AIO-P: Expanding Neural Performance Predictors Beyond Image Classification

Keith G. Mills¹, Di Niu¹, Mohammad Salameh², Weichen Qiu¹, Fred X. Han², Puyuan Liu², Jialin Zhang³, Wei Lu² and Shangling Jui³

¹University of Alberta

²Huawei Technologies Canada Co., Ltd.

³Huawei Kirin Solution, Shanghai, China

Motivation

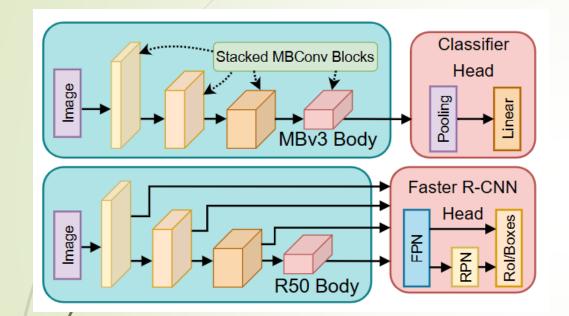
- In Neural Architecture Search (NAS), Performance Evaluation is costly.
 - Task complexity, training dataset size (#samples and resolution), etc.
- Existing methods to reduce resource bottleneck include:
 - Neural predictors, Supernets, Zero-Cost Proxies (transferable), etc.
- Issues: currently, NAS mainly targets image classification performance
 - Predictors mainly target common NAS benchmark tasks, e.g., NAS-Bench-101
 - Trained by CIFAR-10/100, ImageNet classification accuracies
 - Cost of enabling NAS performance evaluation for a new task is too high
- However, in practice CV tasks/datasets are specific and diverse
 - Segmentation, Detection, Human Pose, Super Resolution...
 - Task networks have more complex network topological features
 - Use different datasets: MS-COCO [Lin et al. 2014], MPII [Andriluka et al. 2014].

Contributions

We propose AIO-P, or All-In-One Predictors, for multi-task NAS evaluation

- Pretrain Predictor on NAS Benchmarks (classification) but generalize NAS evaluation to specific CV tasks used in reality
- Apply K-Adapters [Wang et al. 2021] to inject domain-specific knowledge into the pretraining.
- Propose a pseudo-labeling scheme to generate K-Adapter training samples.
- Incorporate scaling techniques and FLOPs to augment predictor labels.
 - Transfer prediction to task-specific metric beyond accuracy or mAP.
- Verify AIO-P on predicting NN performance on many CV tasks
 - Pose Estimation, Object Detection, Instance/Semantic/Panoptic Segmentation.
 - Demonstrate transferability to different network families
 - Applying to NAS, optimized a proprietary Facial Recognition (FR) model.
- Open-source code and data: <u>https://github.com/Ascend-Research/AIO-P</u>

Task-Aware Network Representation



SHERSITY OF

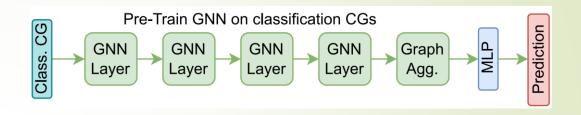
- We can use the same CV backbone network for different tasks:
 - Network body is a feature extractor.
 - Like MobileNets and ResNets.
 - Network head is task-specific.
 - Pooling + Linear for Classification.
 - Deconvolution for Pose Estimation.
 - R-CNN for Object Detection.
- Represent neural network using a Computational Graph (CG).
 - Defined by a forward-pass in TensorFlow (based on .pb file)
 - Cross-family representatability

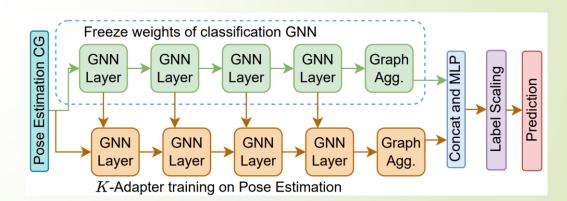
Predictor Pretraining + Knowledge Infusion

Pretrain a simple GNN predictor.

- Pre-trained on classification NAS benchmarks (e.g., NAS-Bench-101)
- This is the "predictor backbone".
- Append a K-Adapter to the existing "predictor backbone"
 - Train K-Adapter on a set of CGs labeled for a new task's performance
 - Freezing weights of backbone
 - Incorporate label scaling

JERSITY OF

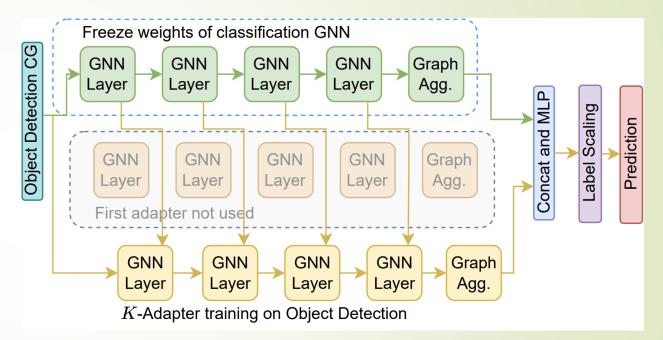




K-Adapters for Knowledge Infusion

- We can add multiple K-Adapters to the same predictor backbone.
 - One for each new task.
 - Trained independently with separate final MLP layers.
- Can inject knowledge from desired tasks/network families into the predictor.

ANRSITY OF

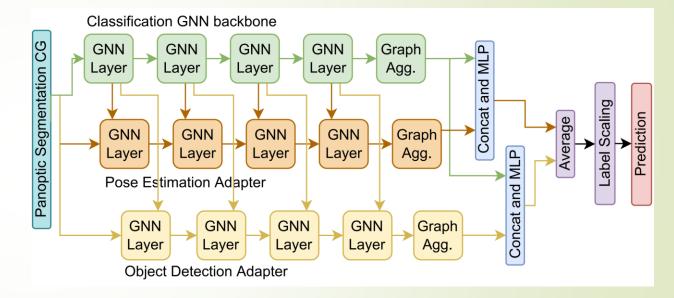


Applying to Downstream Tasks

- Downstream prediction combines all K-Adapters.
 - Average their predictions.
 - Apply label-scaling.

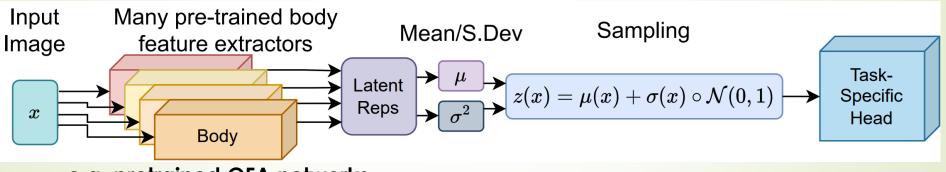
ARSITY OF

 Fine-tune on a small number of task-specific network samples.



Pseudo-Labeling: to obtain K-Adaptor Pretraining Samples

- We need CG samples labeled on a task to pretrain K-Adapters.
 - Fully evaluating an individual network on a task can take hours.
 - We train a shared task head that generalizes to the entire design space.



e.g. pretrained OFA networks

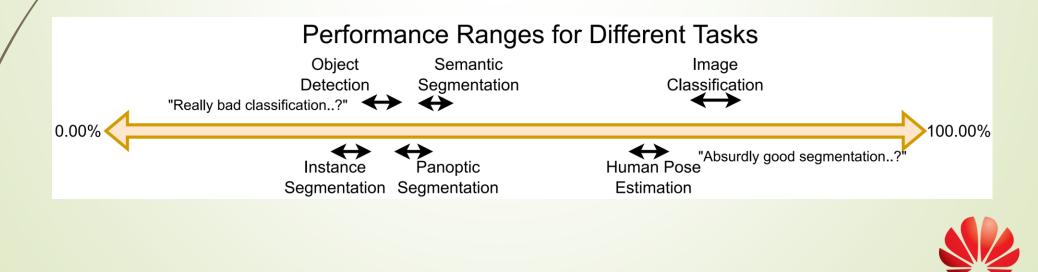
JERSITY O.

- Pair the shared head with an individual body to pseudo-label the network's performance on this task
 - Fine-tune body + shared head on the task dataset for a few minutes

Label Scaling

A HRSITY OF

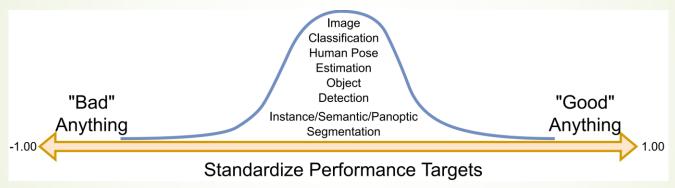
- Different CV tasks have different performance metrics
 - Classification accuracy, Percentage of Correct Keypoints (PCK), mean Average Precision (mAP), mean Intersection over Union (mIoU), Panoptic Quality (PQ), etc.
- The distributions and value ranges of these metrics may vary
- How to overcome this when using K-Adapters for knowledge infusion?



HUAWEI *HISILICON*

Label Scaling

- Simple solution: Do not predict absolute values of performance metrics.
 - Use standardization to generate a unitless measure of performance.
 - Calculate mean/variance using 20 held-out samples.



- Furthermore, normalize original labels by FLOPs using the analytical equation: $y_F = y \cdot (\text{Log}_{10}(F+1)+1)^{-1},$
 - FLOPs are a measure of model and dataset size.
 - Has a positive correlation with performance.
 - Easy to compute.

JERSITY OF

Experimental Setup

1. AIO-P Task Predictor Performance:

- Train AIO-P with 2 K-Adapters, then apply to a wide range of downstream tasks.
- Measure ranking correlation (SRCC) and Mean Absolute Error (MAE).
- Evaluate under zero-shot transfer and small fine-tuning (20 samples) contexts.

2. Comparison with other generalizable NAS performance evaluation methods:

- Zero-Cost Proxies [Abdelfattah et al. 2021]
- **3. Generalization to Different Unseen Model Zoos:**
 - EfficientNets, Inception Nets, DeepLab Sematic Segmentation [Chen et al. 2017], etc.

4. Application to NAS:

Successfully improved a proprietary Facial Recognition (FR) model.

Verify AIO-P's Ability on OFA NAS Benchmarks

Ground-truth test networks: OFA-ProxylessNAS/MBv3/ResNet50 networks + a task head fully trained on a downstream task dataset Baseline: backbone GNN pretrained on NB101 networks, (Eq. 4/5: standardization/FLOPs transform for label scaling). AIO-P: GNN on NB101 + K-Adapters on Pose Estimation and Object Detection (pseudo-labeling via OFA bodies+shared head)

Spearman Ranking Correlation (SRCC)

Mean Absolute	Error	(MAE)
---------------	-------	-------

		ProxylessNAS			Zero		ProxylessNAS		
	Task	GNN	+Eqs. 4 & 5	AIO-P	LOIO	Task	GNN	+Eqs. 4 & 5	AIO-P
	LSP MPII	$ \begin{vmatrix} 0.593 \pm 0.02 \\ 0.711 \pm 0.01 \end{vmatrix} $	$\begin{array}{c} 0.561 \pm 0.05 \\ \textbf{0.767} \pm 0.02 \end{array}$	$\begin{array}{c} \textbf{0.698} \pm 0.01 \\ 0.753 \pm 0.01 \end{array}$	Shot	LSP MPII	$\begin{array}{ } 27.27 \pm 0.39\% \\ 8.10 \pm 0.38\% \end{array}$	$\begin{array}{c} 0.72 \pm 0.14\% \\ \textbf{0.34} \pm 0.07\% \end{array}$	$\begin{array}{c} \textbf{0.70} \pm 0.23\% \\ 0.42 \pm 0.13\% \end{array}$
/	OD IS SS	$\begin{array}{c} 0.558 \pm 0.06 \\ 0.599 \pm 0.07 \\ 0.487 \pm 0.03 \end{array}$	$\begin{array}{c} 0.471 \pm 0.11 \\ 0.211 \pm 0.10 \\ 0.262 \pm 0.18 \end{array}$	$\begin{array}{c} \textbf{0.781} \pm 0.03 \\ \textbf{0.831} \pm 0.02 \\ \textbf{0.735} \pm 0.02 \end{array}$	Transfer	OD IS SS	$\begin{array}{c} 59.53 \pm 0.41\% \\ 62.00 \pm 0.34\% \\ 53.07 \pm 0.37\% \end{array}$	$\begin{array}{c} 1.15 \pm 0.46\% \\ 0.93 \pm 0.18\% \\ 0.71 \pm 0.22\% \end{array}$	$\begin{array}{c} \textbf{0.63} \pm 0.09\% \\ \textbf{0.52} \pm 0.14\% \\ \textbf{0.50} \pm 0.06\% \end{array}$
	PS	0.562 ± 0.00	0.119 ± 0.12	0.732 ± 0.03		PS	$56.19 \pm 0.35\%$	$0.76 \pm 0.07\%$	$0.50 \pm 0.10\%$
			ProxylessNAS		Fig.			ProxylessNAS	
	Task	 GNN	ProxylessNAS +Eqs. 4 & 5	AIO-P	Fine	Task	 GNN	ProxylessNAS +Eqs. 4 & 5	AIO-P
	Task LSP MPII OD IS SS		·	AIO-P 0.668± 0.03 0.773± 0.02 0.800± 0.05 0.894± 0.03 0.849± 0.03	Tune (with 20	LSP MPII OD IS	$ \begin{vmatrix} 0.55 \pm 0.39\% \\ 0.43 \pm 0.22\% \\ 0.90 \pm 0.16\% \\ 0.72 \pm 0.15\% \end{vmatrix} $	+Eqs. 4 & 5 $0.56 \pm 0.04\%$ $0.28 \pm 0.02\%$ $0.74 \pm 0.07\%$ $0.75 \pm 0.09\%$	$\begin{array}{c} \textbf{0.48} {\pm}~0.02\% \\ \textbf{0.26} {\pm}~0.02\% \\ \textbf{0.53} {\pm}~0.04\% \\ \textbf{0.33} {\pm}~0.03\% \end{array}$
	LSP MPII OD IS	$\begin{vmatrix} 0.610 \pm 0.02 \\ 0.770 \pm 0.02 \\ 0.304 \pm 0.46 \\ 0.277 \pm 0.70 \end{vmatrix}$	+Eqs. 4 & 5 0.583 ± 0.07 0.803 ± 0.02 0.589 ± 0.06 0.330 ± 0.14	$\begin{array}{c} \textbf{0.668} \pm \ 0.03 \\ 0.773 \pm \ 0.02 \\ \textbf{0.800} \pm \ 0.05 \\ \textbf{0.894} \pm \ 0.03 \end{array}$	Tune	LSP MPII OD	$\begin{vmatrix} 0.55 \pm 0.39\% \\ 0.43 \pm 0.22\% \\ 0.90 \pm 0.16\% \end{vmatrix}$	+Eqs. 4 & 5 $0.56 \pm 0.04\%$ $0.28 \pm 0.02\%$ $0.74 \pm 0.07\%$	$\begin{array}{c} \textbf{0.48} {\pm}~ 0.02\% \\ \textbf{0.26} {\pm}~ 0.02\% \\ \textbf{0.53} {\pm}~ 0.04\% \end{array}$

HUAWEI HISILICON

Comparing to Other

Transferable Performance Evaluation Methods in NAS

- Consider several Zero-Cost Proxies and FLOPs.
- Measure SRCC and compare.
 - ZCP performance is inconsistent per search space, sometimes negative.
- AIO-P achieves positive SRCC above 0.65 for all three search spaces even under zero-shot transfer

Can further enhance performance with small-sample fine-tuning.

Space	Synflow	Jacov	Fisher	Gradient Norm	Snip	FLOPs	AIO-P	AIO-P FT
PN-SS MBv3-SS R50-SS	0.022 ± 0.07 -0.309 ± 0.07 -0.255 ± 0.09	-0.023 ± 0.13 0.042 ± 0.08 0.141 ± 0.10	$\begin{array}{c} 0.050 \pm 0.07 \\ 0.022 \pm 0.06 \\ 0.126 \pm 0.059 \end{array}$	0.141 ± 0.06 0.040 ± 0.06 0.354 ± 0.08	$ \begin{array}{c} -0.082 \pm 0.07 \\ 0.188 \pm 0.04 \\ 0.036 \pm 0.07 \end{array} $	0.608 ± 0.01 0.445 ± 0.02 0.661 ± 0.02	$\begin{array}{c} 0.735 \pm 0.02 \\ 0.689 \pm 0.02 \\ 0.660 \pm 0.02 \end{array}$	$0.849 \pm 0.03 \\ 0.822 \pm 0.03 \\ 0.677 \pm 0.03$

Paper Tab. 5: Comparison to Zero-Cost Proxies

Transferability to Different Types of Classical Model Zoos

What is a 'model zoo'?

- Handful of task networks not part of a NAS Benchmark or search space.
 - E.g., EfficientNet-{B0-B7} models.
 - E.g., Inception-{v1-v4}
- Predict performance of these out-ofdistribution networks.
- AIO-P achieves SRCC > 0.9 on DeepLab Semantic Segmentation.
 - Leverage Eq. 5, FLOPs transform.
- Perfect SRCC=1.0 on EfficientNets.

Model Zoo	#Archs	AIO-P w/o Eq. 5	AIO-P
DeepLab-ADE20k	5	0.127 ± 0.255	0.991 ± 0.016
DeepLab-Pascal	6	0.392 ± 0.088	0.939 ± 0.035
DeepLab-Cityscapes	8	0.572 ± 0.031	0.925 ± 0.024
Slim-ResNets	6	-0.577 ± 0.183	0.920 ± 0.106
Slim-Inception	5	-0.700 ± 0.316	0.980 ± 0.040
Slim-MobileNets	5	-0.500 ± 0.000	0.400 ± 0.535
Slim-EfficientNets	8	$\textbf{1.000} \pm 0.000$	1.000 ± 0.000

Paper Tab. 12: SRCC of AIO-P on Model Zoos.

Applying AIO-P to NAS: a reality check

	Full	Simple	Lighted	Dark	FLOPs
Base Model Pr	96.3 %	98.7%	97.9%	96.5%	563M
AIO-P Search Pr	96.1%	98.7%	97.9%	96.7 %	486M
Base Model Rc	91.9 %	98.3 %	96.8 %	92.6%	563M
AIO-P Search Rc	91.1%	98.2%	96.6%	93.2 %	486M

Paper Tab. 13: Optimizing FR to preserve Precision (Pr) and Recall (Rc) while reducing FLOPs.

JERSITY OF

- Grand goal of pretraining AIO-P
 - Fast and low-cost NAS evaluation on any network type and for any task
- Pair AIO-P with a search algorithm.
 - Optimized a proprietary mobile Facial Recognition (FR) network.
 - Aim to preserve performance while making the model light-weight.
- Reduced FLOPs by over 13% while still maintaining precision and recall.

Conclusion

ERSITY OF

Propose AIO-P, or All-In-One Predictors for transferrable task performance prediction in NAS.

- Inject knowledge from different tasks into a GNN predictor using K-Adapters.
- Develop a pseudo-labeling scheme to generate K-Adapter training data.
- Incorporate label scaling to learn a unitless measure of performance.
 - For dealing with diverse tasks with different metric ranges, e.g., mAP vs. PCK.
- Evaluate the performance of AIO-P in several contexts:
 - Task-transferability tests measuring SRCC and MAE.
 - Compared to Zero-Cost Proxies.
 - Classification and Semantic Segmentation Model Zoos.
 - Application to NAS: Optimizing proprietary mobile networks.
- Open-source our code and data to advance the field.

References

ERSITY OF

- Lin et al., "Microsoft COCO: Common Objects in Context." In ECCV 2014.
- Andriluka et al., "2D Human Pose Estimation: New Benchmark and State of the Art Analysis.", CVPR 2014.
- Wang et al., "K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters." In ACL-IJCNLP 2021.
- Abdelfattah et al., "Zero-Cost Proxies for Lightweight NAS." In ICLR 2021.
- Chen et al., "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs." In IEEE TPAMI.

