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Motivation

 In Neural Architecture Search (NAS), Performance Evaluation is costly.

 Task complexity, training dataset size (#samples and resolution), etc.

 Existing methods to reduce resource bottleneck include:

 Neural predictors, Supernets, Zero-Cost Proxies (transferable), etc.

 Issues: currently, NAS mainly targets image classification performance 

 Predictors mainly target common NAS benchmark tasks, e.g., NAS-Bench-101

 Trained by CIFAR-10/100, ImageNet classification accuracies

 Cost of enabling NAS performance evaluation for a new task is too high

 However, in practice CV tasks/datasets are specific and diverse

 Segmentation, Detection, Human Pose, Super Resolution...

 Task networks have more complex network topological features

 Use different datasets: MS-COCO [Lin et al. 2014], MPII [Andriluka et al. 2014]. 



Contributions

We propose AIO-P, or All-In-One Predictors, for multi-task NAS evaluation

 Pretrain Predictor on NAS Benchmarks (classification) but generalize NAS 

evaluation to specific CV tasks used in reality

 Apply K-Adapters [Wang et al. 2021] to inject domain-specific knowledge 
into the pretraining.

 Propose a pseudo-labeling scheme to generate K-Adapter training samples.

 Incorporate scaling techniques and FLOPs to augment predictor labels.

 Transfer prediction to task-specific metric beyond accuracy or mAP.

 Verify AIO-P on predicting NN performance on many CV tasks

 Pose Estimation, Object Detection, Instance/Semantic/Panoptic Segmentation.

 Demonstrate transferability to different network families

 Applying to NAS, optimized a proprietary Facial Recognition (FR) model.

 Open-source code and data: https://github.com/Ascend-Research/AIO-P

https://github.com/Ascend-Research/AIO-P


Task-Aware Network Representation

 We can use the same CV backbone 

network for different tasks:

 Network body is a feature extractor.

 Like MobileNets and ResNets.

 Network head is task-specific.

 Pooling + Linear for Classification.

 Deconvolution for Pose Estimation.

 R-CNN for Object Detection.

 Represent neural network using a 
Computational Graph (CG).

 Defined by a forward-pass in 

TensorFlow (based on .pb file)

 Cross-family representatability



Predictor Pretraining + Knowledge Infusion

 Pretrain a simple GNN predictor.

 Pre-trained on classification NAS 

benchmarks (e.g., NAS-Bench-101)

 This is the “predictor backbone”.

 Append a K-Adapter to the 

existing “predictor backbone”

 Train K-Adapter on a set of CGs labeled 

for a new task’s performance

 Freezing weights of backbone

 Incorporate label scaling



K-Adapters for Knowledge Infusion

We can add multiple K-

Adapters to the same 

predictor backbone.

One for each new task.

 Trained independently with 

separate final MLP layers.

Can inject knowledge 

from desired tasks/network 

families into the predictor.



Applying to Downstream Tasks

 Downstream prediction 

combines all K-Adapters.

 Average their predictions.

 Apply label-scaling.

 Fine-tune on a small number 

of task-specific network 

samples.



Pseudo-Labeling: to obtain K-Adaptor Pretraining Samples 

 We need CG samples labeled on a task to pretrain K-Adapters.

 Fully evaluating an individual network on a task can take hours.

 We train a shared task head that generalizes to the entire design space.

 Pair the shared head with an individual body to pseudo-label the 

network’s performance on this task

 Fine-tune body + shared head on the task dataset for a few minutes

e.g. pretrained OFA networks



Label Scaling

 Different CV tasks have different performance metrics

 Classification accuracy, Percentage of Correct Keypoints (PCK), mean 

Average Precision (mAP), mean Intersection over Union (mIoU), Panoptic 

Quality (PQ), etc.

 The distributions and value ranges of these metrics may vary

 How to overcome this when using K-Adapters for knowledge infusion?



Label Scaling

 Simple solution: Do not predict absolute values of performance metrics.

 Use standardization to generate a unitless measure of performance.

Calculate mean/variance using 20 held-out samples.

 Furthermore, normalize original labels by FLOPs using the analytical equation:

 FLOPs are a measure of model and dataset size.

 Has a positive correlation with performance.

 Easy to compute.



Experimental Setup

1. AIO-P Task Predictor Performance:

 Train AIO-P with 2 K-Adapters, then apply to a wide range of downstream tasks.

 Measure ranking correlation (SRCC) and Mean Absolute Error (MAE).

 Evaluate under zero-shot transfer and small fine-tuning (20 samples) contexts.

2. Comparison with other generalizable NAS performance evaluation methods:

 Zero-Cost Proxies [Abdelfattah et al. 2021]

3. Generalization to Different Unseen Model Zoos:

 EfficientNets, Inception Nets, DeepLab Sematic Segmentation [Chen et al. 2017], etc.

4. Application to NAS:

 Successfully improved a proprietary Facial Recognition (FR) model.



Verify AIO-P’s Ability on OFA NAS Benchmarks

Spearman Ranking Correlation (SRCC)

 Ground-truth test networks: OFA-ProxylessNAS/MBv3/ResNet50 networks + a task head fully trained on a downstream task dataset

 Baseline: backbone GNN pretrained on NB101 networks, (Eq. 4/5: standardization/FLOPs transform for label scaling).

 AIO-P: GNN on NB101 + K-Adapters on Pose Estimation and Object Detection (pseudo-labeling via OFA bodies+shared head)

Mean Absolute Error (MAE)

Zero

Shot

Transfer

Fine

Tune

(with 20 

samples)



Comparing to Other 

Transferable Performance Evaluation Methods in NAS

 Consider several Zero-Cost Proxies and FLOPs.

 Measure SRCC and compare.

 ZCP performance is inconsistent per search space, sometimes negative.

 AIO-P achieves positive SRCC above 0.65 for all three search spaces even under 
zero-shot transfer

 Can further enhance performance with small-sample fine-tuning.

Paper Tab. 5: Comparison to Zero-Cost Proxies



Transferability to Different Types of Classical Model Zoos

 What is a ‘model zoo’?

 Handful of task networks not part of a 

NAS Benchmark or search space.

 E.g., EfficientNet-{B0-B7} models.

 E.g., Inception-{v1-v4}

 Predict performance of these out-of-

distribution networks.

 AIO-P achieves SRCC > 0.9 on DeepLab

Semantic Segmentation.

 Leverage Eq. 5, FLOPs transform.

 Perfect SRCC=1.0 on EfficientNets.

Paper Tab. 12: SRCC of AIO-P on Model Zoos.



Applying AIO-P to NAS: a reality check

 Grand goal of pretraining AIO-P

 Fast and low-cost NAS evaluation on 

any network type and for any task

 Pair AIO-P with a search algorithm.

 Optimized a proprietary mobile Facial 

Recognition (FR) network.

 Aim to preserve performance while 

making the model light-weight.

 Reduced FLOPs by over 13% while still 

maintaining precision and recall.

Paper Tab. 13: Optimizing FR to preserve 

Precision (Pr) and Recall (Rc) while 

reducing FLOPs.



Conclusion

Propose AIO-P, or All-In-One Predictors for transferrable task performance 

prediction in NAS.

 Inject knowledge from different tasks into a GNN predictor using K-Adapters.

 Develop a pseudo-labeling scheme to generate K-Adapter training data.

 Incorporate label scaling to learn a unitless measure of performance.

 For dealing with diverse tasks with different metric ranges, e.g., mAP vs. PCK.

 Evaluate the performance of AIO-P in several contexts:

 Task-transferability tests measuring SRCC and MAE.

 Compared to Zero-Cost Proxies.

 Classification and Semantic Segmentation Model Zoos.

 Application to NAS: Optimizing proprietary mobile networks.

 Open-source our code and data to advance the field.
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