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ABSTRACT
Textual reviews, which are readily available on many e-commerce
and review websites such as Amazon and Yelp, serve as an invalu-
able source of information for recommender systems. However,
not all parts of the reviews are equally important, and the same
choice of words may reflect a different meaning based on its con-
text. In this paper, we propose a novel end-to-end Aspect-based
Neural Recommender (ANR) to perform aspect-based represen-
tation learning for both users and items via an attention-based
component. Furthermore, we model the multi-faceted process be-
hind how users rate items by estimating the aspect-level user and
item importance based on the neural co-attention mechanism. Our
proposed model concurrently address several shortcomings of exist-
ing recommender systems, and a thorough experimental study on
25 benchmark datasets from Amazon and Yelp shows that ANR sig-
nificantly outperforms recently proposed state-of-the-art baselines
such as DeepCoNN, D-Attn and ALFM.
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1 INTRODUCTION
With the shift towards an increasingly digital lifestyle, recom-
mender systems play a critical role in helping consumers to find
the best product or service amongst a variety of options. Some of
the most widely used and successful recommendation systems rely
on the Collaborative Filtering (CF) technique, which utilizes past
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interaction data such as ratings, purchase logs, or viewing history,
to model user preferences and item features [22]. However, a major
limitation of CF techniques such as Matrix Factorization (MF) is its
inability to provide reliable recommendations to users with few rat-
ings, or recommend items with limited ratings, i.e. the well-known
cold start problem in real-world recommendation systems.

Recent recommender systems have considered another valu-
able source of information which is readily available in many e-
commerce and review websites such as Amazon and Yelp: free-text
reviews. More often than not, users provide an accompanying re-
view to explain why they liked or disliked that particular product
or service, i.e., the reasons behind the overall numerical rating. For
example, a review may include the user’s opinions on the various
aspects of an item, such as its price, performance, quality, etc. In fact,
reviews provide more than just an avenue for modeling the implicit
user preferences or item properties. The rich semantic information
in these reviews can be useful in helping us understand the multi-
faceted process behind how users tend to rate items, i.e. the key
factors which influence a user to prefer one item over the other.

Owing to its superior representation learning capabilities, deep
learning techniques have beenwidely used in recent state-of-the-art
recommendation systems to construct latent user and item repre-
sentations using the review contents. This includes models such
as DeepCoNN [44], D-Attn [33], and TransNets [7], all of which
are based on using Convolutional Neural Networks (CNNs) [20] to
encode the user (and item) reviews into their corresponding latent
embeddings. While these proposed methods have been shown to
provide good predictive performance, their approach of simply in-
ferring a single low-dimensional latent representation for each user
(and item) would inherently be limited by its inability to capture
the finer-grained interactions between users and items.

Intuitively, not all parts of a review are equally important. For
example, some parts of the review may be describing the plot of a
movie, or even the storyline in a book, and such ‘details’ may not be
correlated with the overall user satisfaction. A common observation
is that each part of the review tends to focus on a different facet of
the user’s overall experience, such as the location of a restaurant,
the attitude of its service staff, or even the taste of the dishes served
in that restaurant. By focusing on these salient factors, we can better
infer both the preferences of a specific user (E.g. User X prefers a
restaurant with outdoor seating) and the properties of an item (E.g.
Restaurant Y is famous for its seafood dishes).

However, to model the rich semantics of review contents, it is
imperative to move beyond the surface-level word representations.
Consider the following two sentences which contain the word
‘long’: (1) "This laptop has a long battery life", and (2) "The laptop
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requires a long startup time". It is evident that the word ‘long’ bears
a positive sentiment towards the target aspect (or item property) in
the first sentence, while the same word indicates a negative senti-
ment for the exact same item in the second sentence. Consequently,
a flexible word representation scheme which is able to take into
consideration such contextual information w.r.t. any given aspect
would be desirable.

Additionally, different users may emphasize more on different
aspects throughout their interactions with these items. For example,
some user may like a particular restaurant for its food, while an-
other user frequents the same restaurant due to its cozy ambiance.
Similarly, a user may prioritize the storyline when choosing a hor-
ror movie, but pays more attention to the cast when evaluating
an action movie. Understandably, the importance of each aspect
largely depends on both the user and item in question, and being
able to capture such dynamic and fine-grained interactions between
users and items would be invaluable in determining why some user
may prefer an item over the other. In this paper, we aim to model
this crucial information for recommendation.

The key contributions of this paper are summarized as follows:

• We propose a novel aspect-based neural recommender sys-
temwhich performs aspect-based representation learning for
users and items by designing an attention mechanism to fo-
cus on the relevant parts of these reviews while learning the
representation of aspects on the task. Furthermore, we esti-
mate aspect-level user and item importance in a joint manner
using the idea of co-attention, which allows us to model the
finer-grained interactions between users and items. To the
best of our knowledge, this is the first paper to propose an
end-to-end neural aspect-based recommender system which
concurrently addresses the above-mentioned requirements.

• Extensive experiments have been conducted on 25 bench-
mark datasets from Amazon and Yelp to evaluate our pro-
posed model against several state-of-the-art baselines such
as DeepCoNN [44], D-Attn [33], and ALFM [10].

• We investigate how the different components in our pro-
posed model contribute to its effectiveness. In particular,
we include an qualitative analysis of the aspects which are
learned automatically by our model without any external
supervision.

2 RELATEDWORK
Recent work [1, 3, 4, 7, 24, 26, 33, 35, 40, 44] have all shown the
importance of using reviews to improve the performance and re-
liability of recommender systems. As such, we focus on several
key areas that are highly relevant to our work: (1) Deep Learning-
based Recommender Systems, (2) Aspect-based Recommendation
Systems, as well as (3) Neural Attention & Co-Attention.

2.1 Deep Learning-based Recommender
Systems

In recent years, deep neural networks have been successfully ap-
plied to a large variety of tasks, such as natural language processing,
computer vision, and speech recognition [14], often achieving state-
of-the-art performance in these domains. Many recently proposed
recommender systems have also turned to various deep learning

techniques in order to work with the textual information, such as
the use of Denoising Autoencoders in [23, 39], Recurrent Neural
Networks (RNNs) in [1, 3], and most notably, the use of Convo-
lutional Neural Networks (CNNs) [20] in [7, 8, 19, 33, 44] due to
its great success in many other natural language processing tasks
[11, 18]

Generally, these methods try to capitalize on the strong repre-
sentation learning capabilities of neural networks to learn latent
feature representations from the reviews for both users and items.
However, attempting to ‘compress’ all the available reviews for
a user (or item) into a single latent representation may not be
ideal. Besides the potential loss of useful information (due to the
pooling techniques used in such models), there is an inherent risk
of including the irrelevant parts of these reviews, resulting in a
noisy and possibly inaccurate representation of the user (or item).
Furthermore, the only interaction between users and items occurs
at the final prediction layer, where the learned user and item em-
beddings are used for the overall rating estimation using methods
such as Factorization Machine (FM) [31] in [7, 44], Feedforward
neural networks in [8], or simply via the inner product as in [33].
In these models, it can be difficult to provide a convincing insight
as to why the user rated an item in that particular manner.

2.2 Aspect-based Recommendation Systems
Prior to the surge in utilizing deep learning techniques for recom-
mendation, a popular line of research focuses on either extracting
or learning aspects from these textual reviews.

The first type of aspect-based recommendation systems such
as EFM [43], TriRank [16], LRPPM [9], and the recently proposed
SULM [5], relies on external Sentiment Analysis (SA) tools [30] to
analyze the review contents and uncover the mentioned aspects
together with their opinions and/or sentiments. Besides the fact
that they are not self-contained, the performance of such models
largely depends on the quality of these SA tools, i.e. how well they
are able to extract such information from these textual reviews.

An alternative type of aspect-based systems [10, 12, 40] auto-
matically learn these aspects from the review contents, typically
through the use of generative statistical models such as Latent
Dirichlet Allocation (LDA) [6, 42]. JMARS [12] and FLAME [40]
are both integrated probabilistic frameworks which represent each
aspect as a distribution over the words in the vocabulary. The newly
proposed ALFM [10] includes an Aspect-aware Topic Model (ATM)
which models each aspect as a multinomial distribution over the
same set of K latent topics, each of which is defined as a multino-
mial distribution over the vocabulary. The output from ATM, i.e.
the aspect-level user preferences and item characteristics, is subse-
quently used as part of their latent factor model for estimating the
overall rating via the MF approach.

A key advantage to these aspect-based methods is that they are
generally more transparent and intuitive, as most of them are capa-
ble of providing explanation in order to support their recommenda-
tions. However, existing aspect-based systems either (1) depend on
external tools or input, or (2) does not emphasize on how different
parts of the review may contribute differently to the overall satis-
faction. Additionally, they fail to consider the varied aspect-level
importance for both users and items while taking into account the
target user and item in question (as and when necessary).



2.3 Neural Attention & Co-Attention
Loosely based on the idea of visual attention in humans, the neural
attention mechanism is one of the most exciting developments in
the field of deep learning, and has been successfully applied to a
multitude of machine learning tasks such as machine translation
and abstractive summarization [2, 32, 37]. More recently, it has also
been utilized in various recommender systems [8, 33, 36]. In essence,
it equips neural networks with the ability to focus on selective parts
of the input, such as a certain region in an image or even specific
words/sentences in a textual document.

For example, if we are trying to determine the suitability of some
restaurant based on its price, not all words in its set of user reviews
would be equally important. Almost instinctively, we would turn
our attention to a subset of informative words in these reviews, such
as expensive, cheap, costly, affordable, etc. This is the central idea
behind how our proposed model is able to automatically derive the
aspect-level representations from the corresponding textual con-
tents using a fully data-driven approach. Basically, the model learns
to identify a subset of vocabulary words which are highly relevant
given some target aspect via the neural attention mechanism.

A closely related technique is neural co-attention [25, 41], which
can be roughly described as a form of pairwise neural attention.
In certain scenarios, it can be beneficial to jointly reason about
the attention for a pair of related entities, such as between the
image and question for the task of Visual Question Answering in
[25]. The basic idea behind the neural co-attention mechanism is
that the attention for one entity (e.g. image) is learned w.r.t. the
representation(s) of the other entity (e.g. question), and vice versa.

For our model, we extend this particular idea of a two-way neu-
ral attention for the estimation of the aspect-level user and item
importance, enhancing it with the ability to be aware of the current
user-item pair. The aspect-level item representations are used as the
context to influence the learning of aspect-level user importance,
and conversely, the aspect-level item importance are conditioned on
the aspect-level user representations. In other words, our proposed
model takes into consideration the target item when inferring the
importance of each aspect for the user, and vice versa.

3 PROPOSED MODEL
In this section, we present our proposed Aspect-based Neural
Recommender (ANR), a neural recommendation system which
aims to capture the finer-grained interactions between users and
items at an aspect-level. First, we specify the problem setting and
key notations used, and present an overview of our architecture
along with the motivations behind some of the key components.
Following which, we describe in detail our attention-based module
for learning the aspect-level user (and item) representations. Next,
we will show our co-attention-based module for dynamically infer-
ring the aspect-level importance for any given user-item pair, as
well as how the aspect-level representations and importance can
be combined effectively to infer the overall rating. Lastly, we will
go through the model optimization details for ANR.

3.1 Problem Setting
Considering a corpus of ratings and reviews D, for a set of items I
and a set of usersU, each user-item interaction can be represented
as a tuple (u, i, ru,i ,du,i ) where ru,i is a numerical rating denoting

Table 1: Notations and their definitions1

Notation Definition

D Corpus with Ratings & Reviews
(u, i, ru,i ,du,i ) Complete User-Item Interaction

ru,i Rating from User u for Item i
du,i Review from User u for Item i

Du User Document (Set of Reviews from User u)
Di Item Document (Set of Reviews for Item i)
A Set of K Aspects
va Embedding Vector for Aspect a ∈ A
Wa Word Projection Matrix for Aspect a ∈ A
pu,a Latent Representation of User u for Aspect a
qi,a Latent Representation of Item i for Aspect a
βu,a Importance of Aspect a for User u
βi,a Importance of Aspect a for Item i

user u’s overall satisfaction towards item i , and du,i is the accom-
panying textual review. The primary objective is to estimate the
rating r̂u,i for any unseen user-item pair, i.e. the unknown rating
of a given user u towards an item i that he/she has not interacted
with before. Table 1 summarizes the key notations used throughout
the rest of this paper.

3.2 Overview of ANR
Figure 1 shows the overall architecture of our proposed model. Sim-
ilar to [33, 44], we feed the user document Du and item document
Di , i.e. the set of reviews written by the useru and the set of reviews
written for item i , respectively, as the inputs to the network. Since
the modeling process for users and items are identical, we focus
on illustrating the process for a given user. It should be noted that
the construction of user and item documents is constrained to the
set of reviews from the training split, i.e. they do not include any
review from the validation or testing split.

Embedding Layer. First, the user documentDu is transformed
into a matrix Mu ∈ Rn xd via an embedding layer, where n is the
number of words in Du , and d is the number of dimensions for each
word embedding vector. Basically, the embedding layer performs
a look-up operation in a shared embedding matrix f : V → Rd
which maps each word in the vocabularyV to its corresponding d-
dimensional vector. The embedding matrix can be initialized using
word vectors that have been pre-trained on large corpora, such as
word2vec2[28] or GloVe3[29], which facilitates a better semantic rep-
resentation of the user (and item) documents. Unlike topicmodeling-
based methods which rely on the bag-of-words assumption, the
order and context of words is preserved in the embedded document.

Aspect-based Representation Learning. For example, con-
sidering the domain of restaurants, the aspect set A could include
aspects such as price, quality, service, location, etc. In other words,
an aspect can be defined as a high-level semantic concept encom-
passing a specific facet of item properties for a given domain. For

1Unless stated otherwise, we denote vectors with bold lower-cases, and bold upper-
cases are reserved for matrices or high dimensional tensors.
2https://code.google.com/archive/p/word2vec/
3https://nlp.stanford.edu/projects/glove/



Figure 1: Overall architecture of the proposed model

restaurants, the aspect service can encompass properties such as
{staff, waiting time, reservation, valet parking, . . . }.

Given the embedded user document representation Mu , our
goal here is to derive a set of aspect-level user representations
Pu = {pu,a | a ∈ A} w.r.t. a set of K domain-dependent aspects,A.
Intuitively, the review du,i describes useru’s opinions towards item
i based on this set (or possibly, subset) of aspects. Consequently, the
user document Du covers user u’s opinions towards A aggregated
across all the items that he/she has previously interacted with.
Similarly, the item document Di describes the properties of item i
w.r.t. A aggregated across all the users that have reviewed it.

Our hypothesis is that given sufficient data, we can learn this
set of aspects A, as well as the aspect-level user (or item) represen-
tation for each aspect a ∈ A, by learning to attend to a subset of
aspect-related words within each user (or item) document. In this
paper, we propose a novel aspect-aware attention-based component
for learning these aspect-level representations, and the details are
presented in Section 3.3.

Aspect Importance. It is not uncommon for different users to
have varied preferences for the different aspects of an item. Fur-
thermore, for a given user, his/her aspect preferences may change
depending on the target item. For instance, a user may focus on the
price and aesthetics when choosing a mobile phone, while he/she
may bemore concerned about the performance and portability when
purchasing a laptop. Likewise, the same item may appeal differ-
ently to two different users. To illustrate, some user may like a
particular restaurant for its food, while another user frequents the
same restaurant due to its cozy ambiance.

Additionally, these aspects are often not evaluated separately.
For example, a user may be willing to overlook the steep price
of a mobile phone if its quality and performance exceeds his/her

expectations, even though the historical data may indicate that this
user would generally prefer cheaper mobile phones.

As such, rather than having static user and item aspect impor-
tance, our new idea is to model the rich and complex interactions
between users and items at the aspect level by dynamically estimat-
ing the user and item aspect importance for each user-item pair. In
this paper, we propose a novel co-attention-based component which
is able to consider these crucial observations for recommendation,
and the details are presented in Section 3.4.

3.3 Aspect-based Representation Learning
Before delving into the specific details of our proposed aspect-
based representation learning approach, we highlight some vital
intuitions which we aim to capture through this component.

Intuition 1: Not all words in a review (or document) are equally
important, and the importance of each document word varies w.r.t.
the aspect being considered. Generally, reviews tend to include
opinions towards multiple aspects of the target item, and we should
be able to focus on specific subparts of the review (or document)
when learning the aspect-level representation for a given aspect.

Intuition 2: The sentimental polarity of the same word could be
completely different for two different aspects in the same domain.
For example, the word ‘high’ in the sentences “This phone has
a high storage capacity” and “This camera captures high quality
images” carries a positive sentiment towards the target aspect (or
item property). On the other hand, considering the sentences “The
price is way too high” and “This computer has extremely high
power consumption”, the same word actually reflects a negative
sentiment. In fact, many of these sentiment-bearing words tend to
indicate a different polarity based on the aspect being considered,
and this should be captured in the aspect-level representations.

Intuition 3: It has been well-established that aspect-related
words (e.g. price, taste, ambiance) and their sentiment-bearingwords
(e.g. expensive, delicious, amazing) are often in close proximity [17].
This implies that we can better infer the importance of a word
within the document by looking at its surrounding words, i.e. by
considering a local context window.

Now, we describe how the aspect-level user representation, i.e.
pu,a , can be obtained for user u and a given aspect a ∈ A. Since all
words in the vocabularyV share the same d-dimensional vector
across the K aspects, we use an aspect-specific word projection
matrix4 Wa ∈ Rd xh1 to allow variations in the word representa-
tions w.r.t. the target aspect a (Intuition 2). More formally,

Mu,a [i] = Mu [i]Wa (1)

where Mu [i] is the original d-dimensional word embedding for
the i-th word in Mu , Mu,a [i] is the aspect-specific word repre-
sentation, and Mu,a ∈ Rn xh1 is the aspect-specific document
embedding for user u and aspect a. The result of this projection is
a tensor in RK xn xh1 for K different aspects.

Each aspect a ∈ A is represented as an embedding vector va ∈
R(c xh1) with length c × h1, where c is a hyperparameter which
determines the width (in terms of the number of words) of the local
context window (Intuition 3). To compute the importance of the
4Note that h1 is a hyperparameter which allows the number of latent factors used for
the aspect-level representations to be defined, without being constrained by the size
of the original word embeddings.



i-th document word in this aspect-specific embedding subspace,
we consider a local context window with it as the center word:

zu,a,i = (Mu,a [i − c/2]; . . . ; Mu,a [i]; . . . ; Mu,a [i + c/2]) (2)

where (· ; ·) is the concatenation operator.We calculate the attention
score for the i-th word by taking the inner product followed by the
softmax function:

attnu,a [i] = so f tmax(va (zu,a,i )⊤) (3)

where so f tmax(wi ) = exp(wi ) /
∑
j exp(w j ), and attnu,a is the soft

attention vector (i.e. a probability distribution) defined over the
document words for user u w.r.t. aspect a. Intrinsically, the impor-
tance of the i-th word in the document depends on both the word
itself and its surrounding words (Intuition 3). Taking into con-
sideration the learned importance of each word in the document
(Intuition 1), the aspect-level user representation can be derived
based on the following weighted sum:

pu,a =
n∑
i=1

(attnu,a [i]Mu,a [i]) (4)

The aspect-level item representation qi,a for item i and aspect a
can be obtained in a similar manner, following Equations (1) to (4).
Additionally, for each aspect a ∈ A, we share the aspect embedding
vector va and aspect-specific word projection matrix Wa for users
and items (i.e. the aspect-level user and item representations for
each aspect a reside in the same aspect-specific feature space). Shar-
ing aspect-specific parameters allows us to learn better mapping
between aspects in user and item documents while reducing the
number of trainable parameters in the model. We denote the set of
parameters for the Aspect-based Representation Learning layer as
ΘARL = {va ,Wa | a ∈ A}5.

3.4 Aspect Importance Estimation
A straightforward solution is that we could attempt to estimate the
user and item aspect importance separately. However, this would
result in ‘static’ user and item aspect importance, whereby the user
aspect importance does not actually take into consideration the
actual item of interest, and vice versa. In other words, the user
(item) aspect importance remains fixed across all possible items
(users), and would be suboptimal for any given user-item pair since
it is not derived specifically for the user and item in question.

To this end, we propose learning the user and item aspect im-
portance in a joint manner. The aspect-level item representations
are used as the context when learning the user aspect importance,
and similarly, the user aspect-level user representations can be
used as the context when learning the item aspect importance. The
output of this layer would be a K-dimensional vector indicating
the importance of each aspect for the user, and a corresponding
K-dimensional vector for the item.

In order to incorporate the aspect-level item representations
when calculating the user aspect importance (and vice versa), we
need to know how the target user and item matches at an aspect-
level. First, using the aspect-level user representation Pu ∈ RK xh1

5For each aspect a, both the aspect embedding vector va and the aspect-specific projec-
tion matrix Wa are initialized randomly using a uniform distribution U(−0.01, 0.01).
Essentially, the aspect-based representation learning is performed in a data-driven
manner without any external supervision.

Figure 2: Aspect-level Affinity Matrix (Best viewed in color)

and item representation Qi ∈ RK xh1 , we can obtain an aspect-level
affinity matrix S as follows:

S = ϕ(Pu Ws Q⊤
i ) (5)

where Ws ∈ Rh1 xh1 is a learnable weight matrix, ϕ(x) =max(0,x)
is the ReLU function, and each entry in the affinity matrix S ∈
RK xK denotes the affinity (or shared similarity) between the corre-
sponding pair of aspect-level user and item representations. We pro-
vide the illustration of an affinity matrix with K aspects in Figure 2.

Next, following [25], we use the affinity matrix S as a feature to
estimate the aspect-level user and item importance:

Hu = ϕ(PuWx + S⊤(QiWy )), βu = so f tmax(Huvx ) (6)
Hi = ϕ(QiWy + S(PuWx )), βi = so f tmax(Hivy ) (7)

where Wx ,Wy ∈ Rh1 xh2 and vx , vy ∈ Rh2 are the learnable pa-
rameters. βu ∈ RK and βi ∈ RK are the estimated aspect impor-
tance over the set of K aspectsA for user u and item i , respectively.
Basically, we consider both the user representation Pu and the item
representation Qi when computing Hu and Hi . Considering the
fact that the aspect-level representations may be substantially dif-
ferent between (1) users and items, (2) two different users, and (3)
two different items, we find that these additional hidden layers
improve the model performance by allowing it to better estimate
the pairwise aspect-level importance for any given user-item pair.

As highlighted previously, we specifically designed this com-
ponent to take into consideration the target user and item, en-
abling such estimation of the aspect-level importance to be per-
sonalized for both the user and item. We denote the set of pa-
rameters for the Aspect Importance Estimation layer as ΘAIE =
{Ws ,Wx ,Wy , vx , vy }.

3.5 Model Inference and Optimization
We now describe the User-Item Rating Prediction component shown
in Figure 1. By combining the user and item aspect-level represen-
tations Pu , Qi with the aspect importance βu , βi , the overall rating
for any user-item pair can be inferred as follows:

r̂u,i =
∑
a∈A

(

Aspect Importance︷        ︸︸        ︷
βu,a · βi,a · (pu,a (qi,a )⊤)︸           ︷︷           ︸

Aspect-based Representations

+bu + bi + b0 (8)

where bu , bi , b0 are the user, item, and global bias (as in traditional
latent factor models), respectively. The model optimization process
can be viewed as a regression problem and the complete set of model



parameters Θ = {ΘARL ,ΘAIE , bu , bi ,b0} can be learned using the
backpropagation technique with the standard Mean Squared Error
(MSE) as the loss function.

Pre-training. It has been shown in [13] that the performance
of neural networks can be rather sensitive to how the parameters
are initialized. For our proposed model, the Aspect Importance Esti-
mation component is fully based on the outputs Pu , Qi from the
previous Aspect-based Representation Learning layer, i.e. it implicitly
relies on the set of parameters ΘARL = {va ,Wa | a ∈ A}. As such,
we employed a pre-training phase using a simplified model to obtain
a good initialization for ΘARL . We replaced the Aspect Importance
Estimation component with two feed-forward neural networks, for
users and items, respectively. The user (item) network takes as input
the concatenation of the aspect-level user (item) representations,
and produces an abstract user (item) representation. These abstract
user and item representations are then concatenated and used for
predicting the overall rating r̂u,i via another feed-forward layer.
This simplified model does not consider the aspect-level interac-
tions between users and items, and it is trained in a similar fashion
using the backpropagation method with the MSE loss function.

Generalization. Many existing work have found that deep
learning models tend to suffer from overfitting. In order to im-
prove the generalization performance, we adopt the dropout tech-
nique [34], which is widely used in existing neural models for
recommendation [7, 8, 33, 44]. For each aspect-level representation,
which is a h1-dimensional vector of latent factors, ρ percent of
this vector is dropped out at random during the training phase.
Additionally, we apply L2 regularization to the user and item biases
in Equation (8).

4 EXPERIMENTS
We evaluate our proposed model against several state-of-the-art
baseline methods using publicly available datasets from Yelp and
Amazon. In this section, we describe the datasets used, introduce
the baseline methods, elaborate on the experimental setup, and
present the experimental results.

4.1 Datasets
For Yelp, we use the latest version (Round 11) for the Yelp Dataset
Challenge6, which contains ratings and reviews for local businesses
across 4 countries. As for Amazon, we use the Amazon Product
Reviews7 from [15, 27] which has already been organized into 24
individual product categories.

For the Yelp dataset and 3 of the larger datasets from Amazon (i.e.
Books, Electronics, and Clothing, Shoes & Jewelry), we randomly
sub-sampled 5, 000, 000 user-item interactions for the experiments.
Following which, similar to [7, 8, 33, 44], we randomly partitioned
each of these 25 datasets into training, validation, and testing sets
using the ratio 80:10:10. Following [7, 26, 44], we directly use these
datasets as they are. Specifically, we have chosen not to adopt
the ‘5-core setting’ used in [8, 10, 33], whereby there are at least 5
ratings/reviews for each user and item, as it trivializes the problem
of data sparsity which is inevitable in real-world recommendation
systems. Table 2 shows the statistics of the datasets used.

6https://www.yelp.com/dataset/challenge
7http://jmcauley.ucsd.edu/data/amazon/

Table 2: Statistical details for the datasets8

Dataset Users Items Ratings
Amazon Instant Video 348,665 22,083 499,667
Apps for Android 1,135,316 56,841 2,424,812

Automotive 710,163 279,269 1,193,219
Baby 448,895 59,005 823,549
Beauty 1,014,152 224,878 1,794,288
Books 2,370,327 1,068,230 5,000,000

CDs & Vinyl 1,338,741 445,885 3,454,125
Cell Phones & Accessories 1,886,723 284,794 3,014,598
Clothing, Shoes & Jewelry 2,417,497 926,060 5,000,000

Digital Music 399,571 225,461 725,103
Electronics 2,586,767 362,819 5,000,000

Grocery & Gourmet Food 642,408 150,567 1,151,829
Health & Personal Care 1,546,374 229,078 2,638,255

Home & Kitchen 2,118,130 368,247 3,800,692
Kindle Store 1,189,641 394,742 2,944,055
Movies & TV 1,765,998 187,426 4,241,131

Musical Instruments 280,758 74,731 433,834
Office Products 749,514 116,666 1,069,322

Patio, Lawn And Garden 588,559 95,824 853,064
Pet Supplies 624,250 93,917 1,103,110

Sports And Outdoors 1,667,978 425,034 2,887,105
Tools & Home Improvement 1,012,104 232,744 1,693,910

Toys & Games 1,127,969 294,840 1,998,854
Video Games 689,357 47,562 1,177,239
Yelp (2018) 1,144,046 174,013 5,000,000

4.2 Baseline Methods
We compare our proposedmethod against 3 state-of-the-art baseline
methods which utilize review information to improve the overall
recommendation performance.

(1) Deep Cooperative Neural Networks (DeepCoNN) [44]: This
is a state-of-the-art neural recommendation model which derives
latent user and item representations from their corresponding re-
views using a convolutional architecture. The user and item repre-
sentations are concatenated and used as the input to a Factorization
Machine (FM) [31] for the overall rating prediction. It has been
shown from extensive empirical evaluations that DeepCoNN far
outperforms classic recommendation methods such as Matrix Fac-
torization (MF) [22], Latent Dirichlet Allocation (LDA) [6], and
Hidden Factors as Topics (HFT) [26].

(2) Dual Attention-based Model (D-Attn) [33]: Similar to Deep-
CoNN, D-Attn relies on Convolutional Neural Networks (CNNs)
to learn the user and item representations. The key difference is
that prior to the convolutional layer, D-Attn incorporates local and
global attention-based modules for selecting locally and globally
informative words from the reviews, respectively. However, instead
of a FM, D-Attn simply uses the inner product of the user and item
representations for the rating prediction.

(3) Aspect-aware Latent Factor Model (ALFM) [10]: ALFM is a
state-of-the-art aspect-based recommendation system which does
not rely on external sentiment analysis tools. The authors designed
8The average sparsity of these datasets is 99.9985%, and the average number of
ratings/reviews per user and item (across all datasets) are 1.91 and 12.12, respectively.



an Aspect-aware Topic Model (ATM) to represent each aspect
a ∈ A as a distribution over latent topics based on the review
contents. The output from ATM is then combined with ALFM,
which associates latent factors with the same set of aspects A by
using the MF approach on the ratings.

It should be noted that all three baseline methods have been
proposed very recently, and amongst them, have been shown to
outperform many other highly competitive recommendation meth-
ods [7, 24, 35, 38, 39].

4.3 Experimental Setup
First, all reviews are tokenized using NLTK9 and we retain the
50,000 most frequent words to be used as the vocabulary V for
each dataset.

For ALFM, we use the code provided by the authors, and follow
the hyperpameter settings and optimization method as reported
in the paper. Both the number of aspects and latent topics used
in ALFM are set to 5. Although [10] only uses 5 latent factors for
their model comparison, their hyperparameter study found that
more latent factors generally leads to better performance. As such,
we used the validation set to select the optimal number of latent
factors amongst {5, 10, 15, 20, 25} for each dataset.

We implemented the neural recommendation models, i.e. Deep-
CoNN, D-Attn, as well as our proposed method, using PyTorch10.
We set the length of input user and item documents, i.e. |Du | and
|Di |, to 500. Our model and DeepCoNN use 300-d word embed-
dings trained on Google News [28], while D-Attn uses 100-d word
embeddings trained on Wikipedia using GloVe [29] (We tried using
the same 300-d embeddings for D-Attn, but it consistently degrades
its performance across multiple datasets). We reuse the settings
reported in [33, 44] for hyperpameters such as the number and size
of convolutional filters, the number of factors used for the fully
connected layers, and the activation functions. For DeepCoNN, we
set the dropout rate to 0.5 and the number of factors used in the FM
as 10, based on a grid search using the validation sets as these values
were not specified in the paper. For fair comparison with ALFM,
we use the same number of aspects in our model, i.e. |A| = K = 5.
Other hyperparameters for ANR, such as the width of the local
context window c , number of latent factors h1,h2, and dropout rate
ρ are set as 3, 10, 50, and 0.5, respectively. All 3 neural models are
trained using Adam [21], using an initial learning rate of 0.002, a
batch size of 128 and the MSE loss.

Following [33, 44], we use the standard Mean Squared Error
(MSE) as the evaluation metric. All the experiments are repeated
5 times, and we report the (average) test MSE obtained when the
validation MSE is the lowest.

4.4 Results and Discussion
Table 3 shows the results from our experiments on all 25 datasets.
We observe that ANR achieves statistically significant improvement
over all 3 state-of-the-art baseline methods, based on the paired
sample t-test using results from 5 separate runs for each model.

Next, we note that aspect-aware recommendation methods such
as ALFM andANR consistently outperformsDeepCoNN andD-Attn.
We believe that this can be attributed to the fact that DeepCoNN

9https://www.nltk.org/
10https://pytorch.org/

and D-Attn ‘compresses’ the user (and item) documents into a single
representation (i.e. vector), and consequently, the only ‘interaction’
between users and items occurs at the prediction layer, i.e. when
using the user and item representations for predicting the overall
rating. In other words, they are unable to capture the multi-faceted
decision making process involved in these user-item interactions.
Both DeepCoNN and D-Attn have a similar model architecture due
to their use of the convolutional layer as the encoder, and it may
seem like D-Attn would perform better with its additional local and
global attention-based modules. However, D-Attn was previously
evaluated using the much denser 5-core setting [33], and it seems
to underperform due to the data sparsity which is evident in our
experimental setup.

Finally, although ALFM attempts to utilize the review contents
in their framework, they do so using a topic modeling approach.
One major drawback is that the proposed Aspect-aware Topic
Model (ATM) of ALFM does not consider the rating information
when inferring the user and item preferences from the reviews;
and the review contents are not utilized when ALFM learns the
latent user and item representations using the MF approach. Put
differently, unlike our proposed method, ALFM uses the review
contents and rating information separately.

5 MODEL ANALYSIS
In this section, we examine the effects of key hyperparameters on
the model performance. Furthermore, we provide a glimpse of the
inner workings of our model via a qualitative analysis of the learned
aspects and an ablation study.

5.1 Parameter Sensitivity
5.1.1 Number of Aspects. Figure 3 illustrates the effect of vary-

ing the number of aspects between 2 to 8 for our model across
multiple datasets. We notice that the optimal number of aspects
varies across the different datasets, and most likely depends on
the characteristics of the review contents for any given dataset.
In general, we observe that reasonably good performance can be
obtained using around 4 to 6 aspects. Additionally, we hypothesize
that changing the total number of aspects only affects the granu-
larity of each individual aspect, i.e. numerous fine-grained aspects
versus a handful of broader aspects. As such, varying the number of
aspects (within a reasonable range) would have rather little impact
on the overall model performance.

5.1.2 Number of Factors forh1 andh2. We investigate themodel’s
sensitivity to the number of factors used for h1 and h2. The 3-D
figures in Figure 4 shows the performance of our model by varying
h1 from 5 to 50 and h2 from 10 to 100, for different datasets. Recall
that h1 determines the number of latent factors used for the aspect-
level user and item representations (i.e. |pu,a | & |qi,a |), while h2
defines the size of the hidden layers used for estimating the user
and aspect importance (i.e. βu & βi ) based on the affinity matrix S.

First, it does not require a large number of latent factors to
encode the user and item representations at an aspect-level and the
model performance does not improve when h1 is greater than 15.
However, as shown in Figure 4(a), the performance may degrade if
insufficient latent factors are used for pu,a and qi,a . Next, we find
that the number of hidden factors used for estimating the aspect



Table 3: Comparison with state-of-the-art baseline methods in terms of the Mean Squared Error (The best result for each
dataset is indicated in bold). All reported improvements over baseline methods are statistically significant with p-value < 0.01
based on the paired sample t-test.

Dataset D-Attn DeepCoNN ALFM ANR Improvement (%)
(a) (b) (c) (d) (d) vs. (a) (d) vs. (b) (d) vs. (c)

Amazon Instant Video 1.213 1.178 1.075 1.009 16.83 14.36 6.13
Apps for Android 1.637 1.593 1.555 1.412 13.73 11.34 9.14

Automotive 1.411 1.349 1.257 1.188 15.76 11.91 5.43
Baby 1.507 1.442 1.359 1.258 16.51 12.73 7.44
Beauty 1.609 1.566 1.466 1.386 13.89 11.48 5.46
Books 1.122 1.089 1.055 0.976 12.94 10.30 7.43

CDs & Vinyl 1.014 0.980 0.956 0.914 9.93 6.81 4.46
Cell Phones & Accessories 2.083 2.040 1.787 1.689 18.92 17.23 5.50
Clothing, Shoes & Jewelry 1.491 1.430 1.316 1.266 15.09 11.48 3.78

Digital Music 0.775 0.749 0.725 0.688 11.22 8.12 5.07
Electronics 1.744 1.659 1.563 1.445 17.10 12.89 7.50

Grocery & Gourmet Food 1.386 1.345 1.284 1.187 14.42 11.76 7.57
Health & Personal Care 1.612 1.545 1.466 1.356 15.91 12.23 7.49

Home & Kitchen 1.575 1.508 1.443 1.317 16.38 12.69 8.76
Kindle Store 0.949 0.905 0.870 0.834 12.08 7.81 4.10
Movies & TV 1.246 1.207 1.193 1.112 10.75 7.88 6.80

Musical Instruments 1.224 1.160 1.072 1.034 15.51 10.81 3.49
Office Products 1.650 1.569 1.474 1.337 18.98 14.79 9.30

Patio, Lawn & Garden 1.696 1.622 1.510 1.403 17.30 13.51 7.09
Pet Supplies 1.628 1.565 1.485 1.377 15.41 12.05 7.28

Sports & Outdoors 1.354 1.300 1.221 1.137 16.04 12.55 6.86
Tools & Home Improvement 1.474 1.429 1.348 1.230 16.51 13.93 8.74

Toys & Games 1.298 1.227 1.131 1.075 17.16 12.34 4.88
Video Games 1.533 1.498 1.383 1.292 15.72 13.72 6.57
Yelp (2018) 1.691 1.669 1.614 1.527 9.68 8.49 5.42

Average 1.437 1.385 1.304 1.218 14.95 11.73 6.47

importance has a much lesser impact on the overall performance,
and our choice of setting h2 to 50 should suffice for most datasets.

Table 4: Top 10 words for each aspect in the Video Games
dataset. The ‘aspect labels’ are added based on our interpre-
tation of that aspect.

Price Family Negative Gameplay Graphics

works son bad lot bought
recommend new little hours pretty

well highly horrible bit still
buy story waste couple graphics

bought favorite hard characters much
awesome part boring stars think
price character terrible course work
loves daughter frustrating minutes recommend
worth controller difficult side cool

purchase characters disappointed fan nice

5.2 Qualitative Analysis of Learned Aspects
In Section 3.3, we described the process of obtaining the aspect-level
representations by learning to attend to a subset of aspect-related
words within the corresponding document. The soft attention vec-
tor attnu,a in Equation (3) can also be viewed as a probability

distribution over the vocabularyV , for a user u ∈ U and an aspect
a ∈ A. As such, we can calculate the importance of each word
z ∈ V w.r.t. the user u and an aspect a as follows:

ψz,u,a =

|Du |∑
i=1

attnu,a [i] if (Du [i] = z) (9)

where Du [i] refers to the i-th word in the user document. The
importance of word z for aspect a can then be computed as:

ψz,a =
1
|U|

∑
u ∈U

ψz,u,a +
1
|I |

∑
i ∈I

ψz,i,a (10)

Following [26], the ‘background’ distribution of a word z is de-
fined as bz = (∑a∈A ψz,a ) / |A|, and we semantically represent
each aspect a using its top words based on (ψz,a − bz ). The aspects
learned by our model for the Video Games dataset are shown in
Table 4. We find that each aspect does cover a rather specific and
meaningful facet of item properties for the particular domain, and
reflects the different factors that contribute to the overall rating
of these user-item interactions. Given that the optimal number of
aspects can be rather different for each dataset, the quality of these
learned aspects could potentially improve if we consider a different
number of aspects.



(a) CDs & Vinyl; Amazon Instant Video;
Musical Instruments; Toys & Games

(b) Grocery & Gourmet Food; Tools & Home
Improvement; Baby; Video Games

(c) Office Products; Pet Supplies;
Beauty; Patio, Lawn & Garden

Figure 3: Effect of the Number of Aspects

(a) CDs & Vinyl (b) Toys & Games (c) Video Games

Figure 4: Effect of the Number of Factors for h1 and h2

5.3 Ablation Study
We perform an ablation study to analyze how different components
in our proposed model contribute to the overall performance and
hopefully, justify some of our architectural decisions. The ‘baseline’
of this discussion refers to the complete model as described in
Section 3, using the hyperparameter settings stated in Section 4.3,
and we compare it with its five variants:

• Simplified Model: Instead of modeling the aspect-level in-
teractions, the aspect-level user (and item) representations
are concatenated and put through a hidden layer to ob-
tain the final user (and item) representation. Similar to the
baseline methods DeepCoNN and D-Attn, the only interac-
tion between users and items occurs at the final prediction
layer, i.e. when using the user and item embeddings to derive
the overall rating.

• NoPre-training:We forgo the pre-training phase forΘARL ,
i.e. the set of parameters for Aspect-based Representation
Learning layer, to validate its effectiveness.

• SharedProjectionLayer:Rather than having aspect-specific
projection matrices, we constrain the model by having only
a single projection matrix which is shared across all aspects.
Basically, eachword has the exact same representation across

all aspects, and we make use of this model variant to verify
Intuition 2.

• Uniform Aspect Importance: We replace βu,a · βi,a in
Equation (8) with 1/K , i.e. all aspects are assumed to be
equally important.

• Main Diagonal: The main diagonal of the affinity matrix
S obtained using Equation (5) is used to replace βu,a · βi,a .
Note that the main diagonal only captures the relationship
between corresponding pairs of aspects, i.e. aspect a (User)
and aspect a (Item) for each a ∈ A.

The results of the ablation study for the Toys & Games and
Video Games datasets are shown in Table 5. First, we observe that
the lack of aspect-level interactions in the Simplified Model leads
to large performance degradation on both datasets. For the Aspect-
based Representation Learning layer, we find that the pre-training
phase does provide a better starting point for learning the user and
item aspect importance. Additionally, allowing variations in the
word representations through the aspect-specific projection layer
leads to better overall performance, supporting our Intuition 2.
Finally, results from the last 2 model variants highlight the need for
dynamically adapting the user and item aspect importance for each



Table 5: Comparison of the model variants for the Toys &
Games and Video Games datasets

Setup Toys & Games Video Games

Baseline 1.069 1.278
Simplified Model 1.173 1.495
No Pre-training 1.123 1.354

Shared Projection Layer 1.122 1.349
Uniform Aspect Importance 1.106 1.310

Main Diagonal 1.108 1.315

user-item pair, and show that modeling such a fine-grained inter-
action between users and items can improve the rating prediction
accuracy and better reflects the complex decision making process.

6 CONCLUSION
We have presented a novel Aspect-based Neural Recommender
(ANR), which includes an aspect-aware representation learning
component and an aspect importance estimator, that are based
on the ideas of neural attention and co-attention, respectively.
Experimental results have shown that ANR achieves statistically
significant improvement over existing state-of-the-art recommen-
dation systems. Furthermore, the learned aspects are meaningful
and reflect the various factors that may contribute to the overall
user satisfaction. One interesting future direction would be to ex-
tend ANR into a domain-independent framework, which will be
able to handle multiple categories simultaneously, by incorporating
either transfer learning or multi-task learning.
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