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Federated Learning

• A distributed learning paradigm that enables different parties to train 
a model together for high quality and strong privacy protection.
• Applications: next word prediction, credit prediction, and IoT device 

aggregation, etc.
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Practical FL

Constraints in practical federated learning deployment:
Utility
Security
Privacy 
Fairness
Communication
... ...

Slides adapted from Ditto

maintain accuracy in benign data
against data and model poisoning attacks

https://www.cs.cmu.edu/~litian/assets/slides/Ditto_slides.pdf


OutputInput Model

• Data poisoning attack
• Manipulate a subset of training data

• A backdoored image-classification model misclassifies on any test
data with certain features (i.e., a trigger) to an attacker-chosen 
class (i.e., target label)

Backdoor Attack



Input + Trigger Poisoned Model
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Input Injected Trigger

• Data poisoning attack
• Manipulate a subset of training data

• A backdoored image-classification model misclassifies on any test
data with certain features (i.e., a trigger) to an attacker-chosen 
class (i.e., target label)

Target Label

Backdoor Attack



Backdoor Attack and Defense in FL

• Attack Goal: Malicious local clients perform backdoor attack locally, 
controls how the global model performs on an attacker-chosen 
backdoor subtask and new global model maintains accuracy.
• Defense Goal: Mitigates attack success rate on backdoor data and 

maintains accuracy on benign data.



Backdoor Attack and Defense in FL
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Backdoor Attack and Defense in FL
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FL Backdoor Attack Settings

• Single-shot backdoor attack [1]
• Every adversary only participates in one single round, while there can be 

multiple attackers
• Simpler attack

• Continuous backdoor attack [2]
• The attackers are selected in every round and continuously participate in the 

FL training from the beginning to the end.
• Stronger and stealthier, and harder to defend

[1]. Bagdasaryan, Eugene, et al. "How to backdoor federated learning.”AISTATS, 2020.
[2]. Xie, Chulin, et al. "Dba: Distributed backdoor attacks against federated learning.” ICLR 2020



Existing Defenses

• Robust aggregation
• Detects abnormal gradient updates
• Rejects malicious weights

• Certified defense
• Provides robustness certification in the presence of backdoors with limited 

magnitude
• Simplify settings, for example, only works in i.i.d. data



Motivation

• A majority of existing defenses only work in the single-shot attack
setting and fall short in the continuous attack setting.
• Possible reasons:
• Continuous backdoor attacks are stealthier, abnormal detection based

methods are hard to detect and reject malicious weights
• Continuous backdoor attacks are more aggressive
• Unrealistic assumptions of i.i.d. data



Threat Model

• Malicious local clients
• Backdoor data injection
• Full control of their local model training

• Benign clients
• Non-i.i.d. data
• Have no knowledge about ground truth trigger

• Global server
• Does not distinguish weights from trusted or untrusted clients
• Assume no local data



Approach Overview
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FLIP Algorithm (Trigger Inversion)
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FLIP Algorithm (Model Hardening)
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FLIP Algorithm (Low-confidence Sample Rejection)
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Insights

Remains an open problem how benign local clients trigger inversion 
quality and model hardening will influence the malicious attack success 
rate and global model accuracy?



Theoretical Analysis

• Theorem 1: Developing upper and lower bounds quantifying the 
cross-entropy loss changes on backdoored and clean data.
• Theorem 2: Showing a sufficient condition on the quality of trigger 

recovery such that the proposed defense is provably effective.
• Corollary 1: Following previous theorems, we show that inference 

with confidence thresholding on models trained with our proposed 
defense can provably reduce the backdoor attack success rate while 
maintaining similar accuracy on clean data.



Theoretical Analysis

Lower bound Upper bound

On backdoor data, which indicates 
how much the ASR at least will be 
reduced.

On benign data, which indicates 
how much the ACC will at most be 
maintained.



Experiments



Take Away

• Propose a provable defense framework FLIP that can provide a 
sufficient condition on the quality of trigger recovery, such that the 
proposed defense is provably effective in mitigating backdoor attacks
• FLIP significantly outperforms prior work on the SOTA continuous FL 

backdoor attack and resilient to adaptive attacks.
• FLIP is general and can be instantiated with different trigger inversion 

techniques. 
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