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Tämän työn lähtökohtana oli tutkia automaattisien haavoittuvuusetsintä työka-
lujen (fuzzereiden) skaalautuvuutta natiivissa- ja virtuaalisessa suoritusympäris-
tössä. Tutkielma suoritettiin monitapaustutkimuksena, jossa analyysi yksikkönä 
toimi fuzzeri American Fuzzy Lop (AFL). Monitapaustutkimuksen tavoitteena 
oli millaisella konfiguraatiolla AFL toimii parhaiten, hidastaako suoritusympä-
ristö fuzzeria ja skaalautuuko AFL rinnakkaisajossa olemassa olevan teorian mu-
kaan? 

Kirjallisuuskatsauksen perusteella tunnistettiin neljä mittaria: koodin katta-
vuus, löydettyjen bugien määrä, suoritusten määrä sekunnissa, sekä yhteisen bu-
gin löytämiseen kulunut aika. Monitapaustutkimus jaettiin viiteen osaan, joista 
jokainen osa toistettiin natiivissa ja virtuaaliympäristössä. Osien toistaminen 
suoritettiin skriptaamalla.  

Instanssien ajaminen ei sujunut täysin odotuksien mukaisesti. Pilotti ta-
pauksen ajaminen vaati kaksi uusintakertaa, sillä tuloksien perusteella oli nähtä-
vissä, että AFL ei ollut käynnistynyt oikein. Tuloksia kerätessä huomattiin myös, 
että yhden päivän koe oli uusittava virheen vuoksi. Lisäksi yhden virtuaalisen 
tapauksen tuloksia ei ollut kirjattu tuntemattomasta syystä, mutta tämä ei ollut 
este tutkimuksen tuloksien analysoimiseksi. 

Tutkimuksen tulokset analysoitiin Mann-Whitney U-testillä sekä Vargha-
Delaney Â12 vaikutuksen suuruus testillä. Koodin kattavuutta ei voitu arvioida, 
sillä tulokset olivat liian homogeenisia. Löydettyjä bugeja oli yhteensä seitsemän, 
mutta bugeja oli löydetty hyvin harvakseltaan, jolloin vertailua ei voitu suorittaa. 
Suoritusnopeuden tapauksessa konfiguraatioiden keskiarvon mittaaminen muo-
dostui ongelmalliseksi, koska keskiarvo suoritusnopeudesta konvergoitui ren-
kien (slave) tuloksien ympärille. Suoritusnopeutta mitattiin täten laskemalla 
fuzzereiden yhteenlaskettu keskiarvo. Kumulatiivisen keskiarvon lisäksi kaikista 
tapauksista löytyi yhteinen bugi (read_utmp) jota voitiin käyttää tehokkuuden 
mittaamiseen. 

Tuloksien perusteella voidaan todeta, että käyttäessä monta isäntää fuzzeri 
nopeutuu, mutta lisättäessä renkejä sen kyky löytää bugeja paranee. Vastaavasti 
virtuaali- ja natiivi toteutus eivät tehollisesti eronneet toisistaan merkittävästi. 
Lopuksi voidaan todeta, että fuzzaaminen skaalautuu erittäin tehokkaasti käyt-
täessä kahta tai kolmea tietokoneen ydintä. 

Asiasanat: haavoittuvuus, haavoittuvuuksien etsintä, fuzzerit, monitapaustutki-
mus, skaalautuvuus, tehokkuus 



ABSTRACT 

Pasanen, Erno 
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Supervisor: Costin, Andrei 

Object of this study is to explore scalability of automatic vulnerability discovery 
tools (Fuzzers) in virtual and native execution environments. Multiple-case study 
was executed while the unit of analysis within was fuzzer American Fuzzy Lop 
(AFL). Research questions for this multiple-case study were: Does AFL scale ac-
cording to known theoretical models, how is the scalability hindered through 
virtualization and how does the performance differ when different AFL configu-
rations are used? 

From current academia four different metrics were identified: code cover-
age, bug count, execution speed and time to find shared bug. Multiple-case study 
was done through five cases in both native and virtual environment. Execution 
of cases was done through scripting. 

Execution of cases had few problems. Pilot study had to be repeated twice 
because of irregularities in data showing that AFL had not started properly. Dur-
ing gathering the results, it was discovered that one day worth of data had to be 
rerun. In addition, for unknown reason, one virtual instance run is forever lost, 
but it does not hamper the analysis of this study. 

This study used Mann-Whitney U-test and Vargha-Delaney Â12 effect size 
measurement to assess metrics. Code coverage proved to be homogenous and 
was therefore discarded. Instances found a total of seven unique bugs and there-
fore results were too sparse to be analyzed. Execution speed proved to be biased 
as the averages of instances skewed towards larger dataset of slave configured 
fuzzers. Therefore, cumulative values of execution speed per configuration were 
used as metric. Furthermore, a single shared bug was found (read_utmp) which 
could be used to assess performance. 

Study concludes that configuration of instances favors execution speed 
while masters are used, while bug discovery is enhanced by using slave config-
ured instances in addition to masters. No significant performance difference was 
found between virtual and native environments. Finally, it can be said that fuzz-
ers scale well in two and three core instances. 

 
Keywords: vulnerability, vulnerability discovery, fuzzers, multiple-case study, 
scalability, efficiency 
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1 Introduction 

1.1 Motivation 

“Is it better to try and compromise with efficient approaches that balance coverage and 
speed, or to use a tedious but highly productive approach and then throw lots of cheap 
computing power at it?” - Danny Bradbury, Naked security article “Faster fuzzing fer-
rets out 42 fresh zero-day flaws” (Bradbury, 2018) 

Software is under attack. This conflict has two sides: those that continuously try 
to secure the software or those that try to exploit it for their own means (Microsoft, 
2006). Both sides have built their respective tools and processes in order to coun-
ter the other. Software defenders have their secure software development cycle 
(see e.g. Microsoft SDL) (Microsoft, 2019)and testing tools and approaches: for 
example ISO/IEC/IEEE 29119 part 4: test techniques depicts multiple tools and 
approaches (ISO/IEC/IEEE, 2015). Securing of software is done both in-house 
development and in production environment -by other than developers. 

1.1.1 One angle of attack for software 

The attacker can use the same tools and processes to find gaps in security and 
leverage them in order to gain (for example) unauthorized access system. At-
tacker is not however limited to same toolset as the defender and can in many 
cases use different and more advanced tools than the defender. Attacker is not 
limited attacking only the software as many other techniques are available: 
phishing, social engineering, and supply chain attacks are all examples of attack 
vectors that can aid the attacker. (McClure, Scambray, & Kurtz, 2012, pp. 314-322) 

One of these fore-mentioned methods is fuzzing. ISO/IEC/IEEE classifies 
fuzzing as “mathematical based testing”. In this type of testing the input and 
output descriptions are mature enough that automated testing planning input 



2 

generation, and test cases can be created. Different inputs are randomized (Ran-
dom test case generation) and combined (Combinatorial testing), and their test 
coverage is measured statistically. (ISO/IEC/IEEE, 2013, p. 32) 

Fuzz-testing is a vast method ranging from pure cloud solutions to work-
station level testing and from commercial- and open source products wrapped in 
virtual containers to native operating system environment specific applications. 
Examples include but are not limited to:  

• Cloud based Microsoft Security Risk Detection (MSRD) (Linn, 2017),   

• Google´s OSS-fuzz (Google, 2019) a cloud based open source fuzzer, 

• containerized OUSPG´s Cloudfuzzer (University of Oulu, 2017)  

• Linux based American Fuzzy Lop (AFL) (Zalewski, American Fuzzy 
Lop (2.52b), 2016), a workstation based fuzzing software, 

• WINAFL (Fratric, 2016), an windows branch of AFL. 

1.1.2 Differences between online and offline software 

Having a system or service established online induces the problem of data confi-
dentiality. Regulatory bodies of Finland have published VAHTI-instruction 
3/2012 (“Valtionhallinnon tieto- ja kyberturvallisuuden ohjausryhmän”, Gov-
ernmental information-, and cybersecurity control group) and KATAKRI 2015 
(Information security audit tool for authorities) to establish a base level for online 
(governmental) services. VAHTI instructions allow the service to be either in-
house or bought, while considering the confidentiality and availability of the sys-
tem.  

In all cases where said system is not governmentally controlled (Dedicated 
environment, government owned shared platform, or bought platform of which 
both personnel and equipment can be audited), or regulated, the information that 
can be held in said system is considered “public” - not confidential (Ministry of 
Finance Finland, 2013). KATAKRI incorporates many different resources in order 
to have distinct definition for public and restricted environment requirements. It 
is a tool for (national) authorities to assess organizations ability to protect confi-
dential information (Finnish Ministry of Defence, 2015). 

Finding software vulnerabilities is confidential: both sides of the “battle” 
gain advantage on having proprietary information on tested program. Therefore, 
having the software tested on online environment might not be beneficiary for 
the defender. Having an offline (and segregated) development and testing envi-
ronment builds yet another barrier for the attacker. 

1.1.3 Focusing this study 

In this research, focus is an offline approach to fuzzing. Fuzzing on host-based 
machine can be just as effective as massive cloud instances (Pham, Böhme, 
Santosa, Roychoudhury, & Câciulescu, 2018). Most prevalent advances of fuzz-



3 

ing do not come from adding more hardware to handle the task, rather optimiz-
ing the individual components of fuzzer. Example of this element optimization 
would be adding a input generating element to AFL (Peach support) that helps 
the AFL craft smarter and more valid inputs to program (“Virtual file format 
chunks”) (Pham, Böhme, Andrew, Căciulescu, & Roychoudhury, 2019).  

Offline fuzzing has its downsides: the hardware is not scalable, whereas in 
online (cloud) environment it is. Therefore, the offline approach for fuzzing 
might benefit of certain optimization. Optimizations in any part of a fuzzer raises 
a question of did the optimization raise overall efficiency of fuzzer, or did it incur 
more overhead rendering done optimization useless?  

When measuring efficiency of an approach it is interesting to ask a question 
“is this the most effective approach”? Intuitively, the more you assign resources 
at a task the faster the task is done. Modern fuzzers are able to regulate internal 
processes in order to be more effective, for example AFLFAST (Böhme, Pham, & 
Roychoudhury, 2017), development that is apparent in AFL from its creation to 
present (Zalewski, AFL-changelog, 2017). Therefore, are fuzzers effective when 
ran in parallel with the same target? Are there limits that are not apparent when 
using parallel execution? Are there theoretical mores that could predict the scala-
bility off fuzzers? – These were the starting sparks for this study. 

1.2 Research goals and starting point 

This chapter serves as an outline for research questions and the sub questions 
that must be answered before main questions are validated. Questions are de-
rived from Chapter 1.1 and improved during literacy study (Chapter 2). There is 
abundance of research considering fuzzers (see Chapter 1.2.2), but it mainly fo-
cuses on how research is done and that the subjects are mainly fuzzers compared 
to each other on efficiency of bug discovery. 

1.2.1 Research questions 

Main questions: 

1. Does AFL scale according to any known theoretical scaling model? 
2. How is the scalability hindered through VM-virtualization? 
3. How does the performance differ when using a different number of 

master and slave configurations in AFL? 

 
Sub questions 

1. How do you measure AFL scalability? 
2. What are the metrics in performance measuring of AFL? 
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3. Do minor changes in the test setup change performance metrics? 

1.2.2 Previous studies  

AFL is a fuzzer, that has been first released in 12th of November in 2013 by its 
creator Michal Zalewski, most current version of AFL is 2.52b (released 4.11.2017) 
(Zalewski, AFL-changelog, 2017). AFL development is community driven, for ex-
ample “AFL-_FAST_CAL”, which is a power management function used in AFL-
Fast (Böhme, Pham, & Roychoudhury, 2017) was added in 19th August in 2017. 
The most important articles that are referred in this study to define AFL and its 
processes are Hongliang & al. “Fuzzing: State of the Art” (Hongliang, Xiaoxiao, 
Xiaodong, Wuweu, & Jian, 2018), Klees & al. “Evaluating Fuzz testing” (Klees, 
Ruef, Cooper, Wei, & Hicks, 2018), and Pham & al. “Smart Greybox Fuzzing” 
(Pham, Böhme, Santosa, Roychoudhury, & Câciulescu, 2018).  

Hongliang & al. have gathered and analyzed 171 articles in IEEE Xplore, 
ACM Digital Library, Springer Online Library, Wiley InterScience, USENIX and 
El-sevier Sciencedirect Online Library using phrases like fuzz testing, fuzzing, 
fuzzer, random testing and swarm testing. This approach has led to a compre-
hensive article about the current process and state of fuzzers, including AFL. 
(Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018) 

Klees & al. have surveyed 32 articles regarding AFL experimental evalua-
tions. The key finding in this article is that amongst surveyed articles several dis-
crepancies in either the empirical demonstration or taking account the random 
nature of fuzzing. Klees & al. propose an algorithm for empirical evidence gath-
ering and statistical methods to counter the random nature of fuzz testing. (Klees, 
Ruef, Cooper, Wei, & Hicks, 2018) 

Pham & al. reviewed the process of input file generation when the file for-
mat has more complicated structure. This extended AFL’s input functionality to 
include virtual file format chunks, power schedule, and mutational functionality. 
This resulted in performance gain over the standard AFL and called this ex-
tended AFL as “AFLSmart”. Article incorporated a case study that compared 
AFL with AFLSmart providing methodology that is used in this study. (Pham, 
Böhme, Santosa, Roychoudhury, & Câciulescu, 2018) 

The theory on general fuzzer schema for this research is derived from 
“Fuzzing for Software Security Testing and Quality Assurance” by Ari Takanen 
et al. (Takanen, Demott, & Miller, 2008). The theory on fuzzers is complimented 
by several articles by other authors for example Marcel Böhme & al “Coverage-
based Greybox Fuzzing as Markov Chain” (Böhme, Pham, & Roychoudhury, 
2017), Junjie Wang & al. “Skyfire: Data-Driven Seed Generation for Fuzzing” 
(Wang, Chen, Wei, & Liu, 2017) and Sanjay Rawat & al. “VUzzer: Application-
aware Evolutionary Fuzzing” (Rawat, et al., 2017). 

Theory of performance testing derives from McCool et al. “Structured par-
allel programming: patterns for efficient computation”. Practical considerations 
for evaluating fuzz testing have been revised through George Klees et al. “Eval-
uating fuzz testing” (Klees, Ruef, Cooper, Wei, & Hicks, 2018), Jian Liang & al 
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“Fuzz Testing in Practice: Obstacles and Solutions” (Liang, Wang, Chen, Jiang, & 
Zhang, 2018) and Hongliang Liang & al. “Fuzzing: State of Art” (Hongliang, 
Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018). 

Starting point for philosophy and the crafting of method is defined through 
Saunders & al. “Research onion” (Saunders, Lewis, & Thornhill, 2012, p. 128). 
Methodology was further developed through Robert K. Yin “Case Study Re-
search Design and Methods”. Both of these methodology books are highly rated 
and referenced in Google Scholar (Saunders: over 20 000 references (Google, 
2019).Yin: over 16000 references (Google, 2019). 

1.3 Proposed scientific methodology 

In this chapter the scientific methodology is deduced by using Saunders & al. 
“Research methods for business students” (Saunders, Lewis, & Thornhill, 2012, p. 
128). From previous studies it is apparent (see previous chapter) that experiment 
must be done as fuzzers are essentially randomized algorithms that are tasked to 
find bugs (Miller, Fredriksen, & So, In Proceedings of the Workshop of Parallel 
and Distributed Debugging, 1990). Multiple-case study is chosen as the frame-
work for this study and data collection and analysis procedures are outlined from 
this framework.  

1.3.1 Research philosophy 

 
Figure 1 Research onion according to Saunders & al. 
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The philosophy of science relies on series of assumptions that form the respective 
understanding of the phenomena that is under investigation while simultane-
ously affecting chosen methodology (Saunders, Lewis, & Thornhill, 2012, p. 128). 
These assumptions contribute to the philosophy, approach, strategy, and tech-
niques and procedures used in scientific research and are summarized in Figure 
1, above, which on outer (darker) layer depicts the available philosophy and ap-
proach and in the inner layer (lighter) comprises of available methodologies, 
strategies, and techniques and procedures. 

Phenomena that is under scrutiny here (scalability of software component) 
presumably provides data that can be seen and interpreted. An Assumption in 
this case would be that AFL provides data that has causality, in other words: 
having more fuzzers working on the same problem yields results faster. This kind 
of assumption leads to positivistic philosophical approach where only observa-
ble results lead to credible data and might credit (or discredit )to an existing the-
ory (Saunders, Lewis, & Thornhill, 2012, pp. 134-145). Realism would state that 
there is no causality between the human and program but as the whole infor-
mation system is an object of human ingenuity this cannot be the case. The data 
of AFL is not open for interpretation as it is (in this research) quantitative in na-
ture leaving little room for interpretative approach. 

Approach of this research is deductive in nature: assumption is that AFL´s 
performance enhances as more and more instances are used but it is unknown 
how the systems performance scales comparing to single instance. As we are 
working reducing data to a known theoretical framework, inductive approach is 
not used. Abductive approach is also not viable, as it requires the combination of 
both inductive and deductive approaches. (Saunders, Lewis, & Thornhill, 2012, 
pp. 145-147)  

1.3.2 Chosen methodology and research strategy 

AFL provides its data in form on exported text file and graph (Zalewski, AFL 
Readme, 2017). There are two kinds of data: runtime data (referred as status 
screen) and exported runtime data. This research focuses on the exported data, 
as it is the concentrated output of AFL. This data is quantitative in nature as it 
takes form of numbers (Saunders, Lewis, & Thornhill, 2012, p. 161).  

Presumed quantitative approach does not exclusively deter qualitative ap-
proach but it could be hard to make a qualitative study and exhaust all the pos-
sibilities that factor into scalability of a computer. Hongliang & al. have used 
qualitative approach (literacy review) to scope the current state of fuzzers but 
does not yield information on how scalable fuzzers are (Hongliang, Xiaoxiao, 
Xiaodong, Wuweu, & Jian, 2018). Quantitative data (in this case, number of 
crashes) has been used to compare different fuzzers (Klees, Ruef, Cooper, Wei, & 
Hicks, 2018). Comparing different fuzzers does not reveal scalability information 
regarding single fuzzer but the ranking of fuzzers in a controlled environment 
(Klees, Ruef, Cooper, Wei, & Hicks, 2018). Both Klees & al. and Hongliang & al. 
have made tremendous effort to compare different fuzzers in order to form a 
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consensus on roadmap for future fuzzers, but they do not touch the subject of 
fuzzer scalability. In this research quantitative approach is taken as it studies dif-
ferences and causality of numbers and is usually paired with deductive positiv-
istic approach (Saunders, Lewis, & Thornhill, 2012, pp. 162-163); therefore, we 
can presume that this methodology yields results. 

In this study, the research strategy derives from chosen philosophical ap-
proach and methodology. In most quantitative studies either experimental or 
survey method is used (Saunders, Lewis, & Thornhill, 2012, p. 163). Experimental 
method relies on causality between two variables, called independent variable 
and dependent variable (Saunders, Lewis, & Thornhill, 2012, p. 174). As we are 
using a program that relies on automated test case generation (Hongliang, 
Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018, p. 1202) that is deterministic on start 
and randomized the further AFL is executed (Zalewski, AFL technical details, 
2017) it could be hard to establish independent variable that produces the same 
result every time it is used. This independent variable is produced by statistical 
means observing the behavior and outputted data of AFL.  

When exploring real world phenomena in its context a case study is a valid 
option for research strategy. Case studies divide in two dimensions: single case 
versus multiple cases, and holistic case versus embedded case (Saunders, Lewis, 
& Thornhill, 2012, pp. 179-181). Key points dividing these dimensions are context 
and Unit of analysis. The types of designs for these kinds of studies are pictured 
in Figure 2, which shows that case study can be divided by single- and multiple-
case design, and its approach of holistic or embedded.  A single case scenario 
considers only a single critical or unique case, and as we need information on 
native- and virtual environments: single case approach is discarded. Multiple-
case approach is better suited for this research as we can presume that results in 
different cases are causally linked to one another by having the same restrictions 
and structure (also known as construct) through case study methodology (Yin, 
2014, pp. 45-49) .  

Holistic multiple-case study would require the results to be pooled within 
context of study and not examined as different cases (Yin, 2014, p. 62). When tak-
ing into account the unit being analyzed (AFL), embedded case study approach 
is more favorable than holistic approach, as it explores the interdependencies of 
units within same case. These interdependencies within the case structure and 
context presumably yield results on comparison of virtual and native environ-
ments. 
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Figure 2 Types of Designs for Case Studies according to Yin (Yin, 2014) 

Timeframe of this study is reflected through chosen research strategy and unit of 
analysis (case): process of this study is not a continuous process that would re-
quire continuous effort, rather the cases have a starting point and an endpoint. 
AFL is ran for predetermined time and then collected data is analyzed and com-
pared to other cases in same context. Boundaries set to case study limit the 
timeframe to cross-sectional study (Saunders, Lewis, & Thornhill, 2012, p. 190) as 
it observers a phenomena (performance) in set amount of data points (cases). 

1.3.3 Data collection in case studies 

Data collection divides to two different phases: preparation, and collection of ac-
tual data. Preparation can be a process that is more complex than the process of 
study, as poor preparation can jeopardize the whole research. Preparation in-
cludes the following (Yin, 2014, p. 71): 

1. mapping out the skillset needed for research 
2. training for specific case study 
3. refining the approach and process of case study (protocol) 
4. deciding candidate cases 
5. conducting a pilot study. 

All of the above requirements reflect the familiarity on case study subject, 
and the ability to react to different emerging threats during and after data-collec-
tion.  
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Training has been undertaken before data collection on many different are 
of computer science from which applicable to this research have been derived 
from research questions. These are usage of AFL (RQ1 and RQ3), ability to use 
both native and virtual environments (RQ2), and ability to convert data into plot-
ted graph (RQ1-3).  

Process of case study divides into four elements (Yin, 2014, pp. 84-94): Over-
view, data collection procedures, using instrument to gather data, and docu-
menting the results. Both overview and documentation is handled through thesis 
process, but process regarding data collection procedures and instruments are 
explained in Chapter 3. 

One-phase approach for candidate screening is adopted (Yin, 2014, p. 95), 
as cases can be selected to accommodate the progression of performance and 
scalability through different configuration of AFL. Candidate cases in this study 
are numerous, as both native and virtual environments provide the different con-
texts with the same amount of analysis units within.  

The role of pilot case study is to test and refine the proper procedure and 
collection methods (Yin, 2014, pp. 96-97). In this case the pilot case study is con-
ducted to gain knowledge on single instance of AFL performance in both native- 
and virtual environments. As the operation system must be chosen in Linux do-
main, the results of pilot study have crucial role in refining the operating system 
of subsequent cases. Finally, pilot case results are used as the starting point for 
measuring scalability. 

1.3.4 Case data analysis 

“The analysis of case study evidence is one of the least developed aspects of doing case 
studies” --Yin Robert K. on analyzing case study evidence in Case Study Research De-
sign and Methods (Yin, 2014, p. 133) 

General strategy of case data analysis links the case study data to the concept of 
study. These strategies combined with insight provide starting point and direc-
tion to analysis techniques. Yin proposes four general analytical strategies (Yin, 
2014, pp. 136-142):  

1. relying on theoretical propositions 
2. working your data from the “ground up” 
3. developing a case description 
4. examining plausible rival explanations 

Theoretical propositioning of this study is to compare performance metric differ-
ences between cases. In computers these metrics are speedup and efficiency. 
Speedup measures the ratio of one worker latency to multiple worker latency and 
efficiency measuring the use of available resources. (McCool, Robinson, & 
Reindeer, 2012, p. 56). 

Case evidence (Yin, 2014, p. 133) is provided through AFL runtime data 
(Zalewski, AFL plot data, 2014) which states that following runtime data is saved:  
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Unix time, Cycles done, Current path, total paths, pending paths, pending favor-
ite paths, size of bitmap, unique crashes, unique hangs, max depth (of coverage) 
and executions per second. According to Klees & al. most common dataset used 
is unique crashes (Klees, Ruef, Cooper, Wei, & Hicks, 2018) but as speedup is a 
function of work done and their span of critical path (McCool, Robinson, & 
Reindeer, 2012, p. 63) the time in which work is done remains a metric that must 
be incorporated. As the evidence and metrics do not yield explicit results together 
but most likely provide some patterns that are recognizable. Therefore, a strategy 
that includes working and manipulating data must be adopted. 

Developing case descriptions and exploring rival plausible explanations as 
a strategy are strategies that are less likely to be employed in this study. When 
developing case descriptions, the vastness of data and its perceived structure 
form the case study restrictions and research which have been established at this 
point. As for regarding rival theories: Klees & al. (Klees, Ruef, Cooper, Wei, & 
Hicks, 2018) have established that rivalry in fuzzing academics focuses on com-
paring the results of fuzzers through statistical (or other) means, not studying 
their optimal use and scalability. 

Analytic strategy of this study relies on data manipulation in order to find 
patterns, insights, or concepts that seem promising in performance metric context. 
According to Yin (Yin, 2014, p. 135) manipulation methods include but are not 
limited to array manipulation, categorizing said arrays and matrices, displaying 
data in different graphics (for example: plots and arrays, which are common in 
comparing different fuzzers to other fuzzers (Klees, Ruef, Cooper, Wei, & Hicks, 
2018)), determining frequency of events, and using a temporal scheme to order 
data. 
  

1.4 Conclusions 

Software exploitation is a rival process that uses the same methods for both at-
tacking and defending. These methods included automated testing, and auto-
mated input generation (fuzzing). Testing can be done both in scalable online 
environments and in offline hardware restricted environments. In this study of-
fline environment is chosen through it having better confidentiality than online 
environments. 

The current field of academia surrounding fuzzing is divided: most of the 
comparisons done in and before 2017 have been discredited through lacking sci-
entific procedure, but advances have been made by introducing extensions to 
AFL. Fuzzing as a tool is still usable, despite being random in nature.  

Philosophy of the research is positivistic in nature relying on data provided 
by the fuzzing suite AFL. This data is quantitative in nature and must be manip-
ulated in order to gain theoretical validation to scalability of multiple workers. 
The manipulation is done within a case study framework, utilizing performance 
theory´s theoretical propositioning and emerging patterns within data. 
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2 Overview of related fields 

This chapter uses literacy as an fountain of information to overview the related 
fields of fuzzing, performance theory and virtualization in their respective chap-
ters. Fuzzing is overviewed through history to its current form as and tool for 
vulnerability researchers. Performance theory offers overview for the framework 
of metrics that must be constructed in order to measure speedup and efficiency of 
multi-worker instances. Virtualization is commonplace, but overview of virtual-
ization layers and technologies yields information on how the experimental set-
up if this multiple-case study can be constructed. 

2.1 Fuzzing 

Fuzzing is a software testing method that explores programs different code paths 
and provides information on what inputs potentially crash or causes the program 
to fail (Takanen, Demott, & Miller, 2008, p. 24). 

2.1.1 Brief history 

Fuzzing was proposed as an idea by Miller et al. in 1989 (Miller, Fredriksen, & 
So, In Proceedings of the Workshop of Parallel and Distributed Debugging, 1990) 
together with a tool called “fuzz” which generated random stream of input char-
acters to a target program. The test results showed that most UNIX programs did 
not handle random inputs adequately. Both Hongliang et al. (Hongliang, 
Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018)and Takanen et al. (Takanen, Demott, 
& Miller, 2008, pp. 22-23)perceive this as the first instance of successful fuzzing. 
Takanen et al. also denote that program called “Monkey” was used in Quality 
Assurance (QA) field to test UI components in 1983. 

Miller and group of researchers revisited fuzz testing in 1995 (Miller, et al., 
1995). This technical report detailed the testing methods used and results which 
were promising but still considered them as not good enough. One of the testing 
areas that proved the most promising results was networked applications which 
Miller et al. were not able to crash to the extent of offline programs. According to 
Takanen et al. (Takanen, Demott, & Miller, 2008) this sparked the Oulu Univer-
sity Secure Programming (OUSPG) group to develop testing suites for different 
networking protocols as detailed in “Vulnerability Analysis of Software through 
Syntax Testing” by Kaksonen et al. (Kaksonen, Laakso, & Takanen, 2000). Main 
idea of Syntax testing was to assure that the input syntax was correct and then 
fuzzed, henceforth guiding the fuzzer to fuzz areas of interest. 

Guided approach uses different techniques to direct fuzzer to detect specific 
kind of vulnerabilities (Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018, pp. 
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1212-1213). This kind of fuzzing is an extension to syntax testing adding tech-
niques like dynamic taint analysis (DTA) (Hongliang, Xiaoxiao, Xiaodong, Wuweu, 
& Jian, 2018, p. 1207) and control over execution flow (Haller, Slowinska, 
Neugschwandtner, & Bos, 2013) of the program. Controlling execution flow 
needed a framework one of which most widely known is Valgrind by Nethercote 
and Seward (Nethercote & Seward, Electronic Notes in Theoretical Computer 
Science 89 No. 2, 2003); in which program is translated to x86-to-x86 just-in-time 
(JIT) compiled code, gaining control over the execution of the program. Valgrind 
is used in a fuzzer called Flayer (Drewry & Ormandy, 2007). Flayer used 
Valgrind´s dynamic binary instrumentation framework and memory error detec-
tion plug-in “Memcheck” to mark data and alter its flow. In dynamic data anal-
ysis data (whether its user inputted or generated through functions) is tagged 
with precision meta-data. This meta-data is then tracked through the program 
and removed when the original data is destroyed (Nethercote & Seward, ACM 
Sigplan notices vol 42, 2007). Therefore, in event of crash the input has a meta-
data tagged to it which tells the user the propagation and origin of said input. 

Guided fuzzing was improved with syntax aware fuzzers, for example 
“BuzzFuzz”. Buzzfuzz was capable of processing files (instead of volatile inputs, 
like network data) which it dynamically tainted and therefore kept the syntax of 
the file intact. After initial tainting the fuzzer could improve on directing the 
fuzzing to upkeep the syntax while fuzzing revealing several bugs in Adobe 
Flash player and muPDF (a PDF viewer) (Ganesh, Leek, & Rinard, 2009). Syntax 
awareness was not new technique when BuzzFuzz was introduced as syntax 
aware fuzzers were first introduced in early 2000s by for example OUSPG PRO-
TOS project, which had fuzzer suites for several networking protocols (Takanen, 
Demott, & Miller, 2008, p. 23). Adding DTA and control flow management ex-
tended the capabilities of fuzzers beyond protocol- and syntax testing to domain 
of file types. 

While guided fuzzing was used in vulnerability searching in early 2000s, a 
different toolset was used in quality assurance. In quality assurance test-case gen-
eration was enhanced by incorporating automatic test generators. Thomas Ball 
analyzed a programs behavior by using symbolic execution to generate test cases 
that would traverse the behavior of “small inputs”. In this case study, the input 
was array with a length of three to six (integers). Small inputs were chosen as 
exploring all paths of a program was deemed impossible (Ball, 2003). This prob-
lem in symbolic execution is called path explosion problem: larger programs have 
exponential number of paths (nested calls, loops, conditions) leading to scaling 
problems when traversing the whole program (Krishnamoorthy, Hsiao, & 
Lingappan, 2010). There are three ways to circumvent this problem: cut loop it-
erations, use small input space, or constrict the maximum path length (bounded 
model checking) (Ball, 2003). 

Symbolic execution imbued with concrete execution to generate test inputs 
was introduced in application Concolic Unit Testing Engine for C (CUTE) (Sen, 
Marinov, & Agha, 2005). The author of CUTE stipulates that first known instance 
to bridge symbolic- and concrete execution were Larson and Austin in their 
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presentation “High Coverage Detection of Input-Related Security Faults” 
(Larson & Austin , 2003), and CUTE was to apply this theory to a real-world test 
case generation for C-language.  

CUTE was able to find problems in a single C-language function by either 
testing the function itself or constructing a framework to test the function (i.e. 
constructing main-function around tested function). The CUTE tests are gener-
ated and run per C-function meriting the name concolic unit testing (Sen, Marinov, 
& Agha, 2005). However, it is impossible to have an active environment present: 
any out of bound input (input that is not known when CUTE is launched) would 
be discarded, making the dynamic execution impossible. Dunbar et al. intro-
duced dynamic execution for unit testing in their tool EXE which developed fur-
ther to KLEE (Dunbar;Engler;& Cadar, 2008). KLEE used Low Level Virtual Ma-
chine (LLVM (Lattner & Adve, 2004) and its compiler (LLVM-GCC) to generate 
executable for KLEE to run tests on. This made the tool easily accessible as it 
compiled the whole program instead of testing single functions. While KLEE was 
making testing more approachable it did not try to solve the path explosion prob-
lem: it either chose a random path or chose a path that yielded most coverage to 
code (Dunbar;Engler;& Cadar, 2008). 

Chipunov et al. proposed a solution in which the path explosion problem 
was solved by choosing the paths that seem important to the execution of binary 
and not explore paths that lead outside of the desired scope (bounded model check-
ing). Path explosion problem was circumvented by using Selective Symbolic Exe-
cution (S2E). S2E used Quick Emulator (National Institute of Standards and 
Technology, 2018) (QEMU (Bellard, 2005)) virtual machine, KLEE-framework 
and LLVM tools as starting point, adding several thousand lines of code (KLOC). 
Developed environment runs on multiple operating systems (OS) including but 
not limited to MAC OS, Windows, and Linux. Chipunov et al. do not refer S2E 
as concolic, as it does not use concrete execution in exploring the binary path: all 
path constraints are assigned symbolically, and only when binary makes a call 
that is not defined by boundaries (i. e. call to OS or library), it is assigned a con-
crete value, in order to satisfy that path. S2E uses rules of execution consistency 
model proving state transitions from symbolic model to concrete execution and 
back. (Chipunov, Kuznetsov, & Candeae, 2011) 

Godefroid et al. introduced fuzzers using concolic execution (symbolic and 
concrete) in Directed Automated Random Testing (DART) (Godefroid, Klarlund, & 
Sen, 2005). DART used symbolic execution to impose input vectors that satisfy 
the path constraint in order to find new paths for fuzzing. By combining symbolic 
and concrete executions deeper bugs can be found (Stephens, et al., 2016). Fuzz-
ers can use concolic execution by reducing the scope of symbolic execution, pri-
oritizing explored code paths, or controlling the amount of taint propagation 
(Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018, pp. 1207-1208). 

First fuzzer to implement guided and concolic approach was Dowser 
(Haller, Slowinska, Neugschwandtner, & Bos, 2013, p. 50) in which the problems 
regarding path explosion were addressed by constricting the scope of symbolic 
execution to include only buffer boundary violations (also known as buffer over- 
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or underflows). Like the test generator KLEE Dowser also used LLVM as the en-
vironment but used S2E as an automatic path analyzer. Dowser was able to find 
several bugs in multiple Linux applications. (Haller, Slowinska, 
Neugschwandtner, & Bos, 2013, p. 59) 

Concolic execution is a performance intensive task. Using only concolic ex-
ecution induces a large overhead even with modern approaches: S2E using con-
crete execution induces approximately 6 times more the overhead than normal a 
virtual machine, and 78 times more overhead when using symbolic execution 
(Chipunov, Kuznetsov, & Candeae, 2011, p. 11). On the other hand, fuzzers pro-
duce only small amounts of overhead. Because they generate the input and run 
it on binary itself only inducing overhead when the input is generated, on moni-
toring the application, or in an event where a crash occurs (Nagy & Hicks, 2019). 
In Driller, the adopted approach is to use fuzzers to find new paths, and use con-
colic (or selective symbolic execution) to find paths when the fuzzer is stuck on 
finding a unique value (Stephens, et al., 2016, p. 3). 

Driller is an all-purpose fuzzer unlike Dowser. Driller acknowledges that 
fuzzing a path is far faster than symbolic execution. The concolic execution en-
gine of Driller is an open source software based on Mayhem (Cha, Averinos, 
Rebert, & Brumley, 2012) and S2E, and is called “angr”. Driller works in four 
phases: first phase is to generate input test cases, secondly fuzz with said cases, 
thirdly use concolic execution to path exploration, and finally repeat the phases. 
Test cases are inputted first in order to guide the fuzzer towards wanted paths. 
Fuzzing starts with AFL mutated inputs, and concolic execution is invoked when 
a complex check or input is reached. Concolic execution starts by translating the 
binary to Valgrind “VEX” format in which symbolic constraints, states, and var-
iables are defined. After transformation concolic engine analyzes the trodden 
path and starts solving the restraints therefore circumventing the path explosion 
problem. Repeat phase pushes the new path (and its inputs) down to the fuzzing 
engine and the process off Fuzz starts again. Driller was able to beat both sym-
bolically executing Mayhem and pure fuzzer (AFL) instance in finding bugs in 
Cyber Grand: Mayhem found 16, AFL 68, and Driller 77 bugs. This proved that 
fuzzing and concolic execution work well together as a hybrid solution. 
(Stephens, et al., 2016) 

Fuzzers have been used in wide variety of fields: test case generation, input 
testing, protocol and syntax testing and lately as an part of framework. It is clear 
that fuzzers are used because of their fast execution but they need more guidance 
to gain coverage on larger and complicated programs. AFL as a fuzzer is still 
used in modern day applications, like Driller, to its full extent. 

2.1.2 General process of fuzzing 

General process-schema has been depicted by Hongliang & al in Figure 3 
(below) (Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018). Fuzzers can be 
divided into two categories: generational and mutational. Generational fuzzer (also 
called grammar-based (Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018, p. 
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1202)) is practically a ruleset which generates the input and observers its effect 
on the target program before generating a new input. Mutational fuzzer gener-
ates an input based on a valid source (either a network session, file, object etc.) 
by mutating it with different approaches (for example bit flips, adding or remov-
ing bytes). Most generation fuzzers are protocol, application or file-format spe-
cific whereas mutational fuzzers tend to be called generic- or general purpose 
fuzzers. (Takanen, Demott, & Miller, 2008, pp. 137-138) 

All fuzzers require data input to start fuzzing. Creation of the inputted data 
is divided into four categories: test cases, cyclic data insertion, random data, and 
known attack vectors. Test case based input generation uses the same inputted 
data without mutation and can be considered more as a traditional automated 
(stress test) tool. Cyclic data insertion works mostly same way as test case based 
but it inputs data to test cases after a cycle is complete. Random data usually 
needs a starting point (from which to mutate) and the data insertion and muta-
tion can be repeated. A fuzzer can also use known attacks, also called libraries, 
to test a given target program. (Takanen, Demott, & Miller, 2008, pp. 141-142) 

 
Figure 3 The general process of fuzzing according to Hongliang & al. (Hongliang, 

Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018) 

Seed files are a set of valid (or semi-valid) file inputs that are used in mutational 
fuzzers whereas specifications are inputted on generational (grammar) fuzzers 
(Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018, p. 1202). Including ran-
domness forces the target program to explore inputs that would not be possible 
according to program logic (for example, using different boundary values). A 
deterministic (“intelligent”) approach can explore the program more thoroughly 
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but requires more time to set-up properly. (Takanen, Demott, & Miller, 2008, pp. 
138-141) 

Chosen target programs include for example: OS local program, Network 
interface, file ingesting applications, API´s or Web/server/client applications 
(Takanen, Demott, & Miller, 2008, pp. 162-164). Choosing the target program en-
ables different kind of fuzzers with different kind toolsets, like concolic execution, 
protocol fuzzing, coverage guided fuzzing and such. On the other hand it is more 
likely that target programs information is limited in nature as it is most probable 
that the source code for target program is not available therefore limiting the 
choosing of different fuzzing techniques (Hongliang, Xiaoxiao, Xiaodong, 
Wuweu, & Jian, 2018, p. 1202). As input generation can be done in several ways 
it is most likely that choosing the target program is done by personal or some 
other interest. 

The monitor component uses information from different sources to provide 
situational awareness to fuzzer. Amount of information sources used is specified 
by the target program (and its available information) and available runtime in-
formation (runtime errors, tainted data flows etc.). The monitor guides test case 
generator and receives and runs new test cases. Ideally, each test case would ex-
ecute a different path but as this is not the case (if- and loop- conditions in code) 
the monitor must observe the input gain (IG) of a test case. This IG determines if 
a new path is taken or if the input is running in a loop, favoring new paths in 
coverage base fuzzers (Rawat, et al., 2017, p. 2). Finally, the monitor reports sus-
pected crash or errors information (timeouts, system errors…) to a bug detector. 
(Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018, p. 1202) 

The test case generator (TCG) can be run with or without a monitor. When 
running without a monitor no runtime information is used and modified inputs 
run on the target program directly. TCG is either mutation- or grammar based 
(Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018, p. 1202), and can be either 
intelligent or non-intelligent. Intelligent TCG possesses the understanding of a pro-
tocol (or file format), a target program interface, and necessary calculations to 
satisfy data integrity checks (for example, cryptographic functions) (Takanen, 
Demott, & Miller, 2008, pp. 142-144). 

After an input performs a suspected crash, or error, the bug detector tries 
to validate said inputs crash inducing properties. Validation is sometimes called 
triaging (Woo, Cha, Goettlib, & Brumley, 2013). Bug detector collects and ana-
lyzes related information, for example collecting stack traces of crashes, or using 
debugger(s) to collect crash information. In Wikipedia the stack trace is defined 
as “…is a report of the active stack frames at a certain point in time during the execution 
of a program” (Wikipedia Commons, 2017). After information collection suspected 
bugs are de-duplicated (multiple inputs can induce the same bug, for example, 
in a loop or in if statement). Deduplication is usually done via stack hashes which 
can contain, for example: sequence of instruction pointers, debug symbols, names 
of  function calls, line numbers of source code, object names etc. hashed with call 
stack functions (Molnar, Li, & Wagner, 2009, p. 8). After bugs are validated (ie. 
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confirmed that they induce an exception in target program, and are not dupli-
cates of other bugs) they are passed to a bug filter. (Hongliang, Xiaoxiao, 
Xiaodong, Wuweu, & Jian, 2018, p. 1202) 

The bug filter evaluates the exploitability of bugs. Exploitability is usually 
evaluated manually which requires low level debuggers and expert knowledge 
of target program (Takanen, Demott, & Miller, 2008, p. 31). The target program 
can be proven to be exploitable if the crash-inducing input causes an exploitable 
vulnerability. (Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018, p. 1202)   

2.1.3 Classifying fuzzers 

As per Figure 3 (chapter 2.1.2 “General process of fuzzing”), a chosen target pro-
gram, seed files, specifications or raw inputs conform to yield information to the 
fuzzer program. The fuzzer program executes, and this process yields anomalous 
program states that after classification are perceived as “bugs”. This process leads 
to classifying fuzzers by their available information of target and runtime infor-
mation. Commonly fuzzer programs are classified as white-, grey-, or black-box 
fuzzers. White box fuzzing has the most information, like protocol knowledge, 
compiled source code, known bad inputs, runtime code- and data-flow-coverage, 
or CPU and RAM utilization and shadowing. Greybox fuzzers rely on a binary 
that has been instrumented in some way, and black box fuzzers rely only on input 
generation and execution. (Takanen, Demott, & Miller, 2008, pp. 144-145) 
(Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018, p. 1202) 

Black-box testing refers to “unknown” codebase of which the program has 
been compiled (Takanen, Demott, & Miller, 2008, p. 144) and the input data is 
generally randomized from a well formed set of seed files. Black-box fuzzers are 
sometimes called “Black-box random testers” and are simple to use, making 
them popular in the software industry. Downsize to black box fuzzing is that no 
dynamic target information is modified or observed during runtime.  Therefore, 
fuzzer does not excel in exploring paths that have low chance of triggering from 
random input (for example specific numbers and strings). (Hongliang, Xiaoxiao, 
Xiaodong, Wuweu, & Jian, 2018, p. 1202) 

White-box testing includes testing methods that work on the source code 
itself, making the target applications code-base and combined inputs “known” 
variables. Process of white-box fuzzing relies on a reviewable codebase (Takanen, 
Demott, & Miller, 2008, p. 144), symbolic analysis and concolic execution to form 
path constraints for the coverage guidance. In theory, a white box fuzzer can trav-
erse 100% of the program paths. In practice without an element of blind random-
ization (i.e. black box fuzzing) white-box fuzzing halts or slows down due to 
solving of path constraints during concolic execution (numerous paths, path ex-
plosion). (Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018, p. 1203) 

Grey-box fuzzing is a step down from white-box: while the target itself is of 
unknown codebase, runtime information about code coverage can be lifted from 
the target program. A difference to black box fuzzing is that some codebase is 
known (for example, protocol, code- or script snippet) ascending the fuzzer 
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above just random testing. (Takanen, Demott, & Miller, 2008, pp. 144-145). Two 
most common methods are code instrumentation to determine if a new path is 
found after input mutation or taint analysis which traces the dataflow to guide the 
mutation algorithm mutating specific areas of input. The methodology of white- 
and grey-box fuzzing is quite similar (both make use of runtime information to 
guide the fuzzer for more coverage) but the main difference is that a grey-box 
fuzzer does not the utilize source code of target program, unlike the white-box 
fuzzer. (Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018, p. 1203) 

2.1.4 Modern coverage guided fuzzer (AFL) 

AFL can be  classified as a unintelligent general purpose fuzzer according to 
Takanen et al. because it can be used to test multiple interfaces, but does not have 
deep understanding of said target interface (Takanen, Demott, & Miller, 2008, p. 
149). Hongliang et al. classify AFL as a mutation-based coverage-guided fuzzer 
(Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018, p. 1202) which is closer to 
the authors own view of a instrumentation-guided genetic fuzzer (Zalewski, 
American Fuzzy Lop (2.52b), 2016). AFL can be dissected according to Figure 3 
(chapter 2.1.3) to its components and their functions can be explored in the same 
context. 

As a mutational fuzzer, seed files must be presented to the fuzzer along 
with the target program invoking command which also specifies where the input 
is inserted (Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018, p. 1202). Seed 
files are very application specific but some common rules apply: selecting 
(valid/semi valid) files with different coverage are better than randomly gener-
ated, and reducing a set of files is more efficient and transferable than a full set 
of files (Rebert, et al., 2014). Theses seed files can be collected manually or via 
web crawler, randomly generated, or using data-driven approaches like Skyfire 
(Wang, Chen, Wei, & Liu, 2017) and AFLSmart (Pham, Böhme, Santosa, 
Roychoudhury, & Câciulescu, 2018). The quality of seed a input has great impact 
on performance, as proven with the case of AFLSmart versus AFLFast (Pham, 
Böhme, Santosa, Roychoudhury, & Câciulescu, 2018): AFLSmart (Seed input gen-
eration done with Peach-pit (Deja Vu Security, 2014)) found twice the amount of 
zero-day bugs than AFL with AFLFAST-extension (Böhme, Pham, & 
Roychoudhury, 2017) on the same target programs.  

AFL is a grey-box fuzzer utilizing binary instrumentation (either done with 
AFL´s own C-compilers (AFL GCC and -CXX) when the source code is available, 
or QEMU user space emulation for on-the-fly instrumentation   to monitor coverage 
on an application. AFL can also run in a black-box mode (only mutations, no 
runtime information), however this is not recommended. As per normal Greybox 
fuzzer the monitored coverage information is relayed to test-case generator to 
assist coverage-based fuzzing. (Zalewski, AFL Readme, 2017) 

AFL test generator receives an input and tries to determine if input has 
gained coverage. Inputs performance cost is calculated and low performance cost 
coverage gaining inputs are favored for mutation. Mutation is done through bit 
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flips, arithmetic operations, and interesting values, in set places (dictionary) or 
randomly (Havoc) by either splicing into or adding to the input. The Inputs are 
then set to an input queue to be executed by the target application. (Zalewski, 
AFL technical details, 2017) (Google LLC, 2019, pp. 5131-6659) 

Bug detection in AFL is done after fork-server (Wikipedia Common, 2019) is 
up and ready to process the queue (in the “monitor” part). Queues input is then 
executed and checked if it crashes the target program (execv returns -1 (Linux 
Foundation, 2019)). AFL does not use stack trace rather it hashes the error code 
with its coverage information (stored in a bit map) and a constant to determine if 
the bug is a duplicate (Google LLC, 2019, pp. 2100-4554). This method is less ac-
curate than the stack hash: if an identical crashing input crashes on multiple lo-
cations (for example, case structures, loops, mangled “if” sentences) of said bit-
map it is considered unique and therefore inflates the crash count. As the dedu-
plication is dependent on the amount of information gained from the target and 
information used to deduplicate it has been shown that AFL’s own deduplication 
logic bloats the results when compared to stack hashes (Klees, Ruef, Cooper, Wei, 
& Hicks, 2018, p. 2124).  AFL does not have a bug filter. Therefore any crash that 
is reported by AFL must be validated as vulnerable by either manually or using 
tools. (Zalewski, AFL technical details, 2017) 

2.1.5 Fuzzing target 

As mentioned in Chapter 2.1.2 General process of fuzzing, the fuzzing target can 
be either in binary- or source code form (Hongliang, Xiaoxiao, Xiaodong, Wuweu, 
& Jian, 2018) and targets cover from real-world applications to synthetic bench-
marks (Klees, Ruef, Cooper, Wei, & Hicks, 2018, p. 2126). These targets are usu-
ally chosen from modular open-source projects and standard benchmarks be-
cause they are readily available and relatively simple to test (Liang, Wang, Chen, 
Jiang, & Zhang, 2018, p. 562). The examples of these targets that have been used 
in academia to compare fuzzers are listed below on Table 1 (Klees, Ruef, Cooper, 
Wei, & Hicks, 2018, p. 2127) (Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 
2018, p. 1202). Additionally, ten interesting targets and their listed CVE identifi-
cation numbers (Common Vulnerabilities and Exposures (MITRE, 2020)) are 
compiled to Table 2 (far below) (Zalewski, American Fuzzy Lop (2.52b), 2016). 
Table 2 is in non-exhaustive of the accomplishments of AFL.  

Table 1 Examples of fuzzing targets from academia 

Real-world applications Synthetic Benchmarks 

Binutils 2.2.6: nm, objdump, cxxfilt Cyber Grand Challenge 2016 
gif2png LAVA -M 
FFmpeg  

png2swf  
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Table 2 AFL “bug-o-rama” targets. 

Target CVE’s 

Mozilla Firefox  
CVE-2014-1564 
CVE-2014-1580 
CVE-2014-8637 

Internet Explorer  

CVE-2014-6355 
CVE-2015-0061 
CVE-2015-0076 
CVE-2015-0080 

OpenSSL  

CVE-2015-0291 
CVE-2015-1788 
CVE-2015-1789 
CVE-2015-3193 
CVE-2016-2108 

tcpdump  

CVE-2014-8767 
CVE-2014-8768 
CVE-2014-8769 
CVE-2015-3138 
CVE-2016-7993 

curl 
CVE-2015-3144 
CVE-2015-3145 
CVE-2017-7407 

PHP  
CVE-2015-0232 
CVE-2017-5340 

BIND 
CVE-2015-5477 
CVE-2015-5722 
CVE-2015-5986 

Apache httpd CVE-2017-7668 

irssi 

CVE-2017-5193 
CVE-2017-5196 
CVE-2017-10965 
CVE-2017-10966 

clamav  
CVE-2014-9328 
CVE-2015-1463 
CVE-2015-2170 

 
Choosing a target for assessing performance of a fuzzer differs from using fuzz-
ing as a bug discovery tool as the developers or vulnerability researchers might 
use. The performance is usually assessed (in fuzzer research) against a ground 
truth. Therefore, the target is better to choose from targets that yield consistent 
feedback to both the fuzzer and the experiment. This requirement limits the tar-
get to either a synthetic benchmark or to an application with known bugs, as 
ground truth might be hard to establish with real targets. (Klees, Ruef, Cooper, 
Wei, & Hicks, 2018, pp. 2124,2127-2129)   

It is most likely, that the target has more than one bug. Both real-world ap-
plications and synthetic benchmarks have shallow and hidden (deep) bugs 
(Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018, p. 1204). Shallow bugs 
crash the program most frequently, while residing in the most frequent paths 
used by the program (Liang, Wang, Chen, Jiang, & Zhang, 2018, p. 564), for ex-
ample, a divide by zero operation in a non-conditional path (Hongliang, Xiaoxiao, 
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Xiaodong, Wuweu, & Jian, 2018, p. 1204). Bugs that are deep in the complex con-
ditional branches of a program are harder to find (hence the name hidden) 
(Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018, p. 1204). These bugs also 
elude the fuzzer as they might not crash expectedly (for example, a logging func-
tion takes over and logs the crash before a bug detector can detect the crash 
(Liang, Wang, Chen, Jiang, & Zhang, 2018, pp. 564-565)), or the crashing path 
requires a sequence of unique (magic) bytes or conditions to be executed 
(Stephens, et al., 2016, pp. 4-6). As there is no standard way to detect if a bug is 
either shallow or deep in the program code the evaluation of depth is done 
through code coverage (Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018, p. 
1204). AFL measures the code coverage by instrumenting the compiled applica-
tion through its own compilers and therefore the target application must use 
Linux as the OS. Furthermore, the source, or pre-instrumented code must be 
available. Besides a swathe of Linux utilizes that can be fuzzed there are two 
prominent synthetic benchmark suites:  Large-scale Vulnerability addition (LAVA) 
and Cyber Grand Challenge 2016 (CGC) (Klees, Ruef, Cooper, Wei, & Hicks, 2018, 
pp. 2124,2127). 

LAVA is a Linux based framework, written in C-language, consisting of 
three parts: Proof of concept LAVA-1, benchmark LAVA-M and synthetic bug 
injection toolchain LAVA. LAVA-1 is a Linux utility file which has been injected 
with 69 buffer overflow bugs of which 20% was found by the tested fuzzer within 
a five-hour period. LAVA 1 proved that buffer overflow type of synthetic bugs 
can be inserted into a program. The second framework called LAVA-M consists 
of four linux coreutils 8.24 programs injected with various amounts of bugs: base64 
(44), md5sum(57), uniq(28) and who(2136). For this framework, the fuzzer found 
seven bugs from  base64, seven from uniq, two from md5sum and none from who 
in a five hour period, although a bug was found from who at sixth hour. The last 
framework LAVA allows bug injection to arbitrary C-language programs for cre-
ating your own bug corpora. (Dolan-Gavitt, et al., 2016)  

Cyber Grand Challenge (CGC) was a DARPA (Defense Advanced Research 
Project Agency) led competition that focused on vulnerability discovery and 
patching automated solutions that span multiple architectures over an network 
interface. The goal of the challenge was to be able to stretch the vulnerability dis-
covery and patching concept to machine speeds while motivating the 100 teams 
with competitive prices of up to 2 million dollars. In 2016 the challenge was won 
by Carnegie Mellon University with their Mayhem AI (Not to be mixed with 
MAYHEM concolic executor) (Coldewey, 2016). The corpus is available at Github 
(Github, 2018). (Fraze, Dustin, 2020) 

While CGC would provide an interesting example for both virtualization 
and AFL this study will use LAVA-M’s who utility as the target program as it 
didn’t provide a bug within normal time limits of experiment rather in 6 hours. 
Said result can be compared with this study’s results to provide insight on if the 
LAVA-M used fuzzer was comparable to AFL or was it AFL itself. 
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2.2 Performance theory 

Considering the motivation of this study to do efficient fuzzing in offline envi-
ronments (see Chapter 1.1) the measurement of performance is crucial. Perfor-
mance can be measured through many different metrics which are overviewed 
in Chapter 2.2.1 alongside this study definition of performance. From metrics we 
can derive the scalability of an instance, which in short is the presumption of how 
much power is gained when workers are added in parallel to work on same task 
(McCool, Robinson, & Reindeer, 2012, pp. 55-56). As we know what needs to be 
done for scalability metrics, we can stipulate if AFL can provide these metrics 
and how they could be harvested. 

2.2.1 Performance 

Performance is completing a measurable task (also called work) in a limited 
timeframe. Performance can be identified as lacking (when not being able to com-
plete a said task in a timeframe), abundant (when increase in performance does 
not yield more results in timeframe), or anything in between. Need for perfor-
mance arises from either being able to reduce cost of computing, or being able to 
compute tasks faster: reducing costs is gained when more work is done with 
same hardware (or power budget), and increasing total amount of work usually 
makes a system produce results faster (when task is not insurmountable). Task 
parallelization is considered a performance-enhancing factor by either (McCool, 
Robinson, & Reindeer, 2012, pp. 54-58): 

1. Reducing (or hiding) latency, 
2. Increasing throughput (rate of completing tasks), 
3. Using less power to compute results. 

Latency is defined as time to complete a task, and therefore (in performance) 
lower latency is usually better. Response time is related to latency: it is used to 
measure the time between systems, to check if a process (between systems) is 
done in a set time. Latency is closely related to throughput: increasing, decreas-
ing or hiding latency affects a systems throughput. (McCool, Robinson, & 
Reindeer, 2012, pp. 55-56) 

Throughput is defined as series of tasks completed in measured time; there-
fore, it is the rate of work and time: work per unit of time. On the contrary of 
latency, larger throughput is better. Closely related term to throughput is band-
width, which refers to work per frequency rate used in many memory or commu-
nication applications. 

Power consumption is “the sum of dynamic power consumption and static power 
consumption” (McCool, Robinson, & Reindeer, 2012, p. 57). The power consump-
tion can be managed by adding more resources, on the underlying condition that 
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the task itself is parallelizable. Power consumption can also be managed by “rac-
ing to sleep” in which task is done as fast as possible, in order to save energy by 
sleeping. (McCool, Robinson, & Reindeer, 2012, pp. 57-58) 

Parallelism is usually induced into system by either pipelining or latency 
hiding (queueing). Pipelining increases latency and throughput by overlapping 
different series of tasks. Overlapping is controlled by synchronizing said tasks in 
parallel, which by definition increases latency (overhead of single task increases). 
Latency hiding is not hiding the latency, rather a process switching mechanism, 
in which a process has several options on to complete (can also be called “process 
queue”). When a process has to wait, it changes to different process, therefore 
“hiding” the high latency (or response time) of previous process. (McCool, 
Robinson, & Reindeer, 2012, pp. 55-56) 

2.2.2 Performance metrics 

When measuring a performance gain two metrics are used: speedup and efficiency. 
Speedup is the comparison of single worker latency (i.e. time taken to solve a 
computational problem) to multiple workers combined latency (on the same 
problem). Efficiency is measured by dividing speedup by the number of workers. 
Equations for speedup and efficiency are presented below in Equation 1 where 
T1 is latency of one worker, TP is the latency of P workers, SP is speedup, and P 

is the number of workers. Speedup can be categorized to relative-, absolute-, lin-
ear-, or sub-, or superlinear-speedup. (McCool, Robinson, & Reindeer, 2012, pp. 56-
57) 

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑆𝑃 =
𝑇1
𝑇𝑃

 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑆𝑃
𝑃

=
𝑇1

𝑃𝑇𝑃
 

Equation 1 speedup and efficiency equations (McCool, Robinson, & Reindeer, 2012, p. 
56) 

Algorithm that runs P times faster on P workers can be considered linear, 
whereas algorithm that runs X times P faster on P workers can be considered 
superlinear or sublinear depending if X is greater than one (superlinear) or less 
than one but greater than zero (sublinear). Both linear and superlinear speedups 
are rare because of coordination of tasks (and synchronizing them) contributes 
overhead when using multiple workers. Superlinear speedup is usually observed 
if one worker is resource limited (for example, multiple workers use cache better) 
or its parallel algorithm is somehow more efficient than serialized one (for exam-
ple, tree search algorithms). (McCool, Robinson, & Reindeer, 2012, pp. 56-57)  

When a parallel algorithm worker is used as a single worker it is serialized 
and its speedup is reported as relative speed up compared to non-serialized 
worker. If a non-parallel (i.e. a worker which algorithms works better serialized 
than in parallel) worker is used is used in parallel to determine speedup in multi-
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worker environment the metric is called absolute speedup. Both absolute and 
relative speedups are algorithm agnostic, as long as the problem (i.e. target) is 
the same in both calculations. (McCool, Robinson, & Reindeer, 2012, pp. 56-57) 

When ether the speedup is absolute or relative, in quantity sublinear 
speedup is the most prevalent outside hardware restricted parallel workers 
(which as stated can show linear or superlinear behavior). Speedup is the metric 
that provides data on how scalable a worker is.  

2.2.3 Scalability 

Scalability is the rate of speedup to worker amount (efficiency) in a limited prob-
lem. Limits to scalability are depicted in Amdahl´s law and Gustafsson-Barsis´ 
law, having strong scalability and weak scalability respectively. Scalability can 
also be estimated by using worker-span model, which instead of latency uses 
critical path and span of the algorithm as basis for determining speedup. (McCool, 
Robinson, & Reindeer, 2012, pp. 57-64) 

Both Amdahl and Gustafson-Barsis state that programs work is divided 
into two partitions: parallelizable and non-parallelized (serialized). In Amdahl’s 
law parallelized work is a set pool of work which is evenly distributed to multiple 
workers and therefore the efficiency of target a program is limited by the serial-
ized portion of algorithm. Whereas Gustafson-Barsis’ observations indicate that 
parallel workers allow for more work done in general therefore the speedup is 
not limited by the serialized work but by the number of parallelized workers. 
This difference in observation is demonstrated below on Figure 4.  Both laws e 
equations are presented in Equation 2, far below. (McCool, Robinson, & Reindeer, 
2012, pp. 58-62) 

 

 
Figure 4 Amdahl and Gustafson-Barsis´ law view on combined work (McCool, Robinson, 

& Reindeer, 2012, pp. 59,62) 
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𝑆𝑃 ≤
𝑊𝑆𝐸𝑅 + 𝑊𝑃𝐴𝑅

𝑊𝑆𝐸𝑅 + 𝑊𝑃𝐴𝑅
𝑃

⁄
 

𝑆𝑃𝑆 = 𝑊𝑆𝐸𝑅 + 𝑃 × 𝑊𝑃𝐴𝑅 

Equation 2 Amdahl´s and Gustafson-Barsis’ law mathematical presentation (McCool, 
Robinson, & Reindeer, 2012, p. 59) (Gustafson & Barsis, 1988) 

Amdahl’s law cannot exceed linear speedup but can exhibit linear speedup in 
cases where no serialized work is present (McCool, Robinson, & Reindeer, 2012, 
p. 59). This is demonstrated through Equation 2 (above) top equation which 
shows that even a fraction of serialized work drops the total speedup below lin-
ear speedup when multiple workers are used. With Gustafsson-Barsis’s law su-
perlinear speedup is attainable if serialized part of the work is less than parallel-
ized part. 

Every real-world system has a scalability limit, which manifests by either 
hardware or software restriction. These restrictions cause imperfect paralleliza-
tion. In this kind of system, worker-span model can be used to estimate the up-
per- and lower bounds of scalability. Worker-span model relies that the program 
has greedy scheduling (it does not allow the worker to stand idle) and its span 
(also called step complexity or critical path) can be determined. (McCool, Robinson, 
& Reindeer, 2012, pp. 62-65)  

2.2.4 Scalability and AFL 

In this study AFL´s scalability is evaluated through two performance theories: 
Amdahl´s- and Gustafson-Barsis´s law. Worker-span model is not used as it 
would require constructing the theory on how critical path is counted in fuzzing 
applications where needed results are crashes which itself is a great area of study 
for future research. 

In current era of x86 (and x64) based processor architecture multiple cores 
(and core-threads) are used to enhance the computing power and efficiency of 
computer system. In architecture this is achieved by either using cores as reserve 
computing power (being more energy efficient) (Dong & Hsien-Hsin , 2008) or 
using symmetric or asymmetric processor structure (Hill & Marty, 2008). Most 
notable asymmetric structure being System on a chip (SOC) type of structure 
(Paul & Meyer, 2006). Both Amdahl and Gustafson-Barsis’s law struggle in these 
environments as they were conceived in an era where computer systems were 
more or less heterogenic due to their construction and physical size (Paul & 
Meyer, 2006, p. 104). This leads to following restrictions: 

1. Symmetric processors are used (i.e.. no helper threads or hyper thread-
ing) (Hill & Marty, 2008, p. 37),  

2. Architecture is not allowed to throttle cores (Dong & Hsien-Hsin , 
2008, p. 30), 
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3. Using both laws to asses results as problem size is hard to quantify: 
Amdahl’s law for small problem sizes and Gustafson-Barsis law for 
large problem sizes. (Hill & Marty, 2008, p. 37).  

First and second restrictions are handled through the software design of AFL it-
self and by using a symmetrical processor for experiment. AFL requests a CPU 
(thread) for itself on launch if some delay on multiple instance launch is intro-
duced: without a delay (i.e., using tools like afl-launch) the AFL will not bind cor-
rectly to a CPU (thread). This leads to a situation where many AFL processes are 
bound to single thread leading to over congestion of the thread and performance 
issues (Gamozo Labs, 2018). Throttling of the cores is checked by AFL before 
startup and AFL will not launch if it finds that the CPU speed governor is not set 
on performance mode which does not allow the CPU to optimize power con-
sumption through throttling core speed (Google LLC, 2019, pp. 7327-7380). 

 Third restriction is vague on purpose: using Amdahl’s and Gustafson-Bar-
sis’s law for performance testing a fuzzing application is not a straightforward 
case with any fuzzer. AFL is built to handle parallelism through several features:  
queue to communicate with other instances (so a worker never runs out of work), 
deterministic checking to advance the coverage (aka. “Master instance”) and 
non-deterministic behavior to fuzz new coverage (aka. “Slave instance”) (Google 
LLC, 2017) and propagation of coverage information between deterministic and 
non-deterministic instances (Xu, Kashyap, Min, & Kim, 2017, pp. 3-5). 

Known bottlenecks for AFL performance are its utilization of fork system 
call, file system operations (creating, opening and scanning files) (Xu, Kashyap, 
Min, & Kim, 2017) and requesting CPU cores from OS (Gamozo Labs, 2018). Xu 
et al. have mapped the performance of AFL from one to 120 cores, which in this 
case is considered data center-level of computing power. Metric in this study was 
conceived by mapping the execution speed as a function of time over core count. 
Results are underwhelming as execution speed starts to drop after 30 cores and 
completely collapses after 120 cores (Xu, Kashyap, Min, & Kim, 2017, p. 4).  

Xu et al. research does not yield any information of what is the speedup or 
scalability from one core to 120 cores. Nor does it conform to Amdahl or Gus-
tafson-Barsis law definition of scalability as a function of speedup. Research only 
uses this quick method of measuring scalability as function of executions (of tar-
get program with mutated input) per second as a basis of designing new opera-
tive primitives for yet another AFL derivative. Both laws state that speedup 
(main component of scalability) is a function of serial and parallel work between 
workers. 

Goal of fuzzing is to find an input that crashes target program. If we pre-
sume that the proof of work in fuzzing is a crash, not successful execution (exe-
cutions per second) of said input, we can measure the time it takes for workers 
(from one to infinity) to produce a crash. This crash can then be deduplicated 
through bug filter, compared to larger instances exhibiting the same crash yield-
ing speedup between the instances, conforming to Amdahl or Gustafson-Barsis’s 
law. These results could contradict using execution speed as a metric for scalabil-
ity. 



27 

2.3 Virtualization 

Virtualization is heralded as an technique that allows multiple users to use same 
hardware resource through sharing it (Nanda, Chiueh, & Stony, 2005, p. 2). 
Therefore, using virtualization could be effective tool to contain and isolate fuzz-
ing instances. In this chapter virtualization is defined for this study and its virtu-
alization levels are outlined in order to make an decision for virtualization in the 
experimental setup. 

2.3.1 Defining virtualization 

“Virtualization is a technology that combines or divides computing resources to pre-
sent one or many operating environments using methodologies like hardware and 
software partitioning or aggregation, partial or complete machine simulation, emula-
tion, time-sharing, and many others” (Nanda, Chiueh, & Stony, 2005, p. 2) (Singh, 2004) 

 
Virtualization technology was developed from time-shared mainframes where us-
ers connected (with terminals) to large mainframes having a set amount of 
memory and processor capability in their disposal for set amount of time. Time 
shared computer-systems shared lot of the same features that are now common 
virtual machines (VMs). (Nanda, Chiueh, & Stony, 2005) 

In both time-sharing and virtualization environment the features are tooled 
towards isolating the underlying system from both user faults and foul play. In 
time sharing systems, this is done through operating system (and its hardware 
specific components (Bell, 1967, pp. 1-7)) whereas in virtualized system isolation 
is done through instruction set-, hardware-, operating system-, programming 
language, or library level of abstraction. (Nanda, Chiueh, & Stony, 2005, pp. 6-23) 

Virtualizing application and hardware interfaces imply that the interface 
itself is not real, rather a faux interface that mimics the capabilities and re-
strictions of a real interface. Originally, virtualization was used to execute appli-
cations (or different architectures) on computer without the fear of crashing the 
bare-metal hardware but it has evolved to include multitasking and other parti-
tioning (isolation) or aggregating (converging) applications. (Nanda, Chiueh, & 
Stony, 2005, p. 2) 

2.3.2 Virtualization levels 

Most commonly virtualization is considered to isolate systems from others sim-
ultaneously having executive rights to users in their own isolated segments. Prac-
tical scenarios include (but are not limited to) server-, and application consolida-
tion, sandboxing, multiple execution environments or simultaneous operating 
systems, virtual hardware, debugging, software migration, appliances, and test-
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ing and quality assurance (QA) (Nanda, Chiueh, & Stony, 2005, pp. 2-3). Virtual-
ization can be divide by its execution environment (Kovari & Dukan , 2012) or by 
abstraction level (Nanda, Chiueh, & Stony, 2005, pp. 6-23) as presented in Table 
3 below from low to high level applications with example technology frame-
works. 

Table 3 Virtualization by execution environment and abstraction level 

Abstraction level Execution environment Examples 

Instruction set Processor emulation Bochs, Crusoe, QEMU 
Hardware layer Full -, partial -, hardware 

assisted-, and multi-server 
(cluster) virtualization 

VMWare, KVM, and Xen  

Operating system Para virtualization, operat-
ing system-level virtualiza-
tion 

(Free BSD) Jail, Solaris 
zones/containers, 
OpenVZ 

Programming language  Java Virtual Machine 
Library  Wine, WABI 

 
Instruction set level of virtualization implements emulation of different (from resid-
ing instruction set) architecture instructions in software. Usually this means 
translating guest machines instructions to native machine instructions and exe-
cuting them. This is different from hardware layer (and subsequent layers) vir-
tualization as whole system (including for example, input / output (IO) devices, 
ROM chips, rebooting) must be emulated from another instruction language to 
other whereas in hardware emulation same instruction set can be used. Instruc-
tion level of virtualization has big performance penalty, but provides multiplat-
form capability if instruction set does not change. (Nanda, Chiueh, & Stony, 2005, 
p. 6) 

Hardware Abstraction Layer (HAL) virtualization provides the full, partial or 
consolidated performance of a system to one or more virtual machines (VM) by 
virtual machine monitoring layer (VMM). VMM is usually layered between the 
hardware and operating system in order to trap multiple incoming privileged in-
structions from other VMs to execute them on underlying hardware (Nanda, 
Chiueh, & Stony, 2005, p. 8). Therefore, the execution environment can be par-
tially or fully virtualized compromising of multiple computers (cluster) still shar-
ing the same level of abstraction. Prominent processors also provide hardware 
assisted virtualization (Kovari & Dukan , 2012, p. 336). Common way of using 
HAL in computer environment is to use kernel-based virtual machine (KVM), which 
is a Linux native module capable of spawning virtual machines as regular Linux 
processes in either guest, user, or kernel mode (depending on needed privileges). 
User mode is the default application, and is elevated to kernel mode if user needs 
services from kernel. (Kovari & Dukan , 2012, p. 336) 

Operating system (OS) level virtualization creates a VM that has the same 
operating system as the host machine but isolates the guest VM from said OS by 
controlling the operating environment consisting of: user-level libraries, other 
applications, file system and data structures, and other environmental settings. 
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This creates a system that has multiple execution environments that are isolated 
but running on the host kernel (Kovari & Dukan , 2012, p. 336).Having multiple 
execution environments running the same Kernel mitigates the HAL virtualiza-
tions need for duplicate services where each virtual machine needs its own oper-
ating environment to be virtualized per machine which creates a performance 
overhead. Isolation of guest VM is done through partitioning and multiplexing 
the operating environment to gain fairly isolated operating environment from 
the host machine. OS level virtualization is commonly referred as containerization 
but is not limited only to this technology (Kovari & Dukan , 2012, p. 336). (Nanda, 
Chiueh, & Stony, 2005, p. 17) 

Programming level virtualization is done in application level, where the 
programming language supports self-defined instructions that use the host hard-
ware by either special I/O instructions or manipulation of memory. As an exam-
ple, Java Virtual Machines (JVM) use memory manipulation and self-defined in-
structions (java byte codes) to execute a program in a state of isolation from host 
operating environment by interpreting java instructions through just-in-time 
Compiler (JIT). (Nanda, Chiueh, & Stony, 2005, pp. 21-22) 

Virtualization on library level is done to hide the details of application pro-
gramming interface (API) or application binary interface (ABI) from the user, in order 
to simplify a process. Library level of virtualization works above operating sys-
tem layer to produce a different environment depending on the interfaces used 
to make a different API / ABI available. This kind of virtualization is sometimes 
called ABI / API emulation. (Nanda, Chiueh, & Stony, 2005, p. 23) 

2.3.3 Fuzzing and virtualization 

Fuzzing is a process of finding vulnerabilities in software. Therefore, depending 
on target isolating the process from host machine can be of importance. Fuzzing 
components have been virtualized from the instruction set level to OS-level of 
virtualization. The main question in virtualizing component (or target) is how 
the virtualization is used and to what problem is it trying to solve? 

Instruction set level of virtualization is commonly used to emulate another 
processors instruction set over other. In fuzzing, the target itself usually is an 
application, but there has been some non-academic work fuzzing the processor 
instruction set (namely VIA C3 x86 instruction set (Domas, 2018)) nevertheless, 
fuzzing is commonly done on the same architecture as the target. Instruction set 
emulation (and virtualization) is still a tool that can be used in fuzzing as a feed-
back / fuzzing monitor to black-box fuzzing. For example: AFL implements 
QEMU in user mode to instrument black-box binaries during runtime, with a 
large performance hit due to emulation (Zalewski, AFL QEMU Readme, 2017). 
This induced on average 612 % overhead which is very big compared to other 
black-box techniques, for example: static binary rewriting (AFL-Dyninst) over-
head is 518% and Dyninst based binary rewriting incorporated with interest or-
acles (UnTracer) averages at 0,3% overhead (Nagy & Hicks, 2019, pp. 1-2). Pur-
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pose of this research is to evaluate AFL´s performance in with grey-box method-
ology as we instrument the target binary with AFL´s own compiler. Therefore, 
this kind of virtualization and approach to fuzzing is not applicable because it 
has large overhead. 

Full and partial virtualization would provide isolation and configuration 
management to virtual machine where the fuzzer and target lie. In this kind of 
scenario, the target would be isolated from other instances and malleable be-
tween different test cases. Furthermore we can be explicitly sure, that AFL has 
bound itself to an CPU in the virtual machine whereas in native environment it 
might bind itself to a thread (and therefore with more than one instance would 
be susceptible to queue the fork privileged instruction with the shared core) . 
Hardware assisted cluster (for example ProxMox (Kovari & Dukan , 2012, p. 338)) 
with kernel virtual machine (KVM) would solve some problems regarding AFL: 
binding of CPU, control of the OS environment, and forking. AFL´s fork me-
chanic is essentially a privileged instruction (Xu, Kashyap, Min, & Kim, 2017, p. 
4) as it creates a new process. Therefore, having a Virtual Machine Monitor (hy-
pervisor) greedily handing out the privileged instructions from the kernel level 
virtual machines to hardware level could conveniently solve forking problem. 

Operating system level virtualization would furthermore lessen the overall 
need for virtual machine environment duplication by providing a single operat-
ing system environment with an isolated fuzzing target and fuzzer. This could 
be done via containerizing the fuzzer and its target, for example with AFL-docker 
containers (Carlton, 2017). This would not solve any performance bottlenecks as 
the docker container would still run on the same kernel as other parallel fuzzers 
and therefore would not solve any other problem than isolating the target and 
fuzzer from operating environment. The performance overhead should be less 
than in full, or partial virtualization but it still would incur a performance penalty 
compared to native execution. There are too many open questions in container 
fuzzing and combined with lack of available software it is not applicable to this 
research. 

This research focuses itself on Linux systems, as both the target and fuzzer 
are Linux operable. As we are limiting the research to fuzzing target that is within 
the same operating environment as the fuzzer no programming level or virtual-
ization level isolation is necessary. This forces these two virtualization levels out 
of scope for this research.  
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3 Methodology 

As the overview of related fields are done, we must define the methodology that 
is used in this study. As per chapter 1.3 the chosen methodology of multiple-case 
study is overviewed more deeply in Chapter 3.1 and its data collection proce-
dures in Chapter 3.2. Guidelines on how data from this study is processed out-
lines Chapter 3.3. Finally, this chapter answers the questions on validity and re-
liability in Chapters 3.4 and 3.5. 

3.1 Overview 

Research design is overviewed by evaluating multiple-case study methodologies 
compatibility with fuzzing. After this the multiple-case structure itself is con-
structed in Chapter 3.1.2. Finally, in order to be able to use said methodology and 
procedures they are manifested through constructing the experimental setup in 
Chapter 3.1.3 

3.1.1 Research design 

Case study relies on a clear chain of explaining a set of decisions, the reasoning 
behind them, implementation and results of said set of decisions. These decisions 
can manifest themselves on common cases for example, such as organizations, 
processes and events. What all of these have in common are that they investigate 
contemporary phenomena of which boundaries and context are ephemeral and 
investigation relies on multiple data points from multiples sources. The data 
points (hopefully) converge to results that support or disclaim previous theories 
about same kind of phenomena. (Yin, 2014, pp. 15-17) 

As previously mentioned, data points can be plentiful and therefore some 
of them are bound to contradict the convergence to a theory. Therefore, a case 
study needs a clear research design in order to prove a logical path from data to 
results, while providing the causality between converging data points and dis-
proving the non-converging data. Research design is a plan that is of a logical 
model of proof that allows the researcher to draw inferences concerning causal relations 
among the variables under investigation (Yin, 2014, p. 28). Case research design con-
sist of five parts (Yin, 2014, p. 29): 

1. a case study’s questions 
2. its propositions 
3. its unit(s) of analysis 
4. the logic of linking the data to the propositions 
5. the criteria for interpreting findings 
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As discussed in Chapter 1.2.1 the main research questions revolve around AFL 
and its measurement of scalability in multiple instances configured in either mas-
ter (deterministic) or slave (non-deterministic) configuration on both native and 
virtualized execution environments. Research questions were formed from own 
interest in fuzzing and consolidated during the literacy review of fuzzing, fuzz-
ing instances and virtualization of said instances. As virtualization has become 
sort of a norm in modern computing environments it is imperative to know what 
kind of configuration and how many cores (virtual or native) are best for fuzzing 
application. Moreover, the term scalability was poorly understood in literature, 
mainly being mirrored through the execution speed of fuzzer given a non-trivial 
target using ever-increasing core count (Xu, Kashyap, Min, & Kim, 2017). This 
kind of testing is not even recommended in AFL documentation (Google LLC, 
2017) and therefore resembles more about using fork to eat a soup rather than 
questioning how the soup must be eaten. Theory of performance and its scalabil-
ity models are used to study the speedup of different instances. These theories 
implicate that if the speedup is linear but not superlinear then model of Amdahl’s 
law implicates weak scalability of AFL whereas in the case of linear and super-
linear speedup the model of Gustafsson-Barsis´s law implicates strong scalability. 
Using these models as the basis of this study gives the study context that is not 
previously explored on fuzzer research. 

Proposition of this study leans heavily towards Klees & al article on how to 
assess fuzz testing (Klees, Ruef, Cooper, Wei, & Hicks, 2018, pp. 2131-2132) and 
on Arcuri & Briand on using statistical test to assess randomized algorithms in 
computing (Arcuri & Briand, 2011). Klees & al rationalize several metrics with 
their pros and cons and of these metrics two metrics are used in this study: cov-
erage reported by the fuzzer and (unique) bug count using stack hashes both ad-
dressed in Chapters 3.2.3 and 3.2.2 respectively. Execution speed is used as a 
competing metric as according to Xu et al. linear speedup should be apparent 
until 15-30 used cores (Xu, Kashyap, Min, & Kim, 2017). Proposition of the study 
is also further restricted by choosing a coverage guided fuzzer in Linux OS, as it 
also restricts the scope to x86-64 architecture computers. Therefore, proposition 
directs this study to examine the said metrics and their interdependencies in both 
scalability models in order to decide which one would model the scalability of 
AFL most precisely. 

In this study the unit of analysis is defined through Hongliang & al general 
process of fuzzing (Hongliang, Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018, p. 1202) 
which is presented in Chapter 2.1.2 and illustrated in Figure 3. Same general pro-
cess is dissected regarding AFL in Chapter 2.1.4. In order to be able to produce 
repeatable results, a non-moving target for AFL must be represented. This target 
is LAVA test suites who program (Dolan-Gavitt, et al., 2016) which also provides 
the seed file for AFL eliminating the need for seed file gathering and simplifying 
the process of fuzzing. Figure 5 far below shows how this unit of analysis can 
produce data from applying AFL to general process of fuzzing (Hongliang, 
Xiaoxiao, Xiaodong, Wuweu, & Jian, 2018) and what data in which process phase 
can be extracted. 
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According to Yin the units of analysis must be bound in order to determine 
the scope of data collection (Yin, 2014, pp. 33-34). In this study binding is done 
through the case structure consisting of different cases having inner configura-
tion changes and interdependencies to other cases in the contextual execution 
environment (virtual or native environment). As an example, AFL can be config-
ured in a four-core instance in multiple ways: one master and three slaves, two 
masters and two slaves and finally three master and one slave. In this example, 
the metrics would be the same, but their values and statistical differences would 
answer if configuration change (number of masters and slaves) would change the 
performance of this four-core configuration. Meanwhile assessing the speedup 
of four workers in the best and worst configurations relative to one worker case 
yields information on how scalable four worker instance is compared to one 
worker instance. If virtualization hinders performance it will show by comparing 
units to each other, as they essentially are run in the same way in both native and 
virtual environment and therefore can be compared. Restrictions to a single unit 
of analysis (i.e. worker instance) are furthermore explored in Chapter 3.1.3 while 
the metrics on which the data is analyzed are detailed in Chapters 3.2.1- through 
3.2.4. 

 

 
Figure 5 Unit of analysis in this study 

Case structure is built on virtualization and native execution cases having a dif-
ferent context because it is most probable that virtualization occurs a perfor-
mance overhead that affects speedup measured and therefore affects the scala-
bility measured from units of analysis. Therefore a multiple case design (type 4 
design as mandated by Yin (Yin, 2014, p. 50)) is used having two contexts: virtual-
and native execution. As the cases differ only by variations intra case, the cases 
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share the same methodology therefore predict the same results and can be repli-
cated literally (Yin, 2014, p. 57) which in this study means using the same coded 
scripts and tools to launch and analyze the results. As the hardware resources 
and time is limited the case structure is also limited to having eight workers max-
imum in one, two, three, four and eight worker configurations. This case struc-
ture compassing of two contexts and multiple cases within a context is show on 
Figure 6 far below that also combines the multiple case structure from Table 5 in 
Chapter 3.1.2. Fore mentioned chapter also explores construction and restrictions 
of said case structure. 

Data of this case structure embedding said units of analysis form an archive 
of data that consists of archived runtime data and physical artifacts (Yin, 2014, pp. 
117-118) that have concluded into a crash. Archived data in this case can be pre-
sumed to be an representation of said runtime statistics but must still be checked 
for discrepancies as it is easy to be blinded by precise quantitative numbers (Yin, 
2014, p. 109). Crashes can be considered physical artifacts because they provide 
insight (Yin, 2014, p. 106) on fuzzing operation as their occurrence is a direct re-
sults from crashing input.  Crashes are also considered proof of a possible bug 
and have been used as a metric to assess fuzzer performance (Klees, Ruef, Cooper, 
Wei, & Hicks, 2018, pp. 2131-2132). Data in this study is not holistic rather exhibits 
distinct boundaries within a case and therefore cannot be pooled among different 
cases. In other words, cases exhibit the same phenomena but do not share the 
same environment. This is called embedded multiple-case (Yin, 2014, p. 62) study 
and in an embedded case data is used asses the cases both individually and com-
pared to each other but not pooling the data among different cases.  

 

 
Figure 6 Case structure of this study 
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Checking if data within a case is uniform can be done by using statistical meth-
odology, as fuzzers rarely report same results when ran one or twice (Arcuri & 
Briand, 2011, p. 1). In this study data is linked to propositions using hypotheses 
that are proven or disproven through statistically analyzed metrics of coverage 
and unique crash count. Additionally, a competing metric is used by assessing 
each crash (i.e. physical artifact) from different cases in order to find common 
crashes that can be reviewed if the timing of said crash correlates with other met-
rics. Both interpreted metrics and linking is done through tabulating the data 
within a case and comparing this data to each other case. Chapter 3.3 prescribes 
the statistical methodology used in this study and how it is applied for fuzzer 
scalability testing. 

3.1.2 Multiple-case structure 

Multiple-case structure in this study is iteratively constructed knowing the limits 
of both software being used (i.e. AFL) and hardware availability. In case structure 
the software limits number of cases as the software consumes (i.e. binds) itself on 
a single apparent core, therefore this core is not usable to other tasks. Further-
more, as virtualization is used, the CPU cores and threads must not be overbur-
dened, as it might hinder the execution of privileged instructions (namely fork) 
of used software as discussed in Chapter 2.3.3. Therefore, hardware limits on 
how many different instances can be run simultaneously, in order not to convo-
lute the platform itself and therefore have negative impact on performance met-
rics. 

Hardware used in this study is two workstation level machines with 2xIntel 
Xeon E5-2640v4 10 core Hyperthread processors running at 2.4GHz and have 64 
GB RAM total per workstation. Workstations ran an Ubuntu 18.04 LTS instance 
but were re-installed for this experiment. This means, that the whole experiment 
has a total of 40 cores available in two machines. 

In multiple-case studies a pilot case study (Yin, 2014, p. 240) was run with 
UBUNTU 18.04 LTS Desktop (GUI Enabled) and Server branches with 18 cores 
bound to AFL instances (single instances and deterministic checking enabled). 
Two cores were left unused as they were determined to be used for Ubuntu Desk-
top OS applications (Ubuntu, 2020) and therefore omitted from the Server run as 
the run environment must be close as possible to each other (Yin, 2014, pp. 45-
49). 

 Pilot study confirmed that information from fuzzing instances can be gath-
ered and physical artifacts (i.e. crashes) are saved on drive with enough infor-
mation to decipher when the crash occurred. Third run of the pilot study was 
successful and the documentation to on how configuration was altered is encased 
in Chapter 3.4.4. Results of this successful pilot study of both Desktop and Server 
branches are tabulated far below (Table 4) with their average speed, crashes, cy-
cles done, and paths explored. Coverage gained was low (sub 3 %) and not all 
instances found a crash (averaging below 1). Results were gathered from each 
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instance (36 in total) plot data text-file and converted to CSV-file (Comma-Sepa-
rated Values) and imported to Microsoft Excel.  

From this pilot study UBUNTU 18.04 server branch was chosen as it was 
marginally faster on average (execution speed, Cycles done, and Paths explored) 
and lack of GUI component did not bother the researcher. Between three runs of 
pilot study the crash average ranged 1,611 to 5,05 for Desktop and 0,67 to 1,11. 
Furthermore in Virtual environment virtualizing many Desktop GUIs could be 
problematic and booting to multi- or single user mode would practically be the 
same as using server operating system.  

Pilot study run three data was also used as the Case 1 data. This is not rec-
ommended  (Yin, 2014, p. 240). Technically the pilot study was the run one of 
pilot study and run two was an improvement that finally led on the run three. In 
this way the run three is identical to all the case study runs, and therefore can be 
used as a Case 1 in this case. Same Case 1 with same scripts was also ran in Virtual 
context. 

Table 4 Key results of pilot study run three 

Metric used Desktop Server 

Average exec speed 1431,22 1457,24 

Average crashes 1,94 0,78 

Average Cycles done 64,94 75,11 

Average Paths Explored 182,78 185,37 

 
After confirming that a case could be run on the said hardware and results can 
be harvested from said cases the multiple case structure had few restrictions. 
These restrictions were:  

• two 18 core hardware resources (reserving 2 cores for OS)  

• must be able to run one to three master workers of AFL alongside 
with several Slave workers 

• AFL instances must reside in one of two machines as a whole 

• two contexts which are similar in multiple-case structure but cannot 
be run alongside each other. 

AFL instances used in this study are either one, two, three, four or eight core 
instances. From one to three instances the reasoning is that these in order to test 
the configuration the master instances must be ran from one two three alongside 
with their slaves picking up the rest of the cores belonging to this instance. Four-
core instance was an addendum to same ideology as it would let this study to 
explore the first three masters and one slave configuration. As the final instance 
an eight-core instance was chosen as it exhibits a range of one two seven slaves 
and is next in binary line-up. According to previous studies (Xu, Kashyap, Min, 
& Kim, 2017) the scalability should be apparent under ten cores. Therefore 
speedup should be measurable according to both Amdahl´s- and Gustafsson-
Barsis´s law as the amount of combined total parallel results would divide itself 
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among other serial workers according to Amdahl or multiply the results if in-
stance obeys Gustafsson-Barsis (McCool, Robinson, & Reindeer, 2012, pp. 57-65).  

With aforementioned logic 12 test cases were identified and are listed above 
on Table 5 below tabulating number of master and slave instances and cores used. 
Cases were ran five times for statistical accuracy (Arcuri & Briand, 2011, pp. 4-7) 
and their scheduling is explained on Chapter 3.2.1. Scheduling was needed as a 
single run of all cases would not fit inside hardware resources available (36 cores) 
as apparent by Table 5 (above) last column “Cumulative Core Count”. 

Table 5 Test Cases 

 
Case name 

 
Masters 

Number of 
Slaves 

 
Cores used 

Cumulative 
Core Count 

1-0 1 0 1 1 
1-1 1 1 2 3 
2-0 2 0 2 5 
3-0 3 0 3 8 
2-1 2 1 3 11 
1-2 1 2 3 14 
3-1 3 1 4 18 
2-2 2 2 4 22 
1-3 1 3 4 24 
3-5 3 5 8 32 
2-6 2 6 8 40 
1-7 1 7 8 48 

3.1.3 Configuration of experimental setup 

Contemporary events can be observed and manipulated in a case study as events 
can be observed and directed systematically in an properly restricted experi-
mental setup (Yin, 2014, p. 12). Experimental research has several different pit-
falls that must be avoided. Main theory for assuring reliability to performance 
testing can be done via having strict and precise rules for conducting experi-
mental research (Srinagesh, 2006, pp. 163-165). The experiment is heavily influ-
enced by the research design, hardware and chosen software from Chapter 3.1.1 
and 3.1.2. From research design following restrictions can be derived: 

• Operation system UBUNTU 18.04 LTS Server 

• Virtual and native execution environments 

• Fuzzer AFL 

• Target LAVA-M who 

 
In addition to research design factors the environmental factors of both physical 
and software must be included by having the same experimental setup (Srinagesh, 
2006, pp. 56-57) on both native and virtual contexts.  Environmental factors are 
controlled by placing the hardware in an well ventilated office space that is tem-
perature and humidity controlled. Software factors are controlled by having the 
same OS on both virtual and native execution and removing unnecessary services 
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from said OS during installation. This is done in order to offload random work-
loads from the OS environment as fuzzing with AFL is an CPU bound task there-
fore all other tasks in the same operating environment must be kept to minimum 
in order to increase the reliability of reported data (Srinagesh, 2006, pp. 57-58). 
Hardware was connected to each other by 100mbit Ethernet switch and an simple 
private address space was configured to both network interfaces. This was done 
in order to enable using both workstations through secure shell (SSH) but was 
also needed in virtualization platform ProxMox discussed in Chapter 2.3.3. 

Native environment installation was done with DVD installation disk. Only 
ssh-server package was installed during server installation as secure shell (SSH) as 
it was used to connect to OS environment in both virtual and native context. 
ProxMox was chosen as the virtualization platform because it is as per Chapter 
2.3.3 a HAL assisted full virtualization system using KVM and free to use. Prox-
Mox version 5.2 was installed from DVD and its web GUI was used to create 
virtual machines.  

Because of context of this study (offline approach and scalability evaluation) 
from Chapter 1.1 no direct Internet connection was used. Needed packages were 
smuggled in with USB and local repository was made by first installing the 
Debian package (abbreviated dpkg) development tools manually with dependen-
cies then reading all the other packages with dpkg scan packages-tool. After that 
apt sources list was modified to include said package listing (in compressed form) 
and packages were installed normally with apt-get install as installing the pack-
ages with dpkg requires installing dependencies manually (labor intensive) and 
apt installs them automatically. 

Virtualization needs VM profiles that have to match the test case structure 
of table 5 from Chapter 3.1.2 and therefore one VM was made first with the same 
configuration that off the native execution machine from above paragraph and 
then cloned and its CPU count modified to match the scheduling of multiple 
cases. Virtual machines were configured with 2 gigabytes of RAM and 20 giga-
byte dynamically allocated hard drives. These resources are sufficient for Ubuntu 
server installation, which requires 512mb of RAM and 15 gigabytes of non-vola-
tile memory (Ubuntu, 2020). 

AFL will be limited to version 2.52b, which was the latest version during 
experimental phase in during first half of 2019 and available through apt. LAVA-
M was downloaded from github (Dolan-Gavitt, et al., 2016) and configured to 
use AFL-specific compilers to instrument the target program who. During testing 
the installation AFL produced a warning from CPU speed governor - and core 
dump settings which were reconfigured according to AFL printout as shown be-
low on Figure 7. This configuration was checked during start-up of scheduled 
instances by scripting an exit and error message if any warnings manifest (see 
Appendix 1 for details). 
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Figure 7 AFL CPU speed governor and core dump setting warning printout and fix. 

3.2 Data collection procedures 

Data collection procedures in this study are formulated in this chapter. In order 
to use the hardware resources of this study effectively the cases and units-of-
analysis must be scheduled as they use more resources that are available. Data 
for this study is gathered for four metrics: unique bugs found, code coverage, 
execution speed and shared bugs. 

3.2.1 Scheduling and launching the multiple-case structure 

As demonstrated on Chapter 3.1.2 the chosen cases of this study do not fit inside 
the hardware resources available. Easiest solution would have been to run the 
different cases serially back to back, but hardware utilization would be uneven 
as the cases would not fit inside a single nor both machines. Furthermore the 
cases must be run multiple times (Arcuri & Briand, 2011, pp. 4-7) (Klees, Ruef, 
Cooper, Wei, & Hicks, 2018, p. 2124) which concludes that the cases must have 
schedule that uses at maximum 18 cores from both workstations and handles the 
multiplication of test runs.  

First multiplication of test cases that uses all the cores and handles all the 
cases is three multiples of all cases but this is deemed the bare minimum of mul-
tiplication for accuracy (Arcuri & Briand, 2011, pp. 4-7). The next multiple of runs 
is six but the more runs are included the harder scheduling comes. Multiplication 
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of runs also consumes more time and with optimal scheduling five multiplica-
tions would take 16 days including both Case 0 but with six multiplications it 
would consume 18 days. Five was chosen as it proved to be easier to schedule 
than six.  

Scheduling of cases is presented on Table 6 below which shows what cases, 
and which run of a case is being run on which day of experimenting on which 
workstation. Case name is derived from the number of masters with first number, 
number of slaves with second number and multiple of case run with “r” and 
number after it. This naming convention was also used when launching the in-
stances. Sub optimal core usage can be seen from Day 5 onward but as AFL is a 
CPU bound task the sub optimal usage only affects the usage of common re-
sources (storage, memory and network) which are abundant during execution as 
the only processes executing are the OS and AFL. 

Scheduling of instances was done with BASH-scripts which are added to 
Appendix 1. First script of Case 0 launched AFL 18 times with enough time (2 
seconds) between them to circumvent the problems mentioned in Chapter 3.4.1. 
Second script for “multimaster” application was developed to construct case file 
structure and launch and close user supplied amount of master and slave AFL 
instances all pointing to required single sync dir (AFL synchronization directory 
for parallel fuzzing (Google LLC, 2017)). Closing of a “multimaster” launched 
instances was done by command timeout with supplied parameter of 24h which 
closes the instance after 24 hours of uptime.  

Table 6 Scheduling of test cases 

 
# Day 

Work-
station 

 
Cases 

Used 
Cores 

Day 1 1 Case 0 study: 18 single AFLs UBUNTU Server 18 
Day 1 2 Case 0 study: 18 single AFLs UBUNTU Desktop 18 
Day 2 1 35r1, 35r2,11r1  18 
Day 2 2 35r3, 35r4, 11r2 18 
Day 3 1 35r5, 31r1,31r2,11r3 18 
Day 3 2 17r1, 31r3,31r4,11r4 18 
Day 4 1 17r2, 17r3, 11r5 18 
Day 4 2 17r4, 17r5, 20r1 18 
Day 5 1 20r2,20r3,31r5,12r1,12r2,12r3 17 
Day 5 2 20r4, 20r5, 22r1, 21r1,21r2,21r3 17 
Day 6 1 12r4,12r5,26r1,13r1 17 
Day 6 2 21r4, 21r5, 26r2, 13r2 17 
Day 7  1 26r3, 13r3,30r1, 30r2  18 
Day 7 2 26r4, 13r3,30r3, 30r4 18 
Day 8 1 26r5, 13r4, 30r5 15 
Day 8 2 22r2, 22r3, 22r4, 22r5 16 

 
Launching multiple instances was done through screen. This utility program mul-
tiplexes between several terminals (Laumann, Davison, Weigert, & Schroeder, 
2019) and allows the user to specify command to be run inside said multiplexed 
terminal. Therefore the “multimaster” BASH-script was set to automatically run 
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after launching a new screen to other terminal leaving the current SSH session 
terminal free for launching other scripts or checking the status of screen. Multiple 
cases were run on single workstation (in native execution context) by calling the 
“multimaster” script after checking that the previous run was complete through 
checking that screen listing (screen -ls) was empty. This process is show on Figure 
8 (far below) which shows the order of BASH-scripts and their functions as a flow 
diagram. 

For the virtualized context the machines were cloned from an template 
which was created the same way as the native context UBUNTU machine. Only 
addition to this workflow that of cloning the different machines and changing 
their CPU count before launching the VM. This addition is an addendum to Fig-
ure 8 below and the process continues the same way as in native execution envi-
ronment. 

 

 
Figure 8 Process of launching AFL through scripting 

Data of instances (i.e. sync dir) was copied to and USB stick and transported for 
further analysis. This data was copied after every run and verified that data struc-
ture observed was the same as that was scheduled. One anomaly was found after 
all data was gathered from native execution context as Day 5 of workstation 1 
scheduling script called the “multimaster” with wrong parameters leading to re-
run of said day. Process of finding this anomaly and how it affected the validity 
and reliability of this study is explained on Chapter 3.4.2. In virtual context the 
data had to be transported through sending the data with scp to a centralized file 
server VM which was purposefully created from the same clone and kept shut-
down during experiments. After the data was collected from all virtual context 
cases the whole VM was exported and its data excavated for data analysis to 
Windows machine. 
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3.2.2 Unique bugs found  

According to Klees & al. there are three main ways of deduplicate bugs: assessing 
them through bug behavior (against ground truth), assessing it against coverage 
profile and stack hashes. Both ground truth and coverage profile deduplicate the crash 
by adding an labor intensive checking phase where bugs are assessed against 
software fixes (or by patching the bug by themselves). Stack hash can be done 
automatically, but might not be that accurate. (Klees, Ruef, Cooper, Wei, & Hicks, 
2018, pp. 2131-2135) 

Ground truth can be established if we know for certain that a specific bug 
is triggered by an specific input which usually happens with old known bug and 
input tuples or synthetically injected bugs. Therefore, the target must have an 
good patch history and the patches must be available through repositories. Other 
option is to use synthetic benchmarks (i.e. LAVA, CGC 16, see Chapter 2.1.5) 
which is possible in this study but could still requires the bugs to exhibit unique 
behavior when crashing. (Klees, Ruef, Cooper, Wei, & Hicks, 2018, pp. 2131-2132) 

Coverage profile is defined by using taint tracing or dynamic checking dur-
ing crashes. This can be done by either using an taint inducing framework (like 
Valgrind from Chapter 2.1.1) or by using different sanitizers (for example ASAN 
Address SANitizer or UBSAN Undefined Behavior SANitizer) to dynamically as-
sess used memory and its state leading to crash and during crashing (Klees, Ruef, 
Cooper, Wei, & Hicks, 2018, pp. 2132-2133). Using these methods could still lead 
to imprecise crash deduplication and might if target is propped up with addi-
tional resource burden (taint tracing) could require to re-think hardware resource 
usage in this case study. 

Stack hash relies on program execution order, more precisely it uses infor-
mation from call stack to determine what frames the crashing input made through 
before crashing the program. When the program crashes n stack frames (usually 3 
to 5) are examined and hashed together to form the stack hash. Therefore, if the 
input travels different frames (therefore a different program path) the hash itself 
is always different. On the other hand, if only the value passed to frame changes, 
but path remains the same the stack hash will not change which indicates that the 
path taken is not unique. Stack hashing is also known to under- and over count 
bugs. This might be due to the crash having a long set path that is triggered early 
and passes through several frames before crashing or if the path itself is somehow 
randomized based on passed value. Nevertheless stack hashing has proven itself 
being more precise than AFL coverage profile and it can be done after the crashes 
have been gathered which can be done after the fuzzer has completed its work. 
(Klees, Ruef, Cooper, Wei, & Hicks, 2018, pp. 2133-2134)  

AFL´s bug detector is known to over-inflate bugs when comparing to 
ground truth (Van Tonder, Kotheimer, & Le Goues, 2018, p. Table 1) (Klees, Ruef, 
Cooper, Wei, & Hicks, 2018, p. 2133) and therefore stack hashes are used to filter 
bugs. Stack hashing is done by checking crashing inputs with Crashwalk software-
suite (Nagy B. , 2018) which uses the faulting frame, contents of stack and regis-
ters to do the stack hash. Crashwalk supports natively AFL-format crashing inputs. 
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Crashes are deduplicated trough the said stack hash and their exploitability is ex-
amined automatically (by Crashwalk) with EXPLOITABLE!  GDB -plugin but the 
result whenever the bug is exploitable or not is not considered usable data as it 
is not performance related rather more qualitative in nature. 

3.2.3 Code coverage 

AFL measures coverage gained by examining program state transitions during 
crashing input. Therefore, AFL considers new coverage gained by finding a 
crashing input that explores target program. This kind of deduplication method 
is not without flaws as program logic can lead to overcounting unique bugs in 
the program and therefore inflating the crash count. (Klees, Ruef, Cooper, Wei, 
& Hicks, 2018, pp. 2132-2133) 

Van Tonder, Kotheimer and Goues present this kind of overinflating of 
bugs in their article Semantic Crash Bucketing. In this article AFL has found an 
bug in a database program (sqlite) search function (SELECT … FROM) that with 
manipulation of said search in crash inducing but meaningful way returns a new 
unique crash as the path to crash traverses trough different parts of program. In 
an effort to combat this Van Tonder, Kotheimer and Goues propose a technique 
of program transformation (i.e. binary patching) to patch program for crashing in-
puts and then checking if the crashing input still crashes the program. If no crash 
occurs with said crashing inputs it can be said that previously crashing inputs 
that now failed can be clustered together. If and input crashes through the patch 
it is traced and fixed and checked again to be clustered with same behavior 
crashes. (Van Tonder, Kotheimer, & Le Goues, 2018, pp. 2-3)  

Likewise, coverage can be seen as a function of generated inputs and there-
fore there is no certainty that generated inputs reach full coverage of the program 
i.e. the program might have unreachable code which cannot be reached during nor-
mal execution of program. Without knowing the exact number of bugs, the re-
sults of coverage gained is always uncertain. Likewise there is no fundamental 
reason to believe that maximizing code coverage yields more crashes (Klees, Ruef, 
Cooper, Wei, & Hicks, 2018, p. 2135). (Arcuri & Briand, 2011, pp. 5-6) 

As it is know that AFL-reported coverage might not be truly accurate (as 
paraphrased above) unique bugs deduced with methodology detailed in Chapter 
3.2.2 are used alongside to determine if the numerical value of coverage reported 
correlate with number of unique bugs found. As an example: if two instances 
report and coverage of 10% but second instance reports and is confirmed to have 
three more unique crashes the second instance has gained more coverage alt-
hough AFL reports the same amount of coverage from both instances. In this case 
the second instance has managed to find new crashes, but the first instance has 
found an crash that with small variation to crashing input produces new cover-
age according to AFL, the same situation as represented on second paragraph of 
this chapter. In this study coverage reported by AFL is used as a starting point 
for coverage metric and it is compared with unique bugs for an metric to compare 
different cases and configurations to each other. 
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3.2.4 Execution speed 

Xu et al. have used execution speed as an scalability metric in their study of “De-
signing New Operating Primitives to Improve Fuzzing Performance”. In this 
study scalability of AFL different components is examined and found lacking. 
This study proposes many improvements to AFL design and also show the im-
provements by testing AFL and LibFuzzer against Xu et al. derivative AFLOPT. 
(Xu, Kashyap, Min, & Kim, 2017)  

Testing itself is not done up to any standard that would fulfill the requisites 
laid out by Klees & al or by Arcuri & Briand. The execution time of each test is 5 
minutes (Xu, Kashyap, Min, & Kim, 2017, p. 11) where all fore mentioned authors 
prefer longer runs of more than 24 hours to have more statistical accuracy for 
experiments (Arcuri & Briand, 2011, pp. 7-8) (Klees, Ruef, Cooper, Wei, & Hicks, 
2018, p. 2126). Furthermore, the study does not explicitly say how many times 
the tests were run. Reasoning for creating these short and non-replicative tests is 
not presented. 

 

 
Figure 9 Multicore scalability of AFL according to Xu et al. (Xu, Kashyap, Min, & Kim, 

2017, p. 4) 

While it is shown that new operating principles applied in aforementioned study 
enhance the performance during short experiments (Figure 9 above) on the long-
term effects are not explored. The mechanic of execution speed is interesting to 
test if it can be applied to measure speedup with multiple workers. Therefore, in 
this study the execution speed is included as a metric to assess if it can be used 
as a metric to measure performance differences between master and slave in-
stances of AFL. 

3.2.5 Shared bugs 

It is highly likely that the instances will most probably explore multitudes of 
same crashes as they are always started the same way. Therefore, they share bugs 
between instances and some instances with more computing power might be 
faster to find these bugs. If this is the case, the speedup can be measured and 
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therefore scalability determined from this metric of checking how long it takes 
for an instance to find a bug that is shared between multiple instances. 

Speedup (as defined in Chapter 2.2.2 by Equation 1) is measured from di-
viding latency of one worker to the latency of multiple workers. Latency is de-
fined in Chapter 2.2.1 as time taken for to complete a task. Therefore, we can 
safely say, that a fuzzers work is to produce crashes. The crash must have a 
timestamp form which we can determine how long has it taken for an fuzzer to 
produce said crash. 

AFL provides the timestamp for starting the instance and it also saves the 
physical artifacts (including when it was created i.e. found) of said crashes. From 
this information we can determine how much latency there is per crash and after 
deduplication we can determine the latency of a bug. Therefore, it is possible to 
determine the speedup of instances if an shared bug between instances is found. 
It is most likely, that this is a shallow bug and therefore it would be better if mul-
tiple shared bugs are found in order to have more data points for comparison. 

3.3 Guidelines for data processing 

3.3.1 Analytical strategy 

Knowing that the data points available are already well labeled there is probably 
no need to start tabulating or putting them in different arrays or graphs in order 
to grasp how the data points correlate within an embedded analysis unit. It is 
however very much mandatory to graph (and therefore tabulate) the results from 
different analysis units in order to be able to measure the difference in metrics. 
These data points are gathered the same way from every instance in order to re-
tain validity in data gathering. 

The strategy itself to process the data is grounded on theoretical proposition 
of performance theory from which we examine the scalability and if it follows 
Amdahl´s or Gustafsson-Barsis´s law. As we have two theories competing each 
other we can say that they plausible rivals to each other. This mandates that we 
must have theory driven metrics that can be used to craft rival hypotheses. (Yin, 
2014, pp. 136-142) 

In this study in order be able to analyze the data it must be in a form where 
we can apply theoretical context of speedup and scalability to it. Therefore, the 
rivals are automatically formed between cases as we can assume that adding 
more workers effects the speedup of an AFL instance. In the same sense we can 
form common hypothesizes that work between all cases as we only need to meas-
ure speedup of said instance compared to speedup of other larger or smaller in-
stance in order to be able to decide if any speedup has occurred. These common 
hypnotizes are constructed on Chapter 3.3.2. 

Because of random nature of fuzzing it is bad practice to just compare single 
runs to each other (Klees, Ruef, Cooper, Wei, & Hicks, 2018, pp. 2127-2128) which 
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lead to scheduling multiple runs across many days as Chapter 3.2.1 dictates. Us-
ing statistical methodology and namely Mann Whitney U-test to make a decision 
about proving or disproving hypotheses is to be used according to Arcuri and 
Briand (Arcuri & Briand, 2011, pp. 3-5) and is detailed in Chapter 3.3.2. This must 
reflect in common hypotheses on Chapter 3.3.3. 

3.3.2 Statistical methodology 

Statistical test used in this study is Mann-Whitney U-test. It is used because ran-
domized algorithms do not follow normal distribution that is required in more 
popular Mann-Whitney T-test and Welch test. Therefore we must first know how 
the metrics of Unique bugs found, Code Coverage, Execution speed and Shared 
bugs are ranked in order to be able to use Mann-Whitney U-test (Arcuri & Briand, 
2011, pp. 4-5,8). 

In order to use Mann-Whitney U-test we must establish ranking order to 
our metrics. For Unique bugs and Code Coverage we can average the metric in 
order to have some understanding if all instances have rough metric changes but 
ultimately we can just use max values of each run to have an n-size of five for 
each comparable case in both contexts. Execution speed on the other hand must 
be averaged before using it in Mann-Whitney U-test. Execution speed is a metric 
that is already a estimation of speed along the whole running time and therefore 
we cannot just use max values from a certain run as it most likely has almost the 
same variance between runs. As an concept the shared bugs already report the 
minimum amount of time used to find a shared bug therefore that metric can be 
used in Mann-Whitney U-test to form ranking on both comparisons.  

After successfully reporting the p-values from Mann-Whitney U-test and 
passed discretionary judgement (Yin, 2014, p. 61) if the hypothesis is correct or 
not  we can measure with Vargha and Delaneys Â12 to decipher the probability 
of higher core count AFL instance to produce better results. Measuring this effect 
size and reporting its p-value is also highly recommended (Arcuri & Briand, 2011, 
pp. 6-7). I have collected the measured metrics and their used values for Mann-
Whitney U-test and Â12 to Table 7 below and added what else metrics are re-
ported because of validity and reliability (Arcuri & Briand, 2011, p. 8). As the 
results are not normal distributed variance and min-values are not reported. 

Table 7 Used metrics and applied analysis 

 
Metric 

Measurement used for U-
test and Â12 

 
Metrics reported 

Unique bugs Deduplicated max value p values, mean, median,  
Code Coverage Max value standard deviation 
Execution speed Average from a run and max value 

Shared bugs Min value from a run  
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3.3.3 Common hypotheses 

In statistical testing a null hypothesis h0 is usually crafted to use statistical testing 
to decide if there is statistical difference between results of object A and B. From 
this test a value of p is calculated and the closer it is to zero the more probable it 
is for A to be statistically superior to B. Normally a significance level of α=0,05 is 
used to decide this in natural sciences. (Arcuri & Briand, 2011, pp. 3-4) 

In case study this kind of discreet decision making must be avoided. The 
decision where A is better than B must also include other measures taken either 
in statistical sense or other to support decision making process. Therefore signif-
icance level of α=0,05 is only used as a guideline and values are reported as is to 
have more open approach in deciding if A is better than B. (Yin, 2014, p. 61) 

Inside a single case we must test multiple times if one configuration is better 
than the other as they have small configuration changes that might have different 
performance. With this kind of testing we can directly have answer to RQ3 
(“How does the performance differ when using a different number of master and 
slave configurations in AFL?”). As we have three different configurations, we 
need three tests: one for each master configuration to be tested against other con-
figurations. This testing must also include both contexts as results from this test 
are used to answer RQ2 and RQ1. As Mann-Whitney U-test is a comparison of 
ranks between two groups we can form a null hypothesis that states that there is 
no difference in configurations: 

h30: There is no difference in performance 
h31: One-master configuration does perform better than other two configura-

tions 
h32: Two-master configuration does perform better than other two configura-

tions 
h33: Three-master configuration does perform better than other two configu-

rations 

RQ2 on virtualization can be directly compared case to case as it mainly focuses 
on determining if there is any statistical difference in performance. From this we 
can pairwise test if one instances results are better than others. This leads to a null 
hypothesis of “there is no difference in contexts” and following sub-hypotheses, 
where we denote native execution as “N” and virtual execution as “V”: 

h20: There is no difference in performance considering N and V executions 
h21: There is no difference in performance in contexts in case one 
h22: There is no difference in performance in contexts in case two 
h23: There is no difference in performance in contexts in case three 
h24: There is no difference in performance in contexts in case four 
h25: There is no difference in performance in contexts in case five 
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In this study the goal is to conclude if there is speedup gained by using more AFL 
workers (RQ 1). This can be done by using the metrics from case 1 and all other 
cases to compare them to all pairwise for statistical difference. Pairwise compar-
ison is used as speedup is the function of latency of one worker (i.e. case 1) to 
multiple workers (other cases). From this we can conclude if speedup has oc-
curred and do not need to test speedup between cases 2 and 3 for example. If 
there is no apparent speedup (i.e. p value of U-test stays above 0,05) it is possible 
still to test if the eight worker instance is statistically better than the one core 
instance as they are the furthest away of each other when hardware resources are 
considered. This leads to following hypotheses: 

  

h10: There is no statistical difference in instance performance 
h11: Two-core instance is better than one core instance 
h12: Three-core instance is better than one core instance 
h13: Four-core instance is better than one core instance 
h14: Eight-core instance is better than one core instance 

3.4 Validity 

Validity of this study is examined though the construction of case research design, 
internally providing explanation on how decisions are made and externally val-
idating the results through previously done research. During the experimental 
phase few threats were identified concerning pilot study and data gathering, 
both of which have been detailed in this chapter. No major threats to validity of 
this research were identified. 

3.4.1 Construct validity 

In a case study the construction of research design is validated by using multiple 
sources of evidence, establishing a chain of evidence and by reviewing the case 
study report. This is done in order to validate and identify correct operational 
measures for the phenomena being studied. In order to meet this validation two 
steps must be covered (Yin, 2014, pp. 45-46): 

1. Define case study objective and its phenomena 
2. Identify how these are measured 

In this study research design is validated through performance theory namely by 
measuring the speedup of an AFL instance. From this embedded unit of analysis 
multiple evidence sources are identified and gathered: Deduplicated crashes, 
code coverage, execution speed and discovery time of a shared bug. In nature 
this evidence is both historical and physical artifacts as first three of evidence 
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categories are time-based records of AFL instances statistics and the final evi-
dence is a proof that a crash has occurred.  

Evidence is gathered from its context and dissected to excel in order to do 
data analysis. All available data of fore mentioned metrics are analyzed, and their 
results are viewed through statistical analysis to decide if any speedup has oc-
curred in any of the metrics. This process is documented on Chapter 3.3. 

By accounting for multiple evidence sources and showing how the evidence 
is collected and analyzed we can decide that construction of this case study is 
done properly. It is to be noted that these measures might be inadequate if the 
phenomena in question is not scalable or the metrics are chosen poorly but there 
is no indication in literature that AFL would not scale with multiple workers (Xu, 
Kashyap, Min, & Kim, 2017) and the metrics have been used in other studies 
(Klees, Ruef, Cooper, Wei, & Hicks, 2018). 

3.4.2 Internal validity 

Internal validity of research design is compromised if not all factors are counted 
into causal explanations or inference while conducting is not properly investi-
gated. There are multiple ways of determining if internal validity is intact by do-
ing pattern matching, explanation building, addressing rival explanation and by using 
logic models. In this kind of experimental study, the internal validity is great con-
cern. (Yin, 2014, pp. 47-48) 

In this study the main tool for validating the research design internally is to 
use pattern matching to match the gained data points in their metric to Amdahl’s 
or Gustafson -Barsis law (see Chapter 2.2.3). This can be done by plotting each 
metric both inside the case and between cases. If the metric shows linearly or 
exponentially growing (with historical data) or declining (as with shared bugs as 
lower time is better) results it can be said that it most likely scales according to 
either law. It is of course possible that metrics do not yield any scalability infor-
mation, or the experiment is too short or not replicated enough to provide 
enough information. 

Pattern matching in this study is enhanced by using Amdahl and Gus-
tafson-Barsis law as rival explanations on scalability. Amdahl’s law is used as an 
example of weak scalability where adding more workers will not show increase 
on latency and can show increase in latency. Rival of weak scalability is strong 
scalability which offers less latency for workers as they are added. 

Explanation building is a subset of pattern matching where causality of var-
iables are used to explain “how” and “why” something happened (Yin, 2014, pp. 
147-148). In this study we cannot explicitly say how and why a crash has occurred 
as the algorithm is random in nature on how it proceeds. Therefore, explanation 
building is not used in this study to fortify internal validity.  

For the same reason of randomized behavior of fuzzing logic models cannot 
be used to explain how an decision is made as adding a scribe to keep track of 
state transitions would most likely cause too much inference (and most notably 



50 

more performance issues) to the fuzzer itself and therefore would be an liability 
to other record keeping. 

3.4.3 External validity 

External validity of research design contemplates the generalization of a case 
study (Yin, 2014, p. 48). External validity is achieved by having literature-derived 
metrics (see Chapter 3.2) and a theoretical framework for assessing said metrics. 
Threats to external validity are chosen target (LAVA-M) and fuzzer (AFL) as they 
are very through studied in fuzzer literature. However, these threats most pre-
sumably do not manifest a risk for this study as the we ask the question of “How” 
does AFL scale rather than try compare AFL to other fuzzers. Furthermore, AFL 
is very widespread in both its derivatives (Klees, Ruef, Cooper, Wei, & Hicks, 
2018) and usage (Chapter 2.1.5 Table 2). Therefore, the general knowledge of how 
AFL scales is very much generalizable to form a consensus of how AFL should 
be used in parallel. Therefore, the results of this are externally valid. 

3.4.4 Threat to internal validity: Pilot study iteration 

In the first iteration of pilot study from Chapter 3.1.2 did not launch the fuzzer 
instances fast enough (same kind of problem which was encountered in launch-
ing 256 instances of AFL (Gamozo Labs, 2018). This was apparent on averaging 
the execution speed of all instances and comparing them to other instances: a 
good instance averaged around 1400 executions per minute for Desktop and 1300 
per minute for Server Ubuntu branch. This was not common as only one instance 
out of 18 exhibited this behavior across all pilot study instances, but this kind of 
behavior was not expected, therefore pilot study had to be modified in order to 
eliminate this. 

Modification to the pilot study was made by lifting the disk operation of 
reading the input file of LAVA-M to tmpfs (temporary file system, RAM disk) 
which would yield more operation speed compared to normal disk read (Hard 
Disk Drives ,HDD , in this case). This did not provide better results, and actually 
worsened them by failing one instance on Desktop side and none on Server side. 
Although the read of input file was made easier by using more hard drive I/O 
bandwidth the results were still too volatile to be used in this study. For the third 
iteration the launching script was modified to wait for 5 seconds (sleep 5s) before 
launching. After the run was complete, this anomalous behavior was not appar-
ent and therefore the third script was used as base to launch multiple worker 
instances. 
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3.4.5 Threat to internal validity:  Two anomalies during experimental phase 

After collecting the data from native execution, it was discovered that Day 5 data 
was 31r5 case folder was missing. After investigating that all other data was pre-
sent and accounted for the culprit was found on Day 5 Script (Check Appendix 1 
for details). Instead of running a 3 master 1 slave instance for fifth time it ran 1 
master three slave instance for fifth time. In order to remedy this the offending 
cases were investigated, but found intact, as the file structure was already made 
AFL would not overwrite it as it found an “sync dir” inside its output directory. 
Therefore, day5 script was rerun with corrections and its results harvested. 

During analyzing the results, it became apparent that 31r4 from virtual ex-
ecution was missing. The study had continued to a point where the hardware 
resources were no longer available and the analyzes of native execution were 
done. We deemed it unnecessary to rerun the case, as U-test and Â12 work with 
uneven population sizes. Therefore, the virtual case 31r4 is missing and replaced 
with run average on figures while statistical tests follow the normal procedure. 

3.5 Reproducibility and Reliability 

Reproducibility of this research relies on documenting the process and used tools. 
Reproducibility is achieved by using scripting language as tool to launch pro-
cesses identically for all fuzzer instances. Reliability is achieved by diligent data 
gathering and by evaluating the answers that are presented through this study. 

3.5.1 Reproducibility 

Reproducing of this study is made possible by using BASH scripting and report-
ing used hardware and software configuration. BASH scripts are included in Ap-
pendix 1. While the scripts themselves are not up to programming standards they 
are still usable and will reproduce the results when needed. 

As we are using scripts and strict case-structure with commonly known 
methodology of statistical analysis the changes of hardware will change the met-
ric values. Future hardware might do parallelism without the OS or its applica-
tions knowing. Therefore, it is imperative to force CPU binding and disable the 
throttling mechanism if this study’s methodology is used. 

It is possible that not all aspects of this study have made it into this thesis. I 
have included every bit of data available to me as researcher but having to trans-
late everything from native language to English is bound to lose something in 
translation. To avert this, I have re-checked my writing multiple times and even 
used fellow students to evaluate my work and ask if something is explained 
poorly. 
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3.5.2 Reliability of data gathering process 

Reliability of data gathering relies that all scripts have executed properly, and the 
results are gathered from workstations before they are used for other purposes. 
The most critical phase of gathering data is as the data is transferred from a CSV 
form to Excel spreadsheet as it is the phase where data might get lost. Therefore, 
each CSV is imported and checked to be valid in Excel as well as in CSV form. 

Data analysis is done with Excel and therefore it is bound to have formulas 
that link to a certain data set (for example counting averages). Formulas are de-
ceitful as they do count the results of any given area. Therefore, when using for-
mulas to analyze the data an extra care must be taken that formulas do not point 
to the wrong data set. 

As explained in Chapter 3.3.2 the p-values of Mann-Whitney U-test are re-
ported.  These values are accompanied by effect size calculations from Â12. All of 
the above hypotheses must be tested with all claimed metrics from Chapter 3.3.2 
Table 7. It is possible that there is no statistical difference between instances in 
which case the RQ1 can still be answered through calculating the speedup for 
each instance for their minimum and maximum value and plotting this graph to 
observer skewness of the graph. If no skewness is present either the metrics are 
not correct for performance testing or the experiment phase of this study has 
failed. 
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4 Results 

Results of this study are twofold: Individual instance results are recorded on Ap-
pendix 2-3 and are analyzed in this chapter. All data was gathered to an Excel 
worksheet trough using Linux utility program ssconvert which can among other 
things convert multiple CSV files to excel files. Data was then re-ordered for each 
metric and reported here on following chapters 4.1 – 4.5. 

4.1 Code coverage 

Code coverage was measured from AFL instance provided data .CSV files. From 
this the Maximum value for an instance was used as the coverage gained for the 
instance and displayed in table 8 below. In this table the native and virtual con-
texts are side by side and their instances and reruns maximum coverage dis-
played as percentage of target programs codebase. 

Table 8 Coverage gained in both contexts 

  Coverage gained (%) in  
native execution environment 

Coverage gained (%) in  
virtual execution environment 

  r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

1m1s 2,19  2,17  2,18  2,18  2,18  2,19  2,19  2,19  2,19  2,18  

2m 2,17  2,18  2,18  2,17  2,18  2,18  2,19  2,19  2,18  2,19  

1m2s 2,18  2,19  2,19  2,19  2,18  2,19  2,19  2,19  2,19  2,19  

2m1s 2,17  2,18  2,18  2,17  2,17  2,19  2,19  2,19  2,19  2,19  

3m 2,18  2,18  2,18  2,17  2,18  2,18  2,18  2,18  2,19  2,18  

1m3s 2,19  2,17  2,19  2,18  2,19  2,19  2,19  2,19  2,18  2,19  

2m2s 2,17  2,17  2,17  2,17  2,17  2,19  2,19  2,19  2,19  2,19  

3m1s 2,19  2,18  2,17  2,18  2,18  2,19  2,19  2,19    2,19  

1m7s 2,18  2,19  2,19  2,18  2,18  2,19  2,19  2,19  2,19  2,19  

2m6s 2,19  2,18  2,19  2,18  2,19  2,19  2,19  2,19  2,19  2,19  

3m5s 2,19  2,19  2,18  2,17  2,19  2,19  2,19  2,19  2,19  2,19  

 
As can be seen on this table 8 above most of the instances did not venture beyond 
2,18 % of the codebase of the program. This is quite low number considering that 
the AFL did run for 24 hours before quitting. Data from virtual context´s 3 master 
1 slave rerun number four is missing. In this case it is not meaningful as all the 
data is so homogenous. Following table 9 (far below) further analyses the cover-
age gained in both contexts. 
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Table 9 Average, median and standard deviation of gained coverages 

Native 1m1
s 

2m 1m2
s 

2m1
s 

3m 1m3
s 

2m2
s 

3m1
s 

1m7
s 

2m6
s 

3m5
s 

Avg. 
cov. % 

2,18  2,18  2,19  2,17  2,18  2,18  2,17  2,18  2,18  2,19  2,18  

Med. 
cov % 

2,18  2,18  2,19  2,17  2,18  2,19  2,17  2,18  2,18  2,19  2,19  

Std. 
dev. % 

0,01  0,00  0,00  0,00  0,00  0,01  0,00  0,01  0,00  0,00  0,01  

Virtual 
          

  

Avg. 
cov. % 

2,19  2,19  2,19  2,19  2,18  2,19  2,19  1,75  2,19  2,19  2,19  

Med. 
cov % 

2,19  2,19  2,19  2,19  2,18  2,19  2,19  2,19  2,19  2,19  2,19  

Std. 
dev. % 

0,00  0,00  0,00  0,00  0,00  0,00  0,00  0,88  0,00  0,00  0,00  

 
From both tables 8 and 9 (above) it is clear that, in this dataset the coverage cannot 
be used as a metric for assessing scalability, performance differences between 
contexts nor configuration changes: the variance of all cases fit inside the error 
margin of 5%. The variance of all the values changes between 0,02 percent the 
minimum being 2,17 and maximum being 2,19%. 

There was a possibility that coverage gained would have been different be-
tween runs and contexts. In this case there must have been some path constraint 
that the AFL could not solve because all the instances stalled out in the same 
point. On the other hand, that given enough time the randomized algorithm in 
AFL would provide the same kind of results. It is to note however, that although 
the coverage is virtually the same within all instances, they did find different 
bugs as detailed in Chapter 4.1.2. 

4.2 Unique bug count 

As explained in chapter 3.2.2 the unique bug count is derived from the AFL crash-
ing inputs. These inputs are stored and can be examined later. This examination 
is done by using Crashwalk to deduplicate the crashes via stack hashing. Figure 
10 below is an example of Crashwalk outputted summary text file. Crashwalk 
summary file is different than the run file as it sums up the crashes, but the text 
file from the run displays every crash its own summary (i.e. one by one basis).   

In figure 10 below is displayed the outputted Hash (i.e. stack hash), filename 
for that crash (in this figure 3 files have the same hash, so only the first one is 
displayed), faulting frame which in this study is used as the name of the crash on 
chapter 4.1.4 and its GDB output with last three stack entries that the input path 
took and register values when crash occurred. Extra data in Figure 10 below is 
an estimation from Crashwalk incorporated tool EXPLOITABLE is not used in 
this study as it is not quantifiable and rather descriptive in nature. 
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Figure 10 Example of Crashwalk outputted summary text file. 

From these text files several unique bugs were uncovered as detailed in table 10 
below. In this table I have used the faulting frame as the name of the bug and 
added its stack has to next column. Next column denotes how many times the 
said bug was discovered in total through all the runs divided in native and vir-
tual context of multiple case study. 

Table 10 Crashwalk deduplicated crashes 

 Hash N V 

read_utmp ece62020eef3f0c990bc34f1a0b0183d.ece62020eef3f0c990bc34f1a0b0183d All All 

close_stream d1b325c43ddba8adf6d50ef78bd394d1.87d90d4b7494464dd0a6b504436ebdfd 3 1 

rpl_fclose 9df5d3cc746d835a038b7540382afcd3.7d4fc484b285d5d949e949681b0184f3 1 6 

print_user 2ba18b97102e3b0c8ea0b22ec38098e4.2ba18b97102e3b0c8ea0b22ec38098e4 3 0 

print_line (1) 4c422aa0ef703a24cad0f81172f78fcf.e09bdbcc905e2b1226e5e941e686be3f 1 3 

print_line (2) 566f1a7a8d2bbbfc48cb3ab574d149c8.121589cacfb979a4ec7ba1d71635d1c5 1 0 

print_line (3) 4c422aa0ef703a24cad0f81172f78fcf.fa317662eaec46cbc837bd26726cd0c0 0 2 

time_string e51035b678ada00cb89d4ad541d91a65.835aee4c501f6dbe9822d92e8c46fb40 0 1 

 
From table 10 below we can see that read_utmp was found by all instances and 
all other crashes are very sparsely distributed between all instances. Further data 
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analysis is done in chapter 4.1.4 where analysis focuses on using these bugs as 
metric for performance analysis. 

Below on tables 11-14 I have included the instance specific information on 
how many crashes AFL (SUM AFL) has reported and how many Crashwalk 
(SUM CW) has deduplicated total crashes for the run on specific instance. Mini-
mum and maximum values are included as additional information in order to 
deduce what configuration discovered most crashes (RQ3). Average is counted 
from deduplicated bugs (CW avg.) and marked up to decipher the general crash 
discovering capability of a run of an instance. 

Table 11  Case 2 crash count and deduplicated bugs  

Native environment Virtual Environment 

1m1s r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

SUM AFL 3 3 3 3 3 4 2 3 5 4 

SUM CW 1 1 1 1 2 2 1 1 2 1 

MIN CW 0 0 0 0 1 1 1 1 1 1 

MAX CW 1 1 1 1 1 1 1 1 1 1 

Best Instc. S1 S1 S1 S1 S1 All All All All All 

CW avg. 0,5 0,5 0,5 0,5 1 1 1 1 1 1 

2m r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

SUM AFL 7 3 3 1 1 5 6 6 4 6 

SUM CW 2 2 2 1 1 2 2 2 2 2 

MIN CW 1 1 1 0 0 1 1 1 1 1 

MAX CW 1 1 1 1 1 1 1 1 1 1 

Best Instc. All All All M2 M2 All All All All All 

CW avg. 1 1 1 0,5 0,5 1 1 1 1 1 

 
From table 11 is shown that AFL has overcounted crashes by 150% to 400%. On 
native execution only 4 runs out of 10 have found a second bug whereas on vir-
tual context 7 out of 10 have found a second bug. In Native environment slaves 
were better at finding crashes in 5 out of 5 cases, as the 2m instance only holds 
master instances. On virtual context both masters and slaves found crashes 
evenly in all runs. 

Table 12 Case 3 crash count and deduplicated bugs 

Native environment Virtual Environment 

1m2s r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

SUM AFL 7 6 6 6 8 7 8 6 6 6 

SUM CW 3 2 2 2 3 2 3 2 2 2 

MIN CW 0 0 0 0 1 0 0 0 0 0 

MAX CW 2 1 1 1 1 1 2 1 1 1 

Best Instc. S2 S1 -2 S1-2 S1 All S1-2 S2 S1-2 S1-2 S1-2 

CW avg. 1 0,67 0,67 0,67 1 0,67 1 0,67 0,67 0,67 
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2m1s r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

SUM AFL 3 2 8 6 2 4 5 6 4 7 

SUM CW 2 1 3 3 1 2 3 4 2 3 

MIN CW 0 0 1 1 0 0 1 1 0 1 

MAX CW 1 1 1 1 1 1 1 2 1 2 

Best Instc. M1 
S1 

S1 All All S1 M1 
S1 

All S1 M2 
S1 

S1 

CW avg. 0,67 0,33 1 1 0,33 0,67 1 1,33 0,67 1,5 

3m r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

SUM AFL 7 9 8 2 9 10 8 8 8 6 

SUM CW 3 3 4 1 3 3 3 3 3 2 

MIN CW 1 1 1 0 1 1 1 1 1 1 

MAX CW 1 1 2 1 1 1 1 1 1 1 

Best Instc. All All M3 M1 All All All All All All 

CW avg. 1 1 1,33 0,33 1 1 1 1 1 1 

 
On table 12 AFL has overcounted crashes by 166% to 300%. On native execution 
2 runs out of 15 have found a second crash whereas on virtual context 3 out of 15 
have found a second crash. Native environment slaves were better at finding 
crashes in 6 out of 10 cases, as the 3m instance only holds master instances. This 
trend continues in Virtual context as 7 out of 10 instances report slaves finding 
more or the only crash of instance. 

Table 13 Case 4 crash count and deduplicated bugs 

Native environment Virtual Environment 

1m3s r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

SUM AFL 12 9 9 12 9 11 9 7 10 10 

SUM CW 4 4 4 3 3 3 3 3 3 3 

MIN CW 1 1 1 0 0 0 0 0 0 0 

MAX CW 1 1 1 1 1 1 1 1 1 1 

Best In-
stc. 

All All All S1-3 S1-3 S1-2 S1-2 S1-2 S1-
2 

S1-2 

CW avg. 1 1 1 0,75 0,75 0,75 0,75 0,75 0,7
5 

0,75 

2m2s r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

SUM AFL 11 7 9 8 10 23 11 13 6 12 

SUM CW 4 3 3 3 3 3 4 4 3 4 

MIN CW 1 0 0 0 0 0 1 1 0 1 

MAX CW 1 1 1 1 1 1 1 1 1 1 

Best In-
stc. 

All M2 
S1-2 

M2 
S1-2 

M1 
S1-2 

M2 
S1-2 

M1 
S1-2 

All All M1 
S1-
2 

All 

CW avg. 1 0,75 0,75 0,75 0,75 0,75 1 1 0,7
5 

1 
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3m1s r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

SUM AFL 10 9 11 10 10 6 7 11 
 

9 

SUM CW 4 4 4 4 4 3 4 4 
 

3 

MIN CW 1 1 1 1 1 0 1 1 
 

0 

MAX CW 1 1 1 1 1 1 2 1 
 

1 

Best In-
stc. 

All All All All All M1,3 
S1 

S1 All 
 

M2-3 
S1 

CW avg. 1 1 1 1 1 0,75 1,33333
3 

1 
 

0,75 

 
AFL has overcounted crashes by 200% to 766% as shown in table 13 above. On 
native execution none out of 15 have found a second crash whereas on virtual 
context 1 instance found a second crash. Native environment slaves were better 
at finding crashes in 2 out of 15 cases. On Virtual context 6 out of 14 instances 
report slaves finding more or the only crash of instance.  

Crash finding ability seems to be leveling out on Case 4 as the masters start 
to find crashes during the 24 hour period and in Native context 9 instances out 
of 15 (60%) report all instances finding a crash, whereas in Virtual context 4 out 
14 (~29%) has all instances finding a crash. Comparing results to Case 3 (and its 
table 12 far above) where 3 out of 10 (30%) Native context mixed instances (mas-
ters and slaves present) and 1 out of 10 (10%) Virtual instances have all instances 
finding a crash.  

If we take into account the homogenous master instances of Case 3 the per-
centages change: 6/15 (40%) Case 3 native and virtual whereas 9/15 (60%) for 
Case 4 Native and 4/15(~29%) on Virtual context. Which still supports the claim 
of the ability to find crashes starts to even out in this point between configuration 
changes. 

Table 14 Case 5 crash count and deduplicated bugs  

Native environment Virtual Environment 

1m7s r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

SUM AFL 21 27 27 27 29 25 26 24 23 22 

SUM CW 7 9 8 8 7 10 8 9 7 7 

MIN CW 0 1 1 1 0 0 1 1 0 0 

MAX CW 1 2 1 1 1 3 1 2 1 1 

Best Instc. S1-7 S5 All All All S7 All S7 S1-7 S1-7 

CW avg. 0,875 1,125 1 1 0,875 1,25 1 1,125 0,875 0,875 

2m6s r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

SUM AFL 21 28 24 20 20 20 18 15 21 24 

SUM CW 8 8 8 6 7 7 6 7 10 8 

MIN CW 1 1 1 0 0 1 1 0 1 1 

MAX CW 1 1 1 1 2 2 1 1 2 1 

Best Instc. All All All S1-6 S2 S4-6 All M1 
S1-6 

S2,4 All 
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CW avg. 1 1 1 0,75 0,875 1,375 1 0,875 1,25 1 

3m5s r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

SUM AFL 22 20 21 21 24 20 18 15 21 24 

SUM CW 7 7 8 7 9 7 6 7 10 8 

MIN CW 0 0 1 0 1 1 1 1 1 1 

MAX CW 1 1 1 1 2 1 1 1 3 1 

Best Instc. M1,3 
S1-5 

M2-3 
S1-5 

All M1,3 
S1-5 

S2 All All All S3 All 

CW avg. 0,875 0,875 1 0,875 1,125 1 1 1 1,25 1 

 
From table 14 above we can deduce that AFL has overcounted crashes by ~214% 
to ~338%. On native execution 3 out of 15 have found a second crash whereas on 
virtual context 5 instance found a second crash and 2 out of 15 a third one. Native 
environment slaves were better at finding crashes in 5 out of 15 cases. On Virtual 
context 7 out of 14 instances report slaves finding more or the only crash of in-
stance.  

From Case 5 Native and Virtual context 7 out of 15 (~47%) instances were 
able to tie on finding a crash. In previous Case 4 Native context tied on 40% of 
instances and Virtual context 60%. From this data we cannot deduce if configu-
ration changes affect the amount of crashes found by a run of AFL. 

Between all cases there are only 11 runs out of 110 (10%) that have found a 
second (or third in V 3m 5s r4) crash. From the remaining 99 runs all have found 
at least one crash. From this data it is impossible to decipher statistical differences 
as most of the data is homogenous. Therefore, this metric of counting the number 
of crashes found by an run with different configurations is not usable for perfor-
mance testing in this study as it did not have enough dispersion. 

4.3 Execution speed 

For execution speed metric the minimum and maximum values together with 
standard deviation are reported on Appendix 2, as they do not directly contribute 
to performance metric, but are essential in assessing the validity of this study. In 
the Chapter 4.4.1 tables 15-22 the execution speed is averaged per instance and 
run. From the data a weighted average execution speed (WAES) is counted per 
run (marked darker in the tables), as the runs have a vast difference in datapoints: 
slave instances report data far more frequently than master instances in all cases. 

Xu et al. have used execution speed as a metric in their study as described 
in chapter 3.2.4. Assessing from the data in the study the worker execution speed 
is averaged over the runtime of fuzzer. This also means that the execution speed 
is cumulated over worker (Xu et al. ”core”), meaning that in order to have com-
parable results a cumulative average execution speed (CAES) must be counted 
and represented. CAES of all the runs is displayed in Table 23 (Chapter 4.4.2). 
These values along with WAES are displayed in Figures 11-14 on Chapter 4.4.2. 
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4.3.1 Execution speed (Weighted Averages) 

Table 15 Case 2 Native instance average speeds and Weighted average.  
r1 r2 r3 r4 r5 

 
Datapoints 

/ 
Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

1m1s 1197,83 1092,36 1079,71 1277,86 1211,50 

M1 143 /1342,09 110/1276,19 114/1346,61 220/1382,83 107/1353,86 

S1 16096/1196,54 14953/1090,99 15616/1077,75 16354/1276,44 15691/1210,52 

2m 1480,96 1322,35 1368,84 1326,36 1431,50 

M1 1386/1506,28 272/1300,62 312/1371,51 411/1370,88 995/1443,12 

M2 1029/1446,87 1087/1327,81 1276/1368,18 895/1305,89 531/1409,73 

 
Table 15 shows the difference in weighted averages of instances.  From datapoint 
count we can see that master instances do not record as diligently as slave in-
stances, and even in two-master instance they do not record at the same pace. 
From weighted averages we can deduce that the two-master instance has higher 
average execution speed in all cases. 

Table 16 below shows the difference in weighted averages of instances.  
Same kind of datapoint count trend persists in virtual execution as in native exe-
cution. From weighted averages we can deduce that the two-master instance has 
higher average execution speed in all cases. 

Table 16 Case 2 Virtual instance average speeds and Weighted average.  
r1 r2 r3 r4 r5 

 
Datapoints 

/ 
Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

1m1s 1247,00 1123,12 1290,27 1114,10 1318,65 

M1 138/1577,99 97/1557,27 188/1509,63 128/1496,85 133/1570,92 

S1 15988/1244,13 16210/1120,50 16471/1287,76 15751/1110,97 15806/1316,51 

2m 1444,13 1553,47 1587,96 1481,63 1534,24 

M1 1152/1468,57 5547/1555,36 1815/1569,38 1377/1477,53 454/1511,96 

M2 384/1370,93 345/1523,14 1425/1611,63 1457/1485,50 1746/1540,05 

 
Table 17 below shows that there is difference in weighted averages of instances.  
Datapoint trend seems to emerge here as slave instances seem to record diligently 
and master instances somewhat sparsely. Weighted averages between runs and 
instances start to mix but favor the three-master instance in all cases. 
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Table 17 Case 3 Native instance average speeds and Weighted average.  
r1 r2 r3 r4 r5 

 
Datapoints 

/ 
Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 
1m2s 1218,67 1259,43 1162,44 1166,92 1082,78 

M1 128/1353,74 151/1476,50 124/1293,54 186/1409,78 78/1336,60 

S1 16864/1190,89 16901/1253,27 16697/1154,22 16585/1159,63 16819/1090,56 

S2 16887/1245,38 16615/1263,70 16905/1169,59 16859/1171,40 16745/1073,78 

2m1s 1196,99 1212,29 1355,99 1013,88 1189,73 

M1 130/1276,28 295/1290,66 7934/1404,42 160/1240,69 232/1314,22 

M2 155/1042,24 250/1282,07 256/1377,12 132/1251,71 222/1264,00 

S1 16509/1197,83 16051/1209,75 16609/1332,53 15528/1009,49 15602/1186,81 

3m 1225,85 1354,69 1374,77 1262,70 1425,26 

M1 1196/1219,93 3725/1318,73 3360/1353,90 4627/1244,44 2089/1439,07 

M2 2772/1219,44 3541/1385,57 2007/1408,89 267/1267,96 715/1460,22 

M3 429/1283,72 5549/1359,13 3643/1375,22 785/1368,43 2161/1400,33 

 
Table 18 below shows difference in weighted averages of instances.  Data-

point trend set in previous paragraph persists, although it seems that in most 
cases native context masters have recorded more datapoints when compared pair 
wisely (17 wins for native, 13 for virtual). Weighted averages between runs and 
instances start to mix but favor the three-master instance in all cases. 

Table 18 Case 3 Virtual instance average speeds and Weighted average.  
r1 r2 r3 r4 r5 

 
Datapoints 

/ 
Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 
1m2s 1066,99 1345,81 1346,65 1234,71 1266,49 

M1 122/1453,32 207/1474,69 190/1495,26 147/1558,67 126/1515,16 

S1 16714/1077,37 16905/1343,30 16914/1360,95 16852/1258,97 16574/1272,76 

S2 16845/1053,88 16867/1346,73 16905/1330,66 16711/1207,38 16918/1258,49 

2m1s 1151,97 1340,72 1282,35 1296,10 1134,50 

M1 276/1351,00 170/1337,51 176/1389,10 266/1367,27 227/1352,16 

M2 233/1279,26 178/1420,00 149/1374,19 221/1349,75 109/1434,64 

S1 16606/1146,85 16694/1339,90 16506/1280,37 16524/1294,23 16506/1129,50 

3m 1374,91 1335,67 1361,06 1383,30 1258,84 

M1 5599/1362,17 1634/1287,84 837/1415,03 1758/1355,92 3612/1252,23 

M2 1558/1468,85 494/1403,93 437/1315,18 1611/1405,16 2917/1267,06 

M3 2365/1343,18 319/1474,43 241/1257,24 1406/1392,48 344/1258,63 
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Table 19 Case 4 Native instance average speeds and Weighted average.  
r1 r2 r3 r4 r5 

 
Datapoints 

/ 
Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

1m 
3s 

851,56 1149,71 931,32 1234,26 1082,65 

M1 158/1385,92 102/1399,96 66/1302,47 165/1334,47 119/1326,70 

S1 16327/618,97 16841/1146,26 16783/940,82 16956/1232,92 16909/1167,42 

S2 16931/1303,21 16887/1148,75 16744/933,80 16960/1235,80 16749/1032,26 

S3 16814/617,57 16883/1152,58 16747/917,85 16948/1233,08 16845/1045,91 

2m 
2s 

1029,87 1158,43 931,47 1160,85 1238,40 

M1 129/1189,50 174/1204,34 116/1198,60 177/1187,14 134/1327,65 

M2 139/1263,07 137/1219,83 176/1222,38 134/1263,94 169/1286,11 

S1 16778/1040,89 16923/1174,03 16626/791,86 16894/1110,66 16940/1253,95 

S2 16631/1015,55 16910/1141,84 16805/1064,66 16822/1210,14 16920/1221,63 

3m 
1s 

1011,26 1198,16 1204,12 1222,73 1211,40 

M1 277/1103,86 219/1272,34 277/1301,35 765/1234,21 1130/1227,67 

M2 174/1197,78 157/1222,91 1286/1167,89 235/1213,32 250/1136,09 

M3 203/1100,43 1877/1145,08 313/1359,62 2172/1227,46 2462/1250,13 

S1 16121/1006,51 16506/1202,98 16222/1202,31 16684/1221,72 16050/1205,48 

 
Difference in weighted averages of instances continues in Table 19 above.  Data-
point trend set in previous paragraphs persists. Weighted averages seem to drop 
somewhat compared to Case 3 (tables 17 and 18) but still mix together: 1m3s has 
one “win” (i.e. best WEAS in r4), 2m2s also has one win (r5) and 3m1s instance 
wins rest three instances.  

This average speed leveling out is most probably due to the fact that slave 
instances record far more datapoints with lower average scores than master in-
stances. This skews the average towards slave instance execution speed. This is 
apparent in all 3m1s runs (on Table 19) where the slave has magnitudes more 
datapoints than all combined masters while having equal level or worse execu-
tion speed. 
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Table 20 Case 4 Virtual instance average speeds and Weighted average.  
r1 r2 r3 r4 r5 

 
Datapoints 

/ 
Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

1m 
3s 

1245,17 1098,33 1195,04 946,80 1162,91 

M1 139/1462,74 169/1502,80 137/1500,11 78/1405,46 118/1622,00 

S1 16952/1239,00 16853/1095,13 16920/1186,74 16815/946,23 16867/1158,75 

S2 16922/1251,78 16859/1115,25 16892/1208,05 16846/948,77 16823/1160,54 

S3 16947/1242,94 16872/1080,55 16928/1187,87 16824/943,24 16883/1166,19 

2m 
2s 

1142,08 1155,44 1050,69 1339,70 1333,02 

M1 152/1383,11 227/1408,62 164/1338,89 220/1360,20 308/1305,87 

M2 113/1329,45 198/1392,55 139/1290,95 181/1396,06 183/1400,76 

S1 16258/1142,97 16842/1167,78 16476/1060,60 16920/1336,49 16778/1350,93 

S2 16836/1137,76 16875/1136,91 16525/1035,90 16806/1342,04 16946/1315,06 

3m 
1s 

1141,95 1199,74 1290,76 
 

1117,78 

M1 298/1415,34 256/1326,10 1479/1336,89 
  

192/1265,16 

M2 222/1328,86 275/1350,78 1199/1331,22 
  

163/1372,42 

M3 30371367,98 206/1276,36 250/1287,90 
  

152/1270,12 

S1 16456/1130,27 16691/1194,34 16522/1283,73 
  

15870/1111,89 

 
Table 20 shows that the there is difference in weighted averages of instances.  
Datapoint trend set in previous paragraphs persists, and most probably skews 
the WEAS in all instances towards slave instance execution speed. Weighted av-
erages seem to drop somewhat compared to Case 3 (Tables 17 and 18) but do not 
exhibit sub 1000 execution as native context does (Table 19 above). 
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Table 21 Case 5 Native instance average speeds and Weighted average.  
r1 r2 r3 r4 r5 

 
Datapoints 

/ 
Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

1m 
7s 

1173,23 1101,57 979,26 1043,15 955,51 

M1 134/1261,31 140/1306,79 72/1254,53 122/1369,49 111/1355,70 

S1 16980/1217,18 16932/1105,90 16896/986,16 16899/1107,37 16897/1085,13 

S2 16979/1211,18 16934/1090,52 16859/992,56 16902/1105,96 16792/540,73 

S3 16980/1221,58 16926/1116,75 16896/980,24 16911/1066,64 16900/1155,68 

S4 16966/1210,05 16937/1093,13 16840/947,99 16907/1073,69 16801/540,80 

S5 16976/1213,94 16935/1101,16 16903/945,91 16906/1081,05 16928/1158,52 

S6 16983/1219,43 16916/1099,00 16838/1020,64 16909/1073,91 16926/1070,04 

S7 16939/917,94 16933/1102,81 16905/980,24 16837/790,08 16917/1129,30 

2m 
6s 

1069,99 963,95 998,03 1052,19 1014,38 

M1 185/1223,72 128/1286,59 138/1154,29 159/1191,86 164/1307,45 

M2 102/1223,41 163/1203,78 139/1209,82 160/1176,60 157/1266,46 

S1 16918/1047,48 16893/993,11 16846/993,17 16843/806,63 16918/1214,49 

S2 16948/1091,14 16793/719,13 16842/1010,32 16914/1091,04 16962/1215,57 

S3 16926/1051,62 16896/1027,03 16889/1008,27 16908/1085,81 16864/589,61 

S4 16934/1049,01 16823/992,33 16847/1001,55 16895/1103,72 16957/1247,28 

S5 16943/1099,37 16879/1040,93 16865/980,49 16913/1110,50 16854/589,59 

S6 16949/1078,62 16875/1005,16 16890/991,38 16911/1111,98 16955/1220,08 

3m 
5s 

1260,55 1055,36 997,59 1213,18 1246,54 

M1 3262/1244,45 212/584,41 156/1130,61 3965/1250,08 1010/1200,42 

M2 236/1240,46 328/1225,50 186/1125,58 127/1244,65 183/1229,48 

M3 6467/1266,50 245/1218,16 246/1092,41 6741/1254,48 255/1198,00 

S1 16977/1252,57 16953/1215,72 16874/785,36 16966/1215,81 16945/1246,25 

S2 16980/1244,37 16935/1242,48 16948/1066,47 16963/1230,47 16915/1233,84 

S3 16977/1286,51 15947/367,83 16950/1042,85 16957/1207,22 16924/1264,24 

S4 16976/1264,88 16953/1195,64 16924/1032,38 16970/1206,80 16949/1245,35 

S5 16974/1255,52 16941/1214,90 16952/1055,99 16968/1180,31 16955/1246,71 
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Table 22 Case 5 Virtual instance average speeds and Weighted average.  
r1 r2 r3 r4 r5 

 
Datapoints 

/ 
Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

Datapoints 
/ 

Avg. 

1m 
7s 

1262,53 1022,89 1072,16 1094,23 1114,53 

M1 143/1374,78 78/1397,63 86/1470,06 98/1427,50 101/1443,97 

S1 16972/1261,42 16855/1015,67 16885/1075,59 16919/1070,53 16943/1103,13 

S2 16971/1261,49 16860/1029,86 16860/1070,99 16905/1083,02 16909/1127,37 

S3 16976/1260,61 16703/1021,15 16886/1075,35 16921/1094,91 16941/1126,70 
S4 16976/1265,98 16855/998,51 16910/1064,71 16902/1104,20 16952/1104,24 

S5 16975/1269,59 16858/1023,03 16901/1077,66 16912/1105,59 16949/1119,56 

S6 16977/1258,80 16852/1047,40 16908/1063,90 16918/1098,64 16941/1105,34 

S7 16970/1258,90 16862/1022,87 16911/1074,86 16912/1100,76 16946/1113,42 

2m 
6s 

975,57 960,99 1036,36 1187,79 972,49 

M1 190/1385,46 112/1338,97 118/1279,85 213/1275,23 142/1200,38 

M2 183/1345,88 95/1399,87 66/665,64 170/1334,80 119/1225,38 

S1 16822/564,11 16830/975,24 16889/1211,12 16953/1208,73 16868/964,23 

S2 16920/1173,75 16859/954,07 16916/1170,99 16954/1200,86 16869/962,33 

S3 16930/1169,61 16824/971,61 16905/1143,85 16940/1171,71 16811/992,20 

S4 16916/1181,22 16835/950,45 16262/313,99 16948/1215,49 16858/974,94 

S5 16828/563,69 16853/948,81 16913/1188,76 16967/1175,64 16881/956,37 

S6 16919/1187,70 16874/960,72 16914/1161,67 16892/1151,62 16876/981,18 

3m 
5s 

1275,54 1140,78 1106,13 1151,52 954,84 

M1 252/1300,47 109/1248,36 183/1246,93 178/508,15 171/1247,86 

M2 217/1297,73 148/1216,79 210/1196,28 155/614,25 128/1293,77 

M3 5820/1267,62 273/1312,46 122/1303,45 216/1257,70 135/1264,85 

S1 16931/1259,46 16852/1130,99 16901/1114,90 16909/1159,08 16853/947,45 

S2 16946/1260,40 16915/1139,41 16895/1124,66 16889/1169,66 16867/954,38 

S3 16946/1276,75 16913/1144,43 16877/1092,18 16861/1142,13 16884/944,46 

S4 16946/1278,15 16882/1137,19 16887/1096,83 16909/1153,69 16886/957,06 

S5 16944/1305,00 16898/1147,69 16892/1097,99 16903/1143,45 16844/962,79 

 
Table 21 and 22 show that there is difference in weighted averages of instances 
and context.  From Table 21 and 22 it is clear, that slave instance datapoints and 
averages skew the weighted average towards their own averages. It seems both 
1mx and 2mx cases the execution speed has dropped in both execution environ-
ments but is marginally the same with 3mx instance. 

Essentially Weighted Averages of Execution speed skew towards datasets 
created by Slave instances. From this we see a trend that contradicts Xu et. al (Xu, 
Kashyap, Min, & Kim, 2017) results of execution speed increasing as more cores 
are added (until 15 cores are being used). Weighted average was supposed to 
scale up as cores were added, because the added instances could have been doing 
more work and distributing the test case generators que more effective. This 
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might still be the case internally, but the metric in this case only considers the 
slave instance leveraged average execution speed. As this metric contradicts 
common knowledge and is tainted by slave datapoints it is not used as scalability 
metric. Therefore, Xu et. al have used cumulative execution speed as a metric in 
their study. 

4.3.2 Execution speed (Cumulative Average execution speed)) 

Cumulative execution speed average (CAES) is counted by summing up the in-
stance averages. This is done in order not to skew the average values between 
master and slave instance due to datapoint imbalance showed in previous chap-
ter 4.1.3.  CAES values are visualized in Figures 11-14 below and their values are 
derived from Tables 15 -22. These figures are displayed in case-by-case basis with 
on both contexts. Naturally in execution speed higher values are better. 

 

 
Figure 11 Case 2 CAES visualized 

In Figure 11 above we see the CAES of case 2 in both contexts, native on contin-
uous- and virtual as dashed line.  One-master instances colored orange and two-
master instances blue. It is apparent that in 4 out of 5 cases the CAES of virtual 
instance is higher than its native counterpart in two core instances. Furthermore, 
two-master instance is faster in its own context, although they are close for ex-
ample in r4 of native context. 

r1 r2 r3 r4 r5

N1m1s CAES 2538,62 2367,18 2424,35 2659,28 2564,38

V1m1s CAES 2822,11 2677,77 2797,38 2607,81 2887,43

N2m CAES 2953,15 2628,42 2739,70 2676,77 2852,86

V2m CAES 2839,51 3078,50 3181,01 2963,03 3052,01
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Figure 12 Case 3 CAES visualized 

In Figure 12 above we see the CAES of case 3 in both contexts, using same line 
graphics as in previous figure of Case 2. One-master instances colored orange, 
two-master instances blue and three-master instance grey. In one- and two-mas-
ter instance same trend of 4 out of 5 CAES being higher than native context. For 
three-master instance the results are a bit more mixed, virtual context being better 
only in 3 out of 5 cases. Generally (4 out of 5) we see three-master instance beating 
one- and two-master instances in CAES in native context, but evening out on vir-
tual context (3 out of 5). 

Figure 13 below follows the same line and coloring scheme as Figure 12 and 
shows the results of Case 4 CAES. As the datapoint of V3m1sr4 is forever lost it 
is replaced with the average value of other four runs in order to visualize this 
comparison. The gap between virtual and native execution starts to widen, as we 
can see only two runs being better than its virtual counterpart (N1m3s r2 and r4). 
As per Case 3 we see three-master instance dominating over two- and one-master 
instances in 4 out of 5 cases in native context, but the role is reversed in virtual 
context as instance is better in only 3 out of 5 runs. 

r1 r2 r3 r4 r5

N1m2s CAES 3790,01 3993,47 3617,35 3740,81 3500,93

V1m2s CAES 3584,57 4164,72 4186,88 4025,03 4046,40

N2m1s CAES 3516,35 3782,48 4114,08 3501,89 3765,03

V2m1s CAES 3777,11 4097,40 4043,66 4011,26 3916,29

N3m CAES 3723,09 4063,43 4138,02 3880,82 4299,62

V3m CAES 4174,19 4166,20 3987,45 4153,56 3777,92

3450,00

3550,00

3650,00

3750,00

3850,00

3950,00

4050,00

4150,00

4250,00

Ex
ec

u
ti

o
n

 s
p

ee
d



68 

 
Figure 13 Case 4 CAES visualized 

 

Figure 14 Case 5 CAES visualized 

r1 r2 r3 r4 r5

N1m3s CAES 3925,67 4847,55 4094,94 5036,27 4572,30

V1m3s CAES 5196,46 4793,74 5082,77 4243,70 5107,49

N2m2s CAES 4509,01 4740,04 4277,50 4771,88 5089,35

V2m2s CAES 4993,29 5105,86 4726,34 5434,80 5372,62

N3m1s CAES 4408,59 4843,31 5031,18 4896,71 4819,38

V3m1s CAES 5242,46 5147,58 5239,75 5162,34 5019,58
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r1 r2 r3 r4 r5

N1m7s CAES 9472,61 9016,05 8108,27 8668,19 8035,90

V1m7s CAES 10211,56 8556,12 8973,12 9085,15 9243,72

N2m6s CAES 8864,38 8268,06 8349,29 8678,13 8650,54

V2m6s CAES 8571,41 8499,75 8135,86 9734,08 8257,02

N3m5s CAES 10055,27 8264,64 8331,65 9789,83 9864,29

V3m5s CAES 10245,57 9477,32 9273,21 8148,10 8572,61
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Figure 14 above follows the same coloring and line scheme as previous figures in 
this chapter. Something interesting is happening at Case 5 because the results 
start to mix up. Most likely the results start to mix up as the slave instances start 
to have more impact on cumulative execution speed because they have less de-
viation than master instances (standard deviations are reported in Appendix 
2).However there is a clear difference between native and virtual context: one-
and three-master instances virtual counterparts perform better than their native, 
but the role is reversed in two-master instance. 

Figure 15 All cases CAES combined 

Figure 15 above plots all the cases on the same plot using the run number as X-
axis and execution speed as Y-axis. Cases are designed their own color, except 
cases 3 and 5 which have the same coloring schema but are visually located so 
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far apart that the coloring is irrelevant. From Figure 15 we can deduce that Cases 
2 (Violet for native execution, red for virtual) and 5 (native on orange, virtual on 
white) form their own grouping through all the runs, where Cases 3 and 4 inter-
mingle between 3300 and 5300 execution speed with lest distinction. This plot 
shows that there is a continual execution speed increase when increasing workers 
and this presumption is tested in Chapter 5. 

Cumulative execution speed as a metric show promising results to calculate 
if speedup is present. These results are further analyzed in Chapter 5. As far as 
results and their predictivity go, the one- and three-master instances follow a 
very predictive path, but two-master instance has large amount of variation in its 
results. This would require additional investigation on why two-master instance 
has this much dispersion in its results. 

4.4 Shared bugs 

Table 23 Found shared bugs in both multiple case contexts 

Identified 
bug 

1m1
s 

2m 1m2
s 

2m1
s 

3m 1m3
s 

2m2
s 

3m1
s 

1m7
s 

2m6
s 

3m5
s 

read_utm B B B B B B B B B B B 

close_strea
m 

 
N 

     
N 

 
B 

rpl_close 
  

V V N 
  

V V 
 

V 

print_user 
       

N 
  

print_line 
(1) 

  
V 

  
V 

 
V N 

 

print_line 
(2) 

       
N 

  

print_line 
(3) 

     
V 

  
V 

 

time_string 
        

V 
 

 
Table 23 above shows the discovered crashes in all cases and instances. These 
crashes were verified from Crashwalk stack hashes to be unique as stated in chap-
ter 4.3. In this table the instance is denoted as “B” if both virtual and native exe-
cution contexts have found the same bug. Bug is denoted N or V for Native and 
virtual context discoveries respectfully. 

From this data we can deduce that all other bugs other than “read_utm” are 
too sparse to be able to analyze. This is to be expected as fuzzer algorithm is ran-
dom in nature, so it treads different paths and those paths probably did not con-
verge in this case study. This “read_utm” bug is most likely what you would call 
a “shallow bug” as it is found by all instances. 

There are great differences in discovered bugs between native and virtual 
context. Native has found 6 unique bugs and virtual context has found 5. Most 
notably “time_string” bug is the only one found in virtual context and 



71 

“print_user” found in native context. These could be called “deep bugs” but as 
the coverage stayed low it cannot (see chapter 4.1.1) be said certainly that they 
reside deep in the target program. 

4.4.1 Shared bug (read_utmp) 

On the following table 24 shows the fastest time a worker instance has found bug 
“read_utmp” in time elapsed as seconds from starting the instance. This table 
follows the same naming convention for instances and runs as all the Chapter 4 
tables. Both virtual and native environment results are displayed.  

Fastest time is derived by searching all the instances that have crashing in-
put to read_utmp (from Crashwalk instance specific files) and then deducing 
what was the first instance of AFL crashing input-file stored on the AFL directory 
that the Crashwalk output referred to. AFL starts numbering from id:0000 on-
ward, and therefore, the first unique crash is id:0000 and so forth. Therefore, AFL 
crashes can be checked against the Crashwalk output and counted how many 
seconds elapsed since AFL had detected the crash from the AFL instances plot 
file. 

Table 24 First discovery of read_utmp bug from each instance  
Native Virtual 

 
r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

1m1s 895 825 1692 2654 1199 658 792 638 727 998 

2m 4534 1223 4376 39397 19837 5068 1354 2767 11186 4310 

1m2s 858 919 736 771 889 971 1453 731 902 746 

2m1s 1363 27751 753 696 695 1333 725 918 675 909 

3m 7147 800 10847 74577 24340 7343 882 5211 1712 27509 

1m3s 629 654 736 962 789 859 811 772 967 1230 

2m2s 960 22118 1493 4230 1219 829 704 747 686 917 

3m1s 645 3251 706 1032 741 669 1780 1515 
 

778 

1m7s 665 687 669 726 669 810 681 870 684 629 

2m6s 802 1384 655 1204 958 660 627 674 636 856 

3m5s 667 657 728 778 670 647 664 996 628 734 

 
Table 24 above is presented per case basis in following figures 16-19 where one-
master instances are colored orange, two-master instances blue and three-master 
instances grey. Continuous line depicts the native context and dashed line the 
virtual context, as was the case in Chapter 4.4.2. The difference to Chapter 4.4.2 
figures is that lower discovery speed is better, as bugs are best found young. 
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Figure 16 Case 2 read_utmp discovery 

Figure 16 showcases the random nature of fuzzing quite well. From this figure 
we can see that in most cases (60%) virtual execution has found read_utmp faster 
than in native execution. Orange lines represent one-master configuration and 
shows that read_utmp was found faster with a slave instance present in all runs 
compared to two-master instance. 

Below on Figure 17 the situation changes as first three-master instance is 
introduced. Both virtual and native execution three-master instances discover the 
read_utmp bug in all but one run (r2) in magnitudes more time than other in-
stances. One-master instance virtual and native context discover the bug in the 
first 25 minutes (1500 seconds), while two-master instance is just as effective bar-
ring r2 in which N2m1s instance took almost 7 hours 42 minutes to find 
read_utmp. 

 

r1 r2 r3 r4 r5

N1m1s 895 825 1692 2654 1199

V1m1s 658 792 638 727 998

N2m 4534 1223 4376 39397 19837

V2m 5068 1354 2767 11186 4310
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Figure 17 Case 3 read_utmp discovery 

Below in Figure 18 one-master instance shows quite even discovery speeds in 
both native and virtual context. Judging from this figure the two- and three-mas-
ter native execution instances have a large deviation compared to their virtual 
counterpart. Further testing is required and done in Chapter 5 

 
Figure 18 Case 4 read_utmp discovery 

r1 r2 r3 r4 r5

N1m2s 858 919 736 771 889

V1m2s 971 1453 731 902 746

N2m1s 1363 27751 753 696 695

V2m1s 1333 725 918 675 909

N3m 7147 800 10847 74577 24340

V3m 7343 882 5211 1712 27509
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Figure 19 Case 5 read_utmp discovery 

Above in Figure 19 two-master instance still shows large dispersion in discovery 
speed in native execution. One-master instance still seems to find the read_utmp 
bug faster on average on both contexts, but is heavily contested by other config-
urations, including two-master virtual instance. 

Following figures of 20 and 21 show the discovery time as a box plot in their 
own contexts. One-master instances are colored in shades of purple, two-master 
in shades of teal and three-master in shades of red. In these plots’ lower discovery 
(i.e. bar height) is better, just as in Figures 16-19. 

Below on Figure 20 the trend of discovery of read_utmp bug in native con-
text is to be faster as cores are added, although it cannot be said that all runs, and 
instances follow this trend. However, in all cases the eight-core instance has 
found the read_utmp bug earlier than two-core instance, which could mean that 
speedup occurs. Between three and four core instances the results from this fig-
ure are inconclusive and require further analysis. 

Same trend of inconclusiveness continues on Figure 21 far below. In general, 
the two-core instance still is beaten by eight-core instances. Furthermore, virtual 
instances perform better as 22 of 28 instances in native execution take 1000 or 
more seconds to find read_utmp, where in virtual execution only same number 
is 17 out of 27 (31r4 still missing). 
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Figure 20 Native context read_utmp discovery  

 
Figure 21 Virtual context read_utmp discovery 
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5 Discussion 

Data from chapter 4 does not adequately answer the research questions laid out 
in Chapter 1. Therefore, further analysis is done in order to approve of disprove 
hypotheses from Chapter 3.3.3 and answer the research questions chapter by 
chapter, metric by metric. As a final chapter this we must discuss how this data 
should be interpreted and were we successful on answering research questions. 
Furthermore, there are few additional questions that this study does not answer 
and these information needs are addressed in the final chapter of this study. 

5.1 Determining best configuration within cases 

As per chapter 3.3.3 we can determine the best configuration within a case. This 
is done through comparing population value ranking with U-test. U-test is done 
in order to confirm or disapprove a hypothesis though examining the p-value 
(below 0,05) of test but in case study multiple sources of data must be investi-
gated before passing judgement (Yin, 2014, p. 61). Arcuri and Briand suggest us-
ing Vargha Delaneys Â12 standard effect size test to measure the difference be-
tween said populations. The hypotheses for this research question were: 

h30: There is no difference in performance 
h31: One-master configuration does perform better than other two configura-

tions 
h32: Two-master configuration does perform better than other two configura-

tions 
h33: Three-master configuration does perform better than other two configu-

rations 

To answer this question Cases 2-5 are used. Case 1 is non configurable and there-
fore is not used in this comparison. It would be possible to compare Greybox and 
Blackbox fuzzing efficiencies, but it is out of scope for this study. 

5.1.1 Cumulative execution speed 

In the following tables 25-28 we have used U-test to count the p-value between 
two populations: Population 1 is the results of one instance, while Population 2 
are the combined results of two other instances. In this way we can test if a single 
configuration is statistically superior to rest of the case population. In addition, 
we have reported the Â12 in percentage. Â12 is always counted from the Popula-
tion one (U1 in U-test). If no statistical difference is apparent, we can proceed to 
test h31-h33 between two best instances in said case, which is done in the last 
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column of table reporting the populations used, p values and Â12. Tables include 
both contexts and usable metric (CAES and read_utmp). 

Table 25 Case 2 Cumulative Execution U-test and Â12. 
 Native Virtual 

Population 1 1m1s 1m1s 
Population 2 2m 2m 
p 0,0182 0,0182 
Â12 4 % 4 % 

 
From Table 25 above the p-value of 0,04 is below the threshold of 0,05 which 
means that there is statistical difference between 1m1s and 2m in both contexts 
(contradicting the h30 hypothesis). Furthermore, the effect size (Â12) in both cases 
indicates that 2m instance dominates over 1m1s 96% of the ranks. In short when 
cumulative execution speed is considered as a metric in case 2 the 2m instance is 
faster. 

Table 26 Case 3 Cumulative Execution U-test and Â12. 
 Native execution 

Population 1 1m2s 2m1s 3m 2m1s 

Population 2 2m1s, 3m 1m2s, 3m 1m2s,2m1s 3m 

p 0,1333 0,1500 0,0750 0,0909 

Â12 32 % 36 % 82 % 20 % 

 Virtual execution 

Population 1 1m2s 2m1s 3m 1m2s 

Population 2 2m1s, 3m 1m2s, 3m 1m2s,2m1s 3m 

p 0,1750 0,1250 0,1583 0,2182 

Â12 58 % 30 % 62 % 48 % 

 
From Table 26 above we it is apparent that there is no statistical difference be-
tween different configurations (confirming hypothesis h30), but their effect sizes 
varies from which we can  furthermore test 2m1s and 3m in native context and 
1m2s and 3m in virtual cases. There is no statistical difference in this case either, 
but the effect size measurement in native execution favors 3m and in virtual con-
text only slightly favors 3m. Therefore, in Case 3 the most efficient configuration 
can be extrapolated to be 3m in native context. Virtual context the best configu-
ration would also be 3m, as it wins the comparison between its rival by 2% and 
holds most effect size over other configurations (62%). 

 
 
 



78 

Table 27 Case 4 Cumulative Execution U-test and Â12. 

 Native execution 

Population 1 1m3s 2m2s 3m1s 2m2s 

Population 2 2m2s, 3m1s 1m3s, 3m1s 1m2s,2m2s 3m1s 

p 0,1583 0,1917 0,1417 0,1455 

Â12 38 % 46 % 66 % 32 % 

 Virtual execution 

Population 1 1m3s 2m2s 3m1s 2m2s 

Population 2 2m2s, 3m1s 1m3s, 3m1s 1m2s,2m2s 3m1s 

p 0,1238 0,1905 0,1238 0,2000 

Â12 29 % 56 % 68 % 45 % 

The trend of statistical indetermination continues in Case 4 as h30 is confirmed 
to be true as no instance breaches the threshold of 0,05. However, the effect size 
measurement concludes that in both contexts 2m2s and 3m1s instances merit fur-
ther investigation. There is not statistical difference between said instances, and 
3m1s is marginally better in native execution while in virtual execution they are 
practically just as efficient. It can be concluded that in Case 4 there is no clear 
winner, but 2m and 3m instances fare better than their 1m counterpart favoring 
the 3m instance because of its larger effect size. 

Table 28 Case 5 Cumulative Execution U-test and Â12. 
 Native execution 

Population 1 1m7s 2m6s 3m5s 2m6s 

Population 2 2m6s, 3m5s 1m7s, 3m5s 1m7s, 2m6s 3m5s 

p 0,1583 0,1750 0,1250 0,1636 

Â12 38 % 42 % 70 % 36 % 

 Virtual execution 

Population 1 1m7s 2m6s 3m5s 1m7s 

Population 2 2m6s, 3m5s 1m7s, 3m5s 1m7s, 2m6s 3m5s 

p 0,1583 0,1000 0,1500 0,1091 

Â12 62 % 24 % 64 % 24 % 

 
In Case 5 hypothesis h30 is confirmed. Effect size measurement reveals that there 
might be statistical differences between 2m6s and 3m5s instances in native con-
text, and between 1m7s and 3m5s in virtual context. Further testing for these 
cases reveals no statistical difference, but 3m5s instance has more effect size than 
rival instance. In conclusion for Case 5: there is no statistical difference, but 3m 
instance seems to fare better when compared to other instances. 

In this metric the only statistical difference was found in Case 2 where in 
both contexts 2m instance was profoundly faster than its 1m counterpart. In fur-
ther cases the results for statistical difference were inconclusive, but effect size 
measurements favored the 3m instance. 
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5.1.2 Shared bugs (read_utmp) 

As per previous chapter, the following tables 29 - 32 provide information about 
the results of U-test and Â12. Tables follow same formula laid down in previous 
chapter. 

Table 29 Case 2 read_utmp U-test and Â12. 
 Native Virtual 

Population 1 1m1s  1m1s 

Population 2 2m 2m 
p 0,036 0,0000 

Â12 96 % 96 % 

 
Results from U- and effect-size test are completely opposite when comparing Ta-
bles 29 and 25 (in previous chapter). There is statistical difference, so h30 can be 
discarded. Furthermore, it seems that h31 holds true, as the statistical difference 
is apparent in 1m1s versus 2m (sub 0,05) and its effect size is 96%. Therefore, it 
can be concluded that when bug discovery is concerned the 1m instance fares 
better in Case 2 on both contexts. 

Table 30 Case 3 read_utmp U-test and Â12. 
 Native 

Population 1 1m2s 2m1s 3m 1m2s 

Population 2 2m1s, 3m 1m2s, 3m 1m2s,2m1s 2m1s 

p 0,1417 0,1333 0,0667 0,1636 

Â12 66 % 68 % 16 % 64 % 

 Virtual 

Population 1 1m2s 2m1s 3m 1m2s 

Population 2 2m1s, 3m 1m2s, 3m 1m2s,2m1s 2m1s 

p 0,1500 0,1083 0,0500 0,1818 

Â12 64 % 74 % 12 % 40 % 

 
From table 30 the U-test is inconclusive on native context but disproves h30 in 
virtual context (3m p-value < 0,05). In native context the effect size measurement 
favors 1m2s and 2m1s, which are not statistically clearly different (p-value of 0,16) 
but their effect size indicates that 1m2s would be faster most of the time in native 
context to find read_utmp. However, in virtual context it is apparent that 3m does 
not have large effect size, which concludes that it is the worst performing instance 
with statistical difference. Therefore, in virtual context the contest is between 
1m2s and 2m1s where is no statistical difference but effect size slightly favors 
2m1s.  From Case 3 read_utmp results the best instance (though not clearly) for 
native execution is 1m2s and 2m1s for virtual execution. 

 



80 

Table 31 Case 4 read_utmp U-test and Â12. 
 Native 

Population 1 1m3s 2m2s 3m1s 1m3s 

Population 2 2m2s, 3m1s 1m3s, 3m1s 1m2s,2m2s 3m1s 

p 0,0833 0,0417 0,1667 0,1636 

Â12 80 % 10 % 60 % 64 % 

 Virtual 

Population 1 1m3s 2m2s 3m1s 2m2s 

Population 2 2m2s, 3m1s 1m3s, 3m1s 1m2s,2m2s 3m1s 

p 0,1524 0,1143 0,1524 0,1556 

Â12 36 % 73 % 40 % 65 % 

 
As can be seen on table 31 above Case 4 exhibits statistical difference in native 
execution (2m2s p-value of 0,0417) disapproving h30, but not in virtual context. 
In native context the 2m2s is statistically different, but its effect size is low mean-
ing that it is the worst performing instance. Therefore, on native execution 1m3s 
and 3m1s are investigated and while not having clear difference (statistically) the 
effect size favors 1m3s. From assessing the effect sizes of virtual instances, it is 
apparent that 1m3s has the least impact to population, so 2m2s and 3m1s are 
tested. From U-test the result is inconclusive, but effect size measurement favors 
2m2s. Therefore, in Case 4 native execution the best instance considering discov-
ery of read_utmp is 1m3s while in virtual context it is 2m2s. 

Table 32 Case 5 read_utmp U-test and Â12. 
 Native 

Population 1 1m7s 2m6s 3m5s 1m7s 

Population 2 2m6s, 3m5s 1m7s, 3m5s 1m7s, 2m6s 3m5s 

p 0,1333 0,0833 0,1583 0,2000 

Â12 68 % 20 % 62 % 56 % 

 Virtual 

Population 1 1m7s 2m6s 3m5s 2m6s 

Population 2 2m6s, 3m5s 1m7s, 3m5s 1m7s, 2m6s 3m5s 

p 0,1417 0,1417 0,2083 0,1818 
Â12 34 % 66 % 50 % 60 % 

 
Table 32 above shows that there is no statistical difference in bug discovery in 
either contexts, confirming h30. The effect size measurements in native context 
favor 1m7s and 3m5s while in virtual context 2m6s and 3m5s. In native context 
this further analysis is quite inconclusive as the 1m7s is no clearly better (56 effect 
size). Virtual context shows similar results for 2m6s. As all the tests do not show 
a clear best instance, it can be concluded that there is major difference between 
performances, but native execution slightly favors 1m7s and virtual 2m6s in-
stances. 
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5.1.3 Conclusion 

The results from Tables 25-32 and their supporting decision making has been 
compressed to following table 33 below. In this table it is shown if there was sta-
tistical difference between metrics and what was the conclusion regarding as-
sessing the best instance for said case. 

Best configuration for maximizing execution speed seems to be configura-
tion that has the most master instances. Only clear difference (statistically) is from 
Case 2, but all other Cases do not proclaim a clear winner and their results are 
determined from effect size comparison. Furthermore, it seems that the execution 
speed trend in effect size starts to homogenize, which is most probably due to 
fact that the slave instances have less execution speed than master instances in 
average (for further information check Appendix 2). 

Table 33 Compressed information for assessing best configuration 

 CAES p Â12 Read_utmp p Â12 

Case 2N 2m 0,0182 96 % 1m1s 0,0364 96 % 

Case 2V 2m 0,0182 96 % 1m1s 0,0000 96 % 

Case 3N 3m 0,0750 82 % 1m2s 0,1417 66 % 

Case 3V 3m 0,1417 66 % 2m1s 0,1083 74 % 

Case 4N 3m1s 0,1417 66 % 1m3s 0,0833 80 % 

Case 4V 3m1s 0,1238 68 % 2m2s 0,1143 73 % 

Case 5N 3m5s 0,1250 70 % 1m7s 0,1333 68 % 

Case 5V 3m5s 0,1500 64 % 2m6s 0,1417 66 % 

 
From the bug discovery speed perspective it seems that in native context the less 
master instances is present, the faster bug is discovered (remembering that 
read_utmp was the first bug to be discovered by all instances) and that in virtual 
context the two-master approach works better. As in previous metric the only 
statistically clear case was Case 2, while all other cases use effect size 
measurement to decipher the best configuration. 

In conclusion there is no clear best combination for different cases. For exe-
cution speed it might be best to use as many master instances as you can while 
for bug discovery use one- or two-masters depending on the context the fuzzers 
are running.  

Execution speed might be a good metric when trying to make an fuzzer 
faster (as done by (Xu, Kashyap, Min, & Kim, 2017)), but optimizing your config-
uration for execution speed seemingly hampers the bug discovery potential of 
AFL when run for 24 hours. For these short runs it seems to be better to concen-
trate to one- or two-masters (depending on context) to find crashes faster. After 
all, fuzzers job is to find crashes which can be filtered for bugs and vulnerabilities, 
not just to run at peak execution speed. 
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5.2 Performance difference between native and virtual execution 

Same tests are done to determine the performance gap between virtual and na-
tive context: U-test is done to determine if there is clear statistical difference and 
Â12 is used to determine the extent of this difference. The tests are done pairwise 
for each case and usable metric. Each table 34 – 37 in the following chapter 5.2.1 
is constructed the same way as in chapter 5.1 tables but the population sizes are 
smaller as this is a pairwise testing and not testing against the rest of case popu-
lation and the populations are marked “N” for native- and “V” for virtual case 
population. Hypotheses for these tests are the same as deducted in chapter 3.3.3 
for Research question 2: 

h20: There is no difference in performance considering N and V executions 
h21: There is no difference in performance in contexts in case one 
h22: There is no difference in performance in contexts in case two 
h23: There is no difference in performance in contexts in case three 
h24: There is no difference in performance in contexts in case four 
h25: There is no difference in performance in contexts in case five 

5.2.1 U-test and Effect size 

Table 34 Case 1: one core used  
Execution 

speed 
read_utmp 

Population 1 1 AFL N (18) 1 AFL N (7) 

Population 2 1 AFL V (18) 1 AFL V  (18) 

p 0,058558559 0,061538462 

Â12 12,04 % 15,87 % 

 
One core instance does not show statistical difference in execution speed nor in 
read_utmp. It does however heavily favor the virtual execution as the effect size 
for native instance is below 20%. There is difference in performance so h20 is dis-
proven and so is h21 as effect size measurement favors virtual execution. 

Table 35 Case 2: two-cores used  
CAES read_utmp 

Population 1 1m1s N 2m N 1m1s N 2m N 

Population 2 1m1s V 2m V 1m1s V 2m V 

p 0,01818182 0,036363636 0,036364 0,163636 

Â12 4,00 % 8,00 % 8,00 % 36,00 % 

 
Table 35 above shows previously mentioned test results from Case 2 from both 
virtual and native context. U-test results in all comparisons indicate that there is 
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performance difference which disproves h20 and h22. From the effect sizes we 
can deduce that in general native execution is slower and has used more time to 
find read_utmp than the virtual context. Only test that does not show statistical 
difference is read_utmp 2m N vs 2m V where the effect size still favors the virtual 
context. 

Table 36 Case 3: three-cores used  
CAES Read_utmp 

Population 1 1m2s N 2m1s N 3m N 1m2s N 2m1s N 3m N 

Population 2 1m2s V 2m1s V 3m V 1m2s V 2m1s V 3m V 

p 0,07272727 0,109090909 0,181818 0,181818 0,2 0,163636 

Â12 16,00 % 24,00 % 40,00 % 60,00 % 44,00 % 36,00 % 

 
From Table 36 only statistical difference is found in 1m2s Native and Virtual con-
text in Cumulative Average Execution Speed. As only minority of this case show 
statistical difference the h23 cannot outright be disproven. As per Case 2 (Table 
35 above) the effect sizes still favor the virtual context but only in CAES metric 
as the read_utmp favors native execution on one master instance and somewhat 
favors virtual context when masters are added. h23 is disproven as there is per-
formance difference between the instances, but the performance difference scale 
tips different way with different configurations. 

Table 37 Case 4: four-cores used 
  CAES Read_utmp 

Population 1 1m3s N 2m2s N 3m1s N 1m3s N 2m2s N 3m1s N 

Population 2 1m3s V 2m2s V 3m1s V 1m3s V 2m2s V 3m1s V 

p 0,09090909 0,072727273 0,022222 0,072727 0 0,177778 

Â12 20,00 % 16,00 % 5,00 % 84,00 % 0 % 60,00 % 

 
For Case 4 (Table 37 above) the three-master instance disproves the h24 in CAES 
and two-master instance fortifies this resolution for read_utmp. Effect size com-
parison still favors virtual execution in CAES but for read_utmp favors native 
execution except in two-master instance. h24 Is disproven as both metrics show 
at least one statistical difference and their effect sizes are not inconclusive (50%). 
Same kind of trend of configuration differences emerge as for Case 3 (Table 35 
above) as CAES favors virtual execution but for bug discovery the difference var-
ies between configurations. 
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Table 38 Case 5: eight-cores used  
CAES   Read_utmp 

Population 1 1m7s N 2m6s N 3m5s N 1m7s N 2m6s N 3m5s N 

Population 2 1m7s V 2m6s V 3m5s V 1m7s V 2m6s V 3m5s V 

p 0,12727273 0,163636364 0,2 0,163636 0,072727 0,181818 

Â12 28,00 % 64,00 % 56,00 % 64,00 % 16,00 % 40,00 % 

 
Finally, for Case 5 (Table 38) no statistical difference is found through U-testing. 
Effect size comparison reveals that for CAES native execution is only slightly fa-
vored for two- and three-master instances while having almost an decisive dif-
ference towards virtual execution for one-master instance. For bug discovery the 
roles are reversed as two- and three-master instances favor virtual execution and 
one-master instance favors native execution, but the differences are small. As 
there is not statistical difference in any of the tests and the differences in effect 
sizes are small the h25 is not disproven and stands firm proclaiming that there is 
no difference in performance between virtual and native context in Case 5, which 
uses eight cores for computing. 

5.2.2 Conclusions 

The cases examined disprove all but one hypothesis. Therefore, it can be said that 
there is performance difference between native and virtual context up until four 
usage of four cores. The difference is not clear cut as used configuration has im-
pact on how the scale tips and how much. However, in general it can be deduced 
that virtual execution favors execution speed while native context favors bug dis-
covery. It would be interesting to examine the point where the execution starts to 
“level-out”, but it is out of scope for this study. 

5.3 Determining speedup and scalability between instances 

From chapter 2.2.2 the scalability was function of speedup. Speedup is counted 
from latency of one worker divided by latency of many workers. If this speedup 
is below one it is sublinear, and above one superlinear while one being linear 
speedup. Efficiency is counted by dividing speedup by the number of used work-
ers and denotes if performance was lost (below one) or gained (above one) by 
adding more workers. 

In this chapter we have used the data from Case 1 from both contexts stored 
in Appendix 3. This data is used to count the latency for speedup. Metric CAES 
yields information in “executions per/sec” which can be converted to latency by 
raising it to the power of -1. Shared bug metric yields the latency outright and 
can be used as is for counting speedup. For easy reference we have included this 
tabulated data in appendix four in order not to convolute chapters. 
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Following sub-chapters (5.3.2 – 5.3.5) tables and figures all follow the same 
form for easy comparisons. In Tables speedup and efficiency are calculated per 
configuration (up on top of table). On Figures the dotted line denotes derived 
values of efficiency while bard graphs denote speedup values and efficiency (dot-
ted line) axis is on the right of picture while speedup (bar graph) is read from the 
left. Different colors are used on figures to differentiate the min and max values.  

5.3.1 Testing hypotheses 

In order to start analyzing the results of we test the hypothesizes from chapter 
3.3.3. Data from Case 1 (Appendix 1) is and the data CAES and read_utmp from 
Chapters 4.4.2 and 4.5.1 respectfully. Â12 Effect size test measures the effect size 
as done in previous Chapters 5.1 and 5.2 while U-test are done in order to test for 
hypotheses: 

h10: There is no statistical difference in instance performance 
h11: Two-core instance is better than one core instance 
h12: Three-core instance is better than one core instance 
h13: Four-core instance is better than one core instance 
h14: Eight-core instance is better than one core instance 

Following two tables below (Tables 39 and 40) show the test results. Tables hold 
both CAES and Read_utmp metrics in their respective areas. Table 39 shows the 
results form native context and Table 40 shows virtual context. Population 1 for 
both tests is the Case 1 and population 2 is marked in both tables. 

Table 39 Native context Cases 2-5 compared to Case 1 

 CAES 

 

1m 
1s 2m  

1m 
2s 

2m 
1s 3m  

1m 
3s 

2m 
2s 

3m 
1s 

1m 
7s 

2m 
6s 

3m 
5s 

Rsum 276 276 276 276 276 276 276 276 276 276 276 

U1 156 156 156 156 156 156 156 156 156 156 156 

U2 0 0 0 0 0 0 0 0 0 0 0 

p 0 0 0 0 0 0 0 0 0 0 0 

Â12 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 

 read_utmp 

 

1m 
1s 2m 

1m 
2s  

2m 
1s 3m 

1m 
3s 

2m 
2s 

3m 
1s 

1m 
7s 

2m 
6s 

3m 
5s 

Rsum 78 78 78 78 78 78 78 78 78 78 78 

U1 13 14 13 14 20 13 13 13 13 13 13 

U2 0 1 0 1 7 0 0 0 0 0 0 

p 0 0,0128 0 0,0128 0,0897 0 0 0 0 0 0 

Â12 0,00 % 2,86 % 0,00 % 2,86 % 20,00 % 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 
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From Native context results (Table 39 above) it is apparent that population one 
(Case 1, one core instance) is statistically inferior to all cases in both metrics. Only 
case where U-test does not show clear-cut results is read_utmp 3m instance and 
in this rivalry Case 1 effect size is only 20%. Considering these results h10 is re-
voked and h11-h14 are proven to be true. This means that it is possible to use said 
metrics to measure scalability between instances as both metrics show improve-
ment to Case 1 in native context. 

Table 40 Virtual context Cases 2-5 compared to Case 1 

 CAES 

 

1m 
1s 2m  

1m 
2s 

2m 
1s 3m  

1m 
3s 

2m 
2s 

3m 
1s 

1m 
7s 

2m 
6s 

3m 
5s 

Rsum 276 276 276 276 276 276 276 253 276 276 276 

U1 156 156 156 156 156 156 156 161 156 156 156 

U2 0 0 0 0 0 0 0 0 0 0 0 

p 0 0 0 0 0 0 0 0 0 0 0 

Â12 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 

 read_utmp 

 

1m 
1s 2m 

1m 
2s  

2m 
1s 3m 

1m 
3s 

2m 
2s 

3m 
1s 

1m 
7s 

2m 
6s 

3m 
5s 

Rsum 276 276 276 276 276 276 276 253 276 276 276 

U1 156 161 156 156 167 156 156 161 156 156 156 

U2 0 5 0 0 11 0 0 0 0 0 0 

p 0 0,0181 0 0 0,0399 0 0 0 0 0 0 

Â12 0,00 % 5,56 % 0,00 % 0,00 % 12,22 % 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 

 
Virtual context (Table 40 above) shows the same trend on results as Table 39 on 
native context. The results for virtual context revoke the h10 and confirm h11-14. 
Therefore, we can measure the speedup in virtual context the same way as in 
native context. 

5.3.2 Native execution metric: CAES 

Table 41 Tabulated speedups from CAES in native execution   
1m 
1s 

2m 1m 
2s 

2m 
1s 

3m 1m 
3s 

2m 
2s 

3m 
1s 

1m 
7s 

2m 
6s 

3m 
5s 

sp
e
ed

u
p

 min 2,12 2,35 3,13 3,13 3,33 3,51 3,83 3,95 7,19 7,40 7,40 

max 1,72 1,91 2,58 2,65 2,77 3,25 3,28 3,25 6,11 5,72 6,49 

e
ff

ic
ie

n
cy

 

min 1,06 1,18 1,04 1,04 1,11 0,88 0,96 0,99 0,90 0,93 0,92 

max 0,86 0,95 0,86 0,88 0,92 0,81 0,82 0,81 0,76 0,72 0,81 
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Table 41 (above) shows the speedup and efficiency values derived from CAES of 
all native cases. Speedup values are all above one showing superlinear speedup 
across the configurations. Efficiency however does not follow this trend as effi-
ciencies around one are reported with minor increase in 2m and 3m instances. 
From this can be concluded that while speedup is gained it is less and less effi-
cient to use more cores while measuring execution speed. This deduction only 
solidifies the other conclusions regarding execution speed (Chapter 4.4, 5.1 and 
5.2) that the masters have better execution speed but adding slaves to configura-
tion skews the execution speed downward.  

Figure 22 (below) visualizes values from Table 41 and it is apparent that 
speedup jumps from four cores to eight cores which is not surprising as the met-
ric sums up the execution speed of configuration. Efficiency is shown to mainly 
be below 1 which has been discussed on previous paragraph. 

From Table 41 and Figure 22 it is possible to deduce that execution speed 
does rise (as expected) when more workers are used. This is concurrent with 
work done by Xu et al. (Xu, Kashyap, Min, & Kim, 2017) and would be interesting 
to see if the results follow similar pattern of efficiency drop around 15 workers. 
 

 
Figure 22 Bar- and line-graph of Table 40 values (CAES) 

It is highly possible that execution speed-based metrics do not measure the whole 
instance scalability as well as shared bug metric. Execution speed is the speed of 
loop execution (Throughput) between TCG and Monitor fuzzer components 
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(Chapter 2.1.2 Figure 3) while the fuzzers job is to find crashes and not just exe-
cute as fast as it can. Execution is also fuzzing target based and in this case the 
target is small yielding large execution speed. Measuring the scalability of exe-
cution speed can be done, but the results might not represent the scalability of 
results rather the scalability of different components of fuzzer instance. 

5.3.3 Native execution metric: shared bug (read_utmp) 

Table 42 Tabulated speedups from read_utmp in native execution   
1m 
1s 

2m 1m 
2s 

2m 
1s 

3m 1m 
3s 

2m 
2s 

3m 
1s 

1m 
7s 

2m 
6s 

3m 
5s 

sp
e

ed
u

p
 min 22,18 22,18 36,86 39,03 33,91 43,13 28,26 42,06 40,79 41,42 41,29 

max 16,21 1,87 79,96 2,65 0,99 76,39 3,32 22,60 101,2 53,09 94,45 

e
ff

ic
ie

n
cy

 

min 11,09 11,09 12,29 13,01 11,30 10,78 7,06 10,51 5,10 5,18 5,16 

max 8,10 0,93 26,65 0,88 0,33 19,10 0,83 5,65 12,65 6,64 11,81 

 
Comparing Tables 41 (previous chapter) and 42 above it is apparent that shared 
bug metric shows larger speedup and efficiency values. As in other cases where 
these two metrics are compared side-by side they differentiate largely on cases 
where configuration only consists of masters. In this case the all master instances 
show superlinear scaling, but their efficiency is below zero. Any instance that has 
an slave-instance shows superlinear scaling and good efficiency numbers. 
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Figure 23 Bar- and line-graph of Table 41 values (read_utmp) 

Figure 23 shows that the minimum values of speedup are quite consistent vary-
ing between 20-40 times speedup. Large speedup max values are directly related 
to the max values of one core instance (Appendix 3 table 1: 73483 seconds vs. 
Appendix 2 table 919-74577 s). Efficiency drops of max values (below 1) are 
shown for 2m, 2m1s, 3m and 2m2s which show that these instances do not gain 
efficiency as more slaves are added but the deviation of minimum values is not 
as great as max values. This would mean that fore mentioned instances have 
great variance in time to find the first crash in this case.  

5.3.4 Virtual execution metric: CAES 

Table 43 Tabulated speedups from CAES in virtual execution   
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 min 1,83 1,99 2,52 2,65 2,65 2,98 3,32 3,53 6,01 5,71 5,72 

max 1,77 1,95 2,56 2,51 2,55 3,18 3,32 3,21 6,25 5,95 6,27 
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Figure 24 Bar- and line-graph of Table 40 values (CAES) 

Table 43 and its tabulated speedup shows that virtual execution has less disper-
sion between efficiency values (the dotted lines are closer to each other on all 
cases), but the speedup is not quite as when comparing eight core instances. As 
the effectiveness is in all cases below zero, it can be said that in virtual context 
adding more workers yield speedup in general, but the effectiveness (i.e. relative 
speedup) decreases as more workers are included. These results follow the same 
trend as native execution results in Chapter 5.3.2 

5.3.5 Virtual execution metric: shared bug (read_utmp) 

Table 44 Tabulated speedups from read_utmp in virtual execution   
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Figure 25 Bar- and line-graph of Table 41 values (read_utmp) 

The speedup and efficiency values of virtual context shared bug (read_utmp) are 
shown on Table 44 and plotted to Figure 25. From the figure 25 efficiency has a 
downward trend and speedup is increased as workers are added.  Speedup is not 
linear per configuration as the two- and three-master instances together with 
3m1s show lower speedup than other same worker count instances. Most effi-
cient instance in virtual context is 2m1s with efficiency ranging from 0,75 to 2,25. 

5.4 Discussion  

In this chapter we consolidate the information from previous chapters. Infor-
mation gained from testing AFL was plentiful and provided opportunities for 
analyzation. From dataset two rivals were formed: cumulative average of execu-
tion speed (CAES) and the time to find a bug that was shared between all cases 
in this multiple case study.  

Two of the metrics discussed in Chapter 4 are not used, as they did not pro-
vide adequate dispersion within the metric. The metrics in question are code cov-
erage and unique bug count. Coverage was measured with AFL and did not pro-
vide enough fine-grained information to be usable as a metric. If Code coverage 
was to be used as a metric for performance testing, measuring it with percentage 
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loses precision. Instead of Code Coverage the number of paths taken could be 
used, but then the paths would need to be identified somehow (so not to over-
count paths) and would require additional framework which could induce over-
head to the fuzzer. 

Unique bug count was deemed unfit as most of the instances only found a 
single bug and therefore the cases do not have dispersion that would answer re-
search questions. Unique bug count is well used metric in fuzzing (Klees, Ruef, 
Cooper, Wei, & Hicks, 2018), but in this multiple-case study the randomness of 
fuzzers did not yield enough information. In future research if this metric is used 
as performance measure, the fuzzer should make longer- and more runs for this 
metric to be usable. From literature Arcuri and Briand´s 24h and 5 runs minimum 
(Arcuri & Briand, 2011)  are not enough for this metric to work. 

5.4.1 Best configuration 

Testing in chapter 5.1 was done case-by case determining if there is statistical 
difference in performance when measured metrics are CAES and read_utmp-bug. 
For CAES the only statistical difference was found from Case2 where 1m1s in-
stance was superior in both contexts. Read_utmp had more dispersion on its re-
sults and statistical differences were found in Cases 2 -4. Further Effect size anal-
ysis revealed that for CAES master instances were favored and for Read_utmp 
slaves respectfully.  
A key observation for this question is, that CAES suffers from datapoint disparity 
between master and slave instances, which starts to skew metric towards homog-
enous results as more slave workers are added. This skewing is not apparent in 
read_utmp, the shared bug metric. 

In conclusion, the fuzzers job is to find crashes that can be filtered to bugs 
and further evaluated for vulnerabilities. As CAES is throughput of instance, it 
does not measure the results of fuzzer. As read_utmp effectively is a race condi-
tion for finding a shared bug (shallow one in this case) it measures the whole 
fuzzers performance. As for the question of best configuration the answer is that 
for each instance configuration start filling slave instances before masters. As the 
first slave is added master the difference between instances becomes apparent. 
After adding the first slave the results more or less start intertwining and there-
fore after the first slave the best configuration cannot be explicitly confirmed and 
should be decided on case by case basis: if more deterministic checking is needed 
a master should be used and if seed files or specifications span a large area of the 
input space a slave could be better to unload the input queue.  

Switching the configuration “in flight” would be an interesting research 
subject from performance point of view but would need additional metrics that 
measure these “in flight” datapoints as read_utmp only measures the results of 
a single run and CAES could lead to wrong conclusions on whole fuzzer perfor-
mance. 



93 

5.4.2 Performance difference 

Performance difference was measured in Chapter 5.2 on pairwise comparison 
between virtual and native context cases. Statistical difference was found on both 
Cases 1 and 2 while effect size measurement favored virtual execution, exception 
being Case 2 2m configuration that favored virtual execution only slightly after 
effect size measurement (36 % on native, 64 %on virtual). As for further cases the 
answers is more complicated. 

When using three or four cores the difference in virtual and native execu-
tion is more configuration and metric based. CAES favors virtual execution but 
is not statistically better than native execution. For read_utmp one-master in-
stance favors native execution while-three master instance favors virtualization 
in all master configuration (3m) and native execution with one slave added 
(3m1s). For two-master configuration the results are more polarized as on Case 3 
the execution environments are even while for case 4 native execution environ-
ment trumps virtual completely statistically and with effect size. 

The same trend of configuration and metric disparity continue to Case 5. 
For eight core instances no statistical differences are found, but effect size varies 
between metric and configuration. For one-master instances CAES favors virtual 
execution while read_utmp favors native execution slightly. Two-master in-
stances favor native in CAES and virtual in read_utmp, the exact opposite of one 
master instance. Three-master instances are more in between, not clearly favoring 
any environment as no statistical difference is found and their effect sizes are 56% 
favoring native in CAES and 40% favoring virtual for read_utmp. 

As said in chapter 5.2.2 it could be generalized that CAES favors virtual 
execution and read_utmp favors native execution. In this multiple-case study we 
did not examine a target that could destabilize the system, which would be the 
case when fuzzing system and kernel modules. Therefore, as the performance is 
not hugely impacted while using multiple cores it would be prudent to use vir-
tual execution instead of native as it proves isolation. Furthermore, is small core 
count of one to three cores are used virtualization should be used as it seems to 
fare better than it native counterpart armed with the information laid out in pre-
vious chapter. 

5.4.3 Scalability of AFL 

As stated in Chapter 2.2 speedup and efficiency are measured in order to measure 
if program is scalable. Efficiency is calculated by dividing speedup by the number 
of workers used for said task, which measures how much more efficient the in-
stance is compared to one worker instance. 

Scalability can be assessed from both metrics of speedup and efficiency we 
have plotted the efficiency of one-, two- and three-master instances in following 
Figures 26-28 for both metrics of CAES and read_utmp. In these figures we have 
calculated Amdahl´s and Gustafsson-Barsis´s law equivalent of serialized por-
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tion of work and their efficiencies. These helper lines are added in order to visu-
alize the serialized portion outlined in both laws (McCool, Robinson, & Reindeer, 
2012, pp. 59-62) and decide if configuration adheres to either of said theories. As 
a generalization of both laws, the less serial work is done the better scalability the 
program has. 

 
Figure 26 one-master instance efficiency 

Figure 26 shows native execution metrics as blue while red shows virtual execu-
tion metrics. On the left metric used for efficiency is CAES while on the right it is 
latency to read_utmp. CAES is quite linear on its efficiency and drops downward 
as workers are added which is concurrent with previously mentioned theories. 
On the right read_utmp native execution does not follow the presumption of los-
ing effectiveness as it peaks at three cores used with almost 2000% increase in 
effectiveness when compared to a single core instance, but this can be explained 
through the native instance having massive difficulties finding read_utmp (see 
appendix 3) and therefore has multitudes more latency than the virtual execution. 
Virtual effectiveness for read_utmp stays above 100% for two and three core in-
stances, but dips below 100% for rest of the cases. Still it can be said, that both 
environments scale exceedingly well on two and three core instances and lose 
only small amount of effectiveness as workers are added, or even doubled when 
comparing four and eight core instances. For precise comparison and data revisit 
chapter 5.3.3 and 5.3.5. 
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Figure 27 two-master instance efficiency 

Figure 27 follows the same schema than Figure 26 far above. It would seems that 
CAES works at peak efficiency compared to one core instance when two-masters 
are used, but starts losing it after an slave is added. Read_utmp native execution 
continues to report exceedingly good values, while virtual execution is more 
modest values but still showing 100% exceeding values on cases 2,3 and 4 (See 
chapter 5.3.4 for precise values). For read_utmp adding a master seems to in-
crease the effectiveness in virtual configuration, while making the native execu-
tion less effective. Again, fuzzer shows remarkable efficiency when adding more 
workers and could be said that scales well when four or less cores are used with 
two-master configuration. 

 

 
Figure 28 three-master instance efficiency 

As per previous observations in Figures 26 and 27 (far above) the CAES follows 
same trend of losing performance when more slaves are added in native execu-
tion while virtual execution loses efficiency more linearly. For read_utmp native 
execution the efficiency rises as slaves are added (three masters is the intended 
maximum), but virtual efficiency follows performance theory quite well. 
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Data in this case is not homogenous enough to say that native execution 
would scale better than virtual execution. As only 7 / 18 instances of native exe-
cution found read_utmp while on virtual environment 18/18 instances were suc-
cessful. The figures however do show correlation between used cores, for exam-
ple in Figures 26 and 27 efficiency rises all the way to three cores used and the 
plummets on both environments. Again, this is a question of configuration rather 
than efficiency. 

In conclusion AFL scales well when one or more slaves are used when the 
results are considered as a metric for performance. Scaling is strong as adding 
workers reduces the time to find a bug and therefore follows Amdahl´s law. From 
this above 100% efficiency we can also deduce, that with low core counts there is 
little-to-none serialized work being done and the performance overhead starts 
incurring after three cores are being used impacting the performance and lower-
ing efficiency below 100%. 

5.4.4 Further research 

In a sense this research has failed to use all the metrics available to asses perfor-
mance differences both in configuration and execution environment. Therefore, 
it would be prudent to repeat this study with more execution runs and time to 
see if metrics laid out on this study can be used in performance review. 

Performance theory itself remains a good subject when combined with ran-
domized algorithms. Amdahl´s- and Gustafsson-Barsis´s law are crude instru-
ments when compared to work-span model (McCool, Robinson, & Reindeer, 
2012, pp. 62-65). This would require defining the critical path to a crash and how 
it was achieved alongside with the information on how many the input was mu-
tated. A task that possibly requires modifying fuzzer data-gathering either by 
modifying the fuzzer itself to provide this information or using a taint-tracing 
framework in conjunction with fuzzer outputted information. 

Finally, as the last proposition: this should all be done at run-time. In a sense 
it would be effective to be able to configure and run instances based on demand. 
This would help the fuzzer for example modify a slave instance to master in-
stance when coverage stalls. Modern fuzzers do use different types of problem-
solving techniques like concolic execution and taint tracing to help this checking, 
but are these effective approaches? Do they scale well? In order to find optimal 
approaches to solutions the performance must still be tested. No one likes doing 
work that has no meaning, not even fuzzers. 
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APPENDIX 1: USED COMMAND LINE COMMANDS 

Examples of scripts are shown in this appendix. The scripts itself are uploaded 

to github at: 

https://github.com/Boring-Username/MSc-Thesis-AFL-Scalability-/ 

Case 1 script: 
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Script for launching configurations 

 



105 

Example of launching multiple instances 

 

Example of scripting multiple days: 
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Comparison of Chapter 3.4.5 Day 5 scripts, repaired script on bottom: 
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APPENDIX 2: EXECUTION SPEED MIN /MAX, AVERAGES AND 
STANDARD DEVIATIONS 

Case 2 Native execution speed averages, minimum and maximum values  
r1 r2 r3 r4 r5 

 
Min 

/ 
Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

1m1s 1197,83 1092,36 1079,71 1277,86 1211,50 

M1 456,93 
/ 

2003,14 

1342,09 
/ 

406,15 

357,73 
/ 

1877,52 

1276,19 
/ 

413,58 

332,76 
/ 

1923,43 

1346,61 
/ 

364,93 

434,80 
/ 

1769,33 

1382,83 
/ 

278,88 

323,98 
/ 

1790,89 

1353,86 
/ 

375,68 

S1 502,00 
/ 

1769,94 

1196,54 
/ 

166,72 

506,73 
/ 

1696,46 

1090,99 
/ 

205,00 

408,64 
/ 

1856,83 

1077,75 
/ 

200,90 

271,79 
/ 

1855,27 

1276,44 
/ 

215,14 

386,32 
/ 

1716,72 

1210,52 
/ 

189,25 

2m 1480,96 1322,35 1368,84 1326,36 1431,50 

M1 285,91 
/ 

1804,69 

1506,28 
/ 

157,76 

346,09 
/ 

2185,71 

1300,62 
/ 

317,86 

458,46 
/ 

2137,64 

1371,51 
/ 

294,67 

401,51 
/ 

2260,21 

1370,88 
/ 

274,17 

503,23 
/ 

2005,38 

1443,12 
/ 

210,31 

M2 244,50 
/ 

1793,08 

1446,87 
/ 

175,05 

531,51 
/ 

2305,66 

1327,81 
/ 

215,00 

442,05 
/ 

2049,56 

1368,18 
/ 

170,17 

385,95 
/ 

2208,19 

1305,89 
/ 

243,60 

435,03 
/ 

2016,30 

1409,73 
/ 

247,00 

 
Case 2 Virtual execution speed averages, minimum and maximum values  

r1 r2 r3 r4 r5 
 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

1m1s 1247,00 1123,12 1290,27 1114,10 1318,65 

M1 295,77 
/ 

2138,20 

1577,99 
/ 

428,85 

419,38 
/ 

2101,30 

1557,27 
/ 

494,82 

388,90 
/ 

2019,82 

1509,63 
/ 

364,22 

293,75 
/ 

1996,55 

1496,85 
/ 

400,65 

377,34 
/ 

2311,63 

1570,92 
/ 

493,30 
S1 195,00 

/ 
2064,68 

1244,13 
/ 

262,29 

365,36 
/ 

2033,32 

1120,50 
/ 

207,26 

205,88 
/ 

1998,82 

1287,76 
/ 

199,15 

198,14 
/ 

2102,06 

1110,97 
/ 

259,58 

253,66 
/ 

2394,07 

1316,51 
/ 

219,76 

2m 1444,13 1553,47 1587,96 1481,63 1534,24 

M1 386,09 
/ 

2196,89 

1468,57 
/ 

260,55 

258,94 
/ 

2258,35 

1555,36 
/ 

206,18 

336,78 
/ 

2241,28 

1569,38 
/ 

213,42 

396,08 
/ 

2344,50 

1477,53 
/ 

230,18 

302,62 
/ 

2256,98 

1511,96 
/ 

329,31 
M2 335,70 

/ 
2241,43 

1370,93 
/ 

349,11 

299,34 
/ 

2194,45 

1523,14 
/ 

352,42 

320,00 
/ 

2175,79 

1611,63 
/ 

201,61 

369,20 
/ 

2271,45 

1485,50 
/ 

231,78 

252,83 
/ 

2238,55 

1540,05 
/ 

244,60 
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Case 3 Native execution speed averages, minimum and maximum values 
  

r1 r2 r3 r4 r5 
 

Min 
/ 

Max 

AAvg.  
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

1m2s 1218,67 1259,43 1162,44 1166,92 1082,78 

M1 318,89 
/ 

1944,84 

1353,74 
/ 

330,26 

358,85 
/ 

1954,74 

1476,50 
/ 

314,93 

510,93 
/ 

1775,39 

1293,54 
/ 

346,24 

370,67 
/ 

2505,13 

1409,78 
/ 

345,33 

258,99 
/ 

2100,32 

1336,60 
/ 

414,75 

S1 406,47 
/ 

1871,47 

1190,89 
/ 

185,44 

376,90 
/ 

1719,99 

1253,27 
/ 

192,62 

510,71 
/ 

1775,72 

1154,22 
/ 

156,73 

413,35 
/ 

2519,30 

1159,63 
/ 

152,88 

259,46 
/ 

2162,05 

1090,56 
/ 

168,93 

S2 340,85 
/ 

1901,42 

1245,38 
/ 

169,99 

344,44 
/ 

1745,53 

1263,70 
/ 

183,03 

469,00 
/ 

1717,89 

1169,59 
/ 

143,97 

451,85 
/ 

2434,10 

1171,40 
/ 

151,33 

307,48 
/ 

2186,73 

1073,78 
/ 

194,29 

2m1s 1196,99 1212,29 1355,99 1013,88 1189,73 

M1 403,89 
/ 

1939,93 

1276,28 
/ 

402,45 

497,51 
/ 

1793,76 

1290,66 
/ 

273,71 

540,36 
/ 

1774,19 

1404,42 
/ 

91,40 

395,75 
/ 

2163,75 

1240,69 
/ 

410,06 

533,63 
/ 

1852,08 

1314,22 
/ 

314,69 

M2 279,96 
/ 

1401,47 

1042,24 
/ 

268,08 

455,02 
/ 

1757,84 

1282,07 
/ 

291,30 

550,46 
/ 

1791,20 

1377,12 
/ 

285,30 

398,73 
/ 

2009,39 

1251,71 
/ 

362,23 

451,00 
/ 

2000,00 

1264,00 
/ 

363,50 

S2 367,91 
/ 

1885,89 

1197,83 
/ 

238,81 

437,58 
/ 

1678,37 

1209,75 
/ 

172,40 

531,72 
/ 

1806,14 

1332,53 
/ 

187,57 

336,19 
/ 

2018,39 

1009,49 
/ 

181,57 

495,61 
/ 

1829,36 

1186,81 
/ 

191,92 

3m 1225,85 1354,69 1374,77 1262,70 1425,26 

M1 456,66 
/ 

1880,28 

1219,93 
/ 

201,84 

455,32 
/ 

1746,87 

1318,73 
/ 

134,80 

462,42 
/ 

1763,08 

1353,90 
/ 

189,15 

471,46 
/ 

1687,78 

1244,44 
/ 

140,61 

448,86 
/ 

2049,28 

1439,07 
/ 

226,36 

M2 460,76 
/ 

1932,71 

1219,44 
/ 

200,88 

524,16 
/ 

1907,16 

1385,57 
/ 

113,21 

296,03 
/ 

1864,61 

1408,89 
/ 

192,84 

373,48 
/ 

1725,05 

1267,96 
/ 

323,97 

501,57 
/ 

2028,37 

1460,22 
/ 

262,91 

M3 449,34 
/ 

1864,32 

1283,72 
/ 

281,53 

461,38 
/ 

1805,13 

1359,13 
/ 

128,06 

410,86 
/ 

1737,72 

1375,22 
/ 

183,79 

405,87 
/ 

1924,59 

1368,43 
/ 

283,39 

436,83 
/ 

1979,13 

1400,33 
/ 

182,30 
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Case 3 Virtual execution speed averages, minimum and maximum values  

r1 r2 r3 r4 r5  
Min 
/ 
Max 

AAvg. 
/ 
SDev. 

Min 
/ 
Max 

AAvg. 
/ 
SDev. 

Min 
/ 
Max 

AAvg. 
/ 
SDev. 

Min 
/ 
Max 

AAvg. 
/ 
SDev. 

Min 
/ 
Max 

AAvg. 
/ 
SDev. 

1m2s 1066,99 1345,81 1346,65 1234,71 1266,49 

M1 275,12 
/ 

2085,79 

1453,32 
/ 

427,59 

306,01 
/ 

2095,53 

1474,69 
/ 

414,32 

424,98 
/ 

2043,69 

1495,26 
/ 

386,27 

419,92 
/ 

2257,34 

1558,67 
/ 

484,77 

258,27 
/ 

2190,03 

1515,16 
/ 

464,59 

S1 417,46 
/ 

2116,65 

1077,37 
/ 

179,81 

204,78 
/ 

2051,57 

1343,30 
/ 

191,54 

318,84 
/ 

2079,23 

1360,95 
/ 

187,65 

275,72 
/ 

2210,04 

1258,97 
/ 

202,87 

248,46 
/ 

2206,88 

1272,76 
/ 

219,89 

S2 402,15 
/ 

2034,76 

1053,88 
/ 

166,63 

209,76 
/ 

2178,83 

1346,73 
/ 

193,26 

432,07 
/ 

2016,18 

1330,66 
/ 

184,35 

367,43 
/ 

2228,06 

1207,38 
/ 

212,44 

278,23 
/ 

2231,06 

1258,49 
/ 

225,29 

2m1s 1151,97 1340,72 1282,35 1296,10 1134,50 

M1 323,82 
/ 

2107,82 

1351,00 
/ 

449,17 

348,39 
/ 

2021,79 

1337,51 
/ 

488,61 

309,28 
/ 

2094,69 

1389,10 
/ 

413,21 

440,51 
/ 

2275,50 

1367,27 
/ 

395,41 

372,13 
/ 

2135,77 

1352,16 
/ 

442,26 

M2 441,60 
/ 

2121,63 

1279,26 
/ 

433,64 

322,95 
/ 

2004,03 

1420,00 
/ 

423,38 

310,69 
/ 

2048,39 

1374,19 
/ 

475,41 

437,86 
/ 

2303,05 

1349,75 
/ 

415,09 

307,77 
/ 

2187,72 

1434,64 
/ 

503,42 

S2 299,05 
/ 

2102,95 

1146,85 
/ 

164,05 

328,76 
/ 

2073,14 

1339,90 
/ 

196,75 

373,18 
/ 

2015,47 

1280,37 
/ 

199,81 

288,94 
/ 

2186,31 

1294,23 
/ 

197,76 

309,34 
/ 

2164,82 

1129,50 
/ 

223,99 

3m 1374,91 1335,67 1361,06 1383,30 1258,84 

M1 524,20 
/ 

2084,01 

1362,17 
/ 

131,27 

371,29 
/ 

2226,67 

1287,84 
/ 

233,89 

363,67 
/ 

2385,85 

1415,03 
/ 

287,72 

396,28 
/ 

2149,19 

1355,92 
/ 

209,60 

387,46 
/ 

2171,06 

1252,23 
/ 

168,60 

M2 315,09 
/ 

2204,89 

1468,85 
/ 

224,59 

304,72 
/ 

2005,48 

1403,93 
/ 

326,20 

357,11 
/ 

2134,77 

1315,18 
/ 

377,59 

347,09 
/ 

2050,42 

1405,16 
/ 

208,87 

329,29 
/ 

2094,75 

1267,06 
/ 

186,05 

M3 558,74 
/ 

2219,50 

1343,18 
/ 

168,03 

309,26 
/ 

2201,20 

1474,43 
/ 

390,32 

283,31 
/ 

2361,30 

1257,24 
/ 

445,43 

313,91 
/ 

2171,61 

1392,48 
/ 

210,41 

428,95 
/ 

2256,65 

1258,63 
/ 

358,17 
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Case 4 Native execution speed averages, minimum and maximum values  
r1 r2 r3 r4 r5  

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 
1m3s 851,56 1149,71 931,32 1234,26 1082,65 

M1 381,57 
/ 

1864,15 

1385,92 
/ 

337,43 

328,38 
/ 

1759,36 

1399,96 
/ 

333,03 

328,72 
/ 

1778,14 

1302,47 
/ 

438,90 

463,08 
/ 

1867,48 

1334,47 
/ 

315,75 

378,30 
/ 

1872,73 

1326,70 
/ 

398,12 

S1 296,35 
/ 

883,54 

618,97 
/ 

76,41 

369,15 
/ 

1701,54 

1146,26 
/ 

166,05 

368,01 
/ 

2066,71 

940,82 
/ 

174,08 

473,03 
/ 

2000,00 

1232,92 
/ 

120,43 

368,07 
/ 

2048,69 

1167,42 
/ 

186,93 

S2 534,19 
/ 

1817,49 

1303,21 
/ 

160,83 

397,91 
/ 

1692,09 

1148,75 
/ 

165,84 

358,39 
/ 

1996,00 

933,80 
/ 

164,92 

507,72 
/ 

1748,17 

1235,80 
/ 

125,80 

222,73 
/ 

1920,00 

1032,26 
/ 

167,49 

S3 303,26 
/ 

882,72 

617,57 
/ 

76,62 

278,76 
/ 

1688,79 

1152,58 
/ 

163,36 

374,06 
/ 

1800,48 

917,85 
/ 

165,68 

490,52 
/ 

1838,53 

1233,08 
/ 

129,36 

326,04 
/ 

1855,72 

1045,91 
/ 

168,25 

2m2s 1029,87 1158,43 931,47 931,47 1160,85 

M1 405,33 
/ 

2000,00 

1189,50 
/ 

385,36 

385,38 
/ 

1980,78 

1204,34 
/ 

406,36 

441,19 
/ 

2000,00 

1198,60 
/ 

398,09 

460,61 
/ 

1778,51 

1187,14 
/ 

379,18 

395,41 
/ 

1827,68 

1327,65 
/ 

403,09 

M2 350,02 
/ 

2000,00 

1263,07 
/ 

382,91 

329,86 
/ 

2063,20 

1219,83 
/ 

417,21 

451,10 
/ 

1882,83 

1222,38 
/ 

349,59 

517,34 
/ 

1875,68 

1263,94 
/ 

389,23 

512,13 
/ 

1932,14 

1286,11 
/ 

348,37 

S1 425,36 
/ 

2000,00 

1040,89 
/ 

176,52 

449,13 
/ 

2041,65 

1174,03 
/ 

153,49 

251,01 
/ 

1458,47 

791,86 
/ 

133,14 

475,55 
/ 

1756,08 

1110,66 
/ 

142,80 

471,01 
/ 

1840,71 

1253,95 
/ 

148,96 

S2 393,88 
/ 

2000,00 

1015,55 
/ 

176,02 

411,61 
/ 

1944,76 

1141,84 
/ 

155,47 

312,14 
/ 

2000,00 

1064,66 
/ 

167,92 

522,17 
/ 

1861,78 

1210,14 
/ 

148,31 

536,00 
/ 

1850,48 

1221,63 
/ 

148,11 

3m1s 1011,26 1198,16 1204,12 1222,73 1211,40 

M1 379,05 
/ 

1832,88 

1103,86 
/ 

344,87 

397,86 
/ 

1804,20 

1272,34 
/ 

336,97 

339,33 
/ 

2000,00 

1301,35 
/ 

351,77 

301,98 
/ 

1763,33 

1234,21 
/ 

230,48 

316,93 
/ 

2000,00 

1227,67 
/ 

181,74 

M2 319,78 
/ 

1794,81 

1197,78 
/ 

360,20 

344,22 
/ 

1775,36 

1222,91 
/ 

386,85 

340,47 
/ 

2000,00 

1167,89 
/ 

194,04 

480,05 
/ 

1816,46 

1213,32 
/ 

306,06 

527,28 
/ 

1760,64 

1136,09 
/ 

294,93 

M3 375,12 
/ 

1891,17 

1100,43 
/ 

378,91 

376,19 
/ 

1783,57 

1145,08 
/ 

159,50 

381,79 
/ 

1801,53 

1359,62 
/ 

308,47 

450,87 
/ 

1734,67 

1227,46 
/ 

130,60 

484,71 
/ 

1853,21 

1250,13 
/ 

122,12 

S1 332,89 
/ 

1979,15 

1006,51 
/ 

170,66 

392,61 
/ 

1784,19 

1202,98 
/ 

202,87 

304,14 
/ 

1765,63 

1202,31 
/ 

194,53 

422,38 
/ 

1688,75 

1221,72 
/ 

168,03 

432,53 
/ 

1854,42 

1205,48 
/ 

164,14 
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Case 4 Native execution speed averages, minimum and maximum values  
r1 r2 r3 r4 r5 

 
Min 

/ 
Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

1m3s 1245,17 1098,33 1195,04 946,80 1162,91 

M1 480,96 
/ 

2130,28 

1462,74 
/ 

431,44 

400,02 
/ 

2042,64 

1502,80 
/ 

425,90 

297,34 
/ 

2090,11 

1500,11 
/ 

431,44 

350,58 
/ 

2033,22 

1405,46 
/ 

519,79 

257,95 
/ 

2063,86 

1622,00 
/ 

416,96 
S1 348,54 

/ 
2101,06 

1239,00 
/ 

159,05 

273,92 
/ 

2066,28 

1095,13 
/ 

193,50 

277,92 
/ 

1966,29 

1186,74 
/ 

170,15 

296,59 
/ 

1936,33 

946,23 
/ 

185,64 

207,32 
/ 

2154,23 

1158,75 
/ 

217,21 

S2 328,34 
/ 

2130,80 

1251,78 
/ 

171,55 

276,84 
/ 

2021,44 

1115,25 
/ 

189,12 

242,99 
/ 

2071,11 

1208,05 
/ 

179,12 

333,71 
/ 

1937,73 

948,77 
/ 

190,34 

206,87 
/ 

2099,50 

1160,54 
/ 

209,07 

S3 429,67 
/ 

2125,05 

1242,94 
/ 

168,55 

275,97 
/ 

2007,17 

1080,55 
/ 

185,91 

262,63 
/ 

2023,88 

1187,87 
/ 

169,71 

312,58 
/ 

1953,55 

943,24 
/ 

190,88 

216,22 
/ 

2103,50 

1166,19 
/ 

204,46 

2m2s 1142,08 1155,44 1050,69 1050,69 1339,70 

M1 273,46 
/ 

2036,17 

1383,11 
/ 

521,07 

465,94 
/ 

2156,92 

1408,62 
/ 

428,89 

214,42 
/ 

1997,19 

1338,89 
/ 

486,53 

277,29 
/ 

2018,76 

1360,20 
/ 

393,11 

278,73 
/ 

2200,97 

1305,87 
/ 

341,05 
M2 176,39 

/ 
1980,42 

1329,45 
/ 

542,56 

293,11 
/ 

2094,20 

1392,55 
/ 

478,06 

268,88 
/ 

1969,79 

1290,95 
/ 

498,11 

374,40 
/ 

1975,08 

1396,06 
/ 

403,91 

289,32 
/ 

2091,88 

1400,76 
/ 

430,23 
S1 197,84 

/ 
2025,59 

1142,97 
/ 

198,50 

394,51 
/ 

2109,82 

1167,78 
/ 

186,91 

192,31 
/ 

2079,21 

1060,60 
/ 

220,71 

375,50 
/ 

1947,04 

1336,49 
/ 

178,60 

189,69 
/ 

2162,24 

1350,93 
/ 

202,66 

S2 207,79 
/ 

2008,91 

1137,76 
/ 

188,75 

345,95 
/ 

2033,41 

1136,91 
/ 

189,21 

169,79 
/ 

2116,81 

1035,90 
/ 

218,16 

245,28 
/ 

1963,63 

1342,04 
/ 

184,42 

191,69 
/ 

2180,62 

1315,06 
/ 

166,99 

3m1s 1141,95 1199,74 1290,76 
 

1117,78 

M1 405,73 
/ 

2083,32 

1415,34 
/ 

444,95 

321,99 
/ 

1993,72 

1326,10 
/ 

427,99 

234,32 
/ 

2002,12 

1336,89 
/ 

206,75 

  
322,46 

/ 
2126,85 

1265,16 
/ 

484,65 
M2 384,29 

/ 
2068,24 

1328,86 
/ 

461,60 

327,37 
/ 

2007,61 

1350,78 
/ 

440,20 

212,59 
/ 

2125,00 

1331,22 
/ 

233,60 

  
319,05 

/ 
2130,45 

1372,42 
/ 

489,31 

M3 285,32 
/ 

2070,50 

1367,98 
/ 

449,44 

385,88 
/ 

1982,64 

1276,36 
/ 

450,37 

198,41 
/ 

2060,37 

1287,90 
/ 

446,04 

  
359,59 

/ 
2147,81 

1270,12 
/ 

504,23 

S1 365,47 
/ 

2083,09 

1130,27 
/ 

215,68 

270,44 
/ 

2048,19 

1194,34 
/ 

215,61 

213,04 
/ 

2064,68 

1283,73 
/ 

210,45 

  
249,10 

/ 
2124,92 

1111,89 
/ 

233,84 
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Case 5 Native execution speed averages, minimum and maximum values  
r1 r2 r3 r4 r5 

 
Min 

/ 
Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

1m7s 1173,23 1101,57 979,26 1043,15 955,51 

M1 430,28 
/ 

2000,00 

1261,31 
/ 

357,71 

264,86 
/ 

2002,48 

1306,79 
/ 

342,18 

250,83 
/ 

1769,51 

1254,53 
/ 

458,14 

247,89 
/ 

1801,15 

1369,49 
/ 

370,97 

372,04 
/ 

1873,01 

1355,70 
/ 

374,58 

S1 481,57 
/ 

2000,00 

1217,18 
/ 

125,67 

227,05 
/ 

2050,91 

1105,90 
/ 

174,86 

295,32 
/ 

1705,66 

986,16 
/ 

165,67 

367,06 
/ 

1792,91 

1107,37 
/ 

153,14 

348,85 
/ 

1627,06 

1085,13 
/ 

144,39 

S2 559,97 
/ 

1795,09 

1211,18 
/ 

116,42 

225,35 
/ 

2000,03 

1090,52 
/ 

172,69 

256,16 
/ 

1667,77 

992,56 
/ 

161,80 

251,10 
/ 

1768,42 

1105,96 
/ 

157,80 

253,87 
/ 

861,45 

540,73 
/ 

66,50 

S3 592,12 
/ 

2000,00 

1221,58 
/ 

121,02 

230,39 
/ 

2030,75 

1116,75 
/ 

177,24 

300,95 
/ 

1670,20 

980,24 
/ 

161,28 

264,38 
/ 

2000,00 

1066,64 
/ 

150,81 

364,52 
/ 

2000,00 

1155,68 
/ 

143,60 

S4 569,20 
/ 

2000,00 

1210,05 
/ 

122,90 

226,13 
/ 

1939,41 

1093,13 
/ 

171,83 

302,86 
/ 

1612,20 

947,99 
/ 

160,64 

297,25 
/ 

2000,00 

1073,69 
/ 

147,34 

236,05 
/ 

831,53 

540,80 
/ 

66,40 

S5 535,72 
/ 

1704,49 

1213,94 
/ 

121,03 

231,88 
/ 

2000,00 

1101,16 
/ 

172,21 

312,70 
/ 

1650,85 

945,91 
/ 

156,53 

237,86 
/ 

2000,00 

1081,05 
/ 

152,00 

382,18 
/ 

1780,10 

1158,52 
/ 

148,18 

S6 573,32 
/ 

2000,00 

1219,43 
/ 

117,81 

324,12 
/ 

2044,67 

1099,00 
/ 

166,67 

279,24 
/ 

1765,21 

1020,64 
/ 

166,34 

324,41 
/ 

1758,63 

1073,91 
/ 

150,97 

245,00 
/ 

1694,28 

1070,04 
/ 

138,26 

S7 381,37 
/ 

1600,00 

917,94 
/ 

108,86 

230,77 
/ 

2000,00 

1102,81 
/ 

168,89 

305,98 
/ 

1719,00 

980,24 
/ 

166,32 

155,00 
/ 

1600,00 

790,08 
/ 

146,41 

389,67 
/ 

1748,35 

1129,30 
/ 

136,09 

2m6s 1069,99 963,95 998,03 1052,19 1014,38 

M1 378,48 
/ 

1894,71 

1223,72 
/ 

385,94 

251,99 
/ 

1773,90 

1286,59 
/ 

371,73 

356,99 
/ 

1964,15 

1154,29 
/ 

380,29 

425,39 
/ 

1770,20 

1191,86 
/ 

341,68 

417,73 
/ 

2056,62 

1307,45 
/ 

353,50 

M2 362,06 
/ 

1674,81 

1223,41 
/ 

387,31 

407,69 
/ 

1690,58 

1203,78 
/ 

334,84 

366,59 
/ 

2000,00 

1209,82 
/ 

377,57 

412,24 
/ 

2000,00 

1176,60 
/ 

386,91 

413,41 
/ 

2065,32 

1266,46 
/ 

386,09 

S1 348,43 
/ 

1753,02 

1047,48 
/ 

141,96 

315,78 
/ 

1669,39 

993,11 
/ 

155,03 

351,24 
/ 

1910,36 

993,17 
/ 

149,45 

260,31 
/ 

1436,88 

806,63 
/ 

105,43 

506,47 
/ 

2110,43 

1214,49 
/ 

155,83 

S2 369,57 
/ 

1784,93 

1091,14 
/ 

140,96 

280,56 
/ 

1350,79 

719,13 
/ 

132,15 

328,06 
/ 

2033,60 

1010,32 
/ 

156,68 

405,42 
/ 

1810,88 

1091,04 
/ 

125,70 

438,16 
/ 

2079,88 

1215,57 
/ 

150,51 

S3 354,20 
/ 

1745,63 

1051,62 
/ 

138,65 

353,38 
/ 

1714,71 

1027,03 
/ 

158,09 

346,63 
/ 

1928,70 

1008,27 
/ 

152,49 

415,24 
/ 

2000,00 

1085,81 
/ 

119,17 

255,73 
/ 

1021,14 

589,61 
/ 

71,58 
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S4 332,06 
/ 

1716,45 

1049,01 
/ 

138,76 

387,47 
/ 

1746,37 

992,33 
/ 

160,54 

328,71 
/ 

2005,41 

1001,55 
/ 

157,41 

412,17 
/ 

2000,00 

1103,72 
/ 

125,49 

503,42 
/ 

2149,43 

1247,28 
/ 

152,95 

S5 411,99 
/ 

1799,71 

1099,37 
/ 

141,13 

358,26 
/ 

1712,43 

1040,93 
/ 

161,07 

305,20 
/ 

2000,00 

980,49 
/ 

147,50 

406,85 
/ 

2000,00 

1110,50 
/ 

120,11 

254,81 
/ 

984,18 

589,59 
/ 

71,01 

S6 369,34 
/ 

1789,81 

1078,62 
/ 

139,93 

356,80 
/ 

1684,11 

1005,16 
/ 

153,08 

322,22 
/ 

2040,42 

991,38 
/ 

153,09 

422,64 
/ 

2000,00 

1111,98 
/ 

125,43 

405,07 
/ 

2120,68 

1220,08 
/ 

158,01 

3m5s 1260,55 1055,36 997,59 1213,18 1246,54 

M1 470,52 
/ 

1940,43 

1244,45 
/ 

103,09 

312,49 
/ 

832,42 

584,41 
/ 

122,36 

274,54 
/ 

1808,12 

1130,61 
/ 

365,83 

452,43 
/ 

1730,65 

1250,08 
/ 

106,52 

432,22 
/ 

2060,90 

1200,42 
/ 

170,59 

M2 491,01 
/ 

2083,68 

1240,46 
/ 

323,01 

214,96 
/ 

1754,80 

1225,50 
/ 

302,42 

357,58 
/ 

1747,37 

1125,58 
/ 

363,99 

402,77 
/ 

1710,87 

1244,65 
/ 

339,55 

386,27 
/ 

2067,89 

1229,48 
/ 

334,25 

M3 491,08 
/ 

1997,66 

1266,50 
/ 

91,16 

198,18 
/ 

1752,79 

1218,16 
/ 

319,56 

274,04 
/ 

1770,06 

1092,41 
/ 

365,09 

447,55 
/ 

1752,75 

1254,48 
/ 

103,93 

342,68 
/ 

1992,08 

1198,00 
/ 

306,27 

S1 539,42 
/ 

1978,14 

1252,57 
/ 

125,34 

442,45 
/ 

1804,35 

1215,72 
/ 

164,50 

295,12 
/ 

2000,00 

785,36 
/ 

126,44 

396,36 
/ 

1719,07 

1215,81 
/ 

115,59 

449,91 
/ 

2067,90 

1246,25 
/ 

136,82 

S2 475,98 
/ 

2068,01 

1244,37 
/ 

126,11 

388,68 
/ 

1871,23 

1242,48 
/ 

158,06 

403,85 
/ 

2000,00 

1066,47 
/ 

148,61 

433,13 
/ 

1752,03 

1230,47 
/ 

114,83 

414,93 
/ 

2028,76 

1233,84 
/ 

140,40 

S3 507,19 
/ 

2124,76 

1286,51 
/ 

132,93 

152,34 
/ 

831,93 

367,83 
/ 

115,32 

383,94 
/ 

1751,54 

1042,85 
/ 

148,25 

491,75 
/ 

1726,08 

1207,22 
/ 

113,78 

487,52 
/ 

2029,88 

1264,24 
/ 

135,75 

S4 496,87 
/ 

2075,46 

1264,88 
/ 

127,84 

403,78 
/ 

1746,69 

1195,64 
/ 

155,09 

444,65 
/ 

1745,00 

1032,38 
/ 

148,68 

426,30 
/ 

2000,00 

1206,80 
/ 

111,24 

512,07 
/ 

2055,51 

1245,35 
/ 

134,35 

S5 551,50 
/ 

2084,56 

1255,52 
/ 

133,25 

329,67 
/ 

1824,58 

1214,90 
/ 

172,77 

450,53 
/ 

2000,00 

1055,99 
/ 

146,06 

497,51 
/ 

1659,59 

1180,31 
/ 

109,22 

452,39 
/ 

2046,15 

1246,71 
/ 

135,82 
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Case 5 Virtual execution speed averages, minimum and maximum values  
r1 r2 r3 r4 r5 

 
Min 

/ 
Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

AAvg. 
/ 

SDev. 

Min 
/ 

Max 

1m7s 1262,53 1022,89 1072,16 1094,23 1114,53 

M1 384,35 
/ 

2009,53 

1374,78 
/ 

424,37 

275,44 
/ 

1929,81 

1397,63 
/ 

472,54 

329,45 
/ 

2013,38 

1470,06 
/ 

486,03 

265,21 
/ 

1933,72 

1427,50 
/ 

436,02 

380,63 
/ 

1937,79 

1443,97 
/ 

455,11 

S1 482,86 
/ 

2032,46 

1261,42 
/ 

129,83 

238,54 
/ 

1974,06 

1015,67 
/ 

192,84 

332,24 
/ 

1945,23 

1075,59 
/ 

155,10 

216,13 
/ 

1920,00 

1070,53 
/ 

172,73 

363,48 
/ 

1881,85 

1103,13 
/ 

133,01 

S2 520,66 
/ 

2000,00 

1261,49 
/ 

126,37 

206,28 
/ 

1936,03 

1029,86 
/ 

190,11 

398,28 
/ 

1932,22 

1070,99 
/ 

151,73 

247,52 
/ 

1857,00 

1083,02 
/ 

164,33 

212,87 
/ 

1905,31 

1127,37 
/ 

139,43 

S3 488,13 
/ 

2032,42 

1260,61 
/ 

123,50 

207,73 
/ 

1867,20 

1021,15 
/ 

192,79 

336,49 
/ 

1949,20 

1075,35 
/ 

150,02 

180,77 
/ 

2000,00 

1094,91 
/ 

157,94 

500,64 
/ 

1899,75 

1126,70 
/ 

133,54 

S4 547,13 
/ 

1949,57 

1265,98 
/ 

127,42 

238,74 
/ 

1809,25 

998,51 
/ 

184,32 

435,25 
/ 

1920,21 

1064,71 
/ 

149,63 

180,67 
/ 

1917,95 

1104,20 
/ 

163,87 

391,82 
/ 

1851,49 

1104,24 
/ 

129,12 

S5 373,02 
/ 

1948,70 

1269,59 
/ 

127,20 

171,81 
/ 

1929,92 

1023,03 
/ 

189,89 

417,25 
/ 

1976,15 

1077,66 
/ 

151,93 

251,48 
/ 

2000,00 

1105,59 
/ 

162,30 

366,90 
/ 

1889,84 

1119,56 
/ 

132,13 

S6 432,62 
/ 

1990,56 

1258,80 
/ 

123,19 

196,08 
/ 

2000,00 

1047,40 
/ 

192,59 

421,53 
/ 

1901,37 

1063,90 
/ 

146,41 

227,97 
/ 

1928,64 

1098,64 
/ 

165,92 

349,95 
/ 

1881,40 

1105,34 
/ 

132,93 

S7 479,06 
/ 

2005,99 

1258,90 
/ 

126,54 

207,69 
/ 

2000,00 

1022,87 
/ 

191,00 

408,74 
/ 

1943,71 

1074,86 
/ 

149,02 

231,13 
/ 

1902,45 

1100,76 
/ 

165,31 

307,67 
/ 

1872,22 

1113,42 
/ 

131,99 

2m6s 975,57 960,99 1036,36 1187,79 972,49 

M1 405,28 
/ 

1919,92 

1385,46 
/ 

381,12 

345,99 
/ 

2087,22 

1338,97 
/ 

466,19 

271,25 
/ 

1873,42 

1279,85 
/ 

462,62 

424,15 
/ 

1893,83 

1275,23 
/ 

346,06 

216,86 
/ 

1856,87 

1200,38 
/ 

425,97 

M2 402,66 
/ 

2002,94 

1345,88 
/ 

409,54 

270,73 
/ 

1856,72 

1399,87 
/ 

458,96 

236,34 
/ 

935,25 

665,64 
/ 

200,42 

478,09 
/ 

1939,06 

1334,80 
/ 

365,31 

357,65 
/ 

1806,00 

1225,38 
/ 

426,63 

S1 166,38 
/ 

973,19 

564,11 
/ 

80,55 

188,03 
/ 

1975,00 

975,24 
/ 

210,99 

200,52 
/ 

1945,27 

1211,12 
/ 

149,04 

269,84 
/ 

1903,04 

1208,73 
/ 

159,75 

185,33 
/ 

1846,53 

964,23 
/ 

185,92 

S2 205,78 
/ 

1926,29 

1173,75 
/ 

161,60 

195,12 
/ 

1877,90 

954,07 
/ 

212,51 

195,12 
/ 

1887,23 

1170,99 
/ 

146,62 

276,77 
/ 

1878,09 

1200,86 
/ 

142,71 

133,64 
/ 

1881,74 

962,33 
/ 

189,02 

S3 268,94 
/ 

1945,84 

1169,61 
/ 

158,40 

188,34 
/ 

1877,77 

971,61 
/ 

206,60 

176,67 
/ 

1879,43 

1143,85 
/ 

145,77 

251,33 
/ 

1908,13 

1171,71 
/ 

169,68 

176,76 
/ 

1921,14 

992,20 
/ 

187,48 
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S4 255,38 
/ 

1981,42 

1181,22 
/ 

164,58 

190,21 
/ 

1955,22 

950,45 
/ 

212,90 

117,60 
/ 

940,97 

313,99 
/ 

107,65 

410,36 
/ 

1924,72 

1215,49 
/ 

156,91 

147,06 
/ 

1825,32 

974,94 
/ 

188,19 

S5 180,89 
/ 

974,77 

563,69 
/ 

80,89 

188,68 
/ 

1920,00 

948,81 
/ 

208,26 

201,54 
/ 

1897,19 

1188,76 
/ 

141,98 

469,63 
/ 

1877,19 

1175,64 
/ 

155,30 

154,23 
/ 

1798,84 

956,37 
/ 

187,99 

S6 239,06 
/ 

1967,22 

1187,70 
/ 

164,28 

196,35 
/ 

1888,16 

960,72 
/ 

198,04 

201,04 
/ 

1883,95 

1161,67 
/ 

142,80 

440,64 
/ 

1877,09 

1151,62 
/ 

175,23 

174,50 
/ 

1842,61 

981,18 
/ 

191,86 

3m5s 1275,54 1140,78 1106,13 1151,52 954,84 

M1 387,57 
/ 

1917,58 

1300,47 
/ 

372,87 

247,07 
/ 

1883,87 

1248,36 
/ 

488,65 

176,80 
/ 

1887,43 

1246,93 
/ 

453,03 

173,19 
/ 

945,08 

508,15 
/ 

224,15 

274,60 
/ 

2013,09 

1247,86 
/ 

499,31 

M2 437,27 
/ 

1921,71 

1297,73 
/ 

402,63 

254,73 
/ 

1889,43 

1216,79 
/ 

449,79 

174,12 
/ 

1916,17 

1196,28 
/ 

450,63 

228,38 
/ 

953,89 

614,25 
/ 

213,98 

295,54 
/ 

1981,30 

1293,77 
/ 

521,09 

M3 420,21 
/ 

2020,12 

1267,62 
/ 

116,56 

245,10 
/ 

1952,47 

1312,46 
/ 

372,20 

171,47 
/ 

2000,00 

1303,45 
/ 

490,66 

359,15 
/ 

1950,86 

1257,70 
/ 

415,24 

292,57 
/ 

2084,01 

1264,85 
/ 

543,44 

S1 448,11 
/ 

1950,22 

1259,46 
/ 

167,31 

220,33 
/ 

1930,00 

1130,99 
/ 

202,96 

213,97 
/ 

2000,00 

1114,90 
/ 

177,24 

357,44 
/ 

1965,10 

1159,08 
/ 

205,56 

270,10 
/ 

2048,52 

947,45 
/ 

193,10 

S2 448,62 
/ 

1923,39 

1260,40 
/ 

163,30 

208,00 
/ 

1918,88 

1139,41 
/ 

198,89 

185,48 
/ 

1925,00 

1124,66 
/ 

179,16 

278,31 
/ 

1914,95 

1169,66 
/ 

196,04 

263,12 
/ 

2054,09 

954,38 
/ 

195,49 

S3 332,28 
/ 

1932,23 

1276,75 
/ 

156,49 

217,39 
/ 

1950,00 

1144,43 
/ 

201,75 

222,75 
/ 

2042,98 

1092,18 
/ 

179,39 

236,47 
/ 

1953,02 

1142,13 
/ 

204,71 

305,51 
/ 

2022,52 

944,46 
/ 

188,94 

S4 455,56 
/ 

1925,83 

1278,15 
/ 

160,91 

180,67 
/ 

1921,56 

1137,19 
/ 

204,22 

206,23 
/ 

1930,58 

1096,83 
/ 

186,14 

240,00 
/ 

1942,67 

1153,69 
/ 

202,53 

316,46 
/ 

2038,57 

957,06 
/ 

193,58 

S5 305,08 
/ 

1972,72 

1305,00 
/ 

164,99 

203,39 
/ 

1965,35 

1147,69 
/ 

200,52 

216,98 
/ 

2000,00 

1097,99 
/ 

180,22 

347,41 
/ 

1935,37 

1143,45 
/ 

195,48 

228,94 
/ 

2000,00 

962,79 
/ 

196,42 
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APPENDIX 3: CASE 1 RESULTS 

Case 1 native execution results. 

 

min 
exec 

aver-
age 
exec 

max 
exec 

me-
dian 

std 
devia-
tion 

cover-
age 

AFL 
bugs UB read_utmp print_user 

r1 423,43 1452,90 2857,36 1559,84 376,75 0,0217 0 0 - - 

r2 447,10 1464,58 2704,27 1516,33 243,52 0,0217 0 0 - - 

r3 384,20 1419,21 2509,19 1452,89 279,13 0,0217 2 1 40001 - 

r4 401,26 1480,50 2394,44 1536,17 235,87 0,0217 0 0 - - 

r5 457,31 1514,77 2348,58 1550,60 167,27 0,0218 1 1 68725 - 

r6 572,52 1473,93 2266,79 1519,90 269,93 0,0217 0 0 - - 

r7 603,54 1471,40 2144,43 1540,13 236,36 0,0217 0 0 - - 

r8 328,80 1471,49 2037,11 1501,92 187,29 0,0217 2 1 54501 - 

r9 348,24 1117,17 2064,97 1129,87 204,03 0,0218 0 0 - - 

r10 458,67 1549,70 1909,09 1567,70 103,34 0,0217 2 1 51246 - 

r11 479,13 1401,11 2117,21 1500,90 304,16 0,0218 4 1 0 71555 

r12 538,01 1467,63 2112,23 1510,66 251,43 0,0217 0 0 - - 

r13 574,39 1473,37 1966,56 1500,61 147,10 0,0217 1 1 62850 - 

r14 474,95 1423,51 1967,37 1450,11 199,45 0,0217 0 0 - - 

r15 473,50 1483,01 1942,13 1538,36 246,50 0,0217 0 0 - - 

r16 403,74 1484,97 1910,54 1532,60 210,61 0,0217 1 1 73483 - 

r17 448,12 1539,72 1894,40 1577,21 177,76 0,0217 0 0 - - 

r18 385,60 1541,34 1943,30 1612,79 258,37 0,0217 1 1 27128 - 
 

  

 
Case 1 Virtual execution results   

 

min 
exec 

aver-
age 
exec 

max 
exec 

me-
dian 

std 
devia-
tion 

cover-
age 

AFL 
bugs UB read_utmp 

r1 411,23 1580,70 2277,69 1609,69 237,80 0,0218 2 1 37957 

r2 454,58 1555,49 2285,36 1575,53 202,48 0,0219 3 1 34735 

r3 424,23 1507,10 2331,19 1653,31 600,01 0,0218 1 1 27648 

r4 390,61 1469,91 2247,52 1478,87 355,23 0,0219 1 1 34628 

r5 405,25 1551,13 2223,02 1569,66 258,62 0,0219 1 1 65194 

r6 322,82 1551,50 2309,54 1564,94 262,21 0,0219 2 1 28892 

r7 270,27 1584,23 2411,62 1597,93 285,39 0,0219 3 1 24061 

r8 339,82 1525,28 2306,20 1531,88 326,93 0,0218 2 1 48670 

r9 314,50 1423,99 2227,27 1364,34 369,41 0,0219 2 1 42528 

r10 316,83 1554,87 2456,62 1562,50 227,90 0,0219 3 1 26866 

r11 273,33 1592,96 2472,89 1609,04 149,28 0,0219 3 1 61538 

r12 306,98 1559,49 2299,97 1563,25 346,32 0,0219 2 1 45781 

r13 275,40 1599,78 2545,50 1650,10 519,85 0,0218 2 1 6433 

r14 305,08 1530,61 2603,51 1577,03 453,77 0,0218 1 1 10866 

r15 337,88 1635,00 2322,40 1631,09 331,03 0,0218 2 1 4555 

r16 315,53 1587,34 2491,40 1610,33 284,97 0,0219 1 1 18292 

r17 432,73 1491,82 2610,67 1501,63 466,02 0,0218 1 1 7732 

r18 317,60 1620,69 2713,83 1632,04 293,20 0,0219 3 1 23417 
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APPENDIX 4: TABULATED MIN/MAX/AVERAGE VALUES 
USED FOR COUNTING SPEEDUP 

Native data  
Configuration Min  Max Average 

CAES 

1m 0,000895 0,000645 0,000686 

1m1s 0,000422 0,000376 0,000398 

2m 0,00038 0,000339 0,000361 

1m2s 0,000286 0,00025 0,000268 

2m1s 0,000286 0,000243 0,000268 

3m 0,000269 0,000233 0,000249 

1m3s 0,000255 0,000199 0,000222 

2m2s 0,000234 0,000196 0,000214 

3m1s 0,000227 0,000199 0,000208 

1m7s 0,000124 0,000106 0,000115 

2m6s 0,000121 0,000113 0,000117 

3m5s 0,000121 9,95E-05 0,000108  
Configuration Min  Max Average 

read_utmp 

1m 27128 73483 53990,57 

1m1s 1223 4534 2878,5 

2m 1223 39397 13873,4 

1m2s 736 919 834,6 

2m1s 695 27751 6251,6 

3m 800 74577 23542,2 

1m3s 629 962 754 

2m2s 960 22118 6004 

3m1s 645 3251 1275 

1m7s 665 726 683,2 

2m6s 655 1384 1000,6 

3m5s 657 778 700 
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Virtual Data  
Configuration Min  Max Average 

CAES 

1m 0,000702 0,000612 0,000645 

1m1s 0,000383 0,000346 0,000363 

2m 0,000352 0,000314 0,000331 

1m2s 0,000279 0,000239 0,00025 

2m1s 0,000265 0,000244 0,000252 

3m 0,000265 0,00024 0,000247 

1m3s 0,000236 0,000192 0,000205 

2m2s 0,000212 0,000184 0,000195 

3m1s 0,000199 0,000191 0,000194 

1m7s 0,000117 9,79E-05 0,000109 

2m6s 0,000123 0,000103 0,000116 

3m5s 0,000123 9,76E-05 0,000109 
 Configuration Min  Max Average 

read_utmp 

1m 4555 65194 30544,06 

1m1s 1354 5068 762,6 

2m 1354 11186 4937 

1m2s 731 1453 960,6 

2m1s 675 1333 912 

3m 882 27509 8531,4 

1m3s 772 1230 927,8 

2m2s 686 917 776,6 

3m1s 669 1780 1185,5 

1m7s 629 870 734,8 

2m6s 627 856 690,6 

3m5s 628 996 733,8 

 


