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Abstract

Mobile robots in real-life settings would benefit from being able to localize and track sound

sources. Such a capability can help localizing a person or an interesting event in the en-

vironment, and also provides enhanced processing for other capabilities such as speech

recognition. To give this capability to a robot, the challenge is not only to localize simulta-

neous sound sources, but to track them over time. In this paper we propose a robust sound

source localization and tracking method using an array of eight microphones. The method

is based on a frequency-domain implementation of a steered beamformer along with a par-

ticle filter-based tracking algorithm. Results show that a mobile robot can localize and track

in real-time multiple moving sources of different types over a range of 7 meters. These new

capabilities allow a mobile robot to interact using more natural means with people in real

life settings.

Preprint submitted to Elsevier Science May 3, 2006



1 Introduction

Sound source localization is defined as the determination of the coordinates of

sound sources in relation to a point in space. The auditory system of living creatures

provides vast amounts of information about the world, such as localization of sound

sources. For us humans, it means to be able to focus our attention on events and

changes surrounding us, such as a cordless phone ringing, a vehicle honking, a

person who is talking to us, etc. Hearing complements well other sensors such as

vision by being omni-directional, capable to work in the dark and not limited by

physical structure (such as walls). For those who do not have hearing impairments,

it is hard to imagine going a day without being able to hear, especially having to

move in a very dynamic and unpredictable world. Marschark [1] even suggests that

although deaf children have similar IQ results compared to other children, they

do experience more learning difficulties in school. So, the intelligence manifested

by autonomous robots will surely be influenced by providing them with auditory

capabilities.

To perform sound localization, our brain combines timing (more specifically de-

lay or phase) and amplitude information from the sound perceived by two ears [2],

sometimes in addition to information from other senses. However, localizing sound

sources using only two inputs is a challenging task. The human auditory system is

very complex and resolves the problem by accounting for the acoustic diffraction
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around the head and the ridges of the outer ear. Without this ability, localization

with two microphones is limited to azimuth only, along with the impossibility to

distinguish if the sounds come from the front or the back. Also, obtaining high-

precision readings when the sound source is in the same axis as the pair of micro-

phones is more difficult.

One advantage with robots is that they do not have to inherit the same limitations

as living creatures. Using more than two microphones allows reliable and accurate

localization in both azimuth and elevation. Also, having multiple signals provides

additional redundancy, reducing the uncertainty caused by the noise and non-ideal

conditions such as reverberation and imperfect microphones. It is with this principle

in mind that we have developed an approach allowing to localize sound sources

using an array of microphones.

Our approach is based on a frequency-domain beamformer that is steered in all pos-

sible directions to detect sources. Instead of measuring TDOAs and then converting

to a position, the localization process is performed in a single step. This makes the

system more robust, especially in the case where an obstacle prevents one or more

microphones from properly receiving the signals. The results of the localization

process are then enhanced by probability-based post-processing which prevents

false detection of sources. This makes the system sensitive enough for simultane-

ous localization of multiple moving sound sources. This approach is an extension

of earlier work [3] and works for both far-field and near-field sound sources. De-

tection reliability, accuracy, and tracking capabilities of the approach are validated

using a mobile robot, with different types of sound sources. We consider both our

robust steered beamformer and our probabilistic post-processing to contain signifi-

cant contributions to the subject of robust localization of sound sources.
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The paper is organized as follows. Section 2 situates our work in relation to other

research projects in the field. Section 3 presents a brief overview of the system.

Section 4 describes our steered beamformer implemented in the frequency-domain.

Section 5 explains how we enhance the results from the beamformer using a proba-

bilistic post-processor. This is followed by experimental results in Section 6, show-

ing how the system behaves under different conditions. Section 7 concludes the

paper and presents future work.

2 Related work

Signal processing research that addresses artificial audition is often geared toward

specific tasks such as speaker tracking for videoconferencing [4]. An artificial au-

dition system for a mobile robot can be used for three purposes: 1) localizing sound

sources; 2) separating sound sources in order to process only signals that are rel-

evant to a particular event in the environment; and 3) processing sound sources to

extract useful information from the environment (like speech recognition).

Even though artificial audition on mobile robots is a research area still in its in-

fancy, most of the work has been done in relation to localization of sound sources

and mostly using only two microphones. This is the case of the SIG robot that uses

both inter-aural phase difference (IPD) and inter-aural intensity difference (IID) to

locate sounds [5]. The binaural approach has limitations when it comes to evalu-

ating elevation and usually, the front-back ambiguity cannot be resolved without

resorting to active audition [6].

More recently, approaches using more than two microphones have been developed.

One approach uses a circular array of eight microphones to locate sound sources
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[7]. In our previous work also using eight microphones [8], we presented a method

for localizing a single sound source where time delay of arrival (TDOA) estimation

was separated from the direction of arrival (DOA) estimation. It was found that

a system combining TDOA and DOA estimation in a single step improves the

system’s robustness, while allowing localization (but not tracking) of simultaneous

sources [3]. Kagami et al. [9] reports a system using 128 microphones for 2D sound

localization of sound sources: obviously, it would not be practical to include such

a large number of microphones on a mobile robot.

Most of the work so far on localization of source sources does not address the

problem of tracking moving sources. It is proposed in [10] to use a Kalman filter

for tracking a moving source. However the proposed method assumes that a single

source is present. In the past years, particle filtering [11] (a sequential Monte Carlo

method) has been increasingly popular to resolve object tracking problems. Ward et

al. [12,13] and Vermaak [14] use this technique for tracking single sound sources.

Asoh et al. [15] even suggested to use this technique for mixing audio and video

data to track speakers. But again, the technique is limited to a single source due to

the problem of associating the localization observation data to each of the sources

being tracked. We refer to that problem as the source-observation assignment prob-

lem. Some attempts are made at defining multi-modal particle filters in [16], and the

use of particle filtering for tracking multiple targets is demonstrated in [17,18,19].

But so far, the technique has not been applied to sound source tracking. Our work

demonstrates that it is possible to track multiple sound sources using particle filters

by solving the source-observation assignment problem.
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3 System Overview

The proposed localization and tracking system, as shown in Figure 1, is composed

of three parts:

• A microphone array;

• A memoryless localization algorithm based on a steered beamformer;

• A particle filtering tracker.

The array is composed of up to eight omni-directional microphones mounted on the

robot. Since the system is designed to be installed on any robot, there is no strict

constraint on the position of the microphones: only their positions must be known in

relation to each other (measured with ∼0.5 cm accuracy). The microphone signals

are used by a beamformer (spatial filter) that is steered in all possible directions

in order to maximize the output energy. The initial localization performed by the

steered beamformer is then used as the input of a post-processing stage that uses

particle filtering to simultaneously track all sources and prevent false detections.

The output of the localization system can be used to direct the robot attention to

the source. It can also be used as part of a source separation algorithm to isolate the

sound coming from a single source [3].

Steered
beamformer

.

.

.

Particle
filtering

Source
positions

Omni-directional
microphones

Beamformer
energy

Figure 1. Overview of the localization system
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4 Localization Using a Steered Beamformer

The basic idea behind the steered beamformer approach to source localization is

to direct a beamformer in all possible directions and look for maximal output.

This can be done by maximizing the output energy of a simple delay-and-sum

beamformer. The formulation in both time and frequency domain is presented in

Section 4.1. Section 4.2 describes the frequency-domain weighting performed on

the microphone signals and Section 4.3 shows how the search is performed. A

possible modification for improving the resolution is described in Section 4.4.

4.1 Delay-And-Sum Beamformer

The output of an M -microphone delay-and-sum beamformer is defined as:

y(n) =
M−1
∑

m=0

xm (n− τm) (1)

where xm (n) is the signal from the mth microphone and τm is the delay of arrival

for that microphone. The output energy of the beamformer over a frame of length

L is thus given by:

E =
L−1
∑

n=0

[y(n)]2

=
L−1
∑

n=0

[x0 (n− τ0) + . . . + xM−1 (n− τM−1)]
2 (2)

Assuming that only one sound source is present, we can see that E will be maximal

when the delays τm are such that the microphone signals are in phase, and therefore

add constructively.
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One problem with this technique is that energy peaks are very wide [20], which

means that the resolution is poor. Moreover, in the case where multiple sources

are present, it is likely for the two or more energy peaks to overlap, making them

impossible to differentiate. One way to narrow the peaks is to whiten the micro-

phone signals prior to computing the energy [21]. Unfortunately, the coarse-fine

search method as proposed in [20] cannot be used in that case because the narrow

peaks can then be missed during the coarse search. Therefore, a full fine search

is necessary, which requires increased computing power. It is possible to reduce

the amount of computation by calculating the beamformer energy in the frequency

domain. This also has the advantage of making the whitening of the signal easier.

To do so, the beamformer output energy in Equation 2 can be expanded as:

E =
M−1
∑

m=0

L−1
∑

n=0

x2
m (n− τm)

+ 2
M−1
∑

m1=0

m1−1
∑

m2=0

L−1
∑

n=0

xm1 (n− τm1)xm2 (n− τm2) (3)

which in turn can be rewritten in terms of cross-correlations:

E = K + 2
M−1
∑

m1=0

m1−1
∑

m2=0

Rxm1 ,xm2
(τm1 − τm2) (4)

where K =
∑M−1

m=0

∑L−1
n=0 x2

m (n− τm) is nearly constant with respect to the τm

delays and can thus be ignored when maximizing E. The cross-correlation function

can be approximated in the frequency domain as:

Rij(τ) ≈
L−1
∑

k=0

Xi(k)Xj(k)∗e2πkτ/L (5)

where Xi(k) is the discrete Fourier transform of xi[n], Xi(k)Xj(k)∗ is the cross-

spectrum of xi[n] and xj[n] and (·)∗ denotes the complex conjugate. The power
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spectra and cross-power spectra are computed on overlapping windows (50% over-

lap) of L = 1024 samples at 48 kHz. The cross-correlations Rij(τ) are computed

by averaging the cross-power spectra Xi(k)Xj(k)∗ over a time period of 4 frames

(40 ms). Once the Rij(τ) are pre-computed, it is possible to compute E using only

M(M − 1)/2 lookup and accumulation operations, whereas a time-domain com-

putation would require 2L(M + 2) operations. For M = 8 and 2562 directions, it

follows that the complexity of the search itself is reduced from 1.2 Gflops to only

1.7 Mflops. After counting all time-frequency transformations, the complexity is

only 48.4 Mflops, 25 times less than a time domain search with the same resolu-

tion.

4.2 Spectral Weighting

In the frequency domain, the whitened cross-correlation is computed as:

R
(w)
ij (τ) ≈

L−1
∑

k=0

Xi(k)Xj(k)∗

|Xi(k)| |Xj(k)|e
2πkτ/L (6)

While it produces much sharper cross-correlation peaks, the whitened cross-correla-

tion has one drawback: each frequency bin of the spectrum contributes the same

amount to the final correlation, even if the signal at that frequency is dominated by

noise. This makes the system less robust to noise, while making detection of voice

(which has a narrow bandwidth) more difficult. In order to alleviate the problem,

we introduce a weighting function that acts as a mask based on the signal-to-noise

ratio (SNR). For microphone i, we define this weighting function as:

ζn
i (k) =

ξn
i (k)

ξn
i (k) + 1

(7)
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where ξn
i (k) is an estimate of the a priori SNR at the ith microphone, at time frame

n, for frequency k. It is computed using the decision-directed approach proposed

by Ephraim and Malah [22]:

ξn
i (k) =

(1− αd)
[

ζn−1
i (k)

]2 ∣

∣

∣Xn−1
i (k)

∣

∣

∣

2
+ αd |Xn

i (k)|2

σ2
i (k)

(8)

where αd = 0.1 is the adaptation rate and σ2
i (k) is the noise estimate for micro-

phone i. It is easy to estimate σ2
i (k) using the Minima-Controlled Recursive Aver-

age (MCRA) technique [23], which adapts the noise estimate during periods of low

energy.

It is also possible to make the system more robust to reverberation by modifying the

weighting function in Equation 8 to use a new noise estimate σ̃2
i (k) that includes a

reverberation term λrev
n,i (k) and defined as:

σ̃2
i (k) = σ2

i (k) + λrev
n,i (k) (9)

We use a simple reverberation model with exponential decay defined as:

λrev
n,i (k) = γλrev

n−1,i(k) + (1− γ)δ
∣

∣

∣ζn
i (k)Xn−1

i (k)
∣

∣

∣

2
(10)

where γ represents the reverberation decay for the room, δ is the level of reverber-

ation and λrev
−1,i(k) = 0. In some sense, Equation 10 can be seen as modeling the

precedence effect [24,25] in order to give less weight to frequency bins where a loud

sound was recently present. The resulting enhanced cross-correlation is defined as:

R
(e)
ij (τ) =

L−1
∑

k=0

ζi(k)Xi(k)ζj(k)Xj(k)∗

|Xi(k)| |Xj(k)| e2πkτ/L (11)
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4.3 Direction Search on a Spherical Grid

In order to reduce the computation required and to make the system isotropic, we

define a uniform triangular grid for the surface of a sphere. To create the grid, we

start with an initial icosahedral grid [26]. Each triangle in the initial 20-element

grid is recursively subdivided into four smaller triangles, as shown in Figure 2.

The resulting grid is composed of 5120 triangles and 2562 points. The beamformer

energy is then computed for the hexagonal region associated with each of these

points. Each of the 2562 regions covers a radius of about 2.5◦ around its center,

setting the resolution of the search.

Figure 2. Recursive subdivision (2 levels) of a triangular element

Algorithm 1 Steered beamformer direction search
for all grid index d do

Ed ← 0

for all microphone pair ij do

τ ← lookup(d, ij)

Ed ← Ed + R
(e)
ij (τ)

end for

end for

direction of source← argmaxd (Ed)

Once the cross-correlations R
(e)
ij (τ) are computed, the search for the best direction
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on the grid is performed as described by Algorithm 1. The lookup parameter is a

pre-computed table of the time delay of arrival (TDOA) for each microphone pair

and each direction on the sphere. Using the far-field assumption [8], the TDOA in

samples is computed as:

τij =
Fs

c
(~pi − ~pj) · ~u (12)

where ~pi is the position of microphone i, ~u is a unit-vector that points in the

direction of the source, c is the speed of sound and Fs is the sampling rate. Equation

12 assumes that the time delay is proportional to the distance between the source

and microphone. This is only true when there is no diffraction involved. While this

hypothesis is only verified for an “open” array (all microphones are in line of sight

with the source), in practice we demonstrate experimentally (see Section 6) that

the approximation is good enough for our system to work for a “closed” array (in

which there are obstacles within the array).

For an array of M microphones and an N -element grid, the algorithm requires

M(M−1)N table memory accesses and M(M−1)N/2 additions. In the proposed

configuration (N = 2562, M = 8), the accessed data can be made to fit entirely in

a modern processor’s L2 cache.

Algorithm 2 Localization of multiple sources
for q = 1 to assumed number of sources do

Dq ← Steered beamformer direction search

for all microphone pair ij do

τ ← lookup(Dq, ij)

R
(e)
ij (τ) = 0

end for

end for
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Using Algorithm 1, our system is able to find the loudest source present by maxi-

mizing the energy of a steered beamformer. In order to localize other sources that

may be present, the process is repeated by removing the contribution of the first

source to the cross-correlations, leading to Algorithm 2. Since we do not know

how many sources are present, we always look for four sources, as this is the max-

imum number of sources our beamformer is able to locate at once. This situation

leads to a high rate of false detection, even when four or more sources are present.

That problem is handled by the particle filter described in Section 5.

4.4 Direction Refining

When a source is located using Algorithm 1, the direction accuracy is limited by

the size of the grid used. It is however possible, as an optional step, to further refine

the source location estimate. In order to do so, we define a refined grid for the

surrounding of the point where a source was found. To take into account the near-

field effects, the grid is refined in three dimensions: horizontally, vertically and over

distance. Using five points in each direction, we obtain a 125-point local grid with

a maximum resolution error of around 1◦. For the near-field case, Equation 12 no

longer holds, so it is necessary to compute the time differences as:

τij =
Fs

c
(‖d~u− ~pj‖ − ‖d~u− ~pi‖) (13)

where d is the distance between the source and the center of the array. Equation

13 is evaluated for five distances d (ranging from 50 cm to 5 m) in order to find

the direction of the source with improved accuracy. Unfortunately, it was observed

that the value of d found in the search is too unreliable to provide a good estimate

of the distance between the source and the array. The incorporation of the distance

13



nonetheless provides improved accuracy for the near field case.

5 Particle-Based Tracking

The steered beamformer detailed in Section 4 provides only instantaneous, noisy in-

formation about sources being possibly present and provides no information about

the behavior of the source in time (tracking). For that reason, it is desirable to use a

probabilistic temporal integration to track the different sound sources based on all

measurements available up to the current time. It has been shown [12,13,15] that

particle filters are an effective way of tracking sound sources. Using this approach,

all hypotheses about the location of each source are represented as a set of particles

to which different weights are assigned.

At time t, we consider the case of sources j = 0, 1, . . . , M−1, each modeled using

N particles of directions x
(t)
j,i and weights w

(t)
j,i . The state vector for the particles is

composed of six dimensions, three for position and three for its derivative:

s
(t)
j,i =

















x
(t)
j,i

ẋ
(t)
j,i

















(14)

Since the particle position is constrained to lie on a unit sphere and the speed

is tangent to the sphere, there are only four degrees of freedom. The sampling

importance resampling (SIR) particle filtering algorithm is outlined in Figure 3

and generalizes sound source tracking to an arbitrary and non-constant number of

sources. The probability density function (pdf) for the location of each source is

approximated by a set of particles that are given different weights. The weights are

updated by taking into account observations obtained from the steered beamformer
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Algorithm 3 Particle-based tracking algorithm. Steps 1 to 7 correspond to Subsec-

tions 5.1 to 5.7.
(1) Predict the state s

(t)
j from s

(t−1)
j for each source j

(2) Compute instantaneous direction probabilities associated with the steered

beamformer response

(3) Compute probabilities P
(t)
q,j associating beamformer peaks to sources being

tracked

(4) Compute updated particle weights w
(t)
j,i

(5) Add or remove sources if necessary

(6) Compute source localization estimate x̄
(t)
j for each source

(7) Resample particles for each source if necessary and go back to step 1.

and by computing the assignment between these observations and the sources being

tracked. From there, the estimated location of the source is the weighted mean of

the particle positions.

5.1 Prediction

As a predictor, we use the excitation-damping model as proposed in [13] because

it has been observed to work well in practice and can easily model different source

dynamics only two parameters. The model is defined as:

ẋ
(t)
j,i = aẋ

(t−1)
j,i + bFx (15)

x
(t)
j,i =x

(t−1)
j,i + ∆T ẋ

(t)
j,i (16)

where a = e−α∆T controls the damping term, b = β
√

1− a2 controls the excitation

term, Fx is a normally distributed random variable of unit variance and ∆T is the

time interval between updates. We consider three possible states:
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• Stationary source (α = 2, β = 0.04);

• Constant velocity source (α = 0.05, β = 0.2);

• Accelerated source (α = 0.5, β = 0.2).

A normalization step ensures that x
(t)
i still lies on the unit sphere (

∥

∥

∥x
(t)
j,i

∥

∥

∥ = 1) after

applying Equations 15 and 16.

5.2 Instantaneous Direction Probabilities from Beamformer Response

The steered beamformer described in Section 4 produces an observation O(t) for

each time t. The observation O(t) =
[

O
(t)
0 . . . O

(t)
Q−1

]

is composed of Q potential

source locations yq found by Algorithm 2. We also denote O(t), the set of all

observations O(t) up to time t. We introduce the probability Pq that the potential

source q is a true source (not a false detection). The value of Pq can be interpreted

as our confidence in the steered beamformer output. We know that the higher the

beamformer energy, the more likely a potential source is to be true. For q > 0, false

alarms are very frequent and independent of energy. With this in mind, we define

Pq empirically as:

Pq =







































































































ν2/2, q = 0, ν ≤ 1

1− ν−2/2, q = 0, ν > 1

0.3, q = 1

0.16, q = 2

0.03, q = 3

(17)
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with ν = E0/ET , where E0 is the beamformer output energy for the first source

found and ET is a threshold that depends on the number of microphones, the frame

size and the analysis window used (we use ET = 150). Figure 3 shows an example

of Pq values for potential sources found by the steered beamformer with four people

speaking continuously while moving around the microphone array in a moderately

reverberant room. Only the azimuth part of yq is shown as a function of time.
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Figure 3. Beamformer output probabilities Pq for azimuth as a function of time. Observa-

tions with Pq > 0.5 shown in red, 0.2 < Pq < 0.5 in blue, Pq < 0.2 in green.

At time t, the probability density of observing O(t)
q for a source located at particle

position x
(t)
j,i is given by:

p
(

O(t)
q

∣

∣

∣x
(t)
j,i

)

= N
(

yq;xj,i; σ
2
)

(18)

where N (yq;xj,i; σ
2) is a normal distribution centered at xj,i with variance σ2

evaluated at yq, and models the localization accuracy of the steered beamformer.

We use σ = 0.05, which corresponds to an RMS error of 3 degrees for the loca-

tion found by the steered beamformer. This error takes into account the resolution

error (1 degree) as well as other sources of errors, such as noise, reverberation,

diffraction, imperfect microphones and errors in microphone placement.
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5.3 Probabilities for Multiple Sources

Before we can derive the update rule for the particle weights w
(t)
j,i , we must first

introduce the concept of source-observation assignment. For each potential source

q detected by the steered beamformer, there are three possibilities:

• It is a false detection (H0).

• It corresponds to one of the sources currently tracked (H1).

• It corresponds to a new source that is not yet being tracked (H2).

In the case of H1, we need to determine which tracked source j corresponds to

potential source q. First, we assume that a potential source may correspond to at

most one tracked source and that a tracked source can correspond to at most one

potential source.

New source

False
detection

Potential
source q

Tracked
source j

Not observed

Figure 4. Assignment example where two of the tracked sources are observed,

with one new source and one false detection. The assignment can be described as

f({0, 1, 2, 3}) = {1,−2, 0,−1}.

Let f : {0, 1, . . . , Q − 1} −→ {−2,−1, 0, 1, . . . , M − 1} be a function assigning

observation q to the source j (values -2 is used for false detection and -1 is used for

a new source). Figure 4 illustrates a hypothetical case with four potential sources

detected by the steered beamformer and their assignment to the tracked sources.

Knowing P
(

f
∣

∣

∣O(t)
)

(the probability that f is the correct assignment given obser-
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vation O(t)) for all possible f , we can derive Pq,j, the probability that the tracked

source j corresponds to the potential source q as:

P
(t)
q,j =

∑

f

δj,f(q)P
(

f
∣

∣

∣O(t)
)

(19)

P (t)
q (H0)=

∑

f

δ−2,f(q)P
(

f
∣

∣

∣O(t)
)

(20)

P (t)
q (H2)=

∑

f

δ
−1,f(q)P

(

f
∣

∣

∣O(t)
)

(21)

where δi,j is the Kronecker delta. Equation 19 is in fact the sum of the probabilities

of all f that assign potential source q to tracked source j and similarly for Equations

20 and 21.

Omitting t for clarity, the probability P (f |O) is given by:

P (f |O) =
p(O|f)P (f)

p(O)
(22)

Knowing that there is only one correct assignment (
∑

f P (f |O) = 1), we can avoid

computing the denominator p(O) by using normalization. Assuming conditional

independence of the observations given the mapping function, we can decompose

p (O| f) into individual components:

p (O| f) =
∏

q

p (Oq| f(q)) (23)

We assume that the distribution of the false detections (H0) and the new sources

(H2) are uniform, while the distribution for tracked sources (H1) is the pdf approx-

imated by the particle distribution convolved with the steered beamformer error
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pdf:

p (Oq| f(q)) =























































1/4π, f(q) = −2

1/4π, f(q) = −1

∑

i wf(q),ip (Oq|xj,i) , f(q) ≥ 0

(24)

The a priori probability of f being the correct assignment is also assumed to come

from independent individual components, so that:

P (f) =
∏

q

P (f(q)) (25)

with:

P (f(q)) =























































(1− Pq) Pfalse, f(q) = −2

PqPnew f(q) = −1

PqP
(

Obs
(t)
j

∣

∣

∣O(t−1)
)

f(q) ≥ 0

(26)

where Pnew is the a priori probability that a new source appears and Pfalse is the a

priori probability of false detection. The probability P
(

Obs
(t)
j

∣

∣

∣O(t−1)
)

that source

j is observable (i.e., that it exists and is active) at time t is given by:

P
(

Obs
(t)
j

∣

∣

∣O(t−1)
)

= P
(

Ej

∣

∣

∣O(t−1)
)

P
(

A
(t)
j

∣

∣

∣O(t−1)
)

(27)

where Ej is the event that source j actually exists and A
(t)
j is the event that it is

active (but not necessarily detected) at time t. By active, we mean that the sig-

nal it emits is non-zero (for example, a speaker who is not making a pause). The

20



probability that the source exists is given by:

P
(

Ej

∣

∣

∣O(t−1)
)

= P
(t−1)
j +

(

1− P
(t−1)
j

) PoP
(

Ej

∣

∣

∣O(t−2)
)

1− (1− Po) P (Ej |O(t−2) )
(28)

where Po is the a priori probability that a source is not observed (i.e., undetected

by the steered beamformer) even if it exists (with P0 = 0.2 in our case) and P
(t)
j =

∑

q P
(t)
q,j is the probability that source j is observed (assigned to any of the potential

sources).

Assuming a first order Markov process, we can write the following about the prob-

ability of source activity:

P
(

A
(t)
j

∣

∣

∣O(t−1)
)

=P
(

A
(t)
j

∣

∣

∣A
(t−1)
j

)

P
(

A
(t−1)
j

∣

∣

∣O(t−1)
)

+P
(

A
(t)
j

∣

∣

∣¬A
(t−1)
j

) [

1− P
(

A
(t−1)
j

∣

∣

∣O(t−1)
)]

(29)

with P
(

A
(t)
j

∣

∣

∣A
(t−1)
j

)

the probability that an active source remains active (set to

0.95), and P
(

A
(t)
j

∣

∣

∣¬A
(t−1)
j

)

the probability that an inactive source becomes active

again (set to 0.05). Assuming that the active and inactive states are equiprobable,

the activity probability is computed using Bayes’ rule and usual probability manip-

ulations:

P
(

A
(t)
j

∣

∣

∣O(t)
)

=
1

1 +

[

1−P

(

A
(t)
j |O(t−1)

)][

1−P

(

A
(t)
j |O(t)

)]

P

(

A
(t)
j |O(t−1)

)

P

(

A
(t)
j |O(t)

)

(30)

5.4 Weight Update

At times t, the new particle weights for source j are defined as:

w
(t)
j,i = p

(

x
(t)
j,i

∣

∣

∣O(t)
)

(31)
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Assuming that the observations are conditionally independent given the source

position, and knowing that for a given source j,
∑N

i=1 w
(t)
j,i = 1, we obtain through

Bayesian inference:

w
(t)
j,i =

p
(

O(t)
∣

∣

∣x
(t)
j,i

)

p
(

x
(t)
j,i

)

p (O(t))

=
p

(

O(t)
∣

∣

∣x
(t)
j,i

)

p
(

O(t−1)
∣

∣

∣x
(t)
j,i

)

p
(

x
(t)
j,i

)

p (O(t))

=
p

(

xj,i

∣

∣

∣O(t)
)

p
(

x
(t)
j,i

∣

∣

∣O(t−1)
)

p
(

O(t)
)

p
(

O(t−1)
)

p (O(t)) p
(

x
(t)
j,i

)

=
p

(

x
(t)
j,i

∣

∣

∣O(t)
)

w
(t−1)
j,i

∑N
i=1 p

(

x
(t)
j,i |O(t)

)

w
(t−1)
j,i

(32)

Let I
(t)
j denote the event that source j is observed at time t and knowing that

P
(

I
(t)
j

)

= P
(t)
j =

∑

q P
(t)
q,j , we have:

p
(

x
(t)
j,i

∣

∣

∣O(t)
)

=
(

1− P
(t)
j

)

p
(

x
(t)
j,i

∣

∣

∣O(t),¬I (t)
j

)

+ P
(t)
j p

(

x
(t)
j,i

∣

∣

∣O(t), I
(t)
j

)

(33)

In the case where no observation matches the source, all particles have the same

probability, so we obtain:

p
(

x
(t)
j,i

∣

∣

∣O(t)
)

=
(

1− P
(t)
j

) 1

N
+ Pj

∑Q
q=1 P

(t)
q,j p

(

O(t)
q

∣

∣

∣x
(t)
j,i

)

∑N
i=1

∑Q
q=1 P

(t)
q,j p

(

O
(t)
q

∣

∣

∣x
(t)
j,i

) (34)

where the denominator on the right side of Equation 34 provides normalization for

the I
(t)
j case, so that

∑N
i=1 p

(

x
(t)
j,i

∣

∣

∣O(t), I
(t)
j

)

= 1.

5.5 Adding or Removing Sources

In a real environment, sources may appear or disappear at any moment. If, at any

time, Pq(H2) is higher than a threshold equal to 0.3, we consider that a new source
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is present. In that case, a set of particles is created for source q. Even when a

new source is created, it is only assumed to exist if its probability of existence

P
(

Ej

∣

∣

∣O(t)
)

reaches a certain threshold, which we set to 0.98. At this point, the

probability of existence is set up 1 and ceases to be updated.

In the same way, we set a time limit on sources. If the source has not been observed

(P (t)
j < Tobs) for a certain amount of time, we consider that it no longer exists. In

that case, the corresponding particle filter is no longer updated nor considered in

future calculations.

5.6 Parameter Estimation

The estimated position of each source is the mean of the pdf and can be obtained

as a weighted average of its particles position:

x̄
(t)
j =

N
∑

i=1

w
(t)
j,ix

(t)
j,i (35)

It is however possible to obtain better accuracy simply by adding a delay to the

algorithm. This can be achieved by augmenting the state vector by past position

values. At time t, the position at time t− T is thus expressed as:

x̄
(t−T )
j =

N
∑

i=1

w
(t)
j,ix

(t−T )
j,i (36)

Using the same example as in Figure 3 we show in Figure 5 how the particle

filter is able to remove the noise and produce smooth trajectories. The added delay

produces an even smoother result.
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Figure 5. Tracking of four moving sources, showing azimuth as a function of time. Left: no

delay, right: delayed estimation (500 ms).

5.7 Resampling

Resampling is performed only when Neff ≈
(

∑N
i=1 w2

j,i

)

−1
< Nmin [27] with

Nmin = 0.7N . That criterion ensures that resampling only occurs when new data is

available for a certain source. Otherwise, this would cause unnecessary reduction

in particle diversity, due to some particles randomly disappearing.

6 Results

The proposed localization system is tested using an array of omni-directional

microphones, each composed of an electret cartridge mounted on a simple pre-

amplifier. The array is composed of eight microphones, as it is the maximum num-

ber of analog input channels on commercially available soundcards. Two array con-

figurations are used for the evaluation of the system. The first configuration (C1)

is an open array and consists of inexpensive (∼$1 each) microphones arranged

on the summits of a 16 cm cube mounted on top of the Spartacus robot (shown

left in Figure 6). The second configuration (C2) is a closed array and uses smaller,

middle-range (∼$20 each) microphones, placed through holes at different locations
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on the body of the robot (shown right in Figure 6). For both arrays, all channels are

sampled simultaneously using an RME Hammerfall Multiface DSP connected to a

laptop through a CardBus interface. Running the localization system in real-time

currently requires 30% of a 1.6 GHz Pentium-M CPU. Due to the low complexity

of the particle filtering algorithm, we are able to use 1000 particles per source with-

out noticeable increase in complexity. This also means that the CPU time does not

increase significantly with the number of sources present.

Figure 6. Spartacus robot in configuration C1 (left) and C2 (right).

Experiments are performed in two different environments. The first environment

(E1) is a medium-size room (10 m × 11 m, 2.5 m ceiling) with a reverberation

time (-60 dB) of 350 ms. The second environment (E2) is a hall (16 m × 17 m, 3.1

m ceiling, connected to other rooms) with 1.0 s reverberation time. For all tasks,

configurations and environments, all parameters have the same value, except for

the reverberation decay γ, which is set to 0.65 in the E1 environment and 0.85 in

the E2 environment.
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6.1 Characterization

The system is characterized in environment E1 in terms of detection reliability

and accuracy. Detection reliability is defined as the capacity to detect and localize

sounds to within 10 degrees, while accuracy is defined as the localization error for

sources that are detected. We use three different types of sound: a hand clap, the

test sentence “Spartacus, come here”, and a burst of white noise lasting 100 ms.

The sounds are played from a speaker placed at different locations around the robot

and at three different heights: 0.1 m, 1 m, 1.4 m.

6.1.1 Detection Reliability

Detection reliability is tested at distances (measured from the center of the array)

ranging from 1 m (a normal distance for close interaction) to 7 m (limitation of

the room). Three indicators are computed: correct localization (within 10 degrees),

reflections (incorrect elevation due to roof of ceiling), and other errors. For all

indicators, we compute the number of occurrences divided by the number of sounds

played. This test includes 1440 sounds at a 22.5◦ interval for 1 m and 3 m and

360 sounds at a 90◦ interval for 5 m and 7 m. Because of the limited size of the

room used for the experiment, the tests for 5 m and 7 m had to use fixed positions

for the robot and the source, leading to less variability in the conditions. This can

explain differences between these results and those obtained for shorted distances,

especially for reflections.

Results are shown in Table 1 for both C1 and C2 configurations. In configuration

C1, results show near-perfect reliability even at seven meter distance. For C2, we

noted that the reliability depends on the sound type, so detailed results for different
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sounds are provided in Table 2, showing that only hand clap sounds cannot be

reliably detected passed one meter. We expect that a human would have achieved a

score of 100% for this reliability test.

Like most localization algorithms, our system is unable to detect pure tones. This

behavior is explained by the fact that sinusoids occupy only a very small region

of the spectrum and thus have a very small contribution to the cross-correlations

with the proposed weighting. It must be noted that tones tend to be more difficult

to localize even for the human auditory system.

Table 1

Detection reliability for C1 and C2 configurations

Distance Correct (%) Reflection (%) Other error (%)

C1 C2 C1 C2 C1 C2

1 m 100 94.2 0.0 7.3 0.0 1.3

3 m 99.4 80.6 0.0 21.0 0.3 0.1

5 m 98.3 89.4 0.0 0.0 0.0 1.1

7 m 100 85.0 0.6 1.1 0.6 1.1

6.1.2 Localization Accuracy

In order to measure the accuracy of the localization system, we use the same setup

as for measuring reliability, with the exception that only distances of 1m and 3m are

tested (1440 sounds at a 22.5◦ interval) due to limited space available in the testing

environment. Neither distance nor sound type has significant impact on accuracy.

The root mean square accuracy results are shown in Table 3 for configurations C1
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Table 2

Correct localization rate as a function of sound type and distance for C2 configuration

Distance Hand clap (%) Speech (%) Noise burst (%)

1 m 88.3 98.3 95.8

3 m 50.8 97.9 92.9

5 m 71.7 98.3 98.3

7 m 61.7 95.0 98.3

and C2. Both azimuth and elevation are shown separately. According to [28,29],

human sound localization accuracy ranges between two and four degrees in similar

conditions. The localization accuracy of our system is thus equivalent or better than

human localization accuracy.

Table 3

Localization accuracy (root mean square error)

Localization error C1 (deg) C2 (deg)

Azimuth 1.10 1.44

Elevation 0.89 1.41

6.2 Source Tracking

We measure the tracking capabilities of the system for multiple sound sources.

These are performed using the C2 configuration in both E1 and E2 environments.

In all cases, the distance between the robot and the sources is approximately two

meters. The azimuth is shown as a function of time for each source. The elevation is

not shown as it is almost the same for all sources during these tests. The trajectories
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for the three experiments are shown in Figure 7.

Figure 7. Source trajectories (robot represented as an X). Left: moving sources. Center:

moving robot. Right: sources with intersecting trajectories.

6.2.1 Moving Sources

In a first experiments, four people were told to talk continuously (reading a text

with normal pauses between words) to the robot while moving, as shown on the

left of Figure 7. Each person walked 90 degrees towards the left of the robot before

walking 180 degrees towards the right.

Results are presented in Figure 8 for delayed estimation (500 ms). In both environ-

ments, the source estimated trajectories are consistent with the trajectories of the

four speakers and only one false detection was present (in E1, at t = 15 s) for a

short period of time.
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Figure 8. Four speakers moving around a stationary robot. Left: E1, right: E2. False detec-

tion shown in black.
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6.2.2 Moving Robot

Tracking capabilities of our system are also evaluated in the context where the

robot is moving, as shown in the center of Figure 7. In this experiment, two people

are talking continuously to the robot as it is passing between them. The robot

then makes a half-turn to the left. Results are presented in Figure 9 for delayed

estimation (500 ms). Once again, the estimated source trajectories are consistent

with the trajectories of the sources relative to the robot for both environments. Only

one false detection was present (in E1, at t = 38 s) for a short period of time.
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Figure 9. Two stationary speakers with the robot moving. Left: E1, right: E2. False detection

shown in black.

6.2.3 Sources with Intersecting Trajectories

In this experiment, two moving speakers are talking continuously to the robot, as

shown on the right of Figure 7. They start from each side of the robot, intersecting

in front of the robot before reaching the other side. Results in Figure 10 show that

the particle filter is able to keep track of each source. This result is possible because

the prediction step imposes some inertia to the sources and despite the fact that the

steered beamformer typically only “sees” one source when the two sources are very

close.
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Figure 10. Two speakers intersecting in front of the robot. Left: E1, right: E2.

6.2.4 Number of Microphones

These results evaluate how the number of microphones used affect the system ca-

pabilities. To do so, we use the same recording as in 6.2.1 for C2 in E1 with only a

subset of the microphone signals to perform localization. Since a minimum of four

microphones are necessary for localizing sounds without ambiguity, we evaluate

the system for four to seven microphones (selected arbitrarily as microphones num-

ber 1 through N ). Comparing results of Figure 11 to those obtained in Figure 8 for

E1, it can be observed that tracking capabilities degrade gracefully as microphones

are removed. While using seven microphones makes little difference compared to

the baseline of eight microphones, the system is unable to reliably track more than

two of the sources when only four microphones are used. Although there is no theo-

retical relationship between the number of microphones and the maximum number

of sources that can be tracked, this clearly shows the how redundancy added by

using more microphones can help in the context of sound source localization.

6.3 Localization and Tracking for Robot Control

This experiment is performed in real-time and consists of making the robot follow

the person speaking to it. At any time, only the source present for the longest time is
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Figure 11. Tracking of four sources using C2 in the E1 environment, using 4 to 7 micro-

phones.

considered. When the source is detected in front (withing 10 degrees) of the robot,

it is made to go forward. At the same time, regardless of the angle, the robot turns

toward the source in such a way as to keep the source in front. Using this simple

control system, it is possible to control the robot simply by talking to it, even in

noisy and reverberant environments.

This has been tested by controlling the robot going from environment E1 to envi-

ronment E2, having to go through corridors and an elevator, speaking to the robot

with normal intensity at a distance ranging from one meter to three meters. The sys-

tem worked in real-time, providing tracking data at a rate of 25 Hz (no additional

delay on the estimator) with the robot reaction time limited mainly by the inertia of

the robot. One problem we encountered during the experiment is that when going

through corridors, the robot would sometimes mistake reflections on the walls for

real sources. Fortunately, the fact that the robot considers only the oldest source
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present reduces problems from both reflections and noise sources.

7 Conclusion

Using an array of eight microphones, we have implemented a system that is able to

localize and track simultaneous moving sound sources in the presence of noise and

reverberation, at distances up to seven meters. We have also demonstrated that the

system is capable of controlling in real-time the motion of a robot, using only the

direction of sounds. The tracking capabilities demonstrated result from combining

our frequency-domain steered beamformer with a particle filter tracking multiple

sources. Moreover, the original solution we found to the source-observation assign-

ment problem is also applicable to other multiple objects tracking problems. Other

novelties in this paper include the frequency-domain implementation of our steered

beamformer and the way we make it robust to reverberation.

A robot using the proposed system has access to a rich, robust and useful set of in-

formation derived from its acoustic environment. This can certainly affect its ability

of making autonomous decisions in real life settings, and show higher intelligent

behavior. Also, because the system is able to localize multiple sound sources, it can

be exploited by a sound separation algorithm and enable speech recognition to be

performed. This will allow to identify the localized sound sources so that additional

relevant information can be obtained from the acoustic environment.
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