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Federated Learning

* Training is distributed to
enormous clients and aggregated
by parameter averaging.

* Advantage: Privacy protection,
communication efficiency, flexible
training with heterogenous clients
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Challenges for In-situ Customization from
Heterogeneous Federated Learning

* |n-situ customization baseline:
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Challenges for In-situ Customization from
Heterogeneous Federated Learning

* |n-situ customization baseline: Ineffective customization
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Split-Mix
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Split-Mix
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Thank youl!

More in our paper:
e Adversarial robustness customization.

* Joint customization of robustness and model sizes.
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