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Motivation

» |n Neural Architecture Search (NAS), Performance Evaluation is costly.
» Task complexity, training dataset size (#samples and resolution), etc.

» Existing methods to reduce resource bottleneck include:
» Neural predictors, Supernets, Zero-Cost Proxies (transferable), etc.

» [ssues: currently, NAS mainly targets image classification performance

Predictors mainly target common NAS benchmark tasks, e.g., NAS-Bench-101

» Trained by CIFAR-10/100, ImageNet classification accuracies
» Cost of enabling NAS performance evaluation for a new task is oo high
However, in practice CV tasks/datasets are specific and diverse

» Segmentation, Detection, Human Pose, Super Resolution...

» Task networks have more complex network topological features

» Use different datasets: MS-COCO [Lin et al. 2014], MPII [Andriluka et al. 2014
S i
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Contributions

We propose AlO-P, or All-In-One Predictors, for multi-task NAS evaluation

® Pretfrain Predictor on NAS Benchmarks (classification) but generalize NAS
evaluation to specific CV tasks used in reality

» Apply K-Adapters [Wang et al. 2021] to inject domain-specific knowledge
into the pretraining.

Propose a pseudo-labeling scheme to generate K-Adapter fraining samples.

Incorporate scaling techniques and FLOPs to augment predictor labels.

» Transfer prediction to task-specific metric beyond accuracy or mAP.
Verify AlO-P on predicting NN performance on many CV tasks

» Pose Estimation, Object Detection, Instance/Semantic/Panoptic Segmentation.

» Demonstrate transferability to different network families

= Applying to NAS, optimized a proprietary Facial Recognition (FR) model.
Open-source code and data: https://github.com/Ascend-Research/AlO-P
% &
- -

HUAWEI HIsiLicon



https://github.com/Ascend-Research/AIO-P

Task-Aware Network Representation

» We can use the same CV backbone

PR et Blocks]\ /"~ Classifier ) network for different tasks:
A j_ : - Head .
& = - » Nefwork body is a feature extractor.
—> £ @
—> —> —» o —» 2 . .
o 5 = | ke MobileNets and ResNets.
. ———t Network head is task-specif
» wor | - :
D (o) etwork head is task-specific
Jé > Head [ = Pooling + Linear for Classification.
N ol " | = 3 . . .
N 6] N NN < » Deconvolution for Pose Estimation.
R50 Body ) ! = =Y » R-CNN for Object Detection.

®» Represent neural network using a
Computational Graph (CG).

» Defined by a forward-pass in
TensorFlow (based on .pb file)

» Cross-family representatability
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Predictor Prefraining + Knowledge Infusion

®» Pretrain a simple GNN predictor.

» Pre-trained on classification NAS
benchmarks (e.g., NAS-Bench-101)

» This is the “predictor backbone”.

Pre-Train GNN on classification CGs
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K -Adapter training on Pose Estimation

» Freezing weights of backbone
» |ncorporate label scaling
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K-Adapters for Knowledge Infusion

Freeze weights of classification GNN

» We can add multiple K- @]
O GNN GNN GNN GNN Graph
Adapfters to the same 5| [" Layer | | Layer LayerHLayerM o Mo
predictor backbone. | S S e o g s
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» Trained independently with - i\__'f[rﬁf_%qafFft_?f_'j?t_Hf’_efj _____________________________ ) U U
separate final MLP layers.

GNN GNN GNN GNN Graph
Layer Layer Layer Layer Agg.

» Can inject knowledge
from desired tasks/network
families into the predictor.

K-Adapter training on Object Detection
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®» Downstream prediction
combines all K-Adapters.

» Average their predictions.
Apply label-scaling.

®» Fine-tune on a small number
of task-specific network
samples.

Applying fo Downstream Tasks
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Pseudo-Labeling: to obtain K-Adaptor Pretraining Samples

» We need CG samples labeled on a task to pretrain K-Adapters.
» Fully evaluating an individual network on a task can take hours.
» We train a shared task head that generalizes to the entire design space.

Input Many pre-trained body
Image Lfeature extractors

-p, Task-
— 7 Latent . (33) . &
— = u(z) + o(z) o N(0,1) Specific

> Body

Mean/S.Dev Sampling

e.g. pretrained OFA networks

®» Pair the shared head with an individual body to pseudo-label the
network’s performance on this fask

®» Fine-tune body + shared head on the task dataset for a few minutes
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Label Scaling

» Different CV tasks have different performance metrics

» Classification accuracy, Percentage of Correct Keypoints (PCK), mean
Average Precision (mAP), mean Intersection over Union (mloU), Panoptic
Quality (PQ), etc.

e distributions and value ranges of these meftrics may vary

How to overcome this when using K-Adapters for knowledge infusion?

Performance Ranges for Different Tasks

Object Semantic Image
Detection Segmentation Classification
"Really bad classification..?" € <€
0.00%< >100.00%
> < <€ Apsurdl d tation..?"
Instance Panoptic Human Pose’ o Y 9ocd segmentation..
Segmentation Segmentation Estimation
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Label Scaling

®» Simple solution: Do not predict absolute values of performance metrics.

» Use standardization to generate a unitless measure of performance.

» Calculate mean/variance using 20 held-out samples.

Image
Classification
Human Pose
Estimation
Object
Detection

"Badll I /S f llGOOdll
. nstance/Semantic/Panoptic
Anythlng Segmentation

Anythin
-1 .00< _ g> 1.00

Standardize Performance Targets

Furthermore, normalize original labels by FLOPs using the analytical equation:
yr =y - (Logyo(F +1) +1)74,

» [ OPs are a measure of model and dataset size.

» Has a positive correlation with performance.

®» Fasy to compute. g'é @
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Experimental Setup

1. AlO-P Task Predictor Performance:

» Train AIO-P with 2 K-Adapters, then apply to a wide range of downstream tasks.

» Measure ranking correlation (SRCC) and Mean Absolute Error (MAE).

» Fvaluate under zero-shot transfer and small fine-tuning (20 samples) contexts.
omparison with other generalizable NAS performance evaluation methods:
» /ero-Cost Proxies [Abdelfattah et al. 2021]

3. Generalization to Different Unseen Model Zoos:

» EfficientNets, Inception Nets, DeeplLab Sematic Segmentation [Chen et al. 2017], efc.
4. Application to NAS:

» Successfully improved a proprietary Facial Recognition (FR) model.
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Spearman Ranking Correlation (SRCC)

| ProxylessNAS |
Task | GNN +Eqs. 4 & 5 AIO-P |
LSP | 0593 £0.02 0.561 £0.05 0.698 + 0.01
MPII | 0.711 £ 0.01 0.767 = 0.02  0.753 + 0.01
OD 0.558 =2 0.06 0471 = 0.11 0.781 + 0.03
IS 0.599 £0.07 0211 =£0.10  0.831 £ 0.02
SS 0.487 + 0.03 0.262 +0.18  0.735 + 0.02
PS 0.562 = 0.00 0.119 +£0.12  0.732 + 0.03

| ProxylessNAS |
Task | GNN +Eqgs. 4 & 5 AIO-P |
LSP | 0.610 +0.02 0.583+ 0.07 0.668+ 0.03
MPII | 0.770 £ 0.02 0.803+ 0.02 0.7734 0.02
OD 0.304 +£ 0.46 0.589-+ 0.06 0.800+ 0.05
IS 0.277 £ 0.70 0.330+ 0.14 0.894+ 0.03
SS 0.195 +£0.33 0.562+ 0.11 0.849+ 0.03
PS 0.741 £ 0.04 0.297+£ 0.08 0.868+ 0.04

Lero
Shot
Transfer

Fine
Tune
(with 20

samples)

Verity AlIO-P's Ability on OFA NAS Benchmarks

Ground-truth test networks: OFA-ProxylessNAS/MBv3/ResNet50 networks + a task head fully trained on a downstream task dataset

Baseline: backbone GNN pretrained on NB101 networks, (Eq. 4/5: standardization/FLOPs transform for label scaling).

Mean Absolute Error (MAE)

AlO-P: GNN on NB101 + K-Adapters on Pose Estimation and Object Detection (pseudo-labeling via OFA bodies+shared head)

| ProxylessNAS |
Task |  GNN +Eqs. 4 & 5 AIO-P |
LSP | 27274+ 0.39% 0.72 £0.14% 0.70 + 0.23%
MPIT | 8.10+0.38% 034 £0.07% 0.424+0.13%
OD 5953 +£041% 1.15£0.46% 0.63 +0.09%
IS 62.00 +-034% 093 +£0.18% 0.52 +0.14%
SS 53.07+037% 071 £0.22%  0.50 £+ 0.06%
PS 56.19 £ 0.35% 0.76 £0.07%  0.50 £+ 0.10%

| ProxylessNAS
Task | GNN +Eqs. 4 & 5 AIO-P |
LSP | 0.55+0.39% 056 +£0.04% 0.484+ 0.02%
MPII | 0.43 +0.22% 0.28 +=0.02%  0.26+ 0.02%
OD | 090+0.16% 0.74 £0.07% 0.53+ 0.04%
IS 0.72 £ 0.15% 0.75+0.09% 0.33+ 0.03%
SS 0.68 +0.12% 0.58 +0.04%  0.33+ 0.03%
PS 0.53+1.00% 0.62+0.04% 0.33+ 0.04%
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Comparing to Other
Transferable Performance Evaluation Methods in NAS

» Consider several Zero-Cost Proxies and FLOPs.
» Measure SRCC and compare.

» /CP performance is inconsistent per search space, sometimes negative.

» A|O-P achieves positive SRCC above 0.65 for all three search spaces even under

ero-shot transfer
» Can further enhance performance with small-sample fine-tuning.

Space | Synflow | Jacov | Fisher | Gradient Norm | Snip | FLOPs | AIO-P | AIO-PFT

PN-SS 0.022 £ 0.07 | -0.023 £0.13 | 0.050 &+ 0.07 0.141 4+ 0.06 -0.082 £ 0.07 | 0.608 £ 0.01 | 0.735 +0.02 | 0.849 £ 0.03
MBvV3-SS -0.309 £ 0.07 | 0.042 +0.08 | 0.022 4 0.06 0.040 £ 0.06 0.188 £ 0.04 | 0.445£0.02 | 0.689 +0.02 | 0.822 + 0.03
R50-SS -0.255 £ 0.09 | 0.141 = 0.10 | 0.126 + 0.059 0.354 £+ 0.08 0.036 £ 0.07 | 0.661 £0.02 | 0.660 + 0.02 | 0.677 £ 0.03

Paper Tab. 5: Comparison to Zero-Cost Proxies
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Transferabillity to Different Types of Classical Model Zoos

What is a ‘model zoo'?

» Handful of task networks not part of @~ Model Zoo | #Archs | AIO-Pw/oEq.5 |  AIO-P
NAS Benchmark or search space. DeepLab-ADE20k 5 0.127 +0.255 | 0.991 + 0.016
. DeeplLab-Pascal 6 0.392 £ 0.088 0.939 + 0.035
= F.g., EfficientNet-{B0-B7} models. DeepLab-Cityscapes 8 0.572 +0.031 | 0.925 + 0.024
» E.g., Inception-{v1-v4} Slim-ResNets 6 -0.577 £ 0.183 | 0.920 + 0.106
. Slim-Inception 5 -0.700 + 0.316 | 0.980 =+ 0.040
redict performance of these out-of-  Slim-MobileNets 5 -0.500 £ 0.000 | 0.400 £ 0.535
Slim-EfficientNets 8 1.000 + 0.000 | 1.000 -+ 0.000

distribution networks.

AlO-P achieves SRCC > 0.9 on DeeplLab Paper Tab. 12: SRCC of AIO-P on Model Z0os.
Semantic Segmentation.

» | everage Eqg. 5, FLOPs transform.
Perfect SRCC=1.0 on EfficientNets.
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| Full Simple | Lighted Dark | FLOPs
Base Model Pr 96.3% 98.7% 97.9% 96.5% | 563M
AIO-P Search Pr | 96.1% 98.7% 979%  96.7% | 486M
Base Model Rc 91.9% 98.3% 96.8%  92.6% | 563M
AIO-P SearchRc | 91.1% 98.2% 96.6%  93.2% | 486M

Pdper Tab. 13: Optimizing FR to preserve

Precision (Pr) and Recall (Rc) while
reducing FLOPs.

Applying AlO-P to NAS: a reality check

= Grand goal of pretraining AIO-P

= Fast and low-cost NAS evaluation on
any network type and for any task

= Pqir AIO-P with a search algorithm.

» Optimized a proprietary mobile Facial
Recognition (FR) network.

» Aim to preserve performance while
making the model light-weight.

» Reduced FLOPs by over 13% while still
maintaining precision and recall.
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Conclusion

Propose AIO-P, or All-In-One Predictors for tfransferrable task performance
prediction in NAS.

® |nject knowledge from different tasks info a GNN predictor using K-Adapters.
» Develop a pseudo-labeling scheme to generate K-Adapter training data.
Incorporate label scaling to learn a unitless measure of performance.
» [For dealing with diverse tasks with different metric ranges, e.g., mAP vs. PCK.

» Evaluate the performance of AlIO-P in several contexts:
» Task-transferability tests measuring SRCC and MAE.
» Compared to Zero-Cost Proxies.
» Classification and Semantic Segmentation Model Zoos.

» Application to NAS: Optimizing proprietary mobile networks.
=» Open-source our code and data to advance the field. "
[
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