Multiple QTL mapping

Karl Broman

Biostatistics and Medical Informatics University of Wisconsin – Madison

rqtl.org kbroman.org github.com/kbroman [@kwbroman](https://twitter.com/kwbroman)

Modeling multiple QTL

- Reduce residual variation $→$ increased power
- Separate linked QTL
- Identify interactions among QTL (epistasis)

Epistasis in BC

Epistasis in F_2

Example

Sugiyama et al. Genomics 71:70-77, 2001

250 male mice from the backcross $(A \times B) \times B$ Blood pressure after two weeks drinking water with 1% NaCl

Genetic map

Chromosome

Genotype data

Markers

Chromosome

Estimated effects

Modeling multiple QTL

- Reduce residual variation $→$ increased power
- Separate linked QTL
- Identify interactions among QTL (epistasis)

2-dim, 2-QTL scan

For all pairs of positions, fit the following models:

$$
H_f: y = \mu + \beta_1 q_1 + \beta_2 q_2 + \gamma q_1 q_2 + \epsilon
$$

\n
$$
H_a: y = \mu + \beta_1 q_1 + \beta_2 q_2 + \epsilon
$$

\n
$$
H_1: y = \mu + \beta_1 q_1 + \epsilon
$$

\n
$$
H_0: y = \mu + \epsilon
$$

 log_{10} likelihoods:

 $l_f(s,t)$ $l_a(s,t)$ $l_1(s)$ l_0

2-dim, 2-QTL scan

LOD scores:

 $\mathsf{LOD}_f(s,t) = I_f(s,t) - I_0$ $LD_a(s,t) = I_a(s,t) - I_0$ $\mathsf{LOD}_i(s,t) = I_f(s,t) - I_a(s,t)$ $LOD_1(s) = I_1(s) - I_0$

Results: LOD_i and LOD_f

Chromosome

Results: LOD_i and LOD_f

Chromosome

Summaries

Consider each pair of chromosomes, (j, k), and let $c(s)$ denote the chromosome for position s.

$$
M_f(j,k) = \max_{c(s)=j,c(t)=k} \text{LOD}_f(s,t)
$$
\n
$$
M_a(j,k) = \max_{c(s)=j,c(t)=k} \text{LOD}_a(s,t)
$$
\n
$$
M_1(j,k) = \max_{c(s)=j \text{ or } k} \text{LOD}_1(s)
$$
\n
$$
M_i(j,k) = M_f(j,k) - M_a(j,k)
$$
\n
$$
M_{fv1}(j,k) = M_f(j,k) - M_1(j,k)
$$
\n
$$
M_{av1}(j,k) = M_a(j,k) - M_1(j,k)
$$

Results: LOD_i and LOD_{fv1}

Chromosome

• scantwo()

• iplotScantwo() in [R/qtlcharts](http://kbroman.org/qtlcharts)

Thresholds

A pair of chromosomes (j, k) is considered interesting if:

 $M_f(j, k) > T_f$ and { $M_{fv1}(j, k) > T_{fv1}$ or $M_i(j, k) > T_i$ } or $M_a(j,k) > T_a$ and $M_{av1}(j,k) > T_{av1}$

where the thresholds $(\mathsf{T}_\mathsf{f},\mathsf{T}_\mathsf{fvl},\mathsf{T}_\mathsf{i},\mathsf{T}_\mathsf{a},\mathsf{T}_\mathsf{av1})$ are determined by a permutation test with a 2d scan

2d scan summary

[R/qtl]

Estimated effects

6 x 15

Chr 1: LOD_i and LOD_{av1}

Position (cM)

[R/qtl]

Hypothesis testing?

• In the past, QTL mapping has been regarded as a task of hypothesis testing.

Is this a QTL?

Much of the focus has been on adjusting for test multiplicity.

• It is better to view the problem as one of model selection.

What set of QTL are well supported? Is there evidence for QTL-QTL interactions?

 $Model = a$ defined set of QTL and QTL-QTL interactions (and possibly covariates and QTL-covariate interactions).

Model selection

• Class of models

- **–** Additive models
- **–** + pairwise interactions
- **–** + higher-order interactions
- **–** Regression trees

• Model fit

- **–** Maximum likelihood
- **–** Haley-Knott regression
- **–** extended Haley-Knott
- **–** Multiple imputation
- **–** MCMC

• Model comparison

- **–** Estimated prediction error
- **–** AIC, BIC, penalized likelihood
- **–** Bayes

•**–** Model search

- **–** Forward selection
- **–** Backward elimination
- **–** Stepwise selection
- **–** Randomized algorithms

- Selection of a model includes two types of errors:
	- **–** Miss important terms (QTLs or interactions)
	- **–** Include extraneous terms
- Unlike in hypothesis testing, we can make both errors at the same time.
- Identify as many correct terms as possible, while controlling the rate of inclusion of extraneous terms.

What is special here?

- Goal: identify the major players
- A continuum of ordinal-valued covariates (the genetic loci)
- Association among the covariates
	- **–** Loci on different chromosomes are independent
	- **–** Along chromosome, a very simple (and known) correlation structure

Exploratory methods

• Condition on a large-effect QTL

- **–** Reduce residual variation
- **–** Conditional LOD score:

 $\mathsf{LOD}(\mathsf{q}_2 \mid \mathsf{q}_1) = \mathsf{log}_{10} \left\{ \frac{\mathsf{Pr}(\mathsf{data} \mid \mathsf{q}_1, \mathsf{q}_2)}{\mathsf{Pr}(\mathsf{data} \mid \mathsf{q}_1)} \right\}$ $Pr(data | q_1)$ \mathcal{L}

- Piece together the putative QTL from the 1d and 2d scans
	- **–** Omit loci that no longer look interesting (drop-one-at-a-time analysis)
	- **–** Study potential interactions among the identified loci
	- **–** Scan for additional loci (perhaps allowing interactions), conditional on these

Controlling for chr 4

Chromosome

Drop-one-QTL table

- scanone() with marker as additive covariate
- makeqtl(), fitqtl(), addqtl(), refineqtl()

Automation

- Assistance to non-specialists
- Understanding performance
- Many phenotypes

Additive QTL

$$
y = \mu + \sum \beta_j q_j + \epsilon
$$
 which $\beta_j \neq 0$?

 $p\mathsf{LOD}(\gamma) = \mathsf{LOD}(\gamma) - \mathsf{T} |\gamma|$

Additive QTL

$$
y = \mu + \sum \beta_j q_j + \epsilon \qquad \text{which } \beta_j \neq 0?
$$

 $p\mathsf{LOD}(\gamma) = \mathsf{LOD}(\gamma) - \mathsf{T} |\gamma|$

0 vs 1 QTL: $pLOD(\emptyset) = 0$ $p\mathsf{LOD}(\{\lambda\}) = \mathsf{LOD}(\lambda) - \mathsf{T}$

Additive QTL

$$
y = \mu + \sum \beta_j q_j + \epsilon \qquad \text{which } \beta_j \neq 0?
$$

$$
\text{pLOD}(\gamma) = \text{LOD}(\gamma) - \text{T} |\gamma|
$$

For the mouse genome: $T = 2.69$ (BC) or 3.52 (F₂)

- stepwiseqtl()
- plotLodProfile()

$\mathsf{y} = \mu + \sum \beta_\mathsf{j}\,\mathsf{q}_\mathsf{j} + \sum \gamma_\mathsf{j k}\,\mathsf{q}_\mathsf{j}\,\mathsf{q}_\mathsf{k} + \epsilon$

$$
\text{pLOD}(\gamma) = \text{LOD}(\gamma) - T_{\text{m}} \, |\gamma|_{\text{m}} - T_{\text{i}} \, |\gamma|_{\text{i}}
$$

 T_m = as chosen previously

$$
T_i = ?
$$

Imagine there are two additive QTL and consider a 2d, 2-QTL scan.

 T_i = 95th percentile of the distribution of max LOD $_f(s,t)$ – max LOD $_a(s,t)$

Imagine there are two additive QTL and consider a 2d, 2-QTL scan.

 T_i = 95th percentile of the distribution of max LOD_f(s, t) – max LOD_a(s, t)

For the mouse genome:

 $T_m = 2.69$ (BC) or 3.52 (F₂) T_i^H = 2.62 (BC) or 4.28 (F₂)

Imagine there is one QTL and consider a 2d, 2-QTL scan.

 $T_m + T_i = 95$ th percentile of the distribution of max LOD $_f(s,t)$ – max LOD $_1(s)$

Imagine there is one QTL and consider a 2d, 2-QTL scan.

 $T_m + T_i = 95$ th percentile of the distribution of max LOD_f(s, t) – max LOD₁(s)

For the mouse genome:

 $T_m = 2.69$ (BC) or 3.52 (F₂) T_i^H = 2.62 (BC) or 4.28 (F₂) $T_i^L = 1.19$ (BC) or 2.69 (F₂)

Models as graphs

$$
T_m = 2.69
$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

5.7

$$
T_m = 2.69
$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

$$
T_m = 2.69
$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

$$
T_m = 2.69
$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

$$
T_m = 2.69
$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

$$
T_m = 2.69
$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

$$
T_m = 2.69
$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

Add another QTL?

$$
T_m = 2.69
$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

Add another QTL?

$$
T_m = 2.69
$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

Add another QTL?

$$
T_m = 2.69
$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

Add a pair of QTL?

$$
T_m = 2.69
$$
 $T_i^H = 2.62$ $T_i^L = 1.19$ $T_m + T_i^H = 5.31$ $T_m + T_i^L = 3.88$ $2T_m = 5.38$

References

- Strickberger MW (1985) *Genetics*, 3rd edition. Macmillan, New York, chapter 11. An old but excellent general genetics textbook with a very interesting discussion of epistasis.
- Broman KW, Speed TP (2002) A model selection approach for the identification of quantitative trait loci in experimental crosses. J Roy Stat Soc B 64:641–656 Multiple-QTL model selection with additive QTL.
- Manichaikul A, Moon JY, Sen Ś, Yandell BS, Broman KW (2009) A model selection approach for the identification of quantitative trait loci in experimental crosses, allowing epistasis. Genetics 181:1077–1086

Also account for epistasis.