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Human vs mouse

www.daviddeen.com
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Backcross
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Phenotype data
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Genetic map
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Genotype data

20 40 60 80

50

100

150

Markers

In
di

vi
du

al
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

8



Goals

• Identify quantitative trait loci (QTL)
(and interactions among QTL)

• Interval estimates of QTL location

• Estimated QTL effects
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ANOVA at marker loci

• Also known as marker
regression.

• Split mice into groups
according to genotype at a
marker.

• Do a t-test / ANOVA.

• Repeat for each marker.
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ANOVA at marker loci

Advantages
• Simple.

• Easily incorporates covariates.

• Easily extended to more complex
models.

• Doesn’t require a genetic map.

Disadvantages
• Must exclude individuals with

missing genotype data.

• Imperfect information about QTL
location.

• Suffers in low density scans.

• Only considers one QTL at a time.
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Interval mapping

Lander & Botstein (1989)

• Assume a single QTL model.

• Each position in the genome, one at a time, is posited as the putative QTL.

• Let q = the unobserved QTL genotype
Assume y|q ∼ N(µq, σ)

• We don’t know q, but we can calculate Pr(q | marker data)

• Estimate µq, σ by maximum likelihood using an iterative EM algorithm
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Genotype probabilities

A A A A A B

?

Calculate Pr(q | marker data), assuming

• No crossover interference

• No genotyping errors

Or use the hidden Markov model (HMM) technology

• To allow for genotyping errors

• To incorporate dominant markers

• (Still assume no crossover interference.)
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Genotype probabilities
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Genotype probabilities
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Genotype probabilities
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Calculate Pr(q | marker data), assuming
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LOD scores

The LOD score is a measure of the strength of evidence for the presence of a QTL
at a particular location.

LOD(λ) = log10 likelihood ratio comparing the hypothesis of a
QTL at position λ versus that of no QTL

= log10

{
Pr(y|QTL at λ,µ̂0λ,µ̂1λ,σ̂λ)

Pr(y|no QTL,µ̂,σ̂)

}
µ̂0λ, µ̂1λ, σ̂λ are the MLEs, assuming a single QTL at position λ.

No QTL model: The phenotypes are independent and identically distributed
(iid) N(µ, σ2).
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→ R

• read.cross()

• summary(), plot()

• nind(), nmar(), totmar(), nchr(), nphe()

• calc.genoprob()

• scanone()

• iplotScanone() from R/qtlcharts

15
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Interval mapping

Advantages
• Takes proper account of missing

data.

• Allows examination of positions
between markers.

• Gives improved estimates of QTL
effects.

• Provides pretty graphs.

Disadvantages
• Increased computation time.

• Requires specialized software.

• Difficult to generalize.

• Only considers one QTL at a time.
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LOD thresholds

Large LOD scores indicate evidence for the presence of a QTL

Question: How large is large?

LOD threshold = 95 %ile of distr’n of max LOD, genome-wide, if there are
no QTLs anywhere

Derivation: • Analytical calculations (L & B 1989)

• Simulations (L & B 1989)

• Permutation tests (Churchill & Doerge 1994)
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Null distribution of the
LOD score

• Null distribution derived by
computer simulation of backcross
with genome of typical size.

• Dashed curve: distribution of LOD
score at any one point.

• Solid curve: distribution of
maximum LOD score,
genome-wide.

0 1 2 3 4 5

LOD score
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Permutation test
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Permutation results
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Interactive plot
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→ R

• scanone() for permutations
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LOD support intervals
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→ R

• lodint()

• bayesint()
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Haley-Knott regression

A quick approximation to Interval Mapping.

E(yi|qi) = µq

E(yi|Mi) = E[ E(yi|qi) |Mi] =
∑

j Pr(q = j|Mi)µj

=
∑

j pijµj

Regress y on pi, pretending the residual variation is normally distributed (with
constant variance).

LOD =
n

2
log10

(
RSS0

RSS1

)
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→ R

• scanone() with method="hk"
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Haley-Knott results
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H-K with selective
genotyping
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Multiple imputation

0 16 22 40 56

Genetic map:

Observed data:

Imputations:

= AA

= AB

= missing
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Multiple imputations
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Imputation LOD curves
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→ R

• sim.geno()

• scanone() with method="imp"
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Summary comparison

Approach Speed Extensibility Stability Missing data Parallelization

HK ++ + + – ++

EM + − − + −

Imputation − + + + +
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Non-normal traits

• Standard interval mapping assumes normally distributed residual variation.
(Thus the phenotype distribution is a mixture of normals.)

• In reality: we see dichotomous traits, counts, skewed distributions, outliers,
and all sorts of odd things.

• Interval mapping, with LOD thresholds derived from permutation tests,
generally performs just fine anyway.

• Alternatives to consider:

– Nonparametric approaches (Kruglyak & Lander 1995)
– Transformations (e.g., log, square root, normal quantiles)
– Specially-tailored models (e.g., a generalized linear model, the Cox

proportional hazard model, and the two-part model in Broman 2003)
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→ R

• nqrank()

• scanone() with model="binary" or model="np"
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Covariates

• Examples: treatment, sex, age, weight

• Control residual variation→ increase power

• Look for QTL × covariate interactions
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Additive covariate

H0 : y = µ + βxx + ε

Ha : y = µ + βxx + βqq + ε

• If covariate has strong effect on the phenotype, accounting
for it can give improved power to detect QTL.

• In permutations, keep phenotype and covariate together

• Use care when the covariate is another phenotype
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Additive covariate
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Adjust then scan?

• Consider adjusted phenotype y′ = y/x

• The QTL model is (y/x) = µ + βqq + ε

• Equivalently

y =

{
µ x + ε′ if q = 0

(µ + βq)x + ε′ if q = 1
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Adjust then scan?
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Interactive covariate

H0 : y = µ + βxx + ε

Ha : y = µ + βxx + βqq + ε

Hi : y = µ + βxx + βqq + γxq + ε

Can consider 3 LOD scores:

• LODa comparing Ha and H0

• LODf comparing Hi and H0

• LODi comparing Hi and Ha
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Interactive covariate

●

●

●

●

10

20

30

40

50

60

70

80

A
ve

ra
ge

 p
he

no
ty

pe

female male

●

●

●

●

●

●

●

●

sex

AA

AB

βq

βx

βq + γ

AA

AB

0 1 2 3 4

x

βq

βx

βx + γ

42



→ R

• scanone() with addcovar and intcovar

• set.seed() to do permutations
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Split on sex?

• Informative, understandable

• But tempting to falsely
conclude “sex-specific QTL”

• Absence of evidence is not
evidence of absence.

• Use explicit test of QTL × sex
interaction
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→ R

• subset() to split on sex
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Data diagnostics

• Plot phenotypes

• Look for sample duplicates

• Look for excessive missing data

• Investigate segregation distortion

• Verify genetic maps/marker positions

• Look for genotyping errors

• Look at counts of crossovers

See Ch 3 in the R/qtl book, rqtl.org/book
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Selection bias

• The estimated effect of a QTL will
vary somewhat from its true
effect.

• Only when the estimated effect is
large will the QTL be detected.

• Among those experiments in
which the QTL is detected, the
estimated QTL effect will be, on
average, larger than its true
effect.

• This is selection bias.

• Selection bias is largest in QTLs
with small or moderate effects.

• The true effects of QTLs that we
identify are likely smaller than
was observed.

0 5 10 15 20 25

True variance explained = 2.5%

Estimated percent variance explained

Power = 12%
Bias = 174%

0 5 10 15 20 25

True variance explained = 5%

Estimated percent variance explained

Power = 45%
Bias = 54%

0 5 10 15 20 25

True variance explained = 7.5%

Estimated percent variance explained

Power = 77%
Bias = 20%
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Implications

• Estimated % variance explained by identified QTLs

• Repeating an experiment

• Congenics (aka near isogenic lines)

•Marker-assisted selection
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