝐴1
′ mode is described as follows:

𝐺𝑒,𝐴1′ 𝐺𝐴1′ ,𝑙 𝐺𝑒,𝑙

Coupling strength

Wm−3 K−1
6.8 ± 0.3 × 1017 8.0 ± 0.5 × 1017 0.0 ± 6.0 × 1015

𝐪 scattering vector

𝐇 nearest Bragg reflection

𝐤 = 𝐪 − 𝐇 reduced wavevector

𝑠 atomic index within unit cell

𝜇𝑠 atomic mass

𝑊𝑠 𝐪, 𝑡 Debye-Waller factor

𝑓𝑠(𝒒) atomic form factor

𝑗 phonon branch index

𝜔𝑗,𝐤(𝑡) phonon frequency

𝐞𝑗,𝑠,𝐤 phonon polarization

𝑛𝑗,𝐤(𝑡) phonon population

𝑁𝑐 Number of scattering events

𝐼𝑒 Intensity of scattering event

The diffuse scattering intensity contribution of each mode 𝑗 is weighted by the one-phonon structure

factor 𝐹1𝑗 𝐪, 𝑡
2
, encoding the locations where the phonon-mode polarization vectors 𝐞𝑗,𝑠,𝐤 are

aligned in such a way that they will contribute to diffuse scattering intensity on the detector, and the

strength of the contribution of a single scattering event. The diffuse intensity at 𝐪 depends only on

the properties of phonons at wavevectors 𝐤 = 𝐪 − 𝐇.

By calculating the one-phonon structure factors, a connection can be made between diffuse

intensity 𝐼1 𝐪, 𝑡 and phonon populations 𝑛𝑗,𝐤 𝑡 .

One-phonon structure factors
Calculation of one-phonon structure factors requires knowledge of phonon polarization vectors

𝐞𝑗,𝑠,𝐤 and associated frequencies 𝜔𝑗,𝐤 . These quantities are computable via density-functional

perturbation theory calculation.

Structure relaxation was performed using the plane-wave self-consistent field program PWSCF from

the QUANTUM ESPRESSO software suite. The graphite structure was fully relaxed using a 18 × 18 ×
10 𝐤-point mesh centered at 𝚪 and force (energy) threshold of 1 × 108 Ry/bohrs (1 × 10−14 Ry).

The dynamical matrices were computed on 5 × 5 × 3 𝐪-point grid using a self-consistency threshold

of 1 × 108 Ry.

The phonon frequencies and polarization vectors were computed using the PHONON program in

the QUANTUM ESPRESSO software suite, using the B86b exchange-coupled Perdew-Burke-

Ernzerhof (B86bPBE) generalized gradient approximation (GGA) and the projector augmented-wave

(PAW) method. All details are presented in [1].

An alternative view of one-phonon structure factors is presented via weighted dispersion curves, an

example of which is shown below (FIGURE 4). This presentation allows easy comparison of the

relative weights of the one-phonon structure factors along high-symmetry lines for different phonon

branches.

FIGURE 5 Reciprocal-space locations where diffuse intensity

is dominated by one mode. a) Diffuse intensity is

dominated (>50%) by one mode 𝑗. White (∅) regions occur

where no phonon mode is dominant. b) Locations where

diffuse intensity is dominated (>75%) by one mode. This

figure shows that there are very few wavevectors where a

single mode contributes to diffuse scattering intensity.

A cursory inspection of the weighted

dispersion curves in FIGURE 4 suggests

that there are regions in the Brillouin

zone where diffuse intensity is strongly

biased toward a single mode (strong

scattering selection rule) based on the

relative intensities of one-phonon

structure factors. Careful analysis reveals

that there are very few wavevectors for

which a particular phonon mode’s one-

phonon structure factor is strongly

dominant. FIGURE 5 shows that

quantitative answers regarding phonon

dynamics from UEDS measurements

cannot generally be obtained by

inspection; at almost any wavevector, at

least two phonon modes contribute

significantly (>25%) to the transient

diffuse scattering intensity.

𝐶𝑒 𝑇𝑒 ሶ𝑇𝑒 = 𝑓 𝑡 − 𝑡0 − 𝐺𝑒,𝐴1′ 𝑇𝑒 − 𝑇𝐴1′ − 𝐺𝑒,𝑙 𝑇𝑒 − 𝑇𝑙

𝐶𝐴1′ 𝑇𝐴1′
ሶ𝑇𝐴1′ = 𝐺𝑒,𝐴1′ 𝑇𝑒 − 𝑇𝐴1′ − 𝐺𝐴1′ ,𝑙 𝑇𝐴1′ − 𝑇𝑙

𝐶𝑙 𝑇𝑙 ሶ𝑇𝑙 = 𝐺𝑒,𝑙 𝑇𝑒 − 𝑇𝑙 + 𝐺𝐴1′ ,𝑙 𝑇𝐴1′ − 𝑇𝑙

𝑇𝑒 Electronic temperature

𝑇𝐴1′ 𝐴1
′ mode temperature

𝑇𝑙 Other modes temperature

𝐶𝑥 Heat capacities

𝐺𝑥,𝑦 Coupling strengths

FIGURE 2 Calculated one-phonon structure factors 𝐹1𝑗 𝐪, 𝑡
2
of all in-plane modes of graphite, at 300 K (𝑡 = 𝑡0),

for 𝐪 vectors equivalent to the detector area shown in FIGURE 1. Bright spots indicate locations in reciprocal space

where the associated mode 𝑗 contributes strongly to the diffuse scattering intensity 𝐼1(𝐪, 𝑡). Brillouin zone outlines

are overlaid, and their centers (Bragg peaks) are marked with a white dot.

FIGURE 1 Experimental change in transient electron scattering intensity Δ𝐼 𝐪, 𝜏 = 𝐼 𝐪, 𝑡0 + 𝜏 − 𝐼(𝐪, 𝑡0) of

photoexcited graphite for a few representative time-delays, across a wide range of reciprocal space ( 𝐪 =

12 Å−1). Negative changes (blue) are limited to Bragg peaks. Positive changes (red) shows diffuse intensity

dynamics.


