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Abstract

This article explains a decision rule that uses Bayesian posterior distributions as the basis for accepting or rejecting
null values of parameters. This decision rule focuses on the range of plausible values indicated by the highest density
interval of the posterior distribution and the relation between this range and a region of practical equivalence (ROPE)
around the null value. The article also discusses considerations for setting the limits of a ROPE and emphasizes that

analogous considerations apply to setting the decision thresholds for p values and Bayes factors.
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In everyday life and in science, people often gather
data to estimate a value precisely enough to take action.
We use sensory data to decide that a fruit is ripe enough
to be tasty but not overripe—that the ripeness is “just
right” (e.g., Kappel, Fisher-Fleming, & Hogue, 1995,
1996). Scientists measured the position of the planet
Mercury (among other things) until the estimate of the
parameter y in competing theories of gravity was suf-
ficiently close to 1.0 to accept general relativity for
applied purposes (e.g., Will, 2014).

These examples illustrate a method for decision mak-
ing that I formalize in this article. This method, which
is based on Bayesian estimation of parameters, uses
two key ingredients. The first ingredient is a summary
of certainty about the measurement. Because data are
noisy, a larger set of data provides greater certainty
about the estimated value of measurement. Certainty is
expressed by a confidence interval in frequentist sta-
tistics and by a bighest density interval (HDI) in
Bayesian statistics. The HDI summarizes the range of
most credible values of a measurement. The second
key ingredient in the decision method is a range of
parameter values that is good enough for practical pur-
poses. This range is called the region of practical equiv-
alence (ROPE). The decision rule, which I refer to as
the HDI4+ROPE decision rule, is intuitively straightfor-
ward: If the entire HDI—that is, all the most credible
values—falls within the ROPE, then accept the target

value for practical purposes. If the entire HDI falls
outside the ROPE, then reject the target value. Other-
wise, withhold a decision.

In this article, I explain the HDI+ROPE decision rule
and provide examples. I then discuss considerations
for setting the limits of a ROPE and explain that similar
considerations apply to setting the decision thresholds
for p values and Bayes factors.

Disclosures

Files available at the Open Science Framework (OSF;
https://osf.io/jwd3t/) provide complete R code for the
two-group example in Figure 2. This code can be trivi-
ally modified for other sets of two-group data. The
Supplement file available at the same URL discusses the
following topics:

e ROPE limits for regression coefficients in logistic

regression
e Highest-density intervals versus equal-tailed
intervals
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e Decision-theoretic properties of the HDI+ROPE
decision rule, including its asymptotic consis-
tency and a loss function for which the decision
procedure may be a Bayes rule

e A decision rule based on the ROPE without the
HDI

e Comparison of the HDI+ROPE decision rule with
frequentist equivalence testing, null-hypothesis
significance testing (NHST), and Bayes factors

e Application of the HDI+ROPE decision rule to
meta-analysis and comparison with meta-analysis
using Bayes factors

Bayesian Parameter Estimation

Bayesian inference is merely reallocation of credibility
across possibilities, according to the mathematics of
conditional probability. In formal data analysis, the pos-
sibilities are parameter values in a model of the data.
For example, suppose we are measuring the systolic
blood pressure (in units of millimeters mercury) of a
group of people who have been exposed to a stressor.
We may choose to describe the set of blood pressures
with a normal distribution, which has two parameters:
the location parameter, p, which characterizes the cen-
tral tendency, and the scale parameter, o, which char-
acterizes the variability across people. We start with a
prior distribution, a reasonable probability distribution
over possible values of the parameters. Note that the
prior distribution is a joint distribution over the space
of (p,0) parameter value combinations. (The prior dis-
tribution is not a distribution over data, nor is the prior
distribution a sampling distribution of test statistics.)
After measuring the people’s blood pressures, we real-
locate probability to values of p and o that are consis-
tent with the observed measurements. The result is a
posterior probability distribution over the joint space
of all possible combinations of the parameter values,
(n,0). Bayesian inference computes the reallocation
using a simple formula called Bayes rule, named after
Thomas Bayes (Bayes & Price, 1763). (For nontechnical
introductions to Bayesian data analysis, see Kruschke
& Liddell, 2018a, 2018b; for an accessible book-length
tutorial, see Kruschke 2015).

Probability distribution over
parameter values

There is uncertainty about the parameter values because
many parameter values are reasonably consistent with
whatever data we may have. In a Bayesian framework,
the uncertainty in parameter values is represented as a
probability distribution over the space of parameter
values. Parameter values that are more consistent with

the data have higher probability than parameter values
that are less consistent with the data. If we are uncertain
about the parameter values, perhaps because we have
very few data, then the probability distribution over the
parameter space is spread out. With more data, the
distribution becomes more peaked over a narrower
range of values, reflecting our increased certainty in
the estimate.

The HDI

In the case of continuous parameters, the height of the
distribution at a given value is called the probability
density for that value (for discrete-valued parameters,
the term probability mass is used). The width of the
parameter distribution indicates our uncertainty in
the parameter value. A useful summary of the width is
the 95% HDI. Any parameter value inside the HDI has
higher probability density than any value outside the
HDI, and the total probability of values in the 95% HDI
is 95%. Parameter values with higher density are inter-
preted as more credible than parameter values with
lower density. Therefore, we can describe values inside
the 95% HDI as “the 95% most credible values of the
parameter.” (For further discussion, see the section
titled Equal-Tailed Intervals Vs. Highest-Density Inter-
vals in the Supplement file at the OSF, https://osf.io/
jwd3t/).

Making a Decision Based on the
Relation Between the HDI and ROPE

Discrete decisions should be avoided if possible,
because such decisions encourage people to ignore the
magnitude of the parameter value and its uncertainty (e.g.,
Cumming, 2014; Kruschke & Liddell, 2018b; Wasserstein
& Lazar, 2016, and many references cited therein). Such
black-and-white thinking leads to misinterpretation and
confusion. Despite this admonition against black-and-
white thinking, there may be some situations in which an
analyst needs to make a discrete decision about a param-
eter value such as a null value. In medical applications,
for example, decisions to recommend a treatment or
not must be made.

The ROPE

There are many possible decision rules, but here I
focus on one that requires the analyst to consider
whether all the most credible parameter values are
sufficiently far away from the null value that the null
value can be rejected, or whether all the most cred-
ible parameter values are sufficiently close to the null
value that the null value can be accepted. This
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decision rule is made concrete by defining proximity
to the null value using the ROPE, which specifies the
range of parameter values that are equivalent to the
null value for practical purposes. The notion of the
ROPE appears in the literature under many different
names, such as indifference zone, range of equiva-
lence, equivalence margin, margin of noninferiority,
smallest effect size of interest, and good-enough
belt (e.g., Carlin & Louis, 2009; Freedman, Lowe, &
Macaskill, 1984; Hobbs & Carlin, 2008; Lakens, 2014,
2017; Serlin & Lapsley, 1985, 1993; Spiegelhalter,
Freedman, & Parmar, 1994).

The HDI+ROPE decision rule

Consider a ROPE around a null value of a parameter.
If the 95% HDI of the parameter distribution falls com-
pletely outside the ROPE, then one should reject the
null value, because the 95% most credible values of the
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parameter are all not practically equivalent to the null
value. If the 95% HDI of the parameter distribution falls
completely inside the ROPE, then one should accept
the null value for practical purposes, because the 95%
most credible values of the parameter are all practically
equivalent to the null value. If the 95% HDI is neither
completely outside nor completely inside the ROPE,
then one should remain undecided, because some of
the most credible values are practically equivalent to
the null but others are not. This HDI+ROPE decision
rule has been described in several previous publica-
tions (Kruschke, 2010, 2011a, 2011b, 2013, 2015;
Kruschke, Aguinis, & Joo, 2012; Kruschke & Liddell,
2018a, 2018b; Kruschke & Vanpaemel, 2015).

Figure 1 illustrates different relationships between
an HDI and ROPE, and the decisions to which they
lead. Figure 1la shows a case in which the HDI falls
completely outside the ROPE, and therefore the null
value is rejected because all the most credible values
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Fig. 1. Examples of different relationships between a highest density interval (HDID) and the region of practical equivalence (ROPE), and the
decisions to which they lead. In each panel, the unmarked vertical axis is probability density, the HDI is marked by the horizontal bar, and

the ROPE limits are marked by the two vertical bars.
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are not practically equivalent to the null. Figure 1b
shows a case in which the HDI falls completely inside
the ROPE, and therefore the null value is accepted for
practical purposes because all the most credible values
are practically equivalent to the null.

Figure 1c also shows a case in which the null value
is accepted for practical purposes—here, despite the
fact that the null value is not itself within the HDI.
This case is important because it contrasts the meaning
of the HDI (from Bayesian inference) with the mean-
ing of the ROPE (from decision making). Accepting
the null value for practical purposes does not mean
that the null value is among the most credible values
of the parameter distribution. Accepting the null value
for practical purposes means merely that all the most
credible values are practically equivalent to the null
value.

The remaining panels in Figure 1 show cases in
which we should remain undecided. In all three panels,
some of the HDI falls outside the ROPE and some of
the HDI falls inside the ROPE. Notice that we do not
reject the null value in the situation depicted in Figure
1d despite the fact that the null value falls outside the
HDI, because some of the HDI is practically equivalent
to the null. This decision contrasts with the analogous
situation in NHST: A null value is rejected if it falls
outside the 95% confidence interval. We do not accept
the null value in the case of Figure le despite the fact
that the null value falls within the HDI, because some
of the HDI is not practically equivalent to the null. We
do not accept the null value in the case of Figure 1f
despite the fact that the HDI spans the ROPE, because
some of the most credible values are not equivalent to
the null value.

Notice that accepting a landmark parameter value,
as in the situations illustrated in Figures 1b and lc, is
not the same thing as treating the accepted value as
the best estimate of the parameter value. On the con-
trary, the Bayesian posterior distribution indicates the
estimate of the parameter value, and typically the most
probable (modal) parameter value is treated as the best
estimate of the parameter value. When we accept a
landmark parameter value, we are merely saying that
the estimate of the parameter value is close enough to
the landmark value, with high enough precision, that
we can treat the landmark value as good enough for
practical purposes. In other words, accepting a land-
mark parameter value means that the best estimate of
the parameter value is practically equivalent to the
landmark value, not that the best estimate of the param-
eter value is the landmark value.

The Supplement file at the OSF (https://osf.io/
jwd3t/) describes some decision-theoretic properties of
the HDI+ROPE decision rule.

Numerical example

I illustrate this decision rule by applying it to a com-
parison of two groups for whom we have metric data
(as opposed to ordinal or categorical data). Suppose
the data are IQ scores from participants who have been
given a placebo and participants who have been given
a drug intended to make them smarter. The data within
each group might have outliers, so we describe the
groups with distributions that have optionally heavy
tails (namely, mathematical ¢ distributions). The model
therefore has central-tendency parameters for the two
groups, denoted 1, and p,; scale parameters for the two
groups, denoted o, and 6,; and a normality parameter,
denoted v, that has large values for nearly normal dis-
tributions and small values for heavy-tailed distribu-
tions. The analysis begins with a broad prior distribution
on the joint space of these five parameters. The broad
prior is designed to have minimal influence on the form
of the posterior distribution (see Kruschke, 2013, for
complete details).

The data for this example were created as random
numbers from normal distributions, and the sample
sizes were arbitrary. The data are represented by the
histograms in the upper right panels of Figure 2. The
other panels of Figure 2 show aspects of the five-
dimensional posterior distribution; that is, they show
different perspectives of the single joint distribution.
The parameter distributions were derived with Markov
chain Monte Carlo methods (MCMC; see chap. 7 of
Kruschke, 2015) and computed using the JAGS software
(Plummer, 2003, 2017) with the runjags package in R
(Denwood, 2016). HDI limits were computed from the
MCMC chain using the method explained in Section
25.2.3 of Kruschke (2015) and with an effective sample
size that exceeded 10,000, as recommended in Section
7.5.2 of Kruschke (2015). Complete computer code for
this example is available at the OSF (https://osf.io/
jwd3t/).

In this application to two groups, it is natural to want
to know the typical IQ score in each group (.e., the
magnitudes of p, and p,), the spread of scores in each
group (i.e., the magnitudes of o, and 5,), the difference
in magnitude and spread between the two groups, and
the uncertainty of all those estimates. We are interested
in the magnitude of the difference between the means
because that indicates how much IQ scores have been
shifted by the smart drug, on average. We are interested
in the magnitude of the difference between the spreads
because that indicates how much the consistency of
the scores has been affected by the smart drug. It is
known, for example, that stressors can increase vari-
ability across people, as some people improve in
response to a stressor whereas others decline (e.g.,
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Fig. 2. Applying the decision rule to compare two groups. The data from the groups (i.e., the 1Q scores, denoted
here by the generic label ) are shown as histograms in the two upper panels of the right column. Superimposed
on the data histograms are ¢ distributions predicted from the posterior distribution. The left column shows the
(marginal) posterior distributions of the individual parameters in the model. The lower three panels of the right
column show aspects of the posterior distribution with regions of practical equivalence (ROPEs), delimited by
the vertical bars (see the main text for how the ROPE limits were selected). These panels show the percentages
of the posterior distributions below the low limit of the ROPE, within the ROPE, and above the high limit of the
ROPE. The 95% highest density intervals (HDIs) are indicated by the black horizontal bars. In this example, the
ROPE+HDI decision rule rejects a mean difference of zero because the 95% HDI falls completely outside the
ROPE, accepts a scale difference of zero because the 95% HDI falls completely inside the ROPE, and rejects an

effect size of zero because the 95% HDI falls completely outside the ROPE.
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Lazarus & Eriksen, 1952). And of course, we are inter-
ested in the uncertainty of those estimates, so that we
know how much confidence to place on their values.

The lower three panels of the right column in Figure
2 show, respectively, the posterior distribution of the
difference between the means (i.e., 1, — 1,), the poste-
rior distribution of the difference between the scales
(i.e., o, — 0,), and the posterior distribution of the effect
size (i.e., the standardized difference between the
means, calculated as § = (u, —p,)/4/(o} +62)/2; Cohen,
1988).

We can establish ROPEs on the parameters (or com-
binations of parameters) to make decisions. I discuss
methods for setting ROPE limits later in this article, but
here, for purposes of illustration, I set a ROPE on the
effect size at half of Cohen’s conventional definition of
a small effect, that is, at 6 = #0.1. To establish a ROPE
on the difference between the means, one option is to
start with the same convention as for 8 and translate it
to an analogous value on p,; — p,. Thus, if we assume
that the standardized population value of ¢ is 15.0, then
we can calculate the corresponding ROPE as follows:
U, — 1, =+0.1 x 15 = +1.5. A different option is to derive
the ROPE from a real-world consideration, such as a
change in mean IQ that would imply a negligible
change in gross domestic product (GDP) per capita.
Rindermann and Thompson (2011, p. 761) reported that
a change of 1 IQ point in the population mean predicts
a change of $229 in GDP per capita. If we suppose that
a $687 change is practically equivalent to zero, then
the ROPE would again have a width of 3 IQ points (i.e.,
+1.5). Finally, for the ROPE on the difference between
scales, I again used a half-width of 1.5, because ¢ is on
the same scale as p. This setting is merely a fallback
position in the absence of specific knowledge about
the utility of changes in variability, as distinct from
changes in central tendency. These ROPEs are indicated
in Figure 2. We decide to reject a zero difference
between the means because the 95% most credible
values are outside the ROPE. We also decide to reject
a zero effect size. But we decide to accept a zero dif-
ference between the scales (os) because the 95% most
credible values of the difference are all practically
equivalent to zero.

In summary, the posterior distribution is a multidi-
mensional distribution on the joint parameter space,
and various parameters (and combinations of param-
eters) can be compared simultaneously with relevant
ROPEs. It is important to keep in mind that the full
posterior distribution is the information delivered by
Bayesian analysis, as summarized by the mode and 95%
HDI of the distribution. The discrete decisions using
ROPEs are secondary conclusions. Notice that to make
these decisions using the HDI+ROPE rule, we must

explicitly consider the magnitudes and uncertainties of
the parameters; in contrast, p values and Bayes factors
do not indicate the magnitudes and uncertainties of the
parameters.

More About the ROPE
The ROPE in theory testing

The concept of the ROPE is useful for implementing a
solution to a paradox from Meehl (1967, 1997). Theories
pursued by NHST posit merely any nonnull effect and
are therefore confirmed merely by rejecting the null
value of the parameter, regardless of the actual magni-
tude of the parameter. Assuming that most variables of
interest have some small but nonzero correlation with
any other variable of interest, the correlation will be
detected if the data set is large enough, and then the
anything-but-null theory will be confirmed. Thus,
anything-but-null theories incur a methodological para-
dox: Such theories become easier to confirm with larger
sample sizes, rather than easier to disconfirm, and this
is not the way scientific theories are supposed to work.
By contrast, quantitatively predictive theories become
easier to disconfirm with larger sample sizes because
reality will almost always be somewhat discrepant from
any quantitatively specific prediction. For example, the
specific quantitative predictions of the Newtonian the-
ory of gravity were disconfirmed by precise measure-
ments of the orbit of the planet Mercury (e.g., Schiff,
1960; Will, 2014).

But how can quantitatively predictive hypotheses be
confirmed? Serlin and Lapsley (1985, 1993) explained
that a decision to confirm a quantitative prediction
requires a ROPE (what they called a “good-enough
belt”) around the predicted value. If the observed value
is within the ROPE, the hypothesis is confirmed for the
current practical purposes. The ROPE is a decision
boundary that reflects the precision needed to distin-
guish current theories. If two theories make very similar
predictions, then a narrow ROPE is needed to distin-
guish them. If two theories make rather different pre-
dictions, then a wider ROPE can be used. The ROPE
also should take into account the practical meaning of
the magnitude of discrepancy. In this way, when an
observed value of a parameter falls within the ROPE of
the predicted value, the prediction is said to be con-
firmed for current practical purposes.

The ROPE in equivalence testing and
noninferiority testing

The concept of the ROPE is essential to frequentist
equivalence testing (e.g., Lakens, 2017). In equivalence
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testing, the analyst specifies a ROPE around the null
value and decides that the estimated parameter is sta-
tistically equivalent to the null value if the confidence
interval falls entirely within the ROPE (e.g., Westlake,
1976, 1981). This decision rule follows naturally from
the meanings of the confidence interval and ROPE: The
confidence interval is the range of parameter values
that are not rejected (e.g., Cox, 20006), and if all the
unrejected values fall within the ROPE, then they are
all practically equivalent to the null value.!

The notion of the ROPE is also central to noninferi-
ority testing (e.g., Lesaffre, 2008; Wiens, 2002), although
only the low end of the ROPE is emphasized. In non-
inferiority testing, the analyst specifies a value below
the null value that represents the largest decrease from
the null value that is, nevertheless, negligible for practi-
cal purposes. The estimated value of the parameter is
declared to be noninferior to the null value if that
estimated value is significantly above the low end of
the ROPE.

Specifying ROPE limits

How does one specify the limits of a ROPE? Because
the ROPE is a decision threshold that captures practical
equivalence, its limits are influenced by practical con-
siderations, which might change through time as risks
are reassessed and as theories are refined. Any decision
rule must be calibrated to be useful to the audience of
the analysis and to the people who are affected by the
decision, and this is also true of decision rules based
on p values and Bayes factors.

Equivalence testing has been used extensively in
medical research, and the U.S. Food and Drug Admin-
istration (FDA) has set guidelines for the decision
boundaries in equivalence testing (e.g., U.S. FDA, Cen-
ter for Drug Evaluation and Research, 2001; U.S. FDA,
Center for Veterinary Medicine, 2016). Recent FDA guid-
ance for bioequivalence studies recommends ROPE
limits of 0.8 and 1.25 for the ratio of means in the two
groups (U.S. FDA, Center for Veterinary Medicine, 2016,
p. 16). Contemporary industry standards use ROPE lim-
its around +20% for applications with moderate risk,
but the ROPE may be narrower (i.e., £5% to +10%)
when the risks are high, or the ROPE may be wider
(i.e., +26% to +50%) when the risks are low (Little, 2015,
Table 1).

Standards for the decision boundary of noninferiority
testing have also been established by the FDA, and their
recent guidance emphasizes that great care must be
taken to establish the noninferiority limit because of
the tremendous real-world costs and benefits of drugs
and therapies (U.S. FDA, Center for Drug Evaluation
and Center for Biologics Evaluation and Research,

2016). Walker and Nowacki (2011) explained that one
conventional setting of the noninferiority limit is at half
of “the lower limit of a confidence interval of the dif-
ference between the current therapy and the placebo
obtained from a metaanalysis” (p. 194).

In many fields of science, competing theories make
detailed quantitative predictions. For example, a param-
eter called y should be exactly 1.0 in the theory of
general relativity, but 0 in Newtonian gravity and other
values near 1 in other theories (see Will, 2014, Fig. 5,
p. 43, for a summary of the progression of 90 years of
experiments measuring y). A recent experiment estab-
lished a value of 1 + 0.00001 (Bertotti, Iess, & Tortora,
2003). This experiment does not merely reject Newto-
nian gravity (y = 0), but confirms general relativity (y =
1.0) even if one is using very narrow ROPEs.

In the social sciences, Cohen (1988) defined mea-
sures of effect size for different sorts of parameters
and proposed conventional values for small, medium,
and large effects typically observed in social-science
research. In the case of the effect size of a mean,
defined as 6 = (u — py)/o, Cohen suggested that 0.2 is
a “small” effect, and therefore we might say that an
effect is practically equivalent to zero if it is less than,
say, half the size of a small effect and falls within a
ROPE of +0.1. This conventional limit was used for
Figure 2.

It must be emphasized that “half the size of a small
effect” is merely a fallback convention when there is
no way to calibrate effects by their real-world conse-
quences. In the case of 1Q points, for instance, there
might be applications for which a 0.1 effect implies
nonnegligible practical consequences. A study of the
GDP of 90 nations as a function of 1Q and other vari-
ables found that “an increase of 1 IQ point in the intel-
lectual class [the IQ at the 95th percentile] raises the
average GDP [per capita] by $468 U.S.” (Rindermann &
Thompson, 2011, p. 761). (The influence of IQ is
weaker at the mean than at the 95th percentile, as
mentioned earlier in the context of Fig. 2.) Thus, an
increase of average 1Q of the intellectual class from 130
to 131, for example, might have important conse-
quences for GDP because that increase is multiplied
across millions of people, even though an increase of
1 IQ point in any one person may be negligible for that
person.

A different approach to setting the limits of a ROPE
was described by Lakens (2017, p. 359), who pointed
out that the maximum sample size a researcher is will-
ing to collect data from implies, for any specific desired
power, the minimal effect size that can be reliably
detected. Implicitly, the sample size indicates the mini-
mal effect size that the researcher is willing to treat as
not practically equivalent to zero. This minimal effect
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size, in turn, implies corresponding ROPE limits for an
equivalence test. I think, however, that this approach
will yield ROPEs that are too wide when sample sizes
are small (e.g., when research is underpowered; Max-
well, 2004) and will yield ROPEs that are too narrow
when sample sizes are large (e.g., with “big data”;
Adjerid & Kelley, 2018). ROPEs should be set according
to the demands of competing theories and the practical
implications of decisions, not by the measurement pre-
cision implied by sample size. Falling objects do not
hit the ground more softly if they are measured with less
precise instruments. A new drug is not more equivalent
to an existing drug if it is tested for equivalence using a
smaller sample size. Moreover, there are often moderate-
N studies (which individually yield only moderate-pre-
cision estimates) that are worth doing even when the
ROPE is relatively narrow, because future meta-analyses
of multiple moderate-N studies may find a narrow meta-
analytic HDI. Indeed, for random-effects models in meta-
analyses, usually greater precision can be achieved by
many moderate-N studies than by a few large-N studies,
because hierarchical shrinkage of estimated parameter
values operates more effectively (e.g., Kruschke & Lid-
dell, 2018b; Kruschke & Vanpaemel, 2015). In meta-
analyses, there is no foreknowledge of which studies
will be uncovered for inclusion (from database searches
of published studies and social-network searches of
unpublished studies), so an analyst cannot anticipate the
samples sizes or the number of studies. The ROPE must
be defined from other considerations.

For parameters that have the same scale as the data,
it is relatively straightforward to think about a ROPE.
For example, in the case of 1Q scores with a normal
distribution, the mean, p, is on the IQ scale, and its
ROPE limits are in IQ points. Other models may have
parameters that are less directly related to the scales of
the data, and therefore ROPE limits may need to be
derived more indirectly. Consider linear regression. We
might want to say that a regression coefficient, B, is
practically equivalent to zero if a change across the
“main range of x” produces only a negligible change
in the predicted value, ). Suppose we specify a negli-
gible change in y as £0.18,, where § is the standard
deviation of y (a range that may be motivated by the
convention that 0.15 is half of a “small” effect), and we
specify the “main range of x” as M, + 25, (because if x
were normally distributed, this range would cover just
over 95% of the distribution). Given these specifica-
tions, a regression coefficient is practically equivalent
to zero when a change of x from M, — 25, to M, + 25,
yields a change of y only from M,-0.15,to M, + 0.1S,
which implies ROPE limits of B, = £0.05 for standard-
ized variables. Similar considerations apply to logistic

regression, as explained in the Supplement file at the
OSF (https://osf.io/jwd3t/).

ROPE limits are like decision thresholds
Jor p values and Bayes factors

In general, ROPE limits are defined by considering what
counts as practically equivalent to the null value, by
quantifying acceptable uncertainty as constrained by
competing theories or real-world utilities. It can be
challenging to specify a definitive ROPE, but one should
not delude oneself into thinking that it is any more
straightforward to specify a definitive decision thresh-
old for a p value. Some people have grown comfortable
with .05 as the decision threshold for a p value because
it is a conventional value that statistical rituals are
designed to comply with. But the convention hides the
fact that there is vigorous debate about an appropriate
decision threshold for p. In a recent article, Benjamin
et al. (2018) argued that the threshold p value for the
social sciences should be changed to .005. In physics,
the contemporary conventional threshold p value cor-
responds to 5o, which requires p < .00000029 for sig-
nificance. Decision thresholds for p values are on no
firmer ground than ROPE limits.

Bayesian null-hypothesis testing involves a decision
statistic called the Bayes factor (BF). The specification
of decision thresholds for BFs is as fraught as the speci-
fication of ROPEs and decision thresholds for p values.
Jeffreys (1961) attached decision-strength labels to
ranges of BFs as follows: 3.16 through 10.0 is “substan-
tial,” greater than 10.0 through 31.6 is “strong,” greater
than 31.6 through 100.0 is “very strong,” and greater
than 100.0 is “decisive.” A subsequent influential article
by Kass and Raftery (1995) suggested that BFs of 3.0
through 20.0 are “positive” evidence, BFs greater than
20.0 through 150.0 are “strong” evidence, and BFs
greater than 150.0 are “very strong” evidence. In the
psychological sciences, many proponents of BFs have
routinely used 3 as the decision threshold (e.g., Dienes,
2016). On the other hand, Schonbrodt, Wagenmakers,
Zehetleitner, and Perugini (2017) recommended a BF
of 10 for mature confirmatory research but other limits
for nascent research, and those authors also pointed
out that different BF thresholds may apply to different
types of hypothesis tests. Rouder, Morey, and Province
(2013) emphasized that an extremely large BF is needed
to reject null hypotheses that have a large prior prob-
ability, such as the null hypothesis that people cannot
foretell the future through temporally reversed causal-
ity. Again, do not be lulled into thinking that establish-
ing a decision threshold for Bayes factors is any easier
than establishing ROPEs for HDIs.
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Regardless of the decision statistic being used (p
value, BF, or HDI), decision thresholds should ulti-
mately take into account the utilities (i.e., costs and
benefits) of the decisions. Unfortunately, the utilities
are often unavailable. Regardless of the availability of
utilities, the decision criteria should be established
before the data are observed, to prevent biased deci-
sions (e.g., Lakens et al., 2017).

Conclusion

Deciding to accept or reject a null value is dangerous,
as it engenders fallacious black-and-white thinking. But
when it is necessary to make such a decision, the fal-
lacy might be fended off by focusing on explicit esti-
mates of parameter magnitude and uncertainty. The
HDI+ROPE decision method does exactly that: The
analyst explicitly examines the probability distribution
over parameter values and considers the relationship
between the most credible parameter values and a
region of practical equivalence to the null value. On the
other hand, p values and BFs hide the parameter’s mag-
nitude and uncertainty, which makes it easier to slip
into specious black-and-white thinking. Setting the lim-
its of a ROPE is no more difficult in principle than set-
ting the decision threshold for a p value or for a BF, so
researchers should be no more uncomfortable setting a
ROPE than setting these other decision thresholds.
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Note

1. The equivalence-testing procedure, involving a confidence
interval and ROPE, is mathematically equivalent to the method
of two one-sided tests (TOST; Schuirmann, 1987). With TOST,
the analyst checks whether the estimated parameter is signifi-
cantly below the high end of the ROPE and significantly above
the low end of the ROPE. If both directional tests are passed,
the analyst concludes that the parameter is statistically equiva-
lent to the null value. Because these tests are one sided, using
1 — a tests will achieve the same Type I error rate as using a
1 - 2a confidence interval in equivalence tests.
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Specifying ROPE limits for logistic regression

In the section titled “Specifying ROPE limits” in the main article, I described a
method for defining conventional ROPE limits for linear-regression coefficients. Here the
method is applied to logistic regression. The predicted variable y is dichotomous (e.g., suc-
cess/failure), and a regression coefficient refers to a change in the log-odds of the predicted
outcome probabilities (e.g., Kruschke, 2015, Ch. 21). Formally, denote the predicted prob-
ability of “success” as 7 and the log-odds as logit(7) = log(7/(1—7)). We start by defining
a negligible change in 7. Toward that end, suppose we are conducting a political poll in a
population with preferences for candidates A and B split approximately 50/50, and we are
predicting preference as a function of income. Suppose we specify that a negligible change
in 7 over the main range of x is # = 0.50 £ 0.03. If the main range of x is M, + 25,
(as in the example of linear regression in the main article), then a negligible standardized
regression coefficient has a ROPE of |3;| < (logit(0.53) — logit(0.47))/4 =~ 0.06. Suppose
instead we are studying occurrence of heart attack during a five-year window as predicted
by the patient’s average systolic blood pressure, and we specify that a negligible change in
7 over the main range of x # = 0.020 & 0.002. Then a negligible standardized regression
coefficient has a ROPE of |3,| < (logit(0.022) — logit(0.018))/4 ~ 0.05.

Equal-tailed intervals vs highest-density intervals

As was explained in the main text, the highest-density interval treats the scale as a
meaningful reference. If, on the other hand, the scale of a parameter can be arbitrarily non-
linearly transformed (while preserving order) then density is not very meaningful because
the relative densities change across non-linear transformations. In such a Dali-esque world,
practitioners may use the 95% equal-tailed interval (ETI), which extends from the 2.5
percentile of the distribution to the 97.5 percentile. Differences between an HDI and an
ETI are evident in skewed distributions. Examples with skewed distributions are shown in
Figure 12.2, p. 342, of Kruschke (2015). In this article I have assumed that the parameter
scale is a meaningful reference, and therefore used the 95% HDI as a summary of the 95%
most credible parameter values. The only exception was the normality parameter in the
lower-left panel of Figure 2, which used a logarithmic transformation merely to make the

display more readable.

Decision-theoretic properties of the HDI+ROPE procedure

A full development of any proposed decision rule would couch the rule in the for-
mal framework of decision theory (e.g., Berger, 1985; Robert, 2007). Such a framing is
beyond the intended scope of this article. Nevertheless, this section will provide a couple

of suggestions regarding some decision-theoretic aspects of the HDI+ROPE rule.
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Consistency: HDI+ROPE decision is correct as sample size approaches infinity

One desirable property of a decision rule is that it makes the correct decision as the
sample size of the data approaches infinity. This property is called “consistency.” The
HDI+ROPE rule is consistent. To support this claim, recall that “accepting” a landmark
value means that the parameter value is practically equivalent to the landmark value, not
that the parameter value is the landmark value. Thus, if the true parameter value is
anywhere inside the ROPE, then a correct decision is to “accept” the landmark value. The
HDI+ROPE rule will converge to this correct decision as the sample size goes to infinity
because the 95% HDI converges to the true value of the parameter. Moreover, according
to the HDI+ROPE rule, “rejecting” a landmark value means that the parameter value is
outside the ROPE. If the true parameter value is outside the ROPE, then the HDI4+ROPE
rule will converge to the decision of rejecting the landmark values because the 95% HDI

converges to the true value of the parameter.

Is there a loss function for which the Bayes rule is the HDI+ROPE procedure?

The HDI4+ROPE decision rule is motivated directly from the meanings of the inter-
vals: Reject the null when all the most credible values are not practically equivalent to
the null, and accept the null when all the most credible values are practically equivalent
to the null. Here we seek a formal expression of that intuition. Essentially, we seek to
define a loss function that captures what costs are avoided when making decisions that
way. Technically, a Bayes rule is a decision rule that minimizes the loss when integrated
(averaged) over the posterior distribution. In this section I will offer one suggestion for a
loss function for which the Bayes rule may be the HDI+ROPE decision rule. My main goal
is to show that the intuitive rule may have a formal expression, which some readers may
find less unpalatable than a mere heuristic. A secondary goal is to elicit future development

of related formalisms.

The loss will be a joint function of the decision made and the choice of how to
summarize the parameter distribution. Define discrete variables for the decisions, dg,da €
{0,1}. The decision variables have values such that dp = 1 indicates the null is rejected
and dr = 0 otherwise, and d4 = 1 indicates the null is accepted and dg = 0 otherwise.
Notice these two decision values are independent until the loss function implies that they are
mutually exclusive. Also define continuous variables for the HDI limits on the parameter,
a,b € ©. The continuous variables a and b, with a < b, are meant to be the limits of the

interval that summarizes the parameter distribution, which for an appropriate loss function
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will be an HDI. A candidate loss function is

L(a,b,da,dg) =(b—a)+cp-1(0 & [a,b])

HDI cost of param. not
width being in HDI

+ crdr - 1([a, b N [g—r,00+7]) + cada - 1([a, b] \ [fo—7, Oo+1])

cost of reject if HDI cost of accept if HDI
overlaps ROPE is not in ROPE
—i—CN(l—dR)(l—dA) (1)
cost of
no decis.

where cp, cg, ca, and ¢y are positive cost coefficients with 0 < ¢y < cg, ca, where r is the
radius (half-width) of the ROPE, and where the function 1(s) = 1 if s is true, and 1(s) =0
if s is false. The first two terms of Equation 1 come from the loss function for the HDI
limits as derived by Schervish (1995, pp. 328-329). The first two terms by themselves imply
a Bayes rule for which [a, b] is a HDI. The second two terms of Equation 1 capture costs
of decisions, inspired by Rice, Lumley, and Szpiro (2008, Section 4.1), and the final term
applies a cost for no decision (without which setting dg = 0 and d4 = 0 would trivially
minimize loss).

To illustrate the operation of the loss function, let us first presume that [a, b] is the
HDI. Suppose now that the HDI is completely inside the ROPE. Then 1([a,b] N [6y—7, o+
r]) = 1 and 1([a,b] \ [fo—7,00+7]) = 0, and the last three terms of Equation 1 become
crdr + cn(1 — dgr)(1 — da), which is minimized (with loss zero) by setting dgr = 0 and
ds = 1, that is, deciding to accept. Suppose instead that the HDI is completely outside
the ROPE. Then 1([a,b] N [fo—7r,00+7]) = 0 and 1([a,b] \ [lo—7,0p+7]) = 1, and the last
three terms of Equation 1 become cqd g+ cn(1 —dg)(1—d4), which is minimized (with loss
zero) by setting dgr = 1 and d4 = 0, that is, deciding to reject. Finally, suppose that the
HDI overlaps the ROPE, with some of HDI inside of the ROPE and some outside. Then
1([a,b] N [g—7,00+7]) = 1 and 1([a,b] \ [do—7,600+7]) = 1, and the last three terms of
Equation 1 become cgrdr + cada + cy(1 — dg)(1 — da), which is minimized (with loss ¢y)
by setting dp = 0 and d4 = 0, that is, deciding to neither reject nor accept.

The loss function in Equation 1 formally expresses the intuitive costs for making
decisions that are not consistent with the relation of HDI to ROPE. The specific form in
Equation 1 is merely suggestive and there may be many other possible formal expressions
of the intuition. The loss function of Equation 1 mixes units of interval width with units
of (weighted) discrete decisions and consequently might lead to “paradoxical behavior”
(Casella, Hwang, & Robert, 1993). It might be that the loss function could be re-expressed
so that interval overlaps are measured in the same units as interval width (cf. Rice, 2011).

It is not my goal here to prove that the Bayes rule for the loss in Equation 1 produces
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the intuitive HDI4+ROPE decision rule. Indeed it might not be the Bayes rule if the loss-
minimizing values of a and b are influenced by the decisions dr and d4. My goal is to point
out that formal expressions are possible for the loss implicit in the intuitive HDI+ROPE
rule, because formally marking the costs can be valuable even if subsequent formalizations

differ in the exact quantification of those costs.

Decision rule based on ROPE alone

Some authors (e.g., Wellek, 2010) prefer to consider the proportion of the posterior
distribution that falls within the ROPE as the statistic for decision making. For example,
we might reject the null value if less than 5% (say) of the distribution falls within the ROPE,
and we might accept the null value if more than 95% of the distribution falls within the
ROPE. Notice that this rule ignores the probability density of parameter values inside or
outside the ROPE.

One appeal of the ROPE-only rule is its invariance under arbitrary monotonic trans-
formations of the parameter. For example, if we take the logarithm of y, then the distribu-
tion on log () has the same percentage within the logarithm-ROPE limits. But because the
ROPE-only rule ignores probability density, it can lead to some counter-intuitive conclu-
sions in some cases. For example, consider a broad prior distribution that has only a small
percentage of the distribution inside the ROPE. According to the ROPE-only rule, the null
value would be rejected already. But the HDI+ROPE rule would not reject the null value
in the prior because the HDI overlaps the ROPE. There are other distributions that could
arise that are strongly skewed. In such cases of skewed distributions it is possible for the
ROPE to contain 95% of the distribution but for the HDI to extend beyond the ROPE.
In these cases perhaps we should remain undecided because some relatively high-density

parameter values remain outside the ROPE.

Comparison with frequentist equivalence testing and NHST

In frequentist equivalence testing, a parameter value is deemed to be statistically
equivalent to the null value if the parameter’s 90% confidence interval (CI) falls entirely
within the ROPE, and the null value is rejected when the 95% CI excludes the null value
(i.e., standard NHST). As mentioned in a footnote in the main text, equivalence testing
uses the (1 —2a) CI because it amounts to two mutually exclusive one-sided tests (TOST),
each of which has « in its tail. I will refer to this decision procedure as TOST+NHST.

TOST+NHST is analogous to HDI+ROPE in many respects. In particular, they
both make decisions by considering a ROPE and its relation to an interval estimate of
the parameter. In many applications their decisions will be the same. But because of

their different motivations and meanings, there are cases in which their decisions will differ,
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sometimes quite substantially. In this section I will point out those differences, but the

reader should keep in mind that often the two techniques will make the same decisions.

The first difference between TOST+NHST and HDI+ROPE is the meanings of the
intervals that define the parameter estimate. The frequentist 95% CI is the range of pa-
rameter values that would not be rejected by a two-tailed test with p < .05 (Cox, 2006).
There is no probability distribution over parameter values, rather, a parameter value either
is in the CI or is not. On the other hand, the Bayesian 95% HDI is the range of most
credible parameter values that have 95% probability. There is inherently a probability dis-
tribution over parameter values because that’s what defines the HDI. Thus, the meaning
of a CI falling within the ROPE is different than the meaning of the HDI falling within
the ROPE. The TOST indicates that all values outside the ROPE can be rejected, while
the HDI4+-ROPE procedure indicates that the most credible parameter values fall inside the
ROPE.

Another computational difference between a CI and an HDI is that HDI’s are straight
forward to compute from MCMC for all standard models, while Cls can be challenging to
determine without specialized software. For example, in the simple situation of estimating
the probability of “success” in a dichotomous outcome, computing a CI can be complicated
(Dunnett & Gent, 1977). For more elaborate models (e.g., hierarchical logistic regression)

CI’s are usually only roughly approximated, typically too narrowly, in most software.

There can also be conflicting decisions within TOST+NHST, such that TOST declares
that the parameter is “statistically equivalent” to the null while NHST simultaneously
declares that the parameter is “significantly different” from the null. This happens when
the CI is so narrow that it falls between the null value and a ROPE limit, as shown in Panel C
of Figure 2 of the main article. This semantic conflict of being simultaneously equivalent and
different occurs because TOST uses the ROPE limits to make a decision while NHST does
not. It would make more sense, I think, if statistical difference from the null were declared
only if the CI fell completely outside the ROPE, but that is not the conventional frequentist
procedure. On the other hand, the HDI4+ROPE procedure was specifically designed so that
accepting the null and rejecting the null would never conflict, because both decisions use the
same ROPE limits. For more details, see http://doingbayesiandataanalysis.blogspot.com/2017/
02/equivalence-testing-two-one-sided-test.html Or https://osf.io/q686c/. A closely related
difference between NHST and HDI+ROPE is seen when the HDI or CI excludes the null
value but still overlaps the ROPE, as in Panel D of Figure 2 of the main article. In this
case, NHST would declare that the null value is rejected, but HDI+ROPE would remain
undecided because some of the values inside the HDI are practically equivalent to the null

value.

Importantly, both TOST and NHST can be greatly changed when there are multiple
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tests (Rogers, Howard, & Vessey, 1993, p. 562). Because p values increase as more tests are
considered, the CI limits expand as the number of intended tests increases (e.g., Maxwell &
Delaney, 2004). Consider, for example, a factorial analysis of variance (ANOVA) in which
several groups are compared against each other (pairwise, or in complex comparisons). If
we consider a single test of two groups, the CI on the difference of means might be narrow
enough to fall inside a ROPE and to decide that the groups are statistically equivalent.
But if the comparison of the two groups is part of a larger set of multiple tests, then the
CI expands and the two groups might not be statistically equivalent. By contrast, HDIs
are unchanged by different sets of intended tests because HDIs are not based on sampling
distributions of hypothetical data but are instead based on only the actually observed data.

The key goal that TOST+NHST specifically attempts to achieve is control of error
rates, which HDI+ROPE can not do directly. This difference between the procedures is
the core difference of frequentist vs Bayesian approaches. Error rates can only be defined
in terms of imaginary data that might have been generated by some hypothetical state,
whereby sampling distributions are constructed. Bayesian inference does not consider error
rates, but instead derives a probability distribution over parameter space conditional on
the actually observed data. Error rates of Bayesian decision rules can be considered (e.g.,
Kruschke, 2015, Ch. 13) but the error rates are not the usual basis for Bayesian decision

making.

Comparison with Bayes factors

A different Bayesian approach to assessing null values is a special case of Bayesian
model comparison. In general Bayesian model comparison, two or more models, with their
own parameters and prior distributions, are set under a model-index parameter. The model-
index parameter has value “1” to indicate that model 1 is consistent with the data, and
value “2” to indicate that model 2 is consistent with the data, and so on for other models.
This model-index parameter is analogous to any other parameter, such as the parameter u
in a normal model. The model-index parameter exists in a joint parameter space with all
the other parameters in the individual models. According to Bayesian inference, credibility
is re-allocated across all the parameters simultaneously. In particular, credibility is re-
allocated across the model-index parameter values, such that the posterior probabilities of
values 1, 2, etc., indicate the posterior probabilities of the models.

In Bayesian null hypothesis testing, the null hypothesis is expressed as a restricted
model relative to the full model under consideration. For example, consider a situation
where the full model is a normal distribution that has parameters u and o with a broad
prior distribution. A null hypothesis, that parameter p has value 100.0, could be formalized

by making the prior distribution on p be a narrow “spike” around p = 100.0, while the
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prior on ¢ remains relatively broad. Then the null model and full model are placed under a
model-index parameter and the entire hierarchy of parameters undergoes Bayesian inference.
More extensive explanations of this framework are provided by Kruschke and Liddell (2017a,
2017b) and by Kruschke (2015).

A key statistic in Bayesian hypothesis testing is the Bayes factor (BF), which indicates
how much the odds of the models have shifted from prior to posterior. Formally, if we re-
name the full model as the alternative hypothesis, “alt,” then the BF for the null hypothesis

is

B p(null|D) / p(null)
BFnun = p(alt| D) /p(alt) 2)

where D is the observed data and p(null|D) indicates the posterior probability of the null
hypothesis. We could instead define the BF with respect to the alternative hypothesis, which
is simply the reciprocal: BF,;; = 1/BF 1. Notice that when credibility is re-allocated away
from the alternative model toward the null model, then BF,,; > 1 and BF,; < 1. When
credibility is re-allocated away from the null model, toward the alternative model, then
BF,u1 < 1 and BF,;; > 1.

Importantly, notice that the BF does not indicate the posterior probabilities of the
models. Instead, the BF indicates the shift in the model odds. If the prior probability of
the null hypothesis is only p(null) = 0.01, then BF,,;; = 10 indicates that the posterior
probability of the null is only p(null|D) ~ 0.11. Despite the fact that the BF does not
indicate the posterior probabilities of the models, the usual decision rule for Bayesian null-
hypothesis testing considers the magnitude of the BF relative to a decision threshold C.
If BF,u > C then the null hypothesis is accepted and the alternative is rejected, but if
BF a1 < 1/C (i.e., BF, > C) then the alternative hypothesis is accepted and the null
is rejected, otherwise we remain undecided. The value of the decision threshold, C, is set
by practical considerations, just like the decision threshold for p or the limits of a ROPE.
Various recommendations for the setting of C' were discussed in the main article, at the end
of the section on Specifying ROPE Limits. Typical values for the decision threshold C' are
3 or 10.

Figure S.1 shows an example of Bayesian hypothesis testing. The upper panel of nine
plots shows the prior distribution. Within the upper panel of nine plots, the top row shows
the null-hypothesis prior. Notice the “spike” on pu, which in this case is actually a narrow
distribution bounded by the ROPE limits. See Morey and Rouder (2011) for a related
treatment of interval null hypotheses. The spike on p induces a corresponding spike for
the prior distribution of the effect size, . The middle row of the upper panel shows the
alternative-hypothesis prior, which has a broad distribution over u instead of a spike. This

broad prior indicates that many values of u are possible, unlike the null hypothesis prior.
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Figure S.1.
distribution.

An example of Bayesian hypothesis testing. Upper panel of nine plots shows the prior
Lower panel of nine plots shows the posterior distribution. Here the BF rejects the null
hypothesis on y, but the mixture estimate of p has substantial mass and density inside the ROPE
(even if the prior probability of the null is set at 0.50, not shown).
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As shown in the title of the upper panel, for this example the prior probabilities on the
models are set to p(null) = 0.9 and p(alt) = 0.1.

The lower row (of the upper panel Figure S.1) shows the mixture of the two models,
weighted by their probabilities. The weighted mixture creates a “spike and slab” prior on u
(and on 0) which expresses the prior distribution implied by the overall model structure (cf.
Rouder, Haaf, & Vandekerckhove, 2018). In the general model-comparison framework, the
different submodels can have different parameters and consequently it would not make sense
to collapse across the models (in terms of the parameter space, but it would be perfectly
reasonable to integrate across predictions of the models as in Bayesian model averaging
[BMA]). In the case of null-hypothesis testing, however, the two submodels have the same
parameters and therefore the model index can be collapsed (i.e., integrated over). The key
point for our purposes is that Bayesian inference on the mixture prior yields the same result
as Bayesian inference on a hierarchical prior that has an explicit model index. The mixture
distribution is revealing because it shows explicitly the distribution on the parameters when
both submodels are taken seriously as contending simultaneously to describe the data,
instead of considering only one submodel at a time. The mixture distribution is useful for
considering HDI and ROPE relationships when the null and alternative models are treated
as simultaneously viable models, contributing according to their abilities, instead of as

mutually exclusive competitors.

On the other hand, and importantly, collapsing across the model index loses the abil-
ity to compute a Bayes factor because the model distinction is obliterated. The mixture
distribution does not uniquely indicate which submodels may have created it. The sub-
models may have been a spike and a slab as shown in Figure S.1. Or, the submodels that
created the mixture may have been interested in testing non-inferiority when the null value
is plausible, such that one hypothesis’ prior distribution is values of u below the low limit of
the ROPE and the other hypothesis’ prior distribution is values of u above the low limit of
the ROPE including a spike at the null value (i.e., a left-side prior distribution on y shaped
like ” 7 below the ROPE, and a right-side prior distribution on x shaped like "L”). The BF
for those submodels will be quite different than the BF for spike-null vs slab-alternative, yet
both pairs of models have the same mixture distribution. To reiterate, while the mixture
distribution shown in Figure S.1 is useful for considering intervals when the two models
are treated as simultaneous contributors instead of as mutually exclusive competitors, the

mixture distribution also renders the BF irrelevant, or at least not unique.

The lower panel of nine plots in Figure S.1 shows the posterior distribution after
considering a set of data with mean and standard deviation as indicated in the title of the
panel. The data mean is quite a bit bigger than the null-hypothesis value of i, and therefore
credibility is shifted away from the null hypothesis toward the alternative hypothesis, that
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is, BF,; >> 1, as indicated in the title of the panel. According to the usual decision
rule, we would therefore reject the null hypothesis. Notice, however, that in this case the
posterior probability of the null hypothesis is still fairly large, which suggests we should not
reject the null hypothesis. Moreover, the mixture distribution has substantial probability
mass inside the ROPE. The mixture distribution also shows that the HDI is split into two
subintervals, one of which falls within the ROPE.

It may be difficult to consider the posterior HDI from a spike-and-slab prior because
the density of the spike can be arbitrarily large, in both the prior and posterior, depending
on the narrowness of the spike. For very narrow spikes, the posterior will virtually always
have some narrow subinterval of the HDI within the ROPE. If the spike is arbitrarily
extremely dense, it is not meaningful to consider its density in the posterior because it
remains arbitrary. In this case, it may only be meaningful to consider the probability
mass within the ROPE. The moral is that the spike null, in all its detail, must express a
meaningful model and not merely a convenient default. In general, model comparison is

only as meaningful as the models being compared.

When the null hypothesis and alternative hypothesis use identical prior distributions
except for the spike on one parameter, then the Bayes factor can be computed using the
Savage-Dickey density ratio (Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010). This
ratio can be approximated by considering the mass of the target parameter’s distribution
inside the ROPE of the alternative hypothesis: The prior mass inside the ROPE divided by
the posterior mass inside the ROPE is very nearly the BF for the alternative. For example
in the alternative model of Figure S.1, the prior mass inside the ROPE of p is displayed as
3.9% and the posterior mass is 0.3% (both rounded to only one decimal place), and their
ratio is just under 17 when more decimal places are considered. This conceptualization is
useful for understanding that the BF in null hypothesis testing focuses on how much the
probability near the null value shifts from prior to posterior. The ratio fo ROPE masses does
not indicate the posterior mass, and the ratio of ROPE masses does not indicate relation
of HDI to ROPE.

Figure S.2 shows another example of Bayesian hypothesis testing, but in this case
on parameter o instead of p. The point is to demonstrate that every hypothesis test is a
distinct model comparison. Notice in the upper row of Figure S.2 that the null model has a
spike prior on o but a broad prior on p. The middle row (of the upper panel) shows that the
alternative-model prior is the same as in Figure S.1. Using the same data as in Figure S.1,
the lower panel of Figure S.2 shows that posterior distribution within the alternative model
is the same as in Figure S.1 (except for random variation in the MCMC chain). The BF
favors the alternative model over the null model, which would lead to a decision to reject

the null hypothesis, even though the posterior probability of the alternative model is only
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Figure S.2. An example of Bayesian hypothesis testing on o. Here the BF rejects the null model
of o, but the mixture estimate of o has values inside the ROPE (even if the prior probability of the
null is set at 0.50, not shown). The null model prior is the same but with a narrow “spike” prior
within the ROPE of o.
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a little greater than 50%, and the mixture distribution shows substantial probability mass

and density within the ROPE, which would suggest we should remain undecided.

Figure S.3 shows an example in which the BF accepts the null hypothesis. The
prior distribution is the same as in Figure S.1, except here the prior probability of the null
hypothesis is set to p(null) = 0.1. Notice this results in a spike-and-slab mixture prior on
u (and §). The lower panel of Figure S.3 shows the posterior distribution from data that
are consistent with the null hypothesis. The BF favors the null hypothesis, such that the
usual decision rule would accept the null hypothesis and reject the alternative hypothesis.
Notice, however, that in this case the posterior probability of the null hypothesis is barely
any bigger than the posterior probability of the alternative hypothesis, which suggests
that we should not accept the null hypothesis. Moreover, the mixture distribution has
substantial probability mass outside the ROPE. The mixture distribution also shows that
the HDI extends outside the ROPE.

Bayesian hypothesis testing has some appealing features, especially relative to fre-
quentist NHST. In particular, Bayesian hypothesis testing explicitly specifies competing hy-
potheses and computes posterior probabilities of those hypotheses. Consequently, Bayesian
hypothesis testing can show support in favor of the null hypothesis or against it. But,
as noted previously, Bayesian hypothesis testing is only as meaningful as the prior distri-
butions in the models, and the prior probabilities of the models. If the model priors are
merely caricatures of imaginary possibilities, then the BF is only telling you the shift in
credibilities from dragons to unicorns. In particular, a spike-and-slab prior, as exemplified
in Figures S.1, S.3, and S.2, does not solve Meehl’s paradox (which was described in the
section titled, The ROPE in theory testing). Meehl’s paradox arises when the alternative
model expresses “anything but null,” that is, when the alternative is a slab across a broad
range of parameter values. Bayesian model comparison could solve Meehl’s paradox by
instead using model priors that express competing specific predictions with only modest

uncertainty. Unfortunately this is rarely done.

Another potential advantage of Bayesian null hypothesis testing is that it gives special
weight to the null value. This can be seen graphically by comparing the mixture prior
distribution with the alternative-model prior distribution in Figure S.3. The alternative-
model prior distribution is smooth and relatively flat over the null value, whereas the mixture
prior has a narrow and tall bump at the null value. The mixture prior expresses the idea that
there is extra prior probability at the null value, making the null value uniquely probable
relative to other parameter values. Ultimately, the choice of a smooth prior distribution or a
bump-at-null prior distribution depends on theories being tested and the previous data that
can inform the prior. Technically, however, the posterior distribution from a broad smooth

prior tends to be very stable against changes in the breadth of the prior, while the posterior
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Figure S.3.
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In this example of Bayesian hypothesis testing, the BF accepts the null model of u
when the data have small N, but the mixture estimate of u has high-density values and substantial
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mass near a bump depends strongly on the breadth of the surrounding prior. Therefore if
a Bayesian null hypothesis test is conducted, the prior distributions in both models must
be carefully set so they are meaningful, and the prior probabilities of the models must be
meaningfully set, and the results must be checked for robustness against small changes in

the priors.

There are various reasons that one might prefer decisions using HDI+ROPE from
a smooth prior distribution instead of using Bayes factors. One reason is that estimation
from a smooth prior yields the answer to all tests simultaneously. By contrast, the BF
approach requires a distinct prior distribution for every null hypothesis tested. Much like
in frequentist hypothesis testing, there is a hierarchy of nested (null) models, each of which
requires a distinct BF prior and computation. For example, the tests of po = 100.0 and
oo = 15.0 require two distinct “spike” null models, as was illustrated in Figures S.1 and S.2.
Notice in Figures S.1 and S.2 that the posterior distribution in the alternative model is
identical (except for MCMC noise).

Various others cautions regarding Bayesian hypothesis testing were outlined by
Kruschke and Liddell (2017a). First, Bayes factors can change dramatically with seemingly
innocuous changes in the prior distributions of the models, and default priors are often
meaningless. Therefore it is important to use genuinely meaningful prior distributions and

model probabilities.

The Bayes factor ignores the prior probabilities of the models, and a more sensible
decision rule would be based on the posterior probabilities of the models, that is, the BF
multiplied by the prior odds. The examples in Figures S.1, S.2, and S.3 used prior probabil-
ities on the models that are not 50/50 specifically to demonstrate the difference between the
BF and the posterior probabilities of the model. The main creator of the BayesFactor pack-
age (Morey & Rouder, 2015) has said, “It should also make clear that the Bayes factor is
not really the useful decision statistic; rather, the posterior odds are.” (http://bayesfactor
.blogspot.com/2015/01/on—verbal—categories—for—interpretation.html) A prime illustration of
what a blunder it is to ignore prior probabilities comes from disease diagnosis. For a diag-
nostic test with a positive outcome, the BF is the ratio of the correct-detection rate to the
false-alarm rate (i.e., the ratio of the likelihoods under the two models). But the posterior
odds are usually much smaller than the BF because the prior probability of having the dis-
ease is usually small. Details can be found at http://doingbayesiandataanalysis.blogspot.com/

2015/12/1lessons-from-bayesian-disease-diagnosis_27.html OI https://osf.io/r9zfy/.

The BF can accept the null value even when the estimate of the parameter value
has poor precision. Figure S.3 showed an example. This can happen when the alternative
hypothesis is vague and can therefore be rejected by a relatively small set of data near the

null. If the alternative hypothesis is more narrowly specified and is near the null value, then
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it takes a large data set to distinguish the models.

Finally, using the BF encourages black-and-white thinking more than using the
HDI+ROPE because the information provided by the BF completely ignores the parameter
estimation. The decision by BF alone never looks at the parameter estimates. While the
parameter distributions in Figures S.1, S.2, and S.3 are explanatory, they are superfluous
for computing the BF and for making a decision based on the BF. Thus, decision making by
the BF alone (especially using default priors) can easily devolve into Gigerenzer’s “mindless
ritual” of hypothesis testing (Gigerenzer, 2004; Gigerenzer & Marewski, 2015). On the
other hand, decisions based on HDI+ROPE inherently forefront the posterior estimates of

the parameters and their uncertainty.

Application to meta-analysis

This section demonstrates a realistic application to meta-analysis. Meta-analysis
is crucially important for establishing replicability of findings in both basic and applied
research. Meta-analysis is aimed not merely at establishing the presence or absence of
an effect across studies, but is concerned with establishing the typical magnitude of the
effect across studies, the variability of the magnitude across studies, and our uncertainty in
those estimates. Meta-analysis is a central emphasis of the “New Statistics” endorsed by
the journal Psychological Science (Cumming, 2014; Eich, 2014; Lindsay, 2015; Kruschke &
Liddell, 2017b).

The examples of meta-analysis in this section illustrate specification of ROPE limits
and the importance of prior probabilities of the models in Bayesian hypothesis testing. The
examples also illustrate concrete applications of null-value assessment for an effect parameter
and for a scale parameter (for random-effects vs fixed-effect models), analogous to p and
o in the abstract examples of the previous section. Finally, these examples demonstrate
the importance of taking into account the prior probabilities of hypotheses in Bayesian
hypothesis testing.

We will consider two application domains. In one application domain, patients who
experienced heart attacks were randomly assigned to a control group or a group who received
a heart-muscle relaxant called a beta-blocker. The dependent variable was death or survival
(during some limited duration of treatment). There were several studies at different hospital
sites. The number of patients in the control group at site s is denoted ng, and the number
of deaths is denoted z¢(y. Typically z¢(y/ncys is about 9%. The number of patients and
deaths in the treatment group are denoted np(, and zp(y, respectively. If the treatment is
successful, it should be the case on average that z7[y / nys < zc[s]/ nos)- We will use data
from Yusuf, Peto, Lewis, Collins, and Sleight (1985) as reported in Gelman et al. (2013,
Sec. 5.6).
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In a second application domain, patrons of hotels who stayed more than one night
were randomly assigned to a control group or a group who received a notice in the ho-
tel room that most patrons reused their towels (to conserve resources wasted by needless
laundering). The number of people who reuse their towels is z, and if the treatment is
successful then on average it should occur that 2z / nT[s] > zc[s]/ nos)- We will use data
from Scheibehenne, Jamil, and Wagenmakers (2017). (For critical commentary and reply,
see Carlsson, Schimmack, Williams, and Biirkner (2017) and Scheibehenne, Gronau, Jamil,
and Wagenmakers (2017).)

The meta-analytic model

In a meta-analysis, the data from experiments at different sites are analyzed together
to extract the typical effect across sites. There are two main questions: First, how big is the
average effect across sites and is it practically different from zero? Second, how different
are the effects at different sites and are they similar enough in magnitude that we could
decide they are practically equivalent? The second question can be re-phrased as asking if
we should describe the variation across sites as different, with a “random-effects” model, or
should we describe the variation across sites as negligible and instead use a “fixed-effect”
model? This latter question is usually answered with advice always to use the random-
effects model (e.g., Field, 2003; Hunter & Schmidt, 2000), but here we will consider a
Bayesian hypothesis test because that approach was advocated by Scheibehenne, Gronau,
et al. (2017).

To address the questions, we must formalize the model. The model that will be re-
ported here is extended from the model used by Kruschke and Liddell (2017b) for the heart-
attack data, and which was also applied to towel re-use at http://doingbayesiandataanalysis
.blogspot.com/2016/11/bayesian-meta-analysis-of-two.html OI https://osf.io/eps5f/. Here I
will describe a subset of the parameters that are most relevant to the discussion, and the full
details are in an appended subsection. Let 6y represent the underlying rate of occurrence
in the control condition at site s; that is, 2¢(s/ncys) is a random sample from rate Oy Anal-
ogously, 07y is the rate of occurrence in the treatment group at site s. The effect of treat-
ment at site s is denoted ps, and is on the scale of log-odds: pjy = logit(07(y) — logit(6c()
where logit(#) = log(6/(1—0)). Re-arranging, we have 0, = logistic(pfs + logit(f¢(s))
where logistic is inverse logit, which means that at each site, the rate of occurrence in the
treatment condition depends on that site’s rate of occurrence in the control condition and
that site’s effect.

The meta-analytic model describes the distribution of effects pjy across sites as a
normal distribution with mean p, and standard deviation o,. The parameter p, indicates
the typical magnitude of the treatment effect across sites, and the HDI of the posterior

distribution of 1, is the uncertainty in that typical magnitude of treatment. Usually we
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are most interested in p,. If u, is zero, then the treatment has zero effect on average
across sites, although some sites may have positive treatment effect while other sites have
negative treatment effect. Setting u, = 0 is the null-effect model, but remember this allows
individual sites to have non-zero effects: ppg # 0.

The parameter o, is the standard deviation of the treatment effects across sites. If o,
is zero, the model assumes that the treatment effect is the same at every site, pjq = p,, which
is the fixed-effect model. The fixed-effect model allows there to be a non-null treatment
effect, but insists those effects are identical at every site. Moreover, the fixed-effect model
allows the rates of occurrence to vary across sites, because the distribution of ¢, across
sites is modeled as a beta distribution with mode wyc and concentration k9. The parameter
wgc is the typical rate of occurrence in the control condition across sites. The rates of
occurrence in the control and treatment conditions can vary across sites even if the effect of
treatment is identical at all sites. As mentioned above, full details of the model are provided
in the final subsection.

In the analyses presented below, I will first report results from estimation with moder-
ately broad priors on the parameters. Then I will report results from a Bayesian hypothesis
test for the null-effect model, involving a spike prior on p,. And I will report results from

a Bayesian hypothesis test for the fixed-effect model, involving a spike prior on o,.
Setting ROPEs

To set the ROPESs, consider first the application to deaths after heart attack. Brophy,
Joseph, and Rouleau (2001) pointed out that treatment effects should be calibrated by their
clinical implications in terms of lives saved per 100 deaths (for a posterior distribution on
lives saved, see Figure 9 of Kruschke & Liddell, 2017b). Let us suppose that one life
saved per hundred patients is the minimum clinically important effect (relative to costs and
deleterious side effects). For a control-condition death rate of 10%, this minimum effect
translates into p = log(.10/(1 — .10)) — log(.09/(1 — .09)) ~ 0.1. Therefore we will set the
ROPE limits on p, at 0 & 0.1. To keep the illustration simple, I will use the same ROPE
for the towel-reuse data. A typical rate of towel reuse in the control condition is about
60%, and p, = 0.1 implies an increase to approximately 63%. This constitutes a fairly
small increase to qualify as not practically equivalent to zero, and a demandingly narrow
criterion for equivalence. For the ROPE on o, notice that its scale is the same as the scale
for p,. Therefore, in lieu of specific knowledge of costs associated with variability of the

treatment effect, I will tentatively use the same ROPE limit on .

Estimation of parameters

Figure S.4 shows the result of estimation of the parameters from moderately broad

priors (on a single model without any Bayesian hypothesis testing). The first two panels of
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Figure S.4. Meta-analysis of towel reuse data and beta-blocker data. Emphasis is on the parameter

tp in the left column, which is the mean effect across sites.
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Figure S.4 show the prior and posterior distributions for the towel-reuse data. Each panel
shows the marginal distributions of the four key parameters that describe the tendency
across sites. In particular, the posterior distribution of y, has a positive mode, suggesting
some increase in towel reuse due to the treatment, but its 95% HDI is wide and overlaps
the ROPE and indeed overlaps an effect of zero. (This posterior distribution matches the
results previously reported at http://doingbayesiandataanalysis.blogspot.com/2016/11/bayesian
-meta-analysis-of-two.html OI https://osf.io/eps5f/.) Therefore we would neither reject the
null value nor accept it, and we remain undecided about the treatment effect. Figure S.4
also shows that the 95% HDI of the posterior distribution on o, includes values inside and
outside the ROPE, indicating that we would neither reject nor accept the value zero for o,,.

The second two panels of Figure S.4 show the prior and posterior distributions for
the beta-blocker (heart attack) data. The posterior distribution of i, has a negative mode,
indicating a decrease in heart attacks due to the treatment, and its 95% HDI excludes the
ROPE. (This posterior distribution matches the results previously reported by Kruschke
and Liddell (2017b, Fig. 8).) Therefore we decide to reject the null value. Figure S.4
also shows that the 95% HDI of the posterior distribution on o, includes values inside and

outside the ROPE, indicating that we would neither reject nor accept the value zero for o,,.
Bayesian hypothesis tests

Figure S.5 shows the prior and posterior distributions for a Bayesian hypothesis test
of the null effect across sites, for the towel-reuse data. Notice the spike prior on p, in
the null model. In this implementation, the spike is truly infinitesimally narrow, unlike
the examples of Figures S.1 and S.3. The alternative-model prior is the same as was used
for the previous meta-analysis in Figure S.4 (except for MCMC noise in the graphs). As
a default, the prior probability of the null model was arbitrarily set at 0.5. Setting the
prior probability this way is lazy and dangerous; a serious researcher of this topic would
have knowledge of publicly accessible previous research to inform the prior probability. For
example, there might be research in other applications of norm interventions to suggest
that there is probably some effect of the norm intervention, however small but non-zero
(otherwise the experiments would not have been conducted). Indeed, in a strict logical sense
it is virtually impossible for the norm intervention to have exactly zero effect. Thus, the
default setting of p(null) = 0.5 is probably too large. The lower panel of Figure S.5 shows the
posterior distribution. Notice that the posterior distribution within the alternative model
is the same as in Figure S.4 (except for MCMC noise). The title of the panel annotates
the BF which slightly favors the null hypothesis, though not decisively. In the mixture
distribution, there is substantial probability mass both inside and outside the ROPE.

Figure S.6 shows the prior and posterior distributions for a Bayesian hypothesis test

of a fixed effect across sites, for the towel-reuse data. Notice the spike prior on o, in
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Figure S.5. Meta-analysis of towel reuse data, with Bayesian hypothesis test of null effect. Emphasis
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Figure S.6. Meta-analysis of towel reuse data, with Bayesian hypothesis test of fixed effect. Em-

phasis is on the parameter o, in the second column, which has a spike prior in the null model.
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the null model. In this implementation, the spike is truly infinitesimally narrow, unlike
the example of Figure S.2. The alternative-model prior is the same as was used for the
previous meta-analysis in Figure S.4 (except for MCMC noise in the graphs). The prior
probability of the fixed-effect model was set at 0.05 because it is highly implausible that
the effect of the norm intervention should be the same for the clienteles of different hotels
(for instance, it is implausible that the intervention would have the same effect on patrons
of a 2-star campground motel as patrons of a 5-star cosmopolitan hotel). The lower panel
of Figure S.6 shows the posterior distribution. Notice that the posterior distribution within
the alternative model is the same as in Figures S.4 and S.5 (except for MCMC noise). The
title of the panel annotates the BF which favors the fixed-effect model. But the posterior
probability of the fixed-effect model is only middling (because its prior probability was
small). In the mixture distribution, there is substantial probability mass both inside and
outside the ROPE.

Importantly, Figure S.6 also reveals an influence of the fixed-effect assumption on
the estimate of treatment effect, ;1,. Examine the posterior distributions of u, within the
Null (i.e., fixed-effect) model and within the Alternative (i.e., random-effects) model. Notice
that the distribution on p, is narrower for the fixed-effect model than for the random-effects
model. In particular, the 95% HDI on p, in the fixed-effect (Null) model does not include
zero, but the 95% HDI on p, in the random-effects (Alternative) model does include zero.
Intuitively, the distribution on p, is wider for the random-effects model because of greater
uncertainty produced by estimating distinct effects at all the different sites. The narrower
distribution for the fixed-effects model can be intuitively thought of as artificially certain
from the implausible assumption of no variation in treatments across sites (cf. Field, 2003;
Hunter & Schmidt, 2000).

Figure S.7 shows the prior and posterior distributions for a Bayesian hypothesis test
of the null effect across sites, for the beta-blocker (heart attack) data. Notice the spike prior
on /i, in the null model. In this implementation, the spike is truly infinitesimally narrow,
unlike the examples of Figures S.1 and S.3. The alternative-model prior is the same as was
used for the previous meta-analysis in Figure S.4 (except for MCMC noise in the graphs).
As a default, the prior probability of the null model was arbitrarily set at 0.5. As mentioned
above, setting the prior probability this way is lazy and dangerous; a serious researcher of
this topic would have knowledge of publicly accessible previous research to inform the prior
probability. For example, there might be research in other applications of beta-blockers
to suggest that there is probably some effect on heart attack, however small but non-zero
(otherwise the experiments would not have been conducted). Indeed, in a strict logical sense
it is virtually impossible for the beta blocker to have exactly zero effect. Thus, the default

setting of p(null) = 0.5 is probably too large. The lower panel of Figure S.7 shows the
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Figure S.7. Meta-analysis of the beta-blocker (heart attack) data, with Bayesian hypothesis test of
null effect. Emphasis is on the parameter ji, in the left column, which has a spike prior in the null

model.
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posterior distribution. Notice that the posterior distribution within the alternative model
is the same as in Figure S.4 (except for MCMC noise). The title of the panel annotates
the BF which strongly favors the alternative hypothesis (i.e., BF,,; is very small). In the
mixture distribution, there is relatively little probability mass inside the ROPE, and there
would be even less mass inside the ROPE if the prior probability of the null-effect model
were less.

Figure S.8 shows the prior and posterior distributions for a Bayesian hypothesis test
of a fixed effect across sites, for the beta-blocker (heart attack) data. Notice the spike prior
on 0, in the null model. In this implementation, the spike is truly infinitesimally narrow,
unlike the example of Figure S.2. The alternative-model prior is the same as was used for
the previous meta-analysis in Figure S.4 (except for MCMC noise in the graphs). The prior
probability of the fixed-effect model was set at 0.05 because it is highly implausible that
the effect of the beta-blocker should be the same for the patient intake of different hospitals
(for instance, it is implausible that the treatment would have the same effect on patients
from a generally unhealthy region as patients from a healthy community). The lower panel
of Figure S.8 shows the posterior distribution. Notice that the posterior distribution within
the alternative model is the same as in Figures S.4 and S.7 (except for MCMC noise). The
title of the panel annotates the BF which favors the fixed-effect model. But the posterior
probability of the fixed-effect model is only middling (because its prior probability was
small). In the mixture distribution, there is substantial probability mass both inside and
outside the ROPE.

Discussion of Bayesian hypothesis tests. Despite the detailed considerations regarding
the priors in these Bayesian hypothesis tests, the models being compared were, in some
respects, as meaningless as dragons and unicorns. In particular, the alternative hypotheses
had prior distributions on p, and o, that were merely defaults that expressed neutral
uncertainty. Realistically, the priors should have been informed by application-specific
prior knowledge. Thus, the prior on p, for towel reuse should perhaps have had a mean
around 0.2 (not 0.0) and a standard deviation perhaps around 0.3 (not 1.0), while the prior
on (i, for the beta-blockers should have had a mean around —0.2. These different settings of
the priors would produce very different BF’s, but not very different posterior distributions
within the alternative model.

The examples of meta-analysis have re-emphasized various points from the previous
abstract examples. The meta-analyses also showed how, when considering tests of the
fixed-effect model, the BF alone is a misleading decision statistic. Instead, the posterior
probabilities of the models should be examined. The posterior probabilities of the models
rely on the choice of prior probabilities for the models. Moreover, the posterior probabilities

of the models also depend strongly on the variance of the prior distribution in the alternative
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Figure S.8.
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Meta-analysis of beta-blocker (heart attack) data,

with Bayesian hypothesis test of

fixed effect. Emphasis is on the parameter o, in the second column, which has a spike prior in the

null model.



SUPPLEMENT TO REJECTING OR ACCEPTING PARAMETER VALUES 27

model, although this was not demonstrated here. The results indicate that fixed-effect
models are implausible, contrary to arguments by Scheibehenne, Jamil, and Wagenmakers
(2017) and Scheibehenne, Gronau, et al. (2017), and consistent with arguments of Carlsson
et al. (2017).

Formal details of the meta-analysis model

The previous section defined some of the key parameters of the model used for meta-
analysis, and this subsection assumes the reader has already scanned those details. The
formal specifications below use standard notation for expressing Bayesian models; in par-
ticular, the notation x ~ distrib(e) means that variable x is randomly distributed according
to probability distribution “distrib” which has parameter e. The complete model is ex-

pressed by the following relations:

2¢(s] ~ binomial(Oc(y), neys)) # data likelihood
2r(s) ~ binomial(f7(y, n(s) # data likelihood
O7(s) = logistic(pjs + logit(fc(s))) # pjg) is effect at site s
Ocs) ~ beta(wsc, Koc) # w=mode, k=concentration (3)
Pis) = @ tp + (1=9) - py # ¢ =1 for fixed effect (4)
¢ ~ bernoulli(P,) # prior prob of fixed effect (5)
pls) ~ normal(y,, )
po=v -0+ (1-v) -, # v =1 for null effect (6)
v ~ bernoulli(P,) # prior prob of null effect (7)
pi, ~ normal(M,,,, Sy,) (8)
o, ~ gamma(S,, Ry) (9)

koo — 2 ~ gamma(Sy, Ry)
wpc ~ beta(M,,, K,)

The effect at the meta level is expressed by p,. When the non-null effect model is
being used, v = 0 in Equation 6, and p, becomes p1;; which has prior expressed in Equation 8.
The constants, M, and S, , are set to express prior knowledge about the typical effect.
The prior probability of the null effect is P, in Equation 7.

The variability across sites is expressed by the standard deviation of the effects, o,
which has a prior described as a gamma distribution in Equation 9 when the random-effects
model is used. The broad prior is used when the model index ¢ = 0 in Equation 4, otherwise
when ¢ =1 all the py, values are set to the same value, namely ,. The prior probability
of the fixed effect is P, in Equation 5.



SUPPLEMENT TO REJECTING OR ACCEPTING PARAMETER VALUES 28

For the prior distribution of 6|, in Equation 3, M, is mildly informed by the data as
a proxy for asking the user what a typical occurrence rate is: M, is set at ), 20| /> nCls)-
K, is arbitrarily set at 4. The shape and rate constants of the gamma distributions are set

at reasonably broad and noncommittal values for the scale of the data.



SUPPLEMENT TO REJECTING OR ACCEPTING PARAMETER VALUES 29

References

Berger, J. O. (1985). Statistical decision theory and Bayesian analysis, 2nd edition. Springer.

Brophy, J. M., Joseph, L., & Rouleau, J. L. (2001). pB-blockers in congestive heart failure: A
Bayesian meta-analysis. Annals of Internal Medicine, 134, 550-560.

Carlsson, R., Schimmack, U., Williams, D. R., & Biirkner, P.-C. (2017). Bayes factors from
pooled data are no substitute for Bayesian meta-analysis: Commentary on Scheibehenne,
Jamil, and Wagenmakers (2016). Psychological Science, 28(11), 1694-1697. doi: 10.1177/
0956797616684682

Casella, G., Hwang, J. G., & Robert, C. (1993). A paradox in decision-theoretic interval estimation.
Statistica Sinica, 3, 141-155.

Cox, D. R. (2006). Principles of statistical inference. Cambridge, UK: Cambridge University Press.

Cumming, G. (2014). The new statistics why and how. Psychological Science, 25(1), 7-29.

Dunnett, C. W., & Gent, M. (1977). Significance testing to establish equivalence between treatments,
with special reference to data in the form of 2 x 2 tables. Biometrics, 593-602.

Eich, E. (2014). Business not as usual. Psychological Science, 25(1), 3-6.

Field, A. P. (2003). The problems in using fixed-effects models of meta-analysis on real-world data.
Understanding Statistics, 2(2), 105-124.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian
data analysis, third edition (3rd ed.). Boca Raton, Florida: CRC Press.

Gigerenzer, G. (2004). Mindless statistics. The Journal of Socio-Economics, 33(5), 587-606.

Gigerenzer, G., & Marewski, J. N. (2015). Surrogate science: The idol of a universal method for
scientific inference. Journal of Management, 41(2), 421-440.

Hunter, J. E., & Schmidt, F. L. (2000). Fixed effects vs. random effects meta-analysis models: Impli-
cations for cumulative research knowledge. International Journal of Selection and Assessment,
8(4), 275-292.

Kruschke, J. K. (2015). Doing Bayesian data analysis, Second Edition: A tutorial with R, JAGS,
and Stan. Burlington, MA: Academic Press / Elsevier.

Kruschke, J. K., & Liddell, T. M. (2017a). Bayesian data analysis for newcomers. Psychonomic
Bulletin & Review, **(**), **~**_ Retrieved from https://link.springer.com/article/
10.3758/513423-016-1221-4 doi: 10.3758/s13423-016-1221-4

Kruschke, J. K., & Liddell, T. M. (2017b). The Bayesian new statistics: hypothesis testing, estima-
tion, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin
& Review, **(*¥*), ¥*** Retrieved from https://link.springer.com/article/10.3758/
$13423-016-1221-4 doi: 10.3758/s13423-016-1221-4

Lindsay, D. S. (2015). Replication in psychological science. Psychological Science, 26(12), 1827—
1832.

Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: A model
comparison perspective (2nd ed.). Mahwah, NJ: Erlbaum.

Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for testing interval null hypotheses.
Psychological Methods, 16(4), 406-419.

Morey, R. D., & Rouder, J. N. (2015). BayesFactor: Computation of Bayes factors for com-
mon designs [Computer software manual]. Retrieved from https://CRAN.R-project.org/



SUPPLEMENT TO REJECTING OR ACCEPTING PARAMETER VALUES 30

package=BayesFactor (R package version 0.9.12-2)

Rice, K. M. (2011). Making peace with p’s: Bayesian tests with straightforward frequentist properties.
Retrieved from http://faculty.washington.edu/kenrice/riceihme.pdf (Talk presented
April 6, 2011)

Rice, K. M., Lumley, T., & Szpiro, A. A. (2008). Trading bias for precision: decision theory for
intervals and sets (Tech. Rep.). Retrieved from http://biostats.bepress.com/uwbiostat/
paper336/

Robert, C. P. (2007). The Bayesian choice: From decision-theoretic foundations to computational
implementation, 2nd edition. Springer.

Rogers, J. L., Howard, K. I., & Vessey, J. T. (1993). Using significance tests to evaluate equivalence
between two experimental groups. Psychological Bulletin, 113(3), 553-565.

Rouder, J. N., Haaf, J. M., & Vandekerckhove, J. (2018). Bayesian inference for psychology, part
IV: Parameter estimation and Bayes factors. Psychonomic Bulletin € Review, *¥(*¥), ****,
(in press)

Scheibehenne, B., Gronau, Q. F., Jamil, T., & Wagenmakers, E.-J. (2017). Fixed or random? a
resolution through model averaging: Reply to Carlsson, Schimmack, Williams, and Biirkner
(2017). Psychological Science, 28(11), 1698-1701. doi: 10.1177/0956797617724426

Scheibehenne, B., Jamil, T., & Wagenmakers, E.-J. (2017). Bayesian evidence synthesis can reconcile
seemingly inconsistent results: The case of hotel towel reuse. Psychological Science, 27(7),
1043-1046. doi: 10.1177/0956797616644081

Schervish, M. J. (1995). Theory of statistics. Springer.

Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis
testing for psychologists: A tutorial on the Savage-Dickey method. Cognitive Psychology, 60,
158-1809.

Wellek, S. (2010). Testing statistical hypotheses of equivalence and noninferiority, second edition.
Boca Raton: Chapman and Hall/CRC Press.

Yusuf, S., Peto, R., Lewis, J., Collins, R., & Sleight, P. (1985). Beta blockade during and after
myocardial infarction: An overview of the randomized trials. Progress in Cardiovascular
Diseases, 27(5), 335-371.



	Krusschke2018RejectingOrAcceptingParameterValues
	Kruschke2018-HDI-ROPE-Supplement

