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Abstract

Rotation equivariance has recently become a strongly de-

sired property in the 3D deep learning community. Yet most

existing methods focus on equivariance regarding a global

input rotation while ignoring the fact that rotation symme-

try has its own spatial support. Specifically, we consider

the object detection problem in 3D scenes, where an object

bounding box should be equivariant regarding the object

pose, independent of the scene motion. This suggests a new

desired property we call object-level rotation equivariance.

To incorporate object-level rotation equivariance into 3D

object detectors, we need a mechanism to extract equivariant

features with local object-level spatial support while being

able to model cross-object context information. To this end,

we propose Equivariant Object detection Network (EON)

with a rotation equivariance suspension design to achieve

object-level equivariance. EON can be applied to modern

point cloud object detectors, such as VoteNet and PointR-

CNN, enabling them to exploit object rotation symmetry in

scene-scale inputs. Our experiments on both indoor scene

and autonomous driving datasets show that significant im-

provements are obtained by plugging our EON design into

existing state-of-the-art 3D object detectors. Project website:

https://kovenyu.com/EON/.

1. Introduction

3D object detection is a fundamental problem in vari-

ous downstream applications including augmented reality,

robotics, and autonomous driving. Research efforts in de-

signing 3D object detection networks have shown great effec-

tiveness for both indoor [17, 27] and outdoor scenes [21, 29].

However, existing 3D object detectors cannot explicitly treat

object rotation equivariance in their designs. Object rotation

equivariance in 3D detection is well-reflected in the rotation

invariance of shape and equivariance of orientation. For

example, no matter how an object is oriented in an input

scene, the detection result (typically represented as an ori-

ented bounding box) associated with the object should orient

in the same way while retaining the same shape. Explicit
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Figure 1. Rotation symmetry in object detection includes the equiv-

ariant orientation and invariant shape of the bounding box. The

object-level rotation equivariant detector explicitly models these

strong priors and intrinsically generates oriented bounding box to

rotate following the object, while maintaining the same box shape.

Non-equivariant detectors, however, may suffer from box shape

changes and unaligned variations in box orientation.

modeling of these strong priors save the needs for expensive

data augmentations, and can increase the expressivity and

discriminative power of detection models without heavily

increasing the number of parameters and introducing addi-

tional optimization challenges.

A recent trend to explicitly exploit rotation equivariance

is through equivariant networks [4, 25, 26] (EN). The main

idea is that the equivariant geometric features carry both

shape information and orientation information separately by

design. Rotation equivariant networks have been explored

for object classification and pose estimation [2,7,13], but not

yet for 3D object detection. A main challenge is that existing

EN mostly explores rotation equivariance regarding the full

visual input, while equivariance to rotations of a whole scene

is not ideal for object detection, because individual object

orientation can be independent of the scene. Thus, it is

unclear how to achieve object-level rotation equivariance

and how to benefit 3D object detection in cluttered scenes.

We identify two key technical challenges toward object-

level equivariant model design: how to determine the object-

level spatial support to extract locally equivariant features,

and how to aggregate context information. The greater con-



text (such as nearby objects) is helpful to recognize objects

especially in noisy or incomplete raw point clouds. How-

ever, the context information could easily break object-level

rotation equivariance if not handled properly. For example,

when detecting a chair, the presence of a nearby desk can

provide useful context due to high co-occurrence probabil-

ity. However, in case that the chair remains static while the

desk changes its orientation, the chair features could also be

affected unexpectedly.

We propose Equivariant Object detection Network (EON)

to exploit object-level equivariance for 3D detection. Our

core design is called rotation equivariance suspension.

To properly determine the object-level spatial support, we

let our model extract equivariant features only up to an in-

termediate stage. This is based upon the observation that

most 3D detection networks extract features in a hierarchical

manner [14, 17, 21] where early stages focus on local fea-

tures while later stages cover more context-level information.

Computing equivariant features only up to an intermediate

stage produces local spatial support to rotation equivariance,

and the model can adaptively learn to adjust its effective

spatial support [15]. To allow aggregating context infor-

mation, we suspend equivariant feature computation at the

previous intermediate stage by decomposing each equivari-

ant feature into an object orientation hypothesis (orientation

information) and an invariant object-frame feature (shape

information). Our model keeps aggregating object-frame fea-

tures in the latter stages, and finally resumes the orientation

information for object proposals. Since only object-frame

features (i.e., without object orientation information) are ag-

gregated after the intermediate stage, the greater contexts

can be modeled without breaking object-level equivariance.

Our approach follows the modular design adopted by

most bottom-up detectors, so that it can be easily plugged

into state-of-the-art 3D object detectors. We have tested

our method using various backbones and models on both

indoor and outdoor 3D object detection benchmarks. We

find that EON significantly boosts the performance of pre-

vious state-of-the-art 3D object detectors (+9.0 mAP on

ScanNetV2, +3.1 mAP on SUN RGB-D, and +1.4 mAP on

KITTI Dataset). In summary, our contributions are threefold:

• To our best knowledge, this is the first work to explore

rotation equivariance for 3D object detection.

• We propose Equivariant Object detection Network

(EON), incorporating a novel design dubbed rotation

equivariance suspension to exploit object-level equivari-

ance in 3D detection. Our EON can be easily plugged

into state-of-the-art bottom-up 3D object detectors.

• On both indoor and outdoor datasets, we demonstrate

the benefits of object-level equivariance by boosting

performances of previous state-of-the-art 3D detectors.

2. Related Work

3D object detection. Most current state-of-the-art ap-

proaches to 3D object detection directly takes 3D data (such

as point cloud, Lidar, and voxelized grids from them) as input

and generates 3D oriented bounding boxes (OBBs) to repre-

sent the objects [11, 16, 17, 20–22, 29–32]. Most of them fol-

low a bottom-up design, where a backbone network extracts

a sparse set of regional features from the dense input data,

and a detection head proposes candidate OBBs (one-stage) or

regions of interests (two-stage) for further refinement. Semi-

nal works include VoteNet [17] and its follow-ups. VoteNet’s

backbone design includes two PointNet++, with a voting in

between to help the aggregation of object surface points.

H3DNet [30] improves VoteNet predictions using 3D prim-

itives and a geometric loss. MLCVNet [27] further allows

VoteNet to aggregate global contextual information via self-

attention. Another line of methods is directly inspired from

2D bottom-up detectors, such as PointRCNN [21], Voxel-

Net [31], PointPillar [11] and CenterPoint [29]. However,

these existing methods do not explicitly exploit object rota-

tion equivariance in their models. Our method is grounded

on this popular bottom-up modular design, and we focus

on equipping these state-of-the-art detection models with

object-level equivariance.

Rotation equivariance networks. From the seminal work

of Group Equivariant Convolutional Network [4], leveraging

group equivariance for deep networks becomes increasingly

popular. Existing approaches toward rotation equivariance

can be roughly divided into two categories: filter orbit-based

and filter design-based. Deriving from the group equivariant

convolution [3,4], filter orbit-based methods discretize the ro-

tation group and construct a set of group-transformed kernels

(an “orbit”) for the group equivariant computation [2,12,13].

Filter design-based methods design intrinsically rotation-

equivariant basis functions (e.g., generalized Fourier basis

functions [5, 25]) and compose their networks with these

basis functions [5, 7, 8, 25]. Our method is inspired from the

filter orbit-based Equivariant Point Network [2] (EPN) which

introduces a tractable approximation to SE(3) group equiv-

ariant convolution on point clouds. However, EPN focuses

on single object tasks and achieves equivariance regarding

the full visual content. We target object-level equivariance

for 3D detection in scenes. Recently, there are a few works

attempting to leverage rotation equivariance for aerial image

detection [10, 28]. While they focus on 2D images, we aim

at 3D object-level equivariant detection.

3. Preliminary

To compute rotation equivariant features, our approach

finds inspiration from a recent state-of-the-art equivariant

network, Equivariant Point Network (EPN) [2], that is de-

signed for single objects. We briefly review EPN and provide



an intuitive explanation for the equivariance property.

The key idea of EPN to achieve rotation equivariance is to

augment each point feature vector f ∈ R
C to an equivariant

feature feqv ∈ R
C×|G| w.r.t. a discretized SO(3) subgroup G.

Each vector element in the equivariant feature, feqv(g) ∈ R
C ,

is computed via rotating f by g−1 ∈ G before passing it into

a computational layer. One can verify that this rotate-and-

compute operation indeed generates feqv that is equivariant to

any g ∈ G. Intuitively this means that, if an input is rotated

by some g0 ∈ G, its equivariant feature feqv will undergo a

circular shift without changing any values, becoming f
′
eqv

such that f ′eqv(g
′) = feqv(g), where g′ and g satisfy g′ =

g0 ◦ g. In other words, rotating the input x ∈ R
3 by g0 leads

to a “rotation” by g0 defined on the equivariant feature (in

this case, the “rotation” is defined as shifting). For formal

expressions and rigorous derivations, we refer readers to

Chen et al. [2].*

Such equivariance network extracts very expressive equiv-

ariant features regarding input rotations. However, since the

equivariance design is regarding the entire input point cloud

without spatial scale concepts, EPN is not able to handle

object-level equivariance when consuming a 3D scene.

Inspired by EPN, we achieve rotation equivariance via

this feature augmenting strategy (sometimes referred to as

feature orbits or filter orbits). Yet in contrast to EPN, our

method allows learning object-level equivariant features in

full scene-scale inputs for detection.

4. Equivariant Object detection Network

Our goal is to explicitly leverge object rotation equivari-

ance in 3D detectors, to increase the network expressivity

and discriminative power. We target at a modular design

that allows us to directly equip state-of-the-art 3D detection

models with object-level rotation equivariance.

We ground our method on popular bottom-up detector

designs, which have been adopted by many state-of-the-art

point cloud object detectors, such as VoteNet [17], Point-

Pillar [11], PointRCNN [21] and CenterPoint [29]. These

methods generally include three modules: seed feature ex-

traction in which a backbone processes point clouds into

a dense set of features, region context aggregation that

summarizes spatial regions (such as vote clustering [17],

map-view convolution [11,29], and RoI pooling [21]) to pro-

duce a sparse set of features, and OBB (oriented bounding

box) generation that proposes candidates from each regional

feature. We show an illustration on the top of Figure 2. We

adapt these modules for object-level equivariance.

*We actually adopt a generalized version of EPN for any translation-

equivariant backbone networks including convolutional backbones such

as KPConv [24] and MLP backbones such as PointNet++ [19]. Although

EPN formulation is derived from continuous convolution, its discretized

implementation admits an equivalent formulation. That is, rotating filters is

equivalent to inversely rotating the input point cloud.

There are two key challenges in our designs. The first is

how to determine a proper local spatial support for equivari-

ant feature computation so that the rotation equivariance is

restricted to the object level. The second is how to aggregate

contexts without breaking object-level equivariance. We pro-

pose Equivariant Object detection Network (EON), which

incorporates our rotation equivariance suspension mecha-

nism to address both challenges. We show an illustration of

EON in the bottom of Figure 2.

4.1. Overview

Our main idea is that we let our model compute equivari-

ant features up to an intermediate stage that is expected to be

associated with object-level features. After this intermediate

stage, we aggregate context geometric information only, as

context orientations can break object-level rotation equiv-

ariance. To do this, we decompose an equivariant feature

into an orientation hypothesis and an invariant feature in the

object frame. The following context aggregation will only

happen on the invariant geometric features (i.e., equivariance

“suspension”). Then, we generate OBB proposals from the

aggregated invariant features, so the OBB proposals are also

represented in the local object frame instead of the global

scene frame. Finally, we rotate the object-frame proposals

back to scene-frame OBBs using the object feature orienta-

tion (i.e., “resuming” the object orientation). See the bottom

of Figure 2 for illustration.

One can conceptually verify the object-level equivariance

in an ideal case. When an object rotates in a static scene,

the associated object-level feature orientation changes in the

same way, while the object-frame feature remains unchanged.

Therefore, the object-frame OBB proposals are invariant to

the rotation, and hence the scene-frame OBBs do not change

their shapes while rotating equivariantly with the objects.

Notice that such equivariant design not only facilitates the

equivariant detection outcomes, but more importantly allows

learning better geometric object features [2,4,7]. We ground

our idea onto the bottom-up detector design (Figure 2).

Seed feature extraction. EON extracts equivariant seed

features and suspends equivariance before the region ag-

gregation stage where large-scale context information gets

exchanged. Since this suspension happens in an intermediate

stage, the deep detection network can adaptively adjust the

effective spatial support [15].

Region context aggregation. To model contexts, EON de-

composes each equivariant seed feature by predicting an

orientation and extracting an object-frame seed feature. Ide-

ally, object-frame seed features should be invariant to object

poses and provide only geometric information for context

aggregation. Therefore, only object-frame seed features are

fed into the region aggregation module to capture useful

context information such as co-occurrences of objects.

OBB generation. Finally, the object-level equivariant OBB
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Figure 2. Overview of our technical approach. Top: We ground our method on popular bottom-up detector designs, including three modules

(i.e., seed feature extraction, region aggregation, and OBB generation). Bottom: (Equivariant seed feature extraction) In our modular

design, we maintain equivariance computation up to seed features which are expected to capture object-level information. (Decomposed

region context aggregation) To maintain object-level equivariance, we decompose equivariant seed features into orientation hypotheses and

object-frame invariant features. We aggregate the invariant geometric features, but not orientations (they are “suspended”). (Equivariant

OBB generation) We generate object-frame OBBs from the region features and resume their orientation hypotheses to rotate them back to

the scene frame.

generation module resumes the orientation information. It

generates proposals in the object frame and transforms the

proposals back to the scene frame using the predicted orien-

tations. In the following, we describe EON’s three modules

in detail and how to plug them into modern 3D detectors.

4.2. Equivariant seed feature extraction

EON extracts equivariant seed features and expects them

to capture object-level information. In the following we

focus on a single point output of a single layer, in order to

make the symbols concise. Extending them to full point

clouds and to entire networks is straightforward.

Given a layer ψ : RN×C′

→ R
C that maps some input

point features X ∈ R
N×C′

to a point feature f ∈ R
C (such

as a KPConv [24] or a PointNet [18]), its equivariant com-

putation to map Xeqv ∈ R
N×C′×|G| to feqv = ψ(Xeqv) ∈

R
C×|G| is defined by:

feqv(g) = ψ(Xeqv(g)) ∈ R
C , g ∈ G, (1)

where G is a discrete subgroup of SO(3). For example,

if one only considers rotation along a single axis, i.e.,

SO(2), a discretization can be {0, π/2, π, 3π/2}. And

Xeqv ∈ R
N×C′×|G| denotes the input equivariant features

and the number of input pointsN can vary. For the first layer

where the input X ∈ R
N×C′

is non-equivariant points, we

pre-augment it to Xeqv such that Xeqv(g) = T−1

g [X], with

T−1

g denoting the inverse rotation of g. We follow EPN [2]

to attach a 1D convolution over the |G| channel for each

layer ψ to further increase expressivity. Our formulation

allows a drop-in replacement for most detection backbones.

This equivariant computation is performed for the backbone

seed feature extraction network.

Objectness-aware equivariant feature decomposition. We

expect the equivariant seed feature extraction module to

capture object-level geometric features. Thus, we suspend

equivariant feature computation after this module and let the

deep network to adaptively learn a proper effective receptive

field [15]. To suspend equivariance, we decompose each

equivariant feature feqv into an invariant feature represented

in an object frame finv, as well as the orientation g̃ of the

object frame w.r.t. the scene frame. However, although

object frame and orientation are well defined for foreground

objects, these concepts do not hold for background stuff

such as wall and road. Thus, we propose objectness-aware

feature orbit decomposition which distinguishes between

foreground and background points.

Specifically, we define foreground points as those inside



an OBB, and all other points as background points. To

predict the objectness for a seed point, we may jointly train

a segmentation head attached to the seed features. Then, our

objectness-aware feature decomposition produces object-

frame features as:

finv =

{

feqv(g̃) ∈ R
C , if it is foreground

maxpool({feqv(g)}g∈G) ∈ R
C , otherwise

(2)

where g̃ denotes a predicted orientation given by an orien-

tation classification head H , g̃ = argmaxgH(feqv(g)), and

maxpool denotes max pooling over all g ∈ G. Notice we

abuse the term “object-frame seed feature” to also cover

background points. The prediction head H is jointly trained

using a softmax classification loss. We generate the ground-

truth orientation label by discretizing the orientation angle

of each ground-truth OBB into |G| bins, and then assigning

the bin labels to all points inside the OBB. For background

points, the orientations are undefined, and we ignore them

in the rest of a forward pass.

4.3. Decomposed region context aggregation

In state-of-the-art 3D detectors, the context aggregation

module summarizes features within a large spatial volume,

allowing the following OBB generation to extract useful

contextual information. Examples include the vote clustering

in VoteNet [17], RoI pooling in PointRCNN [21], and Map-

view convolution in CenterPoint [29] and PointPillar [11].

In our region context aggregation module, we aim to

not only aggregate contextual geometric information, but

also maintain object-level equivariance. Thus, we have two

technical goals. The first goal is to aggregate invariant seed

features for a sparse set of regions. We use the original region

aggregation module from the detector. For every region, it

takes as input the seed features inside the region, and outputs

an object-frame invariant region feature.

The second goal is to retain the orientation of an object-

of-interest for the region, and filter out context orientations.

Ideally, the object-of-interest in a region is defined accord-

ing to the proposal label assigned to the central point of

the region, such as the target assignment methods used in

PointRCNN [21] and CenterPoint [29]. In this case, the out-

put object-of-interest orientation h̃ is simply the prediction

g̃ at the central point of the region.

However, for detectors that use IoU threshold-based target

assignment, the object-of-interest for a region is not naturally

defined, because the proposals from a region are dynamically

associated with nearby ground-truth OBBs. In this case, we

take the mode orientation in the region. The idea is that

if most foreground points in the region are from the same

object, it is likely that the proposals are also mostly for

that object. Thus we can capture its orientation by a mode

selection. For regions that do not have a significant mode,

the proposals are likely to be low-quality and get filtered out,

or simply not be associated to any targets. Thus, they would

yield little negative effects on the outcomes.

4.4. Equivariant OBB generation

Given an object-frame region feature and its orientation,

our object-level equivariant OBB generation module yields

OBBs in the scene frame. This is divided into two steps.

First, we generate OBBs in the object frame by using the

original module. Then, we transform the OBBs back to the

scene frame using the region orientation. Specifically, given

the center (or corner points) cinv ∈ R
3 and the orientation

θinv of an object-frame OBB, we transform the box to scene

frame by replacing the orientation with θ = θinv − h̃ and

replacing the center with c = R−1cinv whereR is the rotation

matrix for h̃.

5. Experiments

In this section we apply our EON design to modern de-

tection models with various backbones and we show experi-

mental results on several indoor and outdoor benchmarks.

5.1. Experiment setup

Datasets. We adopt ScanNetV2 dataset [6] and SUN RGB-

D dataset [23] for indoor 3D detection. ScanNetV2 provides

1513 indoor scans with semantic segmentation labels. For

benchmarking oriented object detection, we use the detec-

tion labels from Scan2CAD [1] which provides CAD models

with oriented bounding boxes aligned with common objects

in the scans. We report performances on 9 categories which

have more than 200 instances and put all others into the

“Others” class. SUN RGB-D dataset has around 5K RGB-D

images annotated with amodal oriented boxes for 37 object

classes. We follow the same setup as VoteNet [17] and report

performances on 10 classes for SUN RGB-D. For outdoor

3D detection, we use KITTI [9] for evaluation, which con-

tains 7481 training samples and 7518 testing samples. We

follow the original evaluation protocol in KITTI.

Implementation details. We implement our EON design for

three 3D detectors including VoteNet [17] and a transformer-

based state-of-the-art method from Liu et.al. [14] for indoor

scenes, and PointRCNN [21] for outdoor scenes. We plug in

our proposed modules to replace their original modules, and

denote the resultant models as EON-VoteNet, EON-Liu et.al.,

and EON-PointRCNN. As for the seed feature extraction

module, all three methods originally use PointNet++ [19]

as their backbones. To demonstrate the applicability of our

EON to different backbones, we use KPConv [24] as the

backbone for VoteNet. We show the KPConv backbone

architecture in the supplement. Then we replace the original

seed feature extraction modules as described in Sec. 4.2. To



predict orientation for each equivariant seed feature, we use

a two-layer MLP for the head Ho. Since most objects are

subject to gravity constraints, we only consider one degree

of freedom (i.e., yaw) in the rotation group. We discretize

it into 4 bins for classification. To predict the foreground

segmentation, we use another two-layer MLP head for binary

classification.

The region aggregation module of VoteNet consists of a

voting stage which generates a spatial translation (“vote”) for

each seed point, a grouping stage using the updated spatial

coordinates, and a summarization stage to generate region

features. Since the grouping happens in the scene frame, we

inversely rotate the vote to the scene frame for the grouping.

The region orientation h̃ is determined by mode selection.

PointRCNN’s region aggregation module is an RoI pooling

where the object-of-interest is well defined. Its orientation h̃
uses the seed point that generates the RoI.

For all other settings such as the detection heads, input

resolution, preprocessing, hyper-parameters and training con-

figurations, we follow the implementations provided by the

authors†. We also use the same settings for our EON for fair

comparisons.

5.2. Indoor datasets

For 3D detection on indoor scenes, we compare our EON-

VoteNet to VoteNet on the ScanNetV2 and the SUN RGB-D

datasets.

ScanNetV2. For ScanNetV2 dataset, we show comparison

results on validation set in Table 1. As we can see, EON

outperforms the vanilla methods significantly, with a boost

in mAP by 6.3% for VoteNet and 9.0% for the transformer-

based Liu et.al. [14]. Notably, the performance gains are

particularly significant for objects that are “thin” from the top

view, such as display (+13.0%/+37.0% AP for VoteNet/Liu

et.al.). We suppose a major reason be that for these ob-

jects, the accurate orientation prediction is crucial, and thus

object-level equivariance design kicks in to help. Signifi-

cant boost is also obtained for small objects like trash-bin

(+17.9%/7.4% AP), which might be due to more accurate

vote orientations brought by object-level equivariance, lead-

ing to better pinning-down of small objects’ center positions.

SUN RGB-D. We also validate the effectiveness of our EON

on SUN RGB-D dataset, in which the single-view derived

point clouds are highly incomplete compared to the scans

in ScanNetV2. SUN RGB-D is more difficult as the partial

point clouds pose challenges not only on detection itself,

but also on orientation estimation. We show comparison

results on SUN RGB-D dataset in Table 2. We draw the

same observation as on ScanNetV2 that our EON-VoteNet

†VoteNet: github.com/facebookresearch/votenet, com-

mit: 2f6d6d3. Liu et.al.: https://github.com/zeliu98/Group-

Free-3D, commit: ef8b7bb. PointRCNN: github.com/open-

mmlab/OpenPCDet, version: 0.3.0, commit: c9d31d3.

outperforms VoteNet on all categories, leading to a boost in

mAP by 3.1%, despite the difficulty in orientation prediction.

Similarly, the performance gain is more significant for thin

object categories such as bookshelf (+8.9% AP) and bathtub

(+10.2% AP).

5.3. Outdoor dataset

For outdoor scenes, we evaluate our EON on KITTI 3D

object detection dataset by equipping PointRCNN with our

module designs, denoted as EON-PointRCNN. We show

the comparison on the KITTI validation set in Table 3. We

observe that our EON-PointRCNN outperforms the vanilla

model at all difficulty levels for Car and Pedestrian. The

performance boost is most significant on the pedestrian cate-

gory, where the AP gains are 3.02%, 5.15%, 2.90% for Easy,

Moderate, and Hard subsets, respectively. We conjecture that

this might be because the object-level rotation equivariance

is more useful when object orientations have a large varia-

tion, which is the case for indoor objects and pedestrians in

outdoor scenes. Thus, our EON design has significant per-

formance gains on indoor scenes and pedestrians on KITTI.

As for cars and cyclists, they are mostly axis-aligned with

less orientation variations. Thus, the performance gains are

less significant.

Notice that EON-PoinRCNN and EON-VoteNet adopt dif-

ferent backbone networks (PointNet++ and KPConv, respec-

tively). The consistent improvements across indoor/outdoor

scenes and different models validate the wide applicability

of our EON as a modular design.

5.4. Analysis

To provide some insights on how our EON helps in 3D

detection, we conduct several analysis experiments on Scan-

NetV2 dataset. We show further analysis on using category-

level pose estimation, orientation discretization, suspension

versus pooling, object rotation augmentation, and time and

numbers of parameters in the supplementary material.

Where to suspend equivariance suspension. Our core

design in EON is suspending equivariance at the region ag-

gregation stage to extract object-level equivariant features.

We evaluate our design on VoteNet by suspending equivari-

ance at earlier or latter stages, including suspending at the

second last backbone layer (denoted as “PreEON”) and at the

proposal generation stage (“FullEON”). “FullEON” keeps

equivariant computation across the whole feature extraction,

thus it is using full scene-level equivariance. We show the

results in Table 4.

We draw two major observations. First, our EON com-

pares much favorably with using full scene-level equivari-

ance. This shows the rotation equivariance to full visual

content does not help much in object detection, as the target

object can rotate arbitrarily when the rest of the scene context

remains unchanged. Second, our design to suspend equiv-
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Figure 3. Qualitative results on ScanNetV2 dataset. Each row depicts a typical case where the object-level equivariance design shows

promising improvements. Color information is not used for models, but only for visualization.

Method Trash-bin Display Others Bathtub Chair Cabinet Bookshelf Table Sofa Bed mAP

VoteNet [17] 27.4 22.8 11.6 40.1 84.1 47.5 45.3 72.3 67.4 85.4 50.4

EON-VoteNet (ours) 45.3 35.8 16.4 49.1 86.3 51.9 51.0 75.0 68.7 87.2 56.7

Liu et.al. [14] 51.1 16.5 24.2 38.8 88.0 49.2 33.1 69.7 63.7 89.7 52.4

EON-Liu et.al. (ours) 58.5 53.3 27.6 45.8 84.9 57.1 68.3 82.8 45.8 89.4 61.4

Table 1. Performance (AP25) comparison on ScanNet V2 validation set using Scan2CAD detection labels.

ariant computation at region aggregation yields best results,

supporting our assumption that input to region aggregation

roughly corresponds to an object level.

Qualitative comparisons. We show qualitative examples

in Figure 3 to depict several typical cases where our EON

shows great effectiveness.

In the first column, first row of Figure 3, we show that

our EON-VoteNet is able to detect objects with unusual ori-

entations. In the shown example, the black chairs are facing

the wall, which is rare. Without having object-level equivari-



Method Nightstand Toilet Chair Bathtub Dresser Desk Table Bookshelf Sofa Bed mAP

VoteNet [17] 58.4 89.9 74.5 68.8 34.6 26.1 48.5 22.3 65.9 84.9 57.4

EON-VoteNet (ours) 60.0 91.6 75.9 79.0 35.4 27.2 49.6 31.2 68.1 86.7 60.5

Table 2. Comparison of VoteNet with and without our EON design on SUN RGB-D dataset. Performances are measure by AP25.

Method
Car (IoU=0.7) Pedestrian (IoU=0.5) Cyclist (IoU=0.5)

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PointRCNN [21] 88.39 78.29 77.47 64.12 55.93 51.35 87.81 72.71 67.25

EON-PointRCNN (ours) 89.11 78.61 77.55 67.14 61.08 54.25 87.33 73.36 67.41

Table 3. Results on KITTI 3D detection validation set. IoU threshold for AP is 0.7 for Car and 0.5 for Pedestrian/Cyclist, respectively.

Method mAP@0.25 mAP@0.5

PreEON-VoteNet 54.5 34.1

FullEON-VoteNet 52.7 26.9

EON-VoteNet (ours) 56.7 36.5

Table 4. Evaluation on where to suspend equivariance on Scan-

NetV2 dataset with Scan2CAD detection labels.

ance by design, VoteNet misses these chairs. Nevertheless,

equipped with EON, it successfully detects a chair with a

very unusual facing. Notice that EON-VoteNet is able to

detect a bookshelf that is also in a less common orientation.

In the second columns we show results on a cluttered

scene where many similar chairs are packed together with

minor orientation differences among them. While the base-

line VoteNet can detect most of the chairs, their shapes are

distorted. This might be partially due to the different ori-

entations among the chair instances. In contrast, our EON-

VoteNet produces a nearly identical shape across the oriented

chairs, showing the promise to explicitly handle object rota-

tion symmetry. In the third column, we show another clut-

tered scene with 6 similar desks next to each other. Again,

our EON-VoteNet is able to detect nearly equal-shaped desks,

while VoteNet yields shape-varying boxes.

In the fourth column and the first two columns in the

second row, we show the detection of thin objects (including

displays and bookshelves) where EON-VoteNet improves

VoteNet most significantly. This aligns with our quantitative

observations in Tables 1 and 2. In the last two columns in

the second row, we show that our EON-VoteNet is robust to

detect small objects such as trash-bins.

Oracle case exploration. To explore the extent to which

our EON can potentially bring improvements to the baseline

methods, we show an oracle case exploration in Table 5. In

the oracle models, we use the ground-truth orientation la-

bels (discretized into 4 bins) and foreground segmentation in

both training and testing. This oracle model shows a strong

improvement of +19.4%/+18.7% for AP25 and AP50 over

the baseline VoteNet. When using only ground-truth orienta-

tion labels or segmentation, the performance boosts are also

promising. Thus, we might expect further improvements

Method mAP@0.25 mAP@0.5

VoteNet [17] 50.4 28.3

EON-VoteNet (ours) 56.7 36.5

Oracle (ori.) 64.0 42.9

Oracle (seg.) 65.3 40.6

Oracle (ori. and seg.) 69.8 47.0

Table 5. Comparison to oracle model on ScanNetV2 dataset with

Scan2CAD detection labels.

along with better orientation prediction and segmentation

prediction, possibly from external domain-tailored models.

6. Conclusion

In this work we explore how to leverage object-level ro-

tation equivariance for 3D object detection. To this end,

we propose Equivariant Object detection Network (EON)

with our core design to suspend rotation equivariance at an

intermediate stage in the feature learning backbone. We

apply our design to various backbones and models for both

indoor and outdoor scenes. Our experiments show that EON

can consistently improve the state-of-the-art detectors, indi-

cating the effectiveness of explicitly modeling object-level

equivariance in detection models.

Limitations. One major limitation is the jointly learned

orientation/segmentation predictions which might be less

accurate than being treated separately. As suggested by the

oracle experiments, while our current implementation can

already benefit from the object-level equivariance, it is far

from reaching the potential maximum gains. Nevertheless,

our results suggest the promise of leveraging object-level

equivariance for 3D detection. Another limitation is that we

assume 1D rotation along the gravity axis. While extending

to 3D rotation is straightforward, further exploring it might

be beneficial for scenarios such as robotic manipulation.
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