

Secure Code Review

Findings and Recommendations Report Presented to:

AlgoRai

September 22, 2022
Version: 2.0

Presented by:

Kudelski Security, Inc.
5090 North 40th Street, Suite 450
Phoenix, Arizona 85018

FOR PUBLIC RELEASE

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 2 of 41

TABLE OF CONTENTS

TABLE OF CONTENTS ... 2

LIST OF FIGURES ... 3

LIST OF TABLES ... 3

EXECUTIVE SUMMARY ... 4

Overview ... 4

Key Findings ... 4

Scope and Rules Of Engagement .. 5

TECHNICAL ANALYSIS & FINDINGS .. 6

Findings ... 7

KS-AR-01 – Black/White list no update possible for addresses with index larger than 10................ 8

KS-AR-02 – Smart Contract life cycle not fully implemented ... 9

KS-AR-03 – Incorrect check for CurrentApplicationID .. 10

KS-AR-04 – Cancel Withdraw performs no checks on the other transaction in a group 12

KS-AR-05 – Lack of security checks on admin-called functions .. 19

KS-AR-06 – Missing configuration or parameter checks .. 21

KS-AR-07 – CloseOut accepting transactions while the user still has funds 23

KS-AR-08 – Group transactions initiated by the admin do not check the Sender of the second transaction

 .. 24

KS-AR-09 – Performing mathematical operations with very low amounts 27

KS-AR-10 – Black/White list no duplicate check .. 29

KS-AR-11 – TWAP value error management ... 30

KS-AR-12 – Incorrect int to ASCII conversion in blackList_whiteList ... 31

KS-AR-13 – Mismatches between the documentation, comments and the code 33

KS-AR-14 – Code duplication ... 34

KS-AR-15 – Inconsistent naming conventions ... 36

METHODOLOGY ... 38

Tools ... 39

Vulnerability Scoring Systems .. 40

KUDELSKI SECURITY CONTACTS ... 41

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 3 of 41

LIST OF FIGURES

Figure 1: Findings by Severity.. 6

LIST OF TABLES

Table 1: Scope ... 5
Table 2: Findings Overview.. 7

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 4 of 41

EXECUTIVE SUMMARY

Overview

AlgoRai engaged Kudelski Security to perform a secure code assessment of smart contracts powering its
ALGORAI FINANCE system.

The assessment was conducted remotely by the Kudelski Security Team.
Testing took place on August 5, 2022 - September 16, 2022, and focused on the following objectives:

• Provide the customer with an assessment of their overall security posture and any risks that were
discovered with the smart contracts.

• To provide a professional opinion on the maturity, adequacy, and efficiency of the security measures
that are in place.

• To identify potential issues and include improvement recommendations based on the result of our
tests.

This report summarizes the engagement, tests performed, and findings. It also contains detailed descriptions
of the discovered vulnerabilities, steps the Kudelski Security Teams took to identify and validate each issue,
as well as any applicable recommendations for remediation.

Key Findings

The following are the major themes and issues identified during the testing period. These, along with other
items, within the findings section, should be prioritized for remediation to reduce to the risk they pose.

• Missing Authority Checks

• Lack of Input Validation

• Functional Bugs

Important note regarding all smart contracts and the way they are managed:

• The administrator requires a lot of trust given the amount of access they have, so any user is relying on

appropriate security controls outside of the smart contracts.

During the code review, the following positive observations were noted regarding the scope of the
engagement:

• The code was clean, concise, and commented throughout

• Tests were also provided as part of the project, which is convenient for better understanding the
smart contracts and useful for elaborating scenarios and validating findings

• Finally, we had regular and very enriching technical exchanges on various topics.

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 5 of 41

Scope and Rules Of Engagement

Kudelski performed a Secure Code Review for AlgoRai. The following table documents the targets in scope
for the engagement. No additional systems or resources were in scope for this assessment.

The source code was supplied with the commit hashes in private repositories at:

• https://gitlab.com/algo-foundry/algorai/vaults/-

/commit/433312aacf11dfe126d104782271bd5821d43014

o Subfolder contracts

o Written with Teal version 6

• https://gitlab.com/algo-foundry/algorai/price-feeder/-

/commit/bc8e1243251f6860bf0402b38f268a84d7114bc4

o Subfolder deploy/src/contracts

o Written with PyTeal

A further round of review was performed by Kudelski Security, September 15-16, 2022, on remediations with
the commit hashes at:

• https://gitlab.com/algo-foundry/algorai/vaults/-

/commit/b00f5032e7e4a7f3d4ffc8b0a4d27afdb8bf6d77

• https://gitlab.com/algo-foundry/algorai/price-feeder/-

/commit/656f619abe4b366d02f93860cc200aa6f8623385

In-Scope Contracts

Vaults Price-Feeder

contracts/

├── blackList_whiteList.teal

├── clear.teal

├── deposit.teal

├── vault.teal

└── withdraw_round.teal

deploy/src/contracts

├── contracts.py

├── medianizer_contract.py

└── methods.py

Table 1: Scope

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 6 of 41

TECHNICAL ANALYSIS & FINDINGS

During the Secure Code Review, we discovered 2 findings that had a high severity rating, as well as 6 of
medium severity.

The following chart displays the findings by severity.

Figure 1: Findings by Severity

0 1 2 3 4 5 6 7

Info

Low

Medium

High

Critical

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 7 of 41

Findings

The Findings section provides detailed information on each of the findings, including methods of discovery,
explanation of severity determination, recommendations, and applicable references.

The following table provides an overview of the findings.

Severity Description Status

KS-AR-01 High
Black/White list no update possible for addresses with
index larger than 10

Resolved

KS-AR-02 High Smart Contract life cycle not fully implemented Resolved

KS-AR-03 Medium Incorrect check for CurrentApplicationID Resolved

KS-AR-04 Medium
Cancel Withdraw performs no checks on the other
transaction in a group

Resolved

KS-AR-05 Medium Lack of security checks on admin-called functions Resolved

KS-AR-06 Medium Missing configuration or parameter checks Resolved

KS-AR-07 Medium
CloseOut accepting transactions while the user still
has funds

Resolved

KS-AR-08 Low
Group transactions initiated by the admin do not check
the Sender of the second transaction

Resolved

KS-AR-09 Medium
Performing mathematical operations with very low
amounts

Resolved

KS-AR-10 Low Black/White list no duplicate check Resolved

KS-AR-11 Low TWAP value error management Resolved

KS-AR-12 Informational Incorrect int to ASCII conversion in blackList_whiteList Resolved

KS-AR-13 Informational
Mismatches between the documentation, comments,
and the code

Informational

KS-AR-14 Informational Code duplication Resolved

KS-AR-15 Informational Inconsistent naming conventions Informational

Table 2: Findings Overview

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 8 of 41

KS-AR-01 – Black/White list no update possible for addresses with
index larger than 10

Severity HIGH

Status RESOLVED

Impact Likelihood Difficulty

Medium High Easy

Description

The blacklist_whitelist.teal contract keeps track of users that can either

a) perform a deposit while the contract is paused (whitelist) or

b) are never allowed to perform a deposit (blacklist)

The smart contracts allow users to be added to these lists. The addresses stored in these contracts can
be modified by an administrator with authorization to run these contracts, in case a user needs to be
removed from one of these lists.

However, in the reviewed implementation of this smart contract, the update procedure was only possible
for addresses stored from the index 1 to 9, while the contracts can store up to 62 such addresses.
Therefore, the addresses from index 10 to 62 stored in these contracts, once created, can never be
modified.

Impact

A user that has been added to blacklist cannot perform deposits. If their address in the blacklist has an
index greater than 10 then it is impossible to remove them from the list and this user will never be able to
perform a deposit in the AlgoRai vault. This represents a denial of service and could result in
reputational damage to AlgoRai.

Evidence

Valid range is only from 1 to 9

Affected Resource

• vaults/contracts/blackList_whiteList.teal (Lines 181-189)

Recommendation

Fix the code to allow addresses with an index between 10 and 62 to be updated.

Reference

N/A

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 9 of 41

KS-AR-02 – Smart Contract life cycle not fully implemented

Severity HIGH

Status RESOLVED

Impact Likelihood Difficulty

High Medium Easy

Description

In the price-feeder contracts a “tip” feature was implemented to “provide a reward to the reporter for
reporting". We observed that the nominal case was well implemented via the two calls/methods tip and

report. But in case of closure for instance, we observed that nothing was implemented about the

possible remaining tip amount still present in the smart contract.

Impact
Depending on values such as CloseOut/CloseRemainderTo/RekeyTo, the remaining tip amount

may be lost.

Evidence

CloseOut branch is commented out.

Comment present in the code.

Affected Resource

• price-feeder/deploy/src/contracts/contracts.py (Line 25)

• Tellor Reporter Golang App.pdf, page 3

Recommendation

Either completely implement the functionality or remove the code from the application.

Reference

N/A

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 10 of 41

KS-AR-03 – Incorrect check for CurrentApplicationID

Severity MEDIUM

Status RESOLVED

Impact Likelihood Difficulty

Medium Medium Easy

Description

To be consistent with Algorand best practices each function in the smart contracts needs to perform a
series of security and correctness checks on the incoming transactions. One of these checks verifies that
the transaction (if it is an application call) is indeed targeting the current smart contract:
`ApplicationID == CurrentApplicationID`. In some parts of the code, this check was not

performed. Instead, another equality check was performed, between `gtxn x ApplicationID` and

`txn ApplicationID`.

The equality check mentioned above will always return true, as it compared an element to itself. In
addition, the correct check was not performed.

Impact
Multiple contracts of the same type (vault, deposit…) might simultaneously be deployed at the same time
on the Algorand net. Without an explicit check on the intended Application ID, there might be no way to
distinguish between transactions meant for different contract instances. We will illustrate one possible
consequence with an example. Let us assume there exists two different instances of a deposit contract,
deposit A and deposit B. Deposit A is linked to a vault with a call strategy. Deposit B is almost identical to
A, but linked to a vault with a put strategy. In the absence of this check, a user might send a transaction
meant for deposit B, have it accidentally accepted by deposit A, and as a consequence lose his money
in an unintended way.

Evidence

On the right, an example of a correct check performed in withdraw_round.teal. On the left, an example

of an incorrect check performed in deposit.teal. In this case, there exists only one transaction in the

group, therefore gtxn 0 and txn will refer to the same transaction.

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 11 of 41

Affected Resource
The issue manifests itself at the following points in the smart contracts:

• vaults/contracts/deposit.teal (lines 487-489)

• vaults/contracts/deposit.teal (lines 581-583)

• vaults/contracts/deposit.teal (lines 982-983)

• vaults/contracts/withdraw_round.teal (lines 310-312)

We note that in the case of the vault contract, this is not an actual security issue. At the lines of code
listed below, both checks are performed. Thus, this finding is not present. We enumerate the relevant
lines here for completeness.

• vaults/contracts/vault.teal (lines 354-359)

• vaults/contracts/vault.teal (lines 493-498)

Recommendation

Where applicable in deposit.teal and withdraw_round.teal, replace the code with the correct

check.

Reference
N/A

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 12 of 41

KS-AR-04 – Cancel Withdraw performs no checks on the other
transaction in a group

Severity Medium

Status RESOLVED

Impact Likelihood Difficulty

High Medium Easy

Description

This concerns the Cancel Withdraw procedure, which a user may call to cancel a withdrawal, thus

moving their funds from the Withdraw contract back to Vault contract. When a user performs a

Cancel Withdraw, they send a group of two transactions:

1. The first transaction is an application call to the withdraw_round.teal requesting to move the

Algos/Assets back to the vault.teal contract

2. The second transaction is an application call to the deposit contract to reinstate the local state
representing the share of the user.

Each contract then performs security checks on its transaction. However, there were no security cross-
checks performed on all apart from the deposit.teal contract, where a check was performed to

ensure the Sender is the same for both transactions.

Impact

The correctness of the state across all three contracts (deposit.teal, vault.teal,

withdraw_round.teal) depends on whether both transactions get executed or both transactions fail.

If only one transaction is accepted but not the other, this can create a state desynchronization.

For example, assume that a user sends a legitimate transaction meant for one of the contracts (e.g.
withdraw_round.teal), then groups it with another transaction meant for some other smart contract

(that approves it). As a possible consequence, the user might lose ownership over their share.

Evidence
See next page.

Affected Resource

• vaults/contracts/deposit.teal (lines 1379-1434)

• vaults/contracts/withdraw_round.teal (Lines 573-652)

Recommendation

One way of mitigating this would be to have each contract performs checks on the other transaction in
the group, at a minimum:

• That the other transaction is an application call, and that the ApplicationID is set to the other

contract. It may be the case that the deposit contract might need to check the global state of the
vault contract, in order to determine the Address of the withdrawal contract.

• The correctness of NumAppArgs and ApplArgs, as required by the handle_cancel_withdraw

from the other contract. This is to ensure that the transaction is validated by the correct sub-routine.

• As an additional security measure, that important fields such as RekeyTo and CloseRemainderTo

are correctly set to the ZeroAddress.

Reference
N/A

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 13 of 41

Evidence

Side-by-side comparison of the security checks in handle_cancel_withdraw, both in deposit.teal and

withdraw_round.teal. The deposit.teal contract perform no checks on the transaction at index 0 (beyond the
Sender), while the withdraw_round.teal contract performs no checks on the transaction at index 1.

To better illustrate the possible impact of this finding, we have implemented a very simple use-case
scenario. We show that, at a minimum, the lack of checks could lead to the user losing ownership over
their share of the vault.

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 14 of 41

To illustrate our scenario, we have considered two users participating in AlgoRai. We have performed
the following steps.
1. We have created two users: ACCOUNT1 and ACCOUNT2.
2. Before the start of the first round, both users perform a deposit of 1,000,000 MicroAlgos
3. The admin starts a vault round with spot price = 40000 and strike price = 50000
4. ACCOUNT1 requests to withdraw their deposit.
5. ACCOUNT1 cancels withdraw but we replaced the second transaction in the group with an app call

to a contract which auto-accepts all transactions.

We will present the detailed states after performing steps 3, 4 and 5. The states after steps 1 and 2 are
correct and not noteworthy, therefore we have omitted them.

After step 3, the deposit present in the deposit contract has been moved to the vault contract. The
shares of both users are still stored into local state of the deposit contract for ACCOUNT1. The withdraw
contract for this round has been created. In the following screenshots we illustrate the global state and
the local state in the relevant contracts.

Global state of the vault after step 3. All variables of the global state are correct;
the vault contains the deposits of the two users, and vtv = 1000000+ 1000000.

Note vtv = Vault Total Value and represents the total value of the funds within the vault contract

Global state of the withdraw contract after step 3. All variables of the global state are correct.

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 15 of 41

Local state of the deposit contract for user ACCOUNT1 after step 3.

All variables of the local state are correct:
the user ACCOUNT 1 has a corresponding deposit share of 1000000.

Local state of the withdraw contract after step 3.

As nothing has been initialized yet, this is the expected output at this step (an empty state).

We now perform step 4: ACCOUNT1 requests to withdraw their deposit. This is done using the following
JavaScript command:

src/js/WithdrawRequest.js <VAULT_ID> <USER_MNEMONIC>.

This command will then move the money belonging to the user ACCOUNT1 to the withdraw contract.
This means that the global state variable will be updated with the share of ACCOUNT1 and the local
variable will also be updated with their share. In the following screenshots we illustrate the global state
and the local state in the relevant contracts in this point in time.

Global state of the vault after step 4. All variables of the global state are correct.
The vault contains a vtd = 2000000, out of which 1000000 has been withdrawn.

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 16 of 41

Global state of the withdraw contract after step 4. All variables of the global state are correct,

and the withdraw contract stores the 1000000 that has just been withdrawn.

Local state of the deposit contract after step 4. All variables of the local state are correct.
They are set to 0 as ACCOUNT1 has no share in the vault after requesting the withdraw.

Local state of the withdraw contract after step 4. All variables of the local state are correct.

The local state presents the amount of 1000000 microAlgos that ACCOUNT1 withdrew from the vault.

We can now perform step 5: ACCOUNT1 cancels their withdraw. The procedure requires a group of two
transactions. Normally, the first one is an app call meant for the withdraw contract and second one is a
transaction sent to the deposit contract in order to reinstate the local state of ACCOUNT 1. However, we
have replaced the second transaction of the group of transaction with an app call to a dummy contract
which outputs always one (and thus accepts all transactions). Then we performed the following
executions:

• We generated a correct app call to WITHDRAW_ID to move the microAlgos of ACCOUNT1 back the
vault

• We generated an app call to a dummy contract TRUE_ID that accept every transaction

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 17 of 41

The exact commands are presented in the Figure below:

Attack command lines. The commands presented here were executed and accepted by the network.

After this step, the global and local states of the impacted contracts are as follows:

Global state of the vault after step 5. All variables of the global state are correct.

Notice that the vwd, which represents the amount withdrawn from total deposit for the current round, is now

equal to 0, which is consistent with a cancelled withdraw.

Global state of the withdraw contract after step 5. All variables of the global state are correct.

No assets are currently stored in this contract.

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 18 of 41

Local state of the deposit contract after step 5 for the user ACCOUNT1. Notice that now the values are

incorrect. The local variables d and dt should be 100000 microAlgos instead of empty.This is because that
following the Cancel Withdraw, the share of the user is now back in the vault. At this point, the user

ACCOUNT1 has effectively lost their share and has no means of retrieving it from the smart contracts.

Local state of the withdraw contract after step 5 for the user ACCOUNT1. The Algos belonging to

ACCOUNT1 are empty as well. This means that ACCOUNT1 has no Algo in the withdraw contract. This is
correct. Unfortunately for the user, it also means they have no mean of retrieving their assets, as the

withdraw has taken effect and their share is now back in the vault.

After performing these five steps, ACCOUNT1’s local states in the deposit and withdraw contracts are
set to 0, which result in the loss of ACCOUNT1’s microAlgos. Indeed, ACCOUNT1 cannot request
withdraw anymore as according to local state of the deposit contract ACCOUNT1 does not have any
active deposit in the vault. Additionally, ACCOUNT1 cannot withdraw their microAlgos from the withdraw
contract because their microAlgos were suppressed from the withdraw contract as proven by the global
state of the withdraw contract.

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 19 of 41

KS-AR-05 – Lack of security checks on admin-called functions

Severity MEDIUM

Status RESOLVED

Impact Likelihood Difficulty

High Low Easy

Description

Whenever a function is called by an admin, there were a few security checks that were not being
performed on certain transaction fields such that TypeEnum, RekeyTo, CloseRemainderTo,

CloseAssetTo. This can potentially become an issue in the case of loss or compromise of admin

credentials, or in case of an accidental erroneous command being sent to a deployed contract.

Impact
As the application is centralized by design, the admin has full control over critical parts of the system.
We acknowledge that this is the intended architecture. In this situation it is important to limit, to the fullest
extent possible, the impact of the admin credentials being compromised. For instance, in the absence of
security checks such as RekeyTo and CloseRemainderTo, the party in possession of the admin

credentials could potentially redirect the contents of the smart contract to an account of their choice or
perform other high-impact actions.

Evidence

See next page

Affected Resource

• vaults/contracts/vault.teal

• vaults/contracts/deposit.teal

Recommendation

Unless this is an intended functionality, any admin-only functions should also have security checks such
as RekeyCloseTo, CloseRemainderTo, CloseAssetTo. If this functionality should be part of the

business logic, the access to it should be well-controlled and not enabled by default in most, if not all
admin-called functions. For example, perhaps make it so that only the CreatorAddress can perform

these operations, and that they are not available to any other administrator. This is only one possible
remediation, and it is important that appropriate security controls are implemented outside the code
regarding the management of the administration role.

Reference

N/A

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 20 of 41

Evidence

Example of an admin-called function without any security checks like TypeEnum, RekeyTo,

CloseRemainderTo or CloseAssetTo.

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 21 of 41

KS-AR-06 – Missing configuration or parameter checks

Severity MEDIUM

Status RESOLVED

Impact Likelihood Difficulty

High Low Easy

Description

In the AlgoRai system the administrator capabilities are significant. As such whenever a function is
called by an admin, it is important that certain checks are in place to ensure correct functionality.
However, there were several checks that are not being performed such as:

• Order-of-steps checks: The functions in a smart contract should check, for example, that the
contract has been initialized before performing any other operation.

• Parameter correctness checks: We noticed that the validity and correctness of the inputs given by
the admin were not verified. The most critical ones we found were:

o At the start of each round, the admin provides the strike and spot prices. Both prices must
not be equal. This check between spot and strike prices was not done.

o When executing the settlement pending procedure, the admin provides the settlement price
which needs to be greater than 0. This check was not performed.

Impact

To a degree, the state of the system depends on it being correctly deployed and configured by the
admin. While the likelihood is low, the risk of an incorrect configuration can lead to the system ending in
an unstable state. For example, if a vault round is started with the spot price equal to the strike price, as
described above, the vault round will not end (there is no code to capture this case). In this case all
participants would lose control over their funds.

Evidence

Example of a check that is performed in vault.teal and withdraw_round.teal,

but not in deposit.teal.

Affected Resource

• vaults/contracts/vault.teal

• vaults/contracts/deposit.teal

• vaults/contracts/withdraw_round.teal

• vaults/contracts/blackList_whiteList.teal

Recommendation

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 22 of 41

Stronger correctness checks where applicable will prevent an accidental misconfiguration and
deployment. For example, we suggest that the round should be able to start, if spot and strike price are
equal and with the following logic:

• stp

• spp

• !=

• assert

Reference
 N/A

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 23 of 41

KS-AR-07 – CloseOut accepting transactions while the user still has
funds

Severity MEDIUM

Status RESOLVED

Impact Likelihood Difficulty

Medium Medium Easy

Description

The two contracts, deposits.teal and withdraw.teal, stored a reserve of Algos or ASA belonging

to multiple users. They used local and global variables to determine at any given time the percentage of
that reserve belonging to each user. The user may choose to call CloseOut, to opt out of the contract

at any time. However, if the user still had Algos or ASA locked-in the contract, then this operation should
fail. This was not the case, as CloseOut accepted all transactions, regardless of the user's local state.

Impact

If a user accidentally chooses to CloseOut while still having Algos or ASA locked-in the contract, they

may be unable to access them anymore.

Evidence

CloseOut in deposit.teal

Affected Resource

• vaults/contracts/deposit.teal (Line 275)

• vaults/contracts/withdraw_round.teal (Line 263)

Recommendation

Modify the CloseOut branch in the two contracts depending on the user's state. If the user has no

pending deposit or if they have withdrawn their share, then the CloseOut should accept. Otherwise,

CloseOut should reject the transaction.

Reference

N/A

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 24 of 41

KS-AR-08 – Group transactions initiated by the admin do not check the
Sender of the second transaction

Severity LOW

Status RESOLVED

Impact Likelihood Difficulty

Low Low Moderate

Description

Several times in this application, two transactions were being sent by the admin. One of them, the
application call, was meant to trigger some part of the business logic. The Sender of this transaction

was authenticated by the admin_verify subroutine. The other transaction was usually a pay or asset

transfer transaction. With the exception of the handle_premium (in vault.teal), the Sender of this

other transaction was never checked.

Impact

Because only the Sender of the application call is authenticated, the following scenario could happen.

Let us consider the possibility of the administrator grouping by mistake their (authenticated) application
call with another transaction not sent by them, but which is otherwise well-formed.

An attacker, wishing to exploit this possibility, will regularly send well-formed transactions (containing
field values as expected by the smart contract), that also has in addition some other fields set, like
RekeyTo or CloseRemainderTo. Most of the time, this transaction, by itself, will get rejected (as it is

not part of a legitimate group) and nothing will happen. If, however, the administrator mistakenly groups
their legitimate application call with this malicious transaction, this could have a high negative impact.

If both transactions get accepted, all their effects will apply, potentially including RekeyTo and

CloseRemainderTo. We note that, for this to occur, the finding KS-AR-06 is also required to be in

effect.

Evidence
See next page.

Affected Resource

• vaults/contracts/vault.teal (Lines 429-482)

• vaults/contracts/vault.teal (Lines 873-907)

• vaults/contracts/vault.teal (Lines 1252-1281)

• vaults/contracts/vault.teal (Lines 2433-2454)

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 25 of 41

Recommendation
Authenticating the Sender of both transactions would make the code overall more robust.

Where applicable, perform an additional check to authenticate the Sender of the second transaction, as
performed in handle_premium:

vaults/contracts/vault.teal: correct check example

Reference
N/A

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 26 of 41

Evidence

Example of a group of transactions called by the administrator. The admin_verify subroutine will only verify
the Sender of the current transaction (situated at index 0), but no Sender identity checks are performed on

the pay transaction at index 0.

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 27 of 41

KS-AR-09 – Performing mathematical operations with very low amounts

Severity MEDIUM

Status RESOLVED

Impact Likelihood Difficulty

Medium High Easy

Description

On occasion, the smart contracts performed a variation of the following operation:

user's_share * existing_value / sum_of all_user_shares

This was implemented using the muldiv subroutine. However, muldiv discarded the remainder of the

division operation. In a similar note, users depositing 0 or a minute amount of assets may have
unintended consequences.

Impact

• If a user could make very small deposits, an admin may be able to start a vault round due to existing
pending deposit, but the amount of assets stored in the contracts may not be worth bidding on. In
addition, if their share is "dwarfed" by other deposits, they may not have a share to withdraw, despite
having participated in the vault.

• In the case of the currency being Algo, making a transfer of an amount less than 1000 Algos (to the
user, or to the treasury/options settlement) may not be worth the transaction Fee. This may not hold
true for ASAs.

• The sum of all shares of the users will not always equal the sum of all shares, but a tiny bit smaller
(due to the discarded remainder).

Evidence

The muldiv subroutine. The remainder of the division gets discarded, which might lead to very small

amounts accumulating in the vault.

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 28 of 41

Affected Resource

• vaults/contracts/withdraw_round.teal

• vaults/contracts/vault.teal

• vaults/contracts/deposit.teal

Recommendation

This might be mitigated first by ensuring that no deposits can be made, unless they are bigger than a
suitable threshold. The same check should be performed when starting a vault round. Due to the users
shares not adding up to their total due to rounding, there might be always some small amounts of
currency staying in the vault contract. Over a very, very large number of rounds, these amounts may add
up to very low, but potentially non-negligible amounts.

In addition, one option would be to avoid performing certain transactions if they are "too costly", but this
largely depends on the intended business logic.

Reference

N/A

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 29 of 41

KS-AR-10 – Black/White list no duplicate check

Severity LOW

Status RESOLVED

Impact Likelihood Difficulty

Low Low Easy

Description

The black and white lists store a list of users according of the action they can or cannot perform. When
adding an address to the lists, there was no check if the address already belonged to the list. This meant
that the same address could be added multiple times in the same list without any check.

Impact

This could result in a lack of storage for both lists. Since both lists have a maximum limit of 62
addresses, this means that the absence of duplication check could result in having the same address
saved multiple times and take the memory space of other addresses.

This would mean users would be prevented from being added to the whitelist, in the case of depositing
while contract is paused, or the blacklist in the case of being banned from depositing funds.

Evidence

Black/White list duplicated address

Affected Resource

• vaults/contracts/blackList_whiteList.teal (Lines 98-136)

Recommendation

Check duplicates before adding a new address to the list (for instance, looping over all current
addresses and check against the new one).

Reference

N/A

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 30 of 41

KS-AR-11 – TWAP value error management

Severity LOW

Status RESOLVED

Impact Likelihood Difficulty

Low Low Easy

Description

In the price-feeder, only median values greater than zero were considered when computing the TWAP
(time-weighted average price) value.

In the cases that feeders have not reported any prices, or that prices have dropped to zero, the TWAP
computation would end by a division by zero.

Impact
When the above conditions are met, all TWAP requests will systematically fail, leading to a
misinterpretation of the state of the system (unexpected error vs. zero value).
In the case of prices dropped to zero (considering that value is allowable), such a value will never be
returned, thus introducing a bias into the system.

Evidence

medianizer_contract.py – demonstrating where a potential division by zero might occur.

Affected Resource

• price-feeder/deploy/src/contracts/medianizer_contract.py (Line 233)

Recommendation

Check that the divider is not equal to zero before performing division.

Reference
N/A

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 31 of 41

KS-AR-12 – Incorrect int to ASCII conversion in blackList_whiteList

Severity INFORMATIONAL

Status RESOLVED

Impact Likelihood Difficulty

- - -

Description

The blackList_whiteList.teal implemented a "guardrails" functionality for the decentralized vault.

The two contracts stored a list of user addresses. Blacklisted users were not allowed to deposit, while
whitelisted users could make a deposit while the contract is paused. During our analysis we discovered
that the code to generate the labels for the addresses was not implemented correctly for indices beyond
10.

Due to the incorrect int to ASCII incorrect conversion, after the first 9 blacklisted/whitelisted addresses
are stored, subsequent addresses would be stored in the contract (using labels such as "addr_;"

depending on the ASCII table).

Impact
Due to the mismatch between the expected code functionality and the actual code functionality might
cause unexpected behavior, particularly when combined with other smart contracts. This might slow
down future code development and maintenance.

Evidence

Int to ascii conversion, managing only the first digit

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 32 of 41

After addr_9, addresses are not written correctly

Affected Resource

• vaults/contracts/blackList_whiteList.teal (Lines 118-127)

Recommendation

Complete the int to ASCII conversion for indexes > 10, adding one digit for each power of 10.

Reference

N/A

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 33 of 41

KS-AR-13 – Mismatches between the documentation, comments and the
code

Severity INFORMATIONAL

Impact Likelihood Difficulty

- - -

Description

On a few occasions we noticed a slight mismatch between either the code and the documentation, as
well as the code and the surrounding comments. Whenever this was the case, we have considered the
code as the "source of truth".

Impact
Where there are discrepancies between the specification and implementation, future maintenance,
development, and review activities could be slowed down.

Evidence
In the following example, the comment “if not algo fail” contradicts the code, which should fail in case the
currency is Algo.

Screen caption that illustrates a code-comment contradiction. In this case, the comment states that the

function will fail if it is not algo. In practice, the code will stop executing in the opposite case, if the currency is
Algo (as the assert will fail).

Affected Resource

• vault.teal & deposit.teal - mismatch code-comment (nr params).

• vault.teal - handle_init code directly contradicts the comment.

• medianizer_contract.py & methods.py vs. Tellor Reporter Golang App.pdf.

Recommendation

Ensure better consistency between documentation, code, and tests.

Reference
N/A

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 34 of 41

KS-AR-14 – Code duplication

Severity INFORMATIONAL

Status RESOLVED

Impact Likelihood Difficulty

- - -

Description

Some functionality shared between contracts is duplicated across all of them.

Impact
Duplicated code is used as a code maturity metric in the industry to point out how maintainable
the code base is. It is also a possible entry point for new bugs as code duplication leads to
mistakes when updating/rewriting the codebase.

Evidence

methods.py - first implementation

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 35 of 41

medianizer_contract.py – Same implementation

Affected Resource

• change_governance

o price-feeder/deploy/src/contracts/methods.py (Lines 109-126)

o price-feeder/deploy/src/contracts/medianizer_contract.py (Lines 147-

164)

• convert_uint_to_bytes

o price-feeder/deploy/src/contracts/methods.py (Lines 81-106)

o price-feeder/deploy/src/contracts/medianizer_contract.py (Lines 66-

91)

Recommendation

Refactor the code such that functionalities shared in multiple contracts is found in only one file.

Reference
N/A

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 36 of 41

KS-AR-15 – Inconsistent naming conventions

Severity INFORMATIONAL

Impact Likelihood Difficulty

- - -

Description

On occasion, the naming conventions for variable names, functions etc. changes from one part of the
code base to another.

Impact
Using inconsistent name variables can lead to errors during the development phase and can make it
more difficult to create static analysis rules for the code database.

Evidence

blackList_whiteList.teal: “-“ as separator for only one method

methods.py: “-“ as separator for only two methods

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 37 of 41

medianizer_contract.py: “-“ as separator for only two methods

Affected Resource

• vaults/contracts/blackList_whiteList.teal (Lines 77)

• price-feeder/deploy/src/contracts/methods.py (Lines 382-383)

• price-feeder/deploy/src/contracts/medianizer_contract.py (Lines 458-459)

Recommendation

Where applicable, pick one naming convention and apply it consistently e.g., using “handle_” as a

prefix for handling incoming transactions, or always using _ when separating words in variable names.

Reference
N/A

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 38 of 41

METHODOLOGY

During this source code review, the Kudelski Security Services team reviewed code within the project within
an appropriate IDE. During every review, the team spends considerable time working with the client to
determine correct and expected functionality, business logic, and content to ensure that findings incorporate
this business logic into each description and impact. Following this discovery phase the team works through
the following categories:

- Authentication

- Authorization and Access Control

- Auditing and Logging

- Injection and Tampering

- Configuration Issues

- Logic Flaws

- Cryptography

These categories incorporate common vulnerabilities such as the OWASP Top 10

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 39 of 41

Tools

The following tools were used during this portion of the test. A link for more information about the tool is
provided as well.

- Visual Studio Code

- Algorand sandbox + Project JavaScript tests

- Algorand CLI: GOAL

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 40 of 41

Vulnerability Scoring Systems

Kudelski Security utilizes a vulnerability scoring system based on impact of the vulnerability, likelihood of an
attack against the vulnerability, and the difficulty of executing an attack against the vulnerability based on a
high, medium, and low rating system

Impact
The overall effect of the vulnerability against the system or organization based on the areas of concern or
affected components discussed with the client during the scoping of the engagement.

High:
The vulnerability has a severe effect on the company and systems or has an affect within one of the
primary areas of concern noted by the client

Medium:
It is reasonable to assume that the vulnerability would have a measurable affect on the company
and systems that may cause minor financial or reputational damage.

Low:
There is little to no affect from the vulnerability being compromised. These vulnerabilities could lead
to complex attacks or create footholds used in more severe attacks.

Likelihood
The likelihood of an attacker discovering a vulnerability, exploiting it, and obtaining a foothold varies based
on a variety of factors including compensating controls, location of the application, availability of commonly
used exploits, and institutional knowledge

High:
It is extremely likely that this vulnerability will be discovered and abused

Medium:
It is likely that this vulnerability will be discovered and abused by a skilled attacker

Low:
It is unlikely that this vulnerability will be discovered or abused when discovered.

Difficulty
Difficulty is measured according to the ease of exploit by an attacker based on availability of readily available
exploits, knowledge of the system, and complexity of attack. It should be noted that a LOW difficulty results
in a HIGHER severity.

Easy:
The vulnerability is easy to exploit or has readily available techniques for exploit

Moderate:
The vulnerability is partially defended against, difficult to exploit, or requires a skilled attacker to
exploit.

Difficult:
The vulnerability is difficult to exploit and requires advanced knowledge from a skilled attacker to
write an exploit

Severity
Severity is the overall score of the weakness or vulnerability as it is measured from Impact, Likelihood, and

Difficulty

AlgoRai
Secure Code Review

© 2022 Kudelski Security, Inc. For Public Release. All Rights Reserved. Version 2.0 | 9/22/2022

 Page 41 of 41

KUDELSKI SECURITY CONTACTS

NAME POSITION CONTACT INFORMATION

Adina Nedelcu Security Engineer adina.nedelcu@kudelskisecurity.com

Maxime Buser Security Engineer maxime.buser@kudelskisecurity.com

Ronan Le Gallic Lead Engineer ronan.legallic@nagra.com

mailto:adina.nedelcu@kudelskisecurity.com
mailto:maxime.buser@kudelskisecurity.com
mailto:ronan.legallic@nagra.com

