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Modeling multiple QTL

• Reduce residual variation −→ increased power

• Separate linked QTL

• Identify interactions among QTL (epistasis)
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Epistasis in BC
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Epistasis in F2
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Example

Sugiyama et al. Genomics 71:70-77, 2001

250 male mice from the backcross (A × B) × B
Blood pressure after two weeks drinking water with 1% NaCl

Blood pressure

90 100 110 120 130
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Genetic map
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Genotype data
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LOD curves
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Estimated effects
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Modeling multiple QTL

• Reduce residual variation −→ increased power

• Separate linked QTL

• Identify interactions among QTL (epistasis)
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2-dim, 2-QTL scan

For all pairs of positions, fit the following models:

Hf : y = µ + β1q1 + β2q2 + γq1q2 + ε

Ha : y = µ + β1q1 + β2q2 + +ε

H1 : y = µ + β1q1 + ε

H0 : y = µ + ε

log10 likelihoods:

lf(s, t) la(s, t) l1(s) l0
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2-dim, 2-QTL scan

LOD scores:

LODf(s, t) = lf(s, t)− l0

LODa(s, t) = la(s, t)− l0

LODi(s, t) = lf(s, t)− la(s, t)

LOD1(s) = l1(s)− l0
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Results: LODi and LODf
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Results: LODi and LODf
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Summaries

Consider each pair of chromosomes, (j, k),
and let c(s) denote the chromosome for position s.

Mf(j, k) = max
c(s)=j,c(t)=k

LODf(s, t)

Ma(j, k) = max
c(s)=j,c(t)=k

LODa(s, t)

M1(j, k) = max
c(s)=j or k

LOD1(s)

Mi(j, k) = Mf(j, k)−Ma(j, k)

Mfv1(j, k) = Mf(j, k)−M1(j, k)

Mav1(j, k) = Ma(j, k)−M1(j, k)
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Results: LODi and LODfv1
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→ R

• scantwo()

• iplotScantwo() in R/qtlcharts
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Thresholds

A pair of chromosomes (j, k) is considered interesting if:

Mf(j, k) > Tf and { Mfv1(j, k) > Tfv1 or Mi(j, k) > Ti }

or

Ma(j, k) > Ta and Mav1(j, k) > Tav1

where the thresholds (Tf,Tfv1,Ti,Ta,Tav1) are determined by a permutation test
with a 2d scan
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2d scan summary

pos1f pos2f lod.full lod.fv1 lod.int

c1:c4 71.3 30.0 14.36 6.78 0.27

c6:c15 55.0 20.5 6.91 4.95 2.92

c1:c1 39.3 78.3 5.10 1.58 0.09

pos1a pos2a lod.add lod.av1

c1:c4 68.3 30.0 14.09 6.50

c6:c15 24.0 22.5 3.99 2.03

c1:c1 48.3 79.3 5.02 1.50
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[R/qtl]
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Estimated effects
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Chr 1: LODi and LODav1
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[R/qtl]
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Hypothesis testing?

• In the past, QTL mapping has been regarded as a task of hypothesis testing.

Is this a QTL?

Much of the focus has been on adjusting for test multiplicity.

• It is better to view the problem as one of model selection.

What set of QTL are well supported?
Is there evidence for QTL-QTL interactions?

Model = a defined set of QTL and QTL-QTL interactions
(and possibly covariates and QTL-covariate interactions).
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Model selection

• Class of models

– Additive models
– + pairwise interactions
– + higher-order interactions
– Regression trees

• Model fit

– Maximum likelihood
– Haley-Knott regression
– extended Haley-Knott
– Multiple imputation
– MCMC

• Model comparison

– Estimated prediction error
– AIC, BIC, penalized likelihood
– Bayes

–• Model search

– Forward selection
– Backward elimination
– Stepwise selection
– Randomized algorithms
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Target

• Selection of a model includes two types of errors:

– Miss important terms (QTLs or interactions)
– Include extraneous terms

• Unlike in hypothesis testing, we can make both errors at the same time.

• Identify as many correct terms as possible, while controlling the rate of inclusion
of extraneous terms.

26



What is special here?

• Goal: identify the major players

• A continuum of ordinal-valued covariates (the genetic loci)

• Association among the covariates

– Loci on different chromosomes are independent
– Along chromosome, a very simple (and known) correlation structure
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Exploratory methods

• Condition on a large-effect QTL

– Reduce residual variation
– Conditional LOD score:

LOD(q2 | q1) = log10

{
Pr(data | q1, q2)

Pr(data | q1)

}

• Piece together the putative QTL from the 1d and 2d scans

– Omit loci that no longer look interesting (drop-one-at-a-time analysis)
– Study potential interactions among the identified loci
– Scan for additional loci (perhaps allowing interactions), conditional on these
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Controlling for chr 4
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Drop-one-QTL table

df LOD %var

1@68.3 1 6.30 11.0

4@30.0 1 12.21 20.1

6@61.0 2 7.93 13.6

15@17.5 2 7.14 12.3

6@61.0 : 15@17.5 1 5.68 9.9
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→ R

• scanone() with marker as additive covariate

• makeqtl(), fitqtl(), addqtl(), refineqtl()
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Automation

• Assistance to non-specialists

• Understanding performance

• Many phenotypes
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Additive QTL

y = µ +
∑
βj qj + ε which βj 6= 0?

pLOD(γ) = LOD(γ)− T |γ|
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Additive QTL

y = µ +
∑
βj qj + ε which βj 6= 0?

pLOD(γ) = LOD(γ)− T |γ|

0 vs 1 QTL: pLOD(∅) = 0

pLOD({λ}) = LOD(λ)− T
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Additive QTL

y = µ +
∑
βj qj + ε which βj 6= 0?

pLOD(γ) = LOD(γ)− T |γ|

For the mouse genome:

T = 2.69 (BC) or 3.52 (F2)
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→ R

• stepwiseqtl()

• plotLodProfile()
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Epistasis

y = µ +
∑
βj qj +

∑
γjk qj qk + ε

pLOD(γ) = LOD(γ)− Tm |γ|m − Ti |γ|i

Tm = as chosen previously

Ti = ?
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Idea 1

Imagine there are two additive QTL and consider a 2d, 2-QTL scan.

Ti = 95th percentile of the distribution of

max LODf(s, t)−max LODa(s, t)
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Idea 1

Imagine there are two additive QTL and consider a 2d, 2-QTL scan.

Ti = 95th percentile of the distribution of

max LODf(s, t)−max LODa(s, t)

For the mouse genome:

Tm = 2.69 (BC) or 3.52 (F2)

TH
i = 2.62 (BC) or 4.28 (F2)
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Idea 2

Imagine there is one QTL and consider a 2d, 2-QTL scan.

Tm + Ti = 95th percentile of the distribution of

max LODf(s, t)−max LOD1(s)
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Idea 2

Imagine there is one QTL and consider a 2d, 2-QTL scan.

Tm + Ti = 95th percentile of the distribution of

max LODf(s, t)−max LOD1(s)

For the mouse genome:

Tm = 2.69 (BC) or 3.52 (F2)

TH
i = 2.62 (BC) or 4.28 (F2)

TL
i = 1.19 (BC) or 2.69 (F2)
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Models as graphs
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Results
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Add an interaction?

1 4

6 15

0.6

Tm = 2.69 Ti
H = 2.62 Ti

L = 1.19 Tm ++ Ti
H = 5.31 Tm ++ Ti

L = 3.88 2Tm = 5.38
42



Add an interaction?
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Add an interaction?
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Add an interaction?
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Add an interaction?
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Add another QTL?
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Add another QTL?
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Add another QTL?
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Add a pair of QTL?
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