Multiparent populations & R/qtl2

Karl Broman

Biostatistics and Medical Informatics University of Wisconsin – Madison

> kbroman.org/qt12 kbroman.org github.com/kbroman @kwbroman

QTL mapping

LOD score

Chromosome

2

Improving precision

- more recombinations
- more individuals
- more precise phenotypes
- lower-level phenotypes
 - transcripts, proteins, metabolites

Advanced intercross lines

Recombinant inbred lines

Recombinant inbred lines

Collaborative Cross/MAGIC

Heterogeneous stock

How many?

How many?

Which?

MAGIC is magic

- Genetic diversity
- High-precision mapping
- Predictable linkage disequilibrium
- Phenotype replicates to reduce individual variation
- Pool phenotypes from multiple labs, environments, treatments
- Genotype once

The goal

Identify QTG

- Power
- Mapping precision
- Estimate QTL allele frequencies

Principles

- Avoid population structure
- Tradeoff between power for *de novo* discovery and mapping precision
- More QTL to find \Rightarrow more QTL getting in the way?
- More QTL alleles \Rightarrow less information about each
- Are QTL alleles common or rare?

How many founders?

More

- More general use
- More QTL
- Greater precision
- Estimate allele frequencies
- Haplotype analysis in founders

Fewer

- Lower residual variance
- Greater power for a particular QTL?
- Better power for epistasis
- Rare alleles are less rare

Which founders?

- Diverse
- Interesting
- No breeding problems
- Balanced: star phylogeny

How much mixing?

- More mixing \Rightarrow Greater mapping precision
- ...but lower power for *de novo* mapping
- Potential for population structure, missing alleles
- Random mating or curated mating?
- Start with many random cross directions?

Selfing or DH?

- Inbreeding gives added recombination
- But not so much as at the mixing stage
- If doubled haploids are feasible, use them

Key analysis issues

How to deal with the multiple alleles?

- Full model (an effect for each allele)
- Diallelic QTL model
- Random effects model (like BLUP)

How to account for multiple QTL?

- Stepwise selection
- Bayesian model averaging
- Random effect for polygenes

Linear mixed models

$$y_{i} = \mu + \sum_{k} \beta_{k} q_{ik} + \epsilon_{i} \qquad \epsilon_{i} \sim \mathsf{N}(0, \sigma_{e}^{2})$$
$$= \mu + \eta_{i} + \epsilon_{i} \qquad \eta_{i} \sim \mathsf{N}(0, \sigma_{p}^{2})$$

$$\mathbf{COV}(\eta_i,\eta_j) = \sigma_p^2 \ (2k_{ij})$$

HS genome

HS genome scans

Full model

Why R/qtl2?

• High-dimensional data

genotypes and phenotypes

• More diverse crosses

especially multi-parent populations

• Linear mixed models

especially in HS/AIL

$R/qtl \rightarrow R/qtl2$

- See kbroman.org/qt12/assets/vignettes/rqt1_diff.html
- New data file formats
- New data structures
- New function names

 $read.cross() \rightarrow read_cross2()$

 $calc.genoprob() \rightarrow calc_genoprob()$

 $scanone() \rightarrow scan1()$

- Different treatment of intermediate calculations
- Use of individual IDs for aligning data
- Order of args when subsetting cross objects
 cross[chr,ind] → cross2[ind,chr]