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Bayesian estimation for 2 groups provides complete distributions of credible values for the effect size,
group means and their difference, standard deviations and their difference, and the normality of the data.
The method handles outliers. The decision rule can accept the null value (unlike traditional ¢ tests) when
certainty in the estimate is high (unlike Bayesian model comparison using Bayes factors). The method
also yields precise estimates of statistical power for various research goals. The software and programs
are free and run on Macintosh, Windows, and Linux platforms.
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One of the most frequently encountered scientific procedures is
a comparison of two groups (e.g., du Prel, Rohrig, Hommel, &
Blettner, 2010; Fritz, Morris, & Richler, 2012; Wetzels et al.,
2011). Given data from two groups, researchers ask various com-
parative questions: How much is one group different from an-
other? Can we be reasonably sure that the difference is non-zero?
How certain are we about the magnitude of difference? These
questions are difficult to answer because data are contaminated by
random variability despite researchers’ efforts to minimize extra-
neous influences on the data. Because of “noise” in the data,
researchers rely on statistical methods of probabilistic inference to
interpret the data. When data are interpreted in terms of meaning-
ful parameters in a mathematical description, such as the differ-
ence of mean parameters in two groups, it is Bayesian analysis that
provides complete information about the credible parameter val-
ues. Bayesian analysis is also more intuitive than traditional meth-
ods of null hypothesis significance testing (e.g., Dienes, 2011).

This article introduces an intuitive Bayesian approach to the
analysis of data from two groups. The method yields complete
distributional information about the means and standard deviations
of the groups. In particular, the analysis reveals the relative cred-
ibility of every possible difference of means, every possible dif-
ference of standard deviations, and all possible effect sizes. From
this explicit distribution of credible parameter values, inferences
about null values can be made without ever referring to p values as
in null hypothesis significance testing (NHST). Unlike NHST, the
Bayesian method can accept the null value, not only reject it, when
certainty in the estimate is high. The new method handles outliers
by describing the data as heavy tailed distributions instead of
normal distributions, to the extent implied by the data. The new
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method also implements power analysis in both retrospective and
prospective forms.

The analysis is implemented in the widely used and free pro-
gramming languages R and JAGS and can be run on Macintosh,
Linux, and Windows operating systems. Complete installation
instructions are provided, along with working examples. The pro-
grams can also be flexibly extended to other types of data and
analyses. Thus, the software can be used by virtually anyone who
has a computer.

The article is divided into two main sections, followed by
appendices. The first section introduces the Bayesian analysis and
explains its results through examples. The richness of information
provided by the Bayesian parameter estimation is emphasized.
Bayesian power analysis is also illustrated. The second section
contrasts the Bayesian approach with the ¢ test from NHST. This
section points out not only the relative poverty of information
provided by the NHST r test but also some of its foundational
logical problems. An appendix is provided for readers who are
familiar with a different Bayesian approach to testing null hypoth-
eses, which is based on model comparison and uses the Bayes
factor as a decision statistic. This appendix suggests that Bayesian
model comparison is usually less informative than the approach of
Bayesian parameter estimation featured in the first section.

The perils of NHST and the merits of Bayesian data analysis
have been expounded with increasing force in recent years (e.g.,
W. Edwards, Lindman, & Savage, 1963; Kruschke, 2010a, 2010b,
2011c; Lee & Wagenmakers, 2005; Wagenmakers, 2007). Never-
theless, some people have the impression that conclusions from
NHST and Bayesian methods tend to agree in simple situations
such as comparison of two groups: “Thus, if your primary question
of interest can be simply expressed in a form amenable to a ¢ test,
say, there really is no need to try and apply the full Bayesian
machinery to so simple a problem” (Brooks, 2003, p. 2694). This
article shows, to the contrary, that Bayesian parameter estimation
provides much richer information than the NHST 7 test and that its
conclusions can differ from those of the NHST ¢ test. Decisions
based on Bayesian parameter estimation are better founded than
those based on NHST, whether the decisions derived by the two
methods agree or not. The conclusion is bold but simple: Bayesian
parameter estimation supersedes the NHST 7 test.
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The New Approach: Robust Bayesian Estimation

Bayesian Estimation Generally

Bayesian inference is merely the reallocation of credibility
across a space of candidate possibilities. For example, suppose a
crime is committed, and there are several possible suspects who
are mutually unaffiliated. When evidence implicates one suspect,
the other suspects are exonerated. This logic of exoneration is
merely reallocation of belief, based on data. The complementary
reallocation applies when data exonerate some suspects: Suspicion
in the remaining suspects increases. Just as the fictional detective
Sherlock Holmes said (Doyle, 1890), when you have eliminated
the impossible, all that remains, no matter how improbable, must
be the truth.

In the context of data analysis, the phenomenon to be explained
is a pattern in noisy numerical data. We describe the pattern with
a mathematical model such as linear regression, and the parameters
in the model, such as the slope in linear regression, describe the
magnitude of the trend. The space of possible “suspects” for
describing the data is the space of values for the parameters. In
Bayesian estimation, we reallocate belief toward the parameter
values that are consistent with the data and away from parameter
values that are inconsistent with the data.

A Descriptive Model for Two Groups

The first step of most statistical analyses is specifying a descrip-
tive model for the data. The model has parameters that are mean-
ingful to us, and our goal is to estimate the values of the param-
eters. For example, the traditional 7 test uses normal distributions
to describe the data in each of two groups. The parameters of the
normal distributions, namely the means (w, and w,) and the
standard deviations (o, and o), describe meaningful aspects of
the data. In particular, the difference of the mean parameters (., —
W) describes the magnitude of the difference between central
tendencies of the groups, and the difference of the standard-
deviation parameters (o, — 0,) describes the magnitude of the
difference between the variabilities of the groups. Our main goals
as analysts are to estimate those magnitudes and to assess our
uncertainty in those estimates. The Bayesian method provides
answers to both goals simultaneously.

I assume that the data are measured on a metric scale (e.g.,
response time, temperature, weight) for both of two conditions or
groups. To describe the distribution of the data, the traditional 7 test
assumes that the data in each group come from a normal distribu-
tion (Gosset, 1908). Although the assumption of normality can be
convenient for mathematical derivations, the assumption is not
necessary when using numerical methods as will be used here, and
the assumption is not appropriate when the data contain outliers, as
is often the case for real data. A useful way to accommodate
outliers is by describing the data with a distribution that has taller
tails than the normal distribution. An often-used distribution for
this application is the ¢ distribution, treated here as a convenient
descriptive distribution of data and not as a sampling distribution
from which p values are derived. In other words, I am using the ¢
distribution merely as a convenient way to describe data; I am not
using the ¢ distribution to conduct a ¢ test. There is a large literature
on the use of the ¢ distribution to describe outliers (e.g., Damgaard,
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2007; Jones & Faddy, 2003; Lange, Little, & Taylor, 1989; Meyer
& Yu, 2000; Tsionas, 2002; Zhang, Lai, Lu, & Tong, in press).
Methods of estimation that accommodate outliers are known as
robust.

Figure 1 shows examples of the ¢ distribution, superimposed
with a normal distribution. The relative height of the tails of the ¢
distribution is governed by a parameter denoted by the Greek letter
v (nu), which can range continuously from 1 to infinity. When v is
small, the 7 distribution has heavy tails, and when v is large (e.g.,
100), the ¢ distribution is nearly normal. Therefore I will refer to v
as the normality parameter in the ¢ distribution. (Traditionally, in
the context of sampling distributions, this parameter is referred to
as the degrees of freedom. Because 1 will not be using the ¢
distribution in that context, I will not be using that potentially
misleading nomenclature.) The ¢ distribution can describe data
with outliers by setting v to a small value, but the 7 distribution can
also describe data that are normal, without outliers, by setting v to
a large value. Just like the normal distribution, the ¢ distribution
has a mean parameter w and a standard deviation parameter o.

In the present model of the data, I will describe each group’s
data with a ¢ distribution, with each group having its own mean
parameter and standard deviation parameter. Because outliers are
usually relatively few in number, I will use the same v parameter
for both groups so that both groups’ data can inform the estimate
of v. Thus, my description of the data uses five parameters: the
means of the two groups (p, and ), the standard deviations of
the two groups (o, and 0,), and the normality of the data within
the groups (v). I will use Bayesian inference to estimate the five
parameters.

As discussed above, Bayesian inference is reallocation of cred-
ibility toward parameter values that are consistent with the data. To
carry out Bayesian inference, one must start with a distribution of
credibility across parameter values that expresses previous knowl-
edge about the parameter values without the newly collected data.

0.4

normal (t,_..)

p(y)
0.2 0.3

0.1

0.0

Figure 1. Examples of the ¢ distribution, for different values of the v
parameter. When v is small, the ¢ distribution has heavier tails than the
normal distribution. (For these examples, the mean parameter . is set to
zero, and the standard deviation parameter o is set to 1.0.)
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This allocation is called the prior distribution. The prior distribu-
tion must be acceptable to the skeptical scientific audience of the
analysis. The prior cannot, therefore, trivially presume the desired
outcome. The prior can be informed by previous findings if doing
so would be appropriate for the purposes and audience of the
analysis. Because this article is about general techniques, not a
specific application domain, the prior distributions here are made
very broad and vague, thereby expressing great prior uncertainty in
the values of the parameters. This specification of an uncertain
prior implies that the prior has minimal influence on the estimates
of the parameters, and even a modest amount of data will over-
whelm the prior assumptions when one is doing Bayesian param-
eter estimation.

Figure 2 depicts the descriptive model along with the prior
distribution on its parameters. The ith datum from group j is
denoted as yj; at the bottom of the diagram. The data are described
by ¢ distributions, depicted in the middle of the figure. The prior
distribution is indicated at the top of the figure. In particular, the
prior on the mean parameters, ., and ., is assumed to be a very
broad normal distribution, depicted in the diagram by an iconic
normal shape. To keep the prior distribution broad relative to the
arbitrary scale of the data, I have set the standard deviation S of the
prior on w to 1,000 times the standard deviation of the pooled data.
The mean M of the prior on  is arbitrarily set to the mean of the
pooled data; this setting is done merely to keep the prior scaled
appropriately relative to the arbitrary scale of the data. Thus, if y

JAN W
normal normal

Ky

t distrib. t distrib.
Yii Yai

Figure 2. Hierarchical diagram of the descriptive model for robust
Bayesian estimation. At the bottom of the diagram, the data from Group 1
are denoted y,; and the data from Group 2 are denoted y,;. The data are
assumed to be described by ¢ distributions, as indicated by the arrows
descending from the z-distribution icons to the data. The ~ symbol (tilde)
on each arrow indicates that the data are randomly distributed, and the
“...” symbol (ellipsis) on the lower arrows indicates that all the y; are
distributed identically and independently. The two groups have different
mean parameters (., and p,) and different standard deviation parameters
(o, and 0,), and the v parameter is shared by both groups, as indicated by
the split arrow, for a total of five estimated parameters. The parameters are
provided with broad, noncommittal prior distributions, as indicated by the
icons in the upper part of the diagram. The prior distributions have
histogram bars superimposed on them to suggest their representation by a
very large random sample and their correspondence to the histograms of
the posterior distributions in Figures 3-5. S = standard deviation; M =
mean; L = low value; H = high value; R = rate; unif = uniform; shifted
exp = shifted exponential; distrib. = distribution.

were a measure of distance, the scale could be nanometers or
light-years and the prior would be equally noncommittal. The prior
on the standard deviation parameter is also assumed to be non-
committal, expressed as a uniform distribution from a low value L,
set to one thousandth of the standard deviation of the pooled data,
to a high value H, set to one thousand times the standard deviation
of the pooled data. Finally, the v parameter has a prior that is
exponentially distributed, which spreads prior credibility fairly
evenly over nearly normal and heavy tailed data. The exact prior
distribution on v is shown in Appendix A.

Flexibility: Variations and extensions. The default form of
the analysis program uses a noncommittal prior that has minimal
impact on the posterior distribution. Users can modify the program
to specify other prior distributions if they like, as explained in
Appendix B. This flexibility is useful for checking the robustness
of the posterior against reasonable changes in the prior. The
flexibility is also useful in applications that allow strongly in-
formed priors based on publicly accessible previous research.

The default form of the analysis program uses ¢ distributions to
describe the shape of the data in each group. Users can modify the
program to specify other shapes to describe the data. For example,
if the data are skewed, it might be useful to describe the data with
a log-normal distribution. Appendix B shows how to do this.

Robust Bayesian estimation can be extended (in the program-
ming languages R and JAGS) to research designs with a single
group or with multiple groups. In the case of data from a single
group, including the case of a single group of difference scores
from repeated measures on the same subjects, a modified model
merely estimates ., o, and v of the group. For multiple groups, on
the other hand, the model of Figure 2 can be extended in two ways.
First, of course, every group is provided with its own p; and o;
parameters but with v shared by all groups. Second, and impor-
tantly, the model can be provided with a higher level distribution
across the group means, if desired. This higher level distribution
describes the distribution of the p; across groups, wherein the
overall mean of the groups is estimated, and the between-group
variability is estimated. A major benefit of the hierarchical struc-
ture is that the estimates of the distinct group means undergo
“shrinkage” toward the overall mean, to an extent determined by
the actual dispersion across groups. In particular, when several
groups have similar means, this similarity informs the higher level
distribution to estimate small variability between groups, which, in
turn, pulls the estimate of outlying groups toward the majority of
the groups. The magnitude of shrinkage is informed by the data:
When many groups are similar, there is more shrinkage of outlying
groups. Shrinkage of estimates is a natural way to mitigate false
alarms when considering multiple comparisons of groups, because
shrinkage can restrain chance conspiracies of rogue data. Specifi-
cation of hierarchical structure can be useful for sharing of infor-
mation across group estimates, but it is not necessary and is only
appropriate to the extent that the top-level distribution is a useful
description of variability across groups.

Note that shrinkage is caused by the hierarchical model struc-
ture, not by Bayesian estimation. Non-Bayesian methods such as
maximum likelihood estimation also show shrinkage in hierarchi-
cal models, but Bayesian methods are particularly flexible and
allow many complex nonlinear hierarchical models to be easily
implemented. For example, the extended model can also place a
higher level distribution on the group standard deviations
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(Kruschke, 2011b, Section 18.1.1.1), so that every group has its own
estimated standard deviation, but the various group estimates mutu-
ally inform each other so that some degree of homogeneity of vari-
ance can be enforced to the extent that the data suggest it. Complex
nonlinear hierarchical models can be very challenging for NHST
procedures because of the difficulty of generating sampling distribu-
tions for computing p values from nested models. Further details
regarding so-called hierarchical Bayesian analysis of variance
(ANOVA) are provided by Gelman (2005, 2006); Gelman, Hill, and
Yajima (2012); and Kruschke (2010a, 2010b, 2011b). Complete pro-
grams are provided by Kruschke (2011b; e.g., programs
ANOVAonewayJagsSTZ.R and ANOVAtwowayJagsSTZ.R).

Summary of the model for Bayesian estimation. The model
describes the data with five parameters: a mean and standard
deviation for each group and a normality parameter shared by the
groups. The prior allocation of credibility across the five-
parameter space is very vague and wide, so that the prior has
minimal influence on the estimation, and the data dominate the
Bayesian inference. Bayesian estimation will reallocate credibility
to parameter values that best accommodate the observed data. The
resulting distribution is a joint distribution across the five param-
eters, thereby revealing combinations of the five parameter values
that are credible, given the data.

The Mechanics of Bayesian Estimation

As described earlier, Bayesian inference simply reallocates
credibility across the parameter values in the model, given the
data. The mathematically correct way to reallocate credibility is
provided by a formula called Bayes’ rule (Bayes & Price, 1763). It
is based on a simple relationship between conditional probabilities,
but it has tremendous ramifications when applied to parameters
and data. Denote the set of data as D, which consists of all the
observed y;; from both groups. Bayes’ rule derives the probability
of the parameter values given the data, in terms of the probability
of the data given the parameter values and the prior probabilities of
the parameter values. For our descriptive model in Figure 2,
Bayes’ rule has the following form:

p(D“‘l‘l’ T P2, O, V)

p(““l’ 01, W2, O, V|D) =
R ——
likelihood

posterior

X ply, 04, o, 03, V) / p(D) (D
prior

evidence

In words, Bayes’ rule in Equation 1 simply states that the posterior
credibility of the combination of values < w,, oy, p,, 05, v > is
the likelihood of that combination times the prior credibility of that
combination, divided by the constant p(D). Because it is assumed
that the data are independently sampled, the likelihood is the
multiplicative product across the data values of the probability
density of the ¢ distribution in Figure 2. The prior is the product of
the five independent parameter distributions in the upper part of
Figure 2. The constant p(D) is called the evidence or the marginal
likelihood by various authors. Its value is computed, in principle,
by integrating the product of the likelihood and prior over the
entire parameter space. The integral is impossible to compute
analytically for many models, which was a major impediment to
the widespread use of Bayesian methods until the development of
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modern numerical methods that obviate explicit evaluation of
pD).

The posterior distribution is approximated to arbitrarily high
accuracy by generating a large representative sample from it,
without explicitly computing p(D). A class of algorithms for doing
so is called Markov chain Monte Carlo (MCMC) methods, and
those methods are used here. The MCMC sample, also called a
chain of values because of the way the values are generated,
provides many thousands of combinations of parameter values,
<My, Oy, Mo, 0o, ¥>. Each combination of values is representative
of credible parameter values that simultaneously accommodate the
observed data and the prior distribution. The thousands of repre-
sentative parameter values are summarized graphically by a his-
togram, as shown in the prior distributions of Figure 2 and in
subsequent depictions of posterior distributions. From the MCMC
sample, one can easily ascertain any aspect of the credible param-
eter values in which one might be interested, such as the mean or
modal credible value and range of credible values. Importantly,
one can also examine the credible difference of means by com-
puting w, — ., at every combination of representative values, and
one can do the same for the difference of standard deviations.
Several examples are provided below.

For computing the Bayesian inference, I will use the program-
ming language called R (R Development Core Team, 2011) and
the MCMC sampling language called JAGS, accessible from R via
a package called rjags (Plummer, 2003). The programs are written
in the style of programs in a recent textbook (Kruschke, 2011b).
All the software is free. The software is easy to install, and it is
easy to run the programs, as explained at http://www.indiana.edu/
~kruschke/BEST/, where “BEST” stands for Bayesian estimation.

With the software and programs installed, running an analysis is
easy. For a complete example, open the file BESTexample.R in
R and read the comments in that file.

There are just four simple steps in conducting an analysis.
First, one loads the relevant programs into R using the com-
mand source (“BEST.R”). Second, the data for the two groups
are entered as vectors in R, denoted y1 and y2. Third, the
MCMC chain is generated using the command mcmcChain =
BESTmcmc(y1,y2). Fourth, the results are plotted, using the
command BESTplot(y1,y2,mcmcChain). Examples of results
are presented below.

Digression: Technical details of MCMC sampling. The
process of MCMC sampling generates a large representative sam-
ple of credible parameter values from the posterior distribution.
The bigger the sample is, the better it represents the underlying
posterior distribution. The program defaults to an MCMC sample
size of 100,000. This sample size, also called chain length, is
adequate for typical applications.

It is important not to confuse the MCMC “‘sample” of parameter
values with the “sample” of empirical data. There is one sample of
data, which remains fixed regardless of the MCMC sample size. A
longer MCMC chain merely provides a higher resolution repre-
sentation of the posterior distribution of parameter values, given
the fixed data.

Because the MCMC process generates a random sample of
credible parameter values, its results will be slightly different on
repeated analyses of the same data. These small variations are of
no consequence in most applications. If, however, the user requires
more stability in the MCMC approximation of the posterior, it is
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easy to specify a larger chain length. The analysis program takes
proportionally longer time to generate a longer chain. The user is
encouraged to use as long a chain as possible.

The goal of the MCMC process is to generate an accurate and
reliable representation of the posterior distribution. Unfortunately,
MCMC algorithms can suffer from clumpiness (technically called
autocorrelation) in the chains that they generate. One way of
diluting clumpiness is by thinning the chain, which means using
only every kth step in the chain, where & is an arbitrary number
chosen judiciously by the user. Although the thinned chain has less
clumpiness, it also is much shorter than the original chain and
therefore has less reliable estimates of posterior characteristics. It
turns out that in most typical applications, clumpiness can be
adequately smoothed simply by running a long chain without
thinning, and the long chain produces reliable estimates of the
posterior distribution (e.g., Jackman, 2009, p. 263; Link & Eaton,
2012). Therefore the program defaults to no thinning, although the
user can thin if desired.

Assessing Null Values

Psychologists and researchers in various other disciplines have
been trained to frame research questions in terms of whether or not
a null value can be rejected. For example, when investigating two
groups, the goal is framed as trying to reject the null hypothesis
that the two groups have equal means. In other words, the “null
value” for the difference of means is zero, and the goal is to reject
that value as implausible.

One problem with framing research this way, with the goal of
rejecting a difference of zero, is that theories can be expressed very
weakly yet still be confirmed (Meehl, 1967, 1997). For example, a
theorist could claim that a drug increases intelligence and have the
claim confirmed by any magnitude of increase, however small,
that is statistically greater than zero. Strong theories, by contrast,
predict particular magnitudes of difference or predict specific
forms of relation between variables (e.g., Newtonian mechanics).
Scientists who pursue strong theories therefore need to estimate
parameter values, not merely reject null values. Bayesian estima-
tion is an excellent tool for pursuing strong theories.

Bayesian estimation can also be used to assess the credibility of
a null value. One simply examines the posterior distribution of the
credible parameter values and sees where the null value falls. If the
null value is far from the most credible values, one rejects it.
Examples are provided later.

Bayesian estimation also can accept the null value, not only
reject it. The researcher specifies a region of practical equivalence
(ROPE) around the null value, which encloses those values of the
parameter that are deemed to be negligibly different from the null
value for practical purposes. The size of the ROPE will depend on
the specifics of the application domain. As a generic example,
because an effect size of 0.1 is conventionally deemed to be small
(Cohen, 1988), a ROPE on effect size might extend from —0.1 to
0.1. When nearly all of the credible values fall within the ROPE,
the null value is said to be accepted for practical purposes. Exam-
ples are provided later in the article. The use of a ROPE is
described further by Kruschke (2011a, 2011b) and in additional
settings by Carlin and Louis (2009); Freedman, Lowe, and Ma-
caskill (1984); Hobbs and Carlin (2007); and Spiegelhalter, Freed-
man, and Parmar (1994). Independently of its use as a decision tool

for Bayesian analysis, use of a ROPE has also been suggested as
a way to increase the predictive precision of theories (J. R. Ed-
wards & Berry, 2010).

There is a different Bayesian approach to the assessment of null
values, which involves comparing a model that expresses the null
hypothesis against a model that expresses all possible parameter
values. The method emphasizes a statistic called the Bayes factor,
which is the overall likelihood of the data for one model relative to
the overall likelihood of the data for the other model. In the
Bayes-factor approach, parameter estimates are not emphasized.
Moreover, the value of the Bayes factor itself can be very sensitive
to the choice of prior distribution in the alternative model. Al-
though the Bayes-factor approach can be appropriate for some
applications, the parameter-estimation approach usually yields
more directly informative results. Interested readers can find more
details in Appendix D.

Examples of Robust Bayesian Estimation

I now discuss three examples of robust Bayesian estimation. The
first considers two groups of moderate sample sizes, in which there
are different means, different standard deviations, and outliers. The
second considers two groups of small sample sizes in which
the Bayesian analysis concludes that the means are not credibly
different. The third considers two groups of large sample sizes in
which the Bayesian analysis concludes that the group means are
equal for practical purposes. In all three cases, the information
provided by the Bayesian analysis is far richer than the information
provided by an NHST 1 test, and in all three cases the conclusions
differ from those derived from the NHST ¢ test. Results from the
corresponding NHST 1 tests are discussed later in the article.

Different means and standard deviations with outliers: Fig-
ure 3. Consider data from two groups of people who take an 1Q
test. Group 1 (N, = 47) consumes a “smart drug,” and Group 2
(N, = 42) is a control group that consumes a placebo. Histograms
of the data appear in the upper right panels of Figure 3. (The data
for Figure 3 were generated randomly from ¢ distributions. The
exact data are provided in the example of running the free software
at http://www.indiana.edu/~kruschke/BEST/.) The sample mean
of Group 1 is 101.91 and the sample mean of Group 2 is 100.36,
but there is a lot of variability within groups, and the variances of
the two groups also appear to differ. There also appear to be some
outliers. Are these groups credibly different?

Robust Bayesian estimation yields rich information about the
differences between groups. As explained above, the MCMC
method generates a very large number of parameter combinations
that are credible, given the data. These combinations of parameter
values are representative of the posterior distribution. Figure 3
shows histograms of 100,000 credible parameter-value combina-
tions. It is important to understand that these are histograms of
parameter values; they are not histograms of simulated data. The
only histograms of data appear in the top right panels of Figure 3
that are labeled with y on their abscissas, and these data are fixed
at their empirically observed values. All the other histograms
display 100,000 parameter values from the posterior distribution,
given the single set of actual data. In particular, the five histograms
in the left column of Figure 3 show the posteriors corresponding to
the five prior histograms in Figure 2. For example, the wide
uniform prior on o, shown in the left of Figure 2, becomes the
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Figure 3. Top right shows histograms of the data in the two groups, with representative examples of posterior
predictive (Post. Pred.) distributions superimposed. Left column shows marginals of the five-dimensional posterior
distribution, corresponding to the five prior histograms in Figure 2. Lower right shows posterior distribution of
differences and effect size. HDI = highest density interval; w. = with; Std. Dev. = standard deviation.

smoothly peaked and relatively narrow posterior distribution in the
middle left of Figure 3.

Each histogram is annotated with its central tendency, with the
mean used for distributions that are roughly symmetric and the
mode used for distributions that are noticeably skewed. Each
histogram is also marked with its 95% highest density interval
(HDI), which is a useful summary of where the bulk of the most
credible values falls. By definition, every value inside the HDI has
higher probability density than any value outside the HDI, and the
total mass of points inside the 95% HDI is 95% of the distribution.
The numbers displayed in the plots of Figure 3 are rounded to three
significant digits to save display space.

The upper left panel of Figure 3 shows that the mean of the
credible values for w, is 101.55 (displayed to three significant

digits as 102), with a 95% HDI from 100.81 to 102.32, and the
mean of the MCMC chain for ., is 100.52, with a 95% HDI from
100.11 to 100.95. Therefore, the difference p, — p, is 1.03 on
average, as displayed in the middle plot of the right column. One
sees that the 95% HDI of the difference of means falls well above
zero, and 98.9% of the credible values are greater than zero.
Therefore one can conclude that the groups’ means are, indeed,
credibly different. It is important to understand that the Bayesian
analysis yields the complete distribution of credible values, but a
separate decision rule converts the posterior distribution to a
discrete conclusion about a specific value.

The Bayesian analysis simultaneously shows credible values of
the standard deviations for the two groups, with histograms plotted
in the left column of Figure 3. The difference of the standard
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deviations is shown in the right column, where it can be seen that
a difference of zero is not among the 95% most credible differ-
ences, and 99.5% of the credible differences are greater than zero.
Thus, not only is the mean of the first group credibly larger than
the mean of the second group, the standard deviation of the first
group is also credibly larger than the standard deviation of the
second group. In the context of the smart drug consumed by Group
1, this result means that the drug increased scores on average, but
the drug also increased the variability across subjects, indicating
that some people may be adversely affected by the drug and others
may be quite positively affected. Such an effect on variance has
real-world precedents; for example, stress can increase variance
across people (Lazarus & Eriksen, 1952).

The lower right panel of Figure 3 shows the distribution of
credible effect sizes, given the data. For each credible combination
of means and standard deviations, the effect size is computed as
(1 — W)/ \(o7 + 63)/2. The histogram of the 100,000 credible
effect sizes has a mode of 0.622, with the shape shown in Figure 3,
and a 95% HDI that excludes zero.'

The lower left panel of Figure 3 shows credible values of the
normality parameter in the ¢ distribution. The values are shown on
a logarithmic scale, because the shape of the 7 distribution changes
noticeably for values of v near 1 but changes relatively little for
v > 30 or so (see Figure 1). On a base-10 logarithmic scale,
log,o(v) = 0 means v = 1, log,,(v) = 1 means v = 10, and
log,o(v) = 2 means v = 100. The histogram shows that log,(v)
has values close to zero, which means that the credible ¢ distribu-
tions are large tailed to accommodate outliers in the data.

The upper right panels of Figure 3 show a smattering of credible
t distributions superimposed on histograms of the data. The curves
are produced by selecting several random steps in the MCMC
chain and at each step plotting the ¢ distribution with parameters
< W, 0;, v > on the Group 1 data and plotting the ¢ distribution
with parameters < pw,, 0,, ¥ > on the Group 2 data. By visually
comparing the data histogram and the typical credible ¢ distribu-
tions, one can assess whether the model is a reasonably good
description of the data. This type of assessment is called a poste-
rior predictive check (Gelman, Carlin, Stern, & Rubin, 2004;
Gelman & Shalizi, 2012; Gelman & Shalizi, in press; Guttman,
1967; Kruschke, in press; Rubin, 1984). We see from the plots that
the credible 7 distributions are a good description of the data. (In
fact, the fictitious data were generated from ¢ distributions, but for
real data one never knows the true generating process in nature.)
The posterior predictive check can be useful for identifying cases
in which data are strongly multimodal instead of unimodal or
strongly skewed instead of symmetric, or with two groups that
have very different kurtosis instead of the same kurtosis. In these
cases one may seek a more appropriate model. Fortunately, it is
easy to modify the programs so they use different models; see
Appendix B.

Small sample sizes: Figure 4. Consider a case of small-
sample data, with N, = 8 and N, = 8§, as shown in Figure 4.
Although the sample means of the two groups are different, the
posterior distribution reveals great uncertainty in the estimate of
the difference of means, such that a difference of zero falls within
the 95% HDI (middle panel of right column). As is shown
later, the traditional NHST ¢ test comes to a different conclusion
about the difference of means (with p < .05). The posterior

distribution on the effect size also shows that an effect size of zero
falls within the 95% HDI (lowest panel of right column). The
posterior distribution on the normality parameter has a mode of
log,,(v) = 1.45, which corresponds to v = 28 and which can be
seen in Figure 1 to be nearly normal. Compared with the prior on
v (see Figure Al in Appendix A), the posterior on v has ruled out
extremely heavy tails, but otherwise remains very uncertain.

Accepting the null with large sample sizes: Figure 5. As
the sample size gets larger, the precision of the parameter estimates
also increases, because sampling noise tends to cancel out. If one
defines a ROPE around the null value, the precision of the estimate
might be fine enough that the 95% HDI falls entirely within the
ROPE. If this happens, it means that the 95% most credible values
are practically equivalent to the null value. This condition can be
a criterion for accepting the null value. Notice that if the ROPE is
relatively wide and the 95% HDI is very narrow, the 95% HDI
could fall entirely within the ROPE and yet also exclude zero. This
is not a contradiction. It simply means that the credible values of
the parameter are non-zero, but those non-zero values are so small
that they have no practical importance.

Figure 5 shows a case of accepting the null value. The difference
between means is nearly zero, but most important, the 95% HDI of
the difference falls entirely within a ROPE that extends from —0.1
to 0.1. The same is true of the difference in standard deviations,
where, in fact, 100% of the posterior (i.e., all of the 100,000
representative values) falls inside the ROPE. It is important to
understand that Bayesian estimation provides a complete distribu-
tion over possible differences, but the decision rule is auxiliary and
concludes that for practical purposes one accepts the null value.

Bayesian estimation allows one to make this conclusion by
virtue of the fact that it provides an explicit posterior distribution
on the differences, given the data. Without the explicit posterior
distribution, one could not say whether the estimate falls within the
ROPE. The decision procedure based on Bayesian estimation
allows one to accept the null value only when there is high enough
precision in the estimate, which typically can happen only with
relatively large sample sizes.

In contrast, the NHST ¢ test has no way of accepting the null
hypothesis. Even if one were to define a ROPE, the confidence
interval from the NHST ¢ test does not provide the information one
needs. The NHST 1 test and confidence interval are discussed at
length in a subsequent section.

Power Analysis for Bayesian Estimation

Researchers can have various goals when analyzing their data.
One important goal is to obtain a precise estimate of the descrip-

! The effect size is defined here as (; — o)/ \/(Uf + 03)/2, because 1
take the perspective that the effect size is merely a re-description of the
posterior distribution. In principle, many different data sets could have
generated the posterior parameter distribution, and therefore the data
should not be used in re-describing the posterior. Nevertheless, some
users may prefer to compute an effect size in which the estimates are
weighted by the sample sizes in the groups: & = (w, — W,)/
VIoi®, = 1) + 63N, = DYV, + N, — 2) (Hedges, 1981; Wetzels et al.,
2009). This form does not change the sign of the effect size, merely its
magnitude, so the proportion of the posterior distribution of the effect size
that is greater (or less) than zero remains unaffected.
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Figure 4. Top right shows histograms of data in the two groups, with representative examples of posterior
predictive distributions (Post. Pred.) superimposed. Left column shows marginals of the five-dimensional
posterior distribution. Lower right shows posterior distribution of differences and effect size. HDI = highest
density interval; w. = with; Std. Dev. = standard deviation.

tive parameters. Success in achieving this goal can be expressed as
the width of the 95% HDI being less than some criterial maximum.
Other goals regard specific parameter values of interest, such as
null values. For example, the analyst can assay whether the 95%
HDI falls entirely outside or inside the ROPE and thereby declare
the null value to be rejected or accepted. The Bayesian posterior
distribution provides complete information to address these goals.

With these various goals for analysis in mind, the analyst may
wonder what is the probability of achieving them, if the sampled
data were generated by hypothetical parameter values. A tradi-
tional case of this issue is NHST power analysis. In NHST, the
power of an experiment is the probability of rejecting the null
hypothesis if the data were generated from a particular specific
alternative effect size. The probability of rejecting the null, for data

sampled from a non-zero effect, is less than 100% because of
random variation in sampled values, but it is at least 5% because
that is the conventionally tolerated false alarm rate from the null
hypothesis.

Power can be assessed prospectively or retrospectively. In rez-
rospective power analysis, the effect size is estimated from an
observed set of data, and then the power is computed for the
sample size that was actually used. In prospective power analysis,
the effect size is hypothesized from analogous previous research or
intuition, and the power is computed for a candidate sample size.
Prospective power analysis is typically used for sample size de-
termination, because the analyst can plan a sample size that yields
the desired power (for the assumed hypothesis). In the context of
NHST, many authors have pointed out that prospective power
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Figure 5. Top right shows histograms of data in the two groups, with representative examples of posterior
predictive distributions (Post. Pred.) superimposed. Left column shows marginals of the five-dimensional
posterior distribution. Lower right shows posterior distribution of differences and effect size. HDI = highest
density interval; w. = with; Std. Dev. = standard deviation; ROPE = region of practical equivalence.

analysis provides useful information, but retrospective power anal-
ysis (that uses only the data from a single experiment) provides no
additional information that is not already implicit in the p value
(e.g., Gerard, Smith, & Weerakkody, 1998; Hoenig & Heisey,
2001; Nakagawa & Foster, 2004; O’Keefe, 2007; Steidl, Hayes, &
Schauber, 1997; Sun, Pan, & Wang, 2011; Thomas, 1997). Ret-
rospective power analysis can, however, at least make explicit the
probability of achieving various goals in the given experiment,
even if that information is not useful for additional inference from
the given data.

In either retrospective or prospective power analyses, NHST
uses a point value for the hypothetical effect size. In Bayesian
power analysis, one uses an entire distribution of parameters

instead of a single point value for the effect size. Thus, every value
of effect size is considered but only to the extent that it is consid-
ered to be credible. NHST power analysis can consider various
point values, such as the end points of a confidence interval, but
the different point values are not weighted by credibility and
therefore can yield a huge range of powers. As a consequence,
NHST power analysis often yields extremely uncertain results
(e.g., Gerard et al., 1998; Miller, 2009; Thomas, 1997), but Bayes-
ian power analysis yields precise estimates of power. A later
section describes NHST power analysis in more detail, and the
remainder of this section describes Bayesian power analysis.

For Bayesian retrospective power analysis, the distribution of
credible parameter values is the posterior distribution from an
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observed set of data. At every step in the MCMC chain of the
posterior, the analyst uses that step’s parameter values to simulate
new data, then does a Bayesian analysis of the simulated data, and
then checks whether the desired goals are achieved. The process is
illustrated in Figure 6, and the caption provides more details. From
the many simulations, the proportion of times that each goal is
achieved is used to estimate the probability of achieving each goal.
The mechanics of the process are explained in detail in Chapter 13
of Kruschke (2011b) and are illustrated with examples in Kruschke
(20104, 2010Db). The issue has been explored in technical detail in
various domains (e.g., Adcock, 1997; De Santis, 2004, 2007;
Joseph, Wolfson, & du Berger, 1995a, 1995b; Wang & Gelfand,
2002; Weiss, 1997).

For prospective power analysis, the same process is executed
but starting with hypothetical data instead of actual data. The
hypothetical data are designed to represent ideal results for a large
experiment that perfectly reflects the hypothesized effect. From the
large set of idealized data, a Bayesian analysis reveals the corre-
sponding parameter distribution that is credible. This parameter
distribution is then used as the expression of the hypothesis in the
left side of Figure 6. A major advantage of this approach is that
researchers can usually intuit hypothetical data much more easily
than hypothetical parameter values. The researcher merely needs
to generate hypothetical data from an idealized experiment, instead
of trying to specify abstract distributions of parameters and their
trade-offs in high-dimensional space. This approach is also quite
general and especially useful for more complex situations involv-
ing models with many parameters.

Example of Bayesian prospective power analysis. To fa-
cilitate the generation of idealized data for prospective power
analysis, a program accompanying this article generates simulated
data from two groups. Details are provided in Appendix C. The
user specifies the means and standard deviations of the two nor-
mally distributed groups and the sample size for each group. The
user also specifies the percentage of the simulated data that should
come from outlier distributions, which have the same means as the
two groups but a larger standard deviation, which is also specified

Hypothesis

by the user. As an example, suppose the researcher is contemplat-
ing the effect of a smart drug on IQ scores. He or she assumes that
the control group has a mean of 100 and standard deviation of 15
and the treatment group will have a mean of 108 and standard
deviation of 17, with scores normally distributed in each group.
Moreover, the researcher hypothesizes that 10% of the data will
consist of outliers, simulated as coming from the same group
means but with twice as large a standard deviation. An idealized
experiment would perfectly realize these hypothetical values in a
large sample size, such as 1,000 per group. The sample size
expresses the confidence in the hypothesis: The larger the sample
size, the higher the confidence. Figure 7 shows an example of such
idealized data. The researcher can easily inspect this figure to
check that it accurately represents the intended hypothesis.

The idealized data are then submitted to a Bayesian analysis so
that the corresponding parameter distribution can be derived. The
resulting posterior distribution, shown in Figures 8 and 9, reveals
the parameter uncertainty implicit in the idealized data set, for all
the parameters including the normality parameter, which might be
particularly difficult to specify by prior intuition alone. The pos-
terior distribution also captures joint dependencies of credible
parameter values, as revealed in Figure 9, where it can be seen that
the standard deviation (o, and o,) and normality (v) parameters
are correlated with each other. This correlation occurs because
higher values of normality, which posit small-tailed data distribu-
tions, require larger standard deviations to accommodate the out-
liers in the data. Although it is fairly easy for a researcher to intuit,
generate, and check idealized data as in Figure 7, it is probably
considerably more difficult for a researcher to intuit, generate, and
check idealized joint parameter values to express the hypothesis as
in Figure 9.

Another benefit of this approach is that the researcher’s cer-
tainty in a hypothesis is expressed in terms of concrete sample size,
not in terms of spread in an abstract parameter space. The sample
size for the idealized data directly indicates the amount of data in
fictitious previous research that provides support for the hypoth-
esis. The example in Figure 7 used 1,000 values in each group to

regarding
distribution of

(

(

parameters,

e.g., posterior Representative
distribution from parameter
previous analysis values

Prior for

skeptical

audience
y v
Simulated Bayes' rule
sample of

data
Ve
(

Posterior distribution from
simulated data sample:
Are goals achieved?

Figure 6. Flowchart for estimating Bayesian power. At the left, a hypothetical distribution of parameter values
is used to repeatedly generate representative credible parameter values. For each set of parameter values, a
simulated sample of data is generated from the model. Then Bayes’ rule is applied to derive the posterior
distribution from the simulated data and assay whether the various goals have been achieved for that sample.
Across many replications of simulated experiments, the probability of achieving each goal is estimated to

arbitrarily high accuracy.
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Figure 7. ldealized data used for prospective power analysis. The histo-

grams represent the simulated data values and the curves indicate the
generating distributions, with the taller dashed curve representing the main
generator, the shorter dashed curve representing the outlier distribution,
and the solid curve representing their sum.

represent a fairly large previous study. If the analyst wanted to
express even stronger certainty in the hypothesis, a larger sample
size could be used for the idealized data. The larger sample size
will yield narrower parameter distributions in the Bayesian anal-
ysis.

The creation of a hypothetical parameter distribution for pro-
spective power analysis is analogous to eliciting a prior distribu-
tion from expert informants. The method advocated here, in which
the informant generates hypothetical data from which a parameter
distribution is derived, is analogous to the equivalent prior sample
(EPS) method proposed by Winkler (1967) for eliciting the prior in
estimating the bias of a coin. The method advocated here is
consistent with the advice of Garthwaite, Kadane, and O’Hagan
(2005):

As a guiding principle, experts should be asked questions about
quantities that are meaningful to them. This suggests that questions
should generally concern observable quantities rather than unobserv-
able parameters, although questions about proportions and means also
might be considered suitable, because psychological research suggests
that people can relate to these quantities. . . . Graphical feedback is an
important component . . . and it seems to provide a potentially pow-
erful means of improving the quality of assessed distributions. (pp.
689, 692)

A reader might wonder why we go through the effort of creating
a parameter distribution to generate simulated data if we already
have a way of generating simulated data for the idealized experi-
ment. The answer is that the idealized data are generated from a
punctate parameter value without any uncertainty expressed in that
parameter value. It is the idealized sample size that expresses the
intuitive certainty in the hypothesized parameter value and, sub-
sequently, the Bayesian posterior from the idealized sample that

expresses the parameter uncertainty. Thus, the process goes from
easily intuited certainty expressed as idealized sample size to
less easily intuited uncertainty expressed as a multidimensional
parameter distribution. The resulting parameter distribution can be
visually examined for consistency with the intended hypothesis.

With the hypothetical parameter distribution now established, I
proceed with the power analysis itself. To estimate the probability
of achieving the goals, one steps through the credible combinations
of parameter values in the MCMC chain. At each step, the chain
specifies a combination of parameter values, <, 0, s, 05, V>,
which one uses to generate a simulated set of data from the model.
For experiments in which data are sampled until a threshold
sample size, those sample sizes should be used for the simulated
data. For experiments in which data are sampled until a threshold
duration elapses, the simulated data should produce random sam-
ple sizes to mimic that process (e.g., with a Poisson distribution;
Sadiku & Tofighi, 1999). In the analyses presented here (and in the
programs available at http://www.indiana.edu/~kruschke/BEST/),
I assume fixed sample sizes, merely for simplicity. For each set of
simulated data, a Bayesian analysis is conducted to produce a
posterior distribution on the parameters given the simulated data.
Each of the goals can then be assessed in the posterior distribution.
This process repeats for many steps in the MCMC chain from the
original analysis. The software commands for executing the power
analysis are explained in Appendix C.

The underlying probability of achieving each goal is reflected
by the proportion of times that the goal is achieved in the simulated
replications. The estimate of the underlying probability is itself a
Bayesian estimation from the proportion of successes in the sim-
ulated replications. One assumes a noncommittal uniform prior on
the power, and therefore the posterior distribution on power is a
beta distribution (e.g., Chapter 5 of Kruschke, 2011b). As the
number of replications increases, the beta distribution gets nar-
rower and narrower, which is to say that the estimate of power gets
more and more certain. The 95% HDI of the posterior beta distri-
bution is used to summarize the uncertainty in the estimated
power. Notice that the accuracy of the power estimate is limited in
practice only by the number of simulated replications. In principle,
the power estimate is precise because it integrates over the entire
hypothetical parameter distribution.

Suppose I think that a realistic sample size for my study will
have N, = N, = 50. Suppose I have several goals for the analysis,
selected here more for illustrative purposes than for realism. With
regard to the magnitude of w, — ,, suppose I would like to show
that its 95% HDI excludes a ROPE of (—1.5, 1.5), which is to say
that there is difference between means that is credibly different
than 1.5 IQ points. I may also desire a minimum precision on the
estimate of w, — W, such that its 95% HDI has width less than 15
IQ points (i.e., one standard deviation of the normed background
population). I may have analogous goals for the difference of
standard deviations and for the effect size. The results of running
1,000 simulated experiments are shown in Table 1, where it can be
seen that the estimated probability that the 95% HDI on the
difference of means excludes a ROPE of (—1.5, 1.5) is only
40.1%. There are fairly tight bounds on this estimate because 1,000
simulated experiments were run. Similarly, the estimated proba-
bility that the 95% HDI on the effect size excludes zero is only
54.4%. The prospective power analysis reveals that even if the
hypothetical effect of the smart drug were perfectly supported by
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Figure 8. Posterior distribution from idealized data in Figure 7, used for prospective power analysis. (The
histograms are a bit choppy because only a short MCMC chain was generated for use in prospective power
analysis.) Figure 9 shows pairwise plots of the five parameters. MCMC = Markov chain Monte Carlo; HDI =
highest density interval; w. = with; Post. Pred. = posterior predictive; Std. Dev. = standard deviation.

previous research that included 1,000 people in each group, a
novel experiment involving only 50 people in each group would be
underpowered (assuming that a power of at least 80% would be
desired before running an experiment). The researcher could in-
crease power by increasing the novel experiment’s sample size or
by aspiring to an easier goal (e.g., with a smaller ROPE).
Example of Bayesian retrospective power analysis. Retro-
spective power analysis proceeds like prospective power analysis,
but instead of using idealized data, one uses actually observed
data. Recall the example of Figure 3, which involved data from

two groups of subjects who took 1Q exams. (Although the data
were fictitious, suppose that they were real for the present illus-
tration.) The first group (N, = 47) took a smart drug, and the
second group (N, = 42) was a control. The Bayesian posterior
revealed credibly non-zero differences in the means and the stan-
dard deviations. The posterior also indicated that the effect size
was credibly non-zero. Suppose that the researcher would like to
do a retrospective power analysis for these data, and the researcher
has several goals, with one being that the 95% HDI on the
difference of means is greater than zero. Six goals altogether are
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Figure 9. Posterior distribution from idealized data in Figure 7, used for prospective power analysis. The
pairwise plots of credible parameter values, shown in the upper right panels, reveal correlations in the standard
deviation (o, and 0,) and normality (v) parameters. The numerical correlations are shown in the lower left
panels. It would be difficult to generate this distribution of parameter values directly from intuition, but it is
relatively easy to intuit the idealized data of Figure 7.

indicated in Table 2. The power analysis generated simulated data was 47.4%, with a 95% HDI on the estimate extending from 44.3%

from 1,000 steps in the MCMC chain (selected evenly from across to 50.4%, based on 1,000 simulated replications. If more simulated
the entire chain). The analysis revealed that the power for the first replications were used, the bounds on the estimated power would
goal, regarding the difference of means being greater than zero, be tighter. The power for the other goals is indicated in Table 2. It
Table 1

Bayesian Prospective Power Analysis for Parameter Distribution in Figure 8, Using N, = N, = 50

Based on 1,000 simulated replications

Goal Bayesian power Lower bound Upper bound
95% HDI on the difference of means excludes ROPE of (—1.5, 1.5). 40.1% 37.1% 43.1%
95% HDI on the difference of means has width less than 15.0. 72.6% 69.8% 75.3%
95% HDI on the difference of standard deviations is greater than zero. 10.5% 8.6% 12.4%
95% HDI on the difference of standard deviations has width less than 10.0. 15.8% 13.5% 18.0%
95% HDI on the effect size is greater than zero. 54.4% 51.4% 57.5%
95% HDI on the effect size has width less than 1.0. 97.8% 96.9% 98.7%

Note. “Lower bound” and “Upper bound” refer to limits of the 95% HDI on the beta posterior for estimated power, which get closer together as the number
of simulated replications increases. HDI = highest density interval; ROPE = region of practical equivalence.
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Table 2

KRUSCHKE

Bayesian Retrospective Power Analysis for the Posterior Distribution in Figure 3

Based on 1,000 simulated replications

Goal Bayesian power Lower bound Upper bound
95% HDI on the difference of means excludes ROPE of (—0.1, 0.1). 47.4% 44.3% 50.4%
95% HDI on the difference of means has width less than 2.0. 59.5% 56.5% 62.6%
95% HDI on the difference of standard deviations excludes ROPE of (—0.1, 0.1). 62.9% 59.9% 65.9%
95% HDI on the difference of standard deviations has width less than 2.0. 72.9% 70.1% 75.6%
95% HDI on the effect size excludes ROPE of (—0.1, 0.1). 38.2% 35.2% 41.2%
95% HDI on the effect size has width less than 0.2. 0.1% 0.0% 0.3%

Note.

“Lower bound” and “Upper bound” refer to limits of the 95% HDI on the beta posterior for estimated power, which get closer together as the number

of simulated replications increases. HDI = highest density interval; ROPE = region of practical equivalence.

is worth reiterating that these precise power estimates incorporate
the full uncertainty of the parameter estimates and are not based on
a single hypothetical parameter value as in NHST power analysis.

Reporting the Results of a Bayesian Analysis

When the results of a robust Bayesian estimation of groups are
reported, the posterior distribution is summarized in text. Although
there are established conventions for reporting NHST analyses
(e.g., American Psychological Association, 2009), there are not yet
conventions for reporting Bayesian analyses. General guidelines
for reporting a Bayesian analysis are offered by Kruschke (2011b,
Chapter 23). Those guidelines were intended to apply to any
Bayesian analysis and to when the analyst could not assume much
previous knowledge of Bayesian methods in the audience. Hence,
the first recommended points were to motivate the use of Bayesian
analysis, describe the model and its parameters, justify the prior
distribution, and mention the details of the MCMC mechanics. In
the present application, all these points are addressed elsewhere in
this article. Anyone who uses the accompanying program unal-
tered can briefly review the points or simply refer to this article.
(If the user changes the prior or likelihood function in the program,
those changes must be explained, along with assessment of
MCMC convergence.) The essential mission of the analyst’s re-
port, therefore, is to summarize and interpret the posterior distri-
bution. A summary of each parameter can consist of descriptive
values including the central tendency, the 95% HDI, and, if rele-
vant, the percentage of the posterior distribution above or below a
landmark value, such as zero, or within a ROPE. These values are
displayed graphically in Figure 3 and are output in greater numer-
ical precision on the computer console when the program is run.
When making discrete decisions about a null value, the analyst can
explicitly define and justify a ROPE, as appropriate, or leave a
ROPE unspecified so that readers can use their own.

Summary of Bayesian Estimation

I began with a descriptive model of data from two groups,
wherein the parameters were meaningful measures of central ten-
dency, variance, and normality. Bayesian inference reallocates
credibility to parameter values that are consistent with the ob-
served data. The posterior distribution across the parameter values
gives complete information about which combinations of param-
eter values are credible. In particular, from the posterior distribu-

tion one can assess the credibility of specific values of interest,
such as zero difference between means, or zero difference between
standard deviations. One can also decide whether credible values
of the difference of means are practically equivalent to zero, so that
the null value is accepted for practical purposes. (How the Bayes-
ian parameter-estimation approach to assessing null values, de-
scribed here, differs from the Bayesian model-comparison ap-
proach is explained in Appendix D.) The Bayesian posterior
distribution also provides complete information about the preci-
sion of estimation, which can be summarized by the 95% HDI.

The Bayesian posterior distribution can also be used as a com-
plete hypothesis for assessing power, that is, the probabilities of
achieving research goals such as rejecting a null value, accepting
a null value, or reaching a desired precision of estimation. The
power estimation incorporates all the information in the posterior
distribution by integrating across the credible parameter values,
using each parameter—value combination to the extent it is credi-
ble. Appendix C provides some details for using the software to do
power analysis.

The software for computing the Bayesian parameter estimates
and power is free and easy to download from http://www.indiana
.edu/~kruschke/BEST/. Instructions for its use are provided in the
sample programs, and instructions for modifying the programs are
provided in Appendix B.

In the next section, I show that the information provided by the
NHST 1 test is very impoverished relative to the results of Bayes-
ian estimation.

The NHST ¢ Test

In this section I review the traditional 7 test from null hypothesis
significance testing (NHST). First I look at the 7 test applied to the
three examples presented earlier, to highlight differences between
the information and conclusions provided by NHST and Bayesian
estimation. Then I turn to general foundational issues that under-
mine the usefulness of NHST in any application.

Examples of the NHST ¢ Test

Recall the data of Figure 3, in which IQ scores of a smart drug
group were compared against 1Q scores of a control group. The
robust Bayesian estimation revealed credible non-zero differences
between means and standard deviations of the groups, along with
heavy tails (non-normality). A complete posterior distribution on
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the effect size was also generated. Bayesian retrospective power
analysis (see Table 2) indicated that the 95% HDI on the effect size
would be greater than zero on 49% of replications, with tight
bounds on the estimate established by 1,000 simulated replica-
tions.

I now consider the results of an NHST ¢ test applied to the data
of Figure 3, which yields #87) = 1.62, p = .110, with a 95%
confidence interval on the difference of means from —0.361 to
3.477. These results, and the results of all ¢ tests reported in this
article, use the Welch (1947) modification to degrees of freedom
for producing the p value and confidence interval, to accommodate
unequal variances. According to conventional decision criteria
(i.e., p < .05), the result implies that the two group means are not
significantly different, contrary to the conclusion reached by the
Bayesian analysis.

The NHST 1 test tells nothing about the difference between the
standard deviations of the two groups, which in the samples are
6.02 and 2.52, respectively. To test the difference of standard
deviations, I have to conduct an additional NHST F test of the ratio
of variances, which yields F(46, 41) = 5.72, p < .001. However,
by conducting a second test on the same data, according to NHST
criteria I need to control for the additional possibility of false alarm
by using a stricter criterion to reject the null hypothesis in either
test. For example, I could apply a Bonferroni correction to the two
tests, so that I would require p < .025 to declare significance
instead of p < .050. Notice that the differences between groups
remain fixed, but the criterion for declaring significance changes
depending on whether or not I intend to test the difference between
sample variances. Corrections for multiple comparisons are dis-
cussed more below, in the context of showing how p values change
under various other changes of intention.

Unfortunately, the results from both NHST tests are suspicious,
because both tests assume normally distributed data, but the actual
data apparently have outliers. In this context of NHST, the appear-
ance of outliers was judged qualitatively. I could run an additional
test of normality, but this would incur an additional penalty in
setting a stricter criterion for significance in the other tests. The
problem with outliers is that conventional p values are computed
on the basis of sampling distributions drawn from null hypotheses
that have normal distributions. Sampling distributions generated
from non-normal distributions yield different p values (for inter-
active examples in Excel, see Kruschke, 2005). Although the ¢ test
for difference of means tends to be fairly robust against violations
of normality (e.g., Lumley, Diehr, Emerson, & Chen, 2002, and
references cited therein), the F test for difference of variances can
be strongly affected by violations of normality (e.g., Box, 1953;
Pearson, 1931).

A standard way to address violations of distributional assump-
tions in NHST is to use resampling methods. In resampling,
instead of assuming a particular distributional form in the popu-
lation, one substitutes the data themselves for the population.
Under the null hypothesis, the data from the two groups represent
the same underlying population, and therefore the data are pooled.
A sampling distribution is generated by repeatedly drawing sam-
ples of sizes N, and N, randomly, with replacement, from the
pooled population and computing the difference of sample means
or difference of sample standard deviations in every replication.
Across many replications (i.e., 100,000 for the results reported
here), a p value is computed as the proportion of randomly gen-

erated samples in which the sample difference exceeds the differ-
ence in the actual data, multiplied by two for a two-tailed test.
With the data from Figure 3, a resampling test of the difference of
means yields p = .116, which is very close to the result of the
conventional 7 test, but a resampling test of the difference of
standard deviations yields p = .072, which is much larger than the
result of the conventional F test. The latter also implies that the
two standard deviations are not significantly different, contrary to
the conventional F test (and contrary to the Bayesian estimation).
Corrections for multiple comparisons must still be applied when
interpreting the p values. To recapitulate, even with resampling,
which avoids parametric distributional assumptions, both the dif-
ference of means and the difference of standard deviations are
deemed to be nonsignificant, unlike in Bayesian estimation.

Consider now the example of Figure 4, which involved small
samples (N, = N, = 8). An NHST ¢ test of the data yields #(14) =
2.33, p = .035, with 95% confidence interval on the difference of
means from 0.099 to 2.399. Notice that the conclusion of signif-
icance (i.e., p < .05) conflicts with the conclusion from Bayesian
estimation in Figure 4, in which the 95% HDI on the difference of
means included zero. The Bayesian estimate revealed the full
uncertainty in simultaneously estimating five parameters from
small samples, and the NHST ¢ test relied on a point null hypoth-
esis assuming normal distributions.

Finally, consider the example of Figure 5, which involved large
samples (N, = 1,101, N, = 1,090). An NHST ¢ test yields
1(2189) = 0.01, p = .99, and a 95% confidence interval on the
difference of means from —0.085 to 0.084. According to NHST,
we cannot accept the null hypothesis from this result; we can say
only that it is highly probable to get a difference of means from the
null hypothesis that is greater than the observed difference of
means. (In fact, according to NHST, it is so unlikely to get such a
small difference of means that we should reject some aspect of the
null hypothesis, such as the assumption of independence.) The
Bayesian estimation showed that the 95% HDI was completely
contained within a ROPE from —0.1 to 0.1, thereby accepting the
null value for practical purposes. (NHST has problems when
pursuing an analogous decision rule regarding the relation of the
confidence interval and a ROPE, as is discussed below.)

In all three cases, NHST and Bayesian estimation came to
different conclusions. It would be wrong to ask which conclusion
is correct, because for real data we do not know the true state of the
world. Indeed, for many studies, we assume in advance that there
must be some difference between the conditions, however small,
but we go to the effort of obtaining the data in order to assess what
magnitude of difference is credible and whether we can credibly
claim that the difference is not zero or equivalent to zero for
practical purposes. Therefore we should use the analysis method
that provides the richest information possible regarding the answer
we seek. And that method is Bayesian estimation. Bayesian esti-
mation provides an explicit distribution of credibilities across all
possible parameter values in the descriptive model, given the set of
actually observed data. From the posterior distribution, Bayesian
methods use a decision procedure involving the HDI and ROPE to
declare particular values to be credible or not.

In contrast, the method of NHST provides only a point estimate
of the parameter values, namely, the parameter values that mini-
mize the squared deviation or maximize the likelihood. The deci-
sion process in NHST is based on asking what is the probability of
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the data summary statistic (such as #), if the null hypothesis were
true. Answering this question provides little direct information
about the probability of parameter values given the data, which is
what one wants to know. NHST is based on sampling distributions
generated by assuming that the null-hypothesis values of the
parameters are true. Sampling distributions are also the basis of
confidence intervals. As will be shown, for any fixed set of data
there are many different p values and many different confidence
intervals depending on the sampling intentions of the analyst. For
any confidence interval there is no distributional information re-
garding values between its end points. The poverty of information
in the confidence interval also leads to power estimates being very
uncertain. In summary, not only is the question asked by NHST
not the question one wants answered, but the information provided
by NHST is very impoverished. Thus, whether Bayesian analysis
indicates credible differences when NHST does not (as for the data
of Figure 3), indicates uncertainty when NHST declares signifi-
cance (as for the data of Figure 4), or indicates accepting the null
for practical purposes when NHST cannot (as for the data of
Figure 5), it is Bayesian analysis that directly addresses our ques-
tion and provides richer information.

From the three specific examples reviewed above, I now pro-
ceed to general issues that afflict NHST.

A p Value Depends on Sampling Intentions

In the NHST 1 test, an observed ¢ value is computed from the
data, which I will denote 7., .. The value of 7, is a direct algebraic
function of the data values, which can be computed regardless of
any assumptions about where the data came from, just as a mean
or standard deviation can be computed for any set of data. How-
ever, additional assumptions must be made to compute the p value.
The p value is the probability of getting a ¢ value from the null
hypothesis, as big or bigger than ¢, if the intended experiment
were repeated ad infinitum. The p value indicates the rarity of 7,
relative to the space of all possible 7 values that might have been
observed from the intended sampling process if the null hypothesis
were true. More formally, the p value is the probability that any
t.an value generated from the null hypothesis according to the
intended sampling process has magnitude greater than or equal to
the magnitude of ¢.,_, which is denoted as p(any |t,.ul = |tond)-

Importantly, the space of all possible 7,,,;, values that might have
been observed is defined by how the data were intended to be
sampled. If the data were intended to be collected until a threshold
sample size was achieved, the space of all possible 7, values is
the set of all ¢ values with that exact sample size. This is the
conventional assumption. Many researchers, however, do not in-
tend to collect data with a fixed sample size planned in advance.
Instead, they intend to collect data for a certain duration of time,
such as 2 weeks, and the actual number of respondents is a random
number. In this case, the space of all possible 7, values is the set
of all # values that could be obtained during that time, which could
involve larger or smaller sample sizes. The result is a different
space of possible 7., values than the conventional assumption of
fixed sample size and, hence, a different p value and different
confidence interval. The space of possible ¢, values is also
strongly affected by the intention to compare the results with other
groups. This is because additional comparisons contribute more
possible 7, values to the space of all ¢ values that could be

obtained, and consequently the p value and confidence interval
change. There are many different intentions for generating the
space of possible ¢, values and, hence, many different p values
and confidence intervals for a single set of data. This section
illustrates this point with several different examples.

The p value for intending to sample until threshold N.  The
conventional assumption is that the data collector intended to
collect data until achieving a specific threshold for sample size.
The upper left Panel A of Figure 10 shows the probability of
obtaining ¢ values from the null hypothesis when the threshold
sample sizes are N, = N, = 8. The x-axis indicates the value of
tne The y-axis is labeled p(any |t,.u| > |t.ne]), Which is the p value.

obs

The plot shows that the value of 7, for which p = .05 is 7, =
2.14. This is the conventional 7., value reported in many text-
books. For the data of Figure 4, 7., = 2.33 exceeds the critical
value, and p < .05.

The p value for intending to sample from multiple groups.
If the data for two groups were collected along with data from
other groups and tests were intended for various combinations of
groups, the space of all possible ¢, values is the set of all 7.,
values collected across all tests. Because of this increased space of
possible 7., values, the relative rarity of 7, changes, and hence
the p value for 7, changes. This dependence of the p value on the
intention of the experimenter is well recognized by the conven-
tional use of various corrections for different kinds of multiple
comparisons (see, e.g., the excellent summary in Maxwell &
Delaney, 2004). Notice that the data in the original two groups
have not changed when the space of intended comparisons is
enlarged, and notice also that the actual data in any of the groups
are irrelevant; indeed, the data do not even have to be collected.
‘What matters is the intention that defines the space of possible ¢,
values from the null hypothesis.

Suppose, for example, that we collect data until a fixed sample
size is achieved, but for four groups instead of two, and we
conduct two independent NHST ¢ tests. The upper middle Panel B
of Figure 10 shows the probability of obtaining ¢,,, values from
the null hypothesis when the sample sizes for all groups are fixed
at N = 8. The plot shows that the value of 7., for which p = .05
is t., = 2.5. In particular, for the data of Figure 4, 7, = 2.33 does
not exceed the critical value, and p > .05. Thus, although the data
in Figure 4 have not changed, their p value has changed because it
is computed relative to a different space of possibilities.

The p value for intending to sample until threshold duration.
If the data were collected until a particular duration was reached
(e.g., collecting data until the end of the week), the space of all
possible 7., values from the null hypothesis is the set of all 7,
values that could occur with the variety of sample sizes that may
have been collected by the end of the duration. This is the way
many researchers in the social sciences actually collect data. There
is nothing wrong with this procedure, because each datum is
completely insulated from the others, and the result of each mea-
surement is unaffected by any measurement that was made before
or after. In some respects, sampling for a fixed duration is better
insulated from the data than sampling until N reaches a threshold,
because sampling for a fixed duration means each measurement is
taken without considering any previous measurements at all, but
sampling until N reaches a threshold depends on counting the
previous measurements. The point, though, is that the space of
possible ¢, values from the null hypothesis is different when

null
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Figure 10. Probability of 7 values sampled from a null hypothesis for different sampling intentions. indep.
comps. = independent comparisons; obs = observed; crit = critical.

intending to sample for fixed duration than when intending to
sample until threshold A, and therefore the p value changes.

The upper right Panel C of Figure 10 shows the probability of
obtaining 7,,, values from the null hypothesis when the sample
sizes are random with a modal value of 8, with a variety of other
sample sizes possible. It was assumed that the researcher collected
data for 4 hr in a facility that can seat at most 5 subjects per hour.
In any given hour, there are usually about four seats filled, occa-
sionally five seats filled, and often fewer than four seats filled.
(The exact probabilities determine the quantitative results but are
irrelevant to the qualitative argument.) The plot shows that the
value of 7, for which p = .05 is #_;, = 2.41. In particular, for the
data of Figure 4, ¢, = 2.33 does not exceed the critical value, and
p > .05. Thus, although the data in Figure 4 have not changed,
their p value has changed because it is computed relative to a
different space of possibilities.

The p value for violated intentions: Interruption or windfall.
Because the p value is defined by the space of possible ¢, values
generated by the null hypothesis when the intended experiment is
repeated, the p value should be based on the intended sample size,
not merely the actually obtained sample size. This is exactly
analogous to basing corrections for multiple tests on the intended
space of tests.

Consider the case of interrupted research, in which the re-
searcher intended to collect N = 16 per group (say) but was
unexpectedly interrupted, perhaps because of falling ill or because
of computer failure, and therefore collected only N = 8 per group.
Most analysts and all statistical software would use N = 8§ per
group to compute a p value. This is inappropriate, however,
because the space of possible 7., values from the null hypothesis
should actually be dominated by the intended sampling scheme,
not by a rare accidental quirk. Suppose that the probability of the
interruption is just 1 in 50 (2%), so that when 7., values are
generated from the null hypothesis, 98% of the time those 7,
values should be based on the intended N = 16, and only 2% of the
time should they be based on the rare occurrence of N = 8. The
resulting p values are shown in the lower left Panel D of Figure 10.
Notice that the critical value is much lower than if the analysis had
inappropriately assumed a fixed sample size of N = 8, indicated by
the dotted curve.

Consider instead a case in which there is a windfall of data,
perhaps caused by miscommunication so two research assistants
collect data instead of only one. That is, the researcher intended to
collect N = 8 per group, but the miscommunication produced N =
16 per group. Most analysts and all statistical software would use
N = 16 per group to compute a p value. This is inappropriate,
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however, because the space of possible ¢, values from the null
hypothesis should actually be dominated by the intended sampling
scheme, not by a rare accidental quirk. Suppose that the probability
of the windfall is just 1 in 50 (2%), so that when ¢, values are
generated from the null hypothesis, 98% of the time those 7,
values should be based on the intended N = 8, and only 2% of the
time should they be based on the rare occurrence of N = 16. The
resulting p values are shown in the lower right Panel E of Fig-
ure 10. Notice that the critical value is much higher than if the
analysis had inappropriately assumed a fixed sample size of N =
16, indicated by the dotted curve.

The p value for intending to sample until threshold ¢,,..
The conventional assumption for sampling data is to continue
sampling until N reaches a fixed threshold. Alternatively, sampling
could continue until ., reaches a fixed threshold (e.g., || >
3.0). Notice that I am not conducting a ¢ test with each datum
collected and then stopping if I have achieved significance by a
conventional fixed-N critical value; the case of sequential testing is
considered later. Instead, here I am setting a threshold ¢ value,
fixed at 3.0 (say), and I am observing how big N, gets before
exceeding that value. Having exceeded the threshold ¢ value does
not indicate significance. Instead, the question is, How big a
sample does it take to exceed that value? If there is a real differ-
ence between groups, |1, should exceed 3.0 after relatively few
data values have been collected, but if there is little difference
between groups, |t,,,| will take a long time to exceed 3.0. If [t
exceeds 3.0 with far smaller N, than would be expected from the
null hypothesis, I reject the null hypothesis.

Figure 11 shows the p value for N, p(N,.1 = Ngps), When the
null hypothesis is true. The p values were computed by Monte
Carlo simulation of 200,000 sequences generated from the null
hypothesis. For each sequence, data were generated randomly
from normal distributions, starting with N, = N, = 5, and alter-
nately increasing N in each group until 7., > 3.0 (to a maximum

obs

of Nooo = N, + N, = 52). Across the 200,000 simulated se-
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Figure 11. The p value when the data collection continues until when

|t,p] > 3.0, starting with N, = N, = 5 and increasing N by 1 alternately
in each group. The horizontal dashed line indicates p = .05. (pop. d’=0)
means that population effect size is zero (i.e., the null hypothesis is true).
obs = observed; crit = critical.
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quences, the simulation tallied how many stopped at N, = 10,
how many stopped at N, = 11, how many stopped at N ,, = 12,
and so on. The p value for N is simply the total proportion of
sequences that stopped at or before that N .

Figure 11 indicates that N, is 45, which means that if |¢,, |
exceeds 3.0 by the time N, = 45, then p < .05 and the null
hypothesis can be rejected. For example, suppose an experimenter
collects data with N, = 49 and ¢, = 3.06. If the data were
collected until ¢, > 3.0, the p value is not less than .05. But if the
data had been collected with a fixed-N sampling scheme, the p
value would be less than .05.

Sampling until 7, exceeds a threshold might seem to be un-
usual, but it could prove to be efficient in cases of large effect sizes
because small N, . will be needed to exceed the threshold ¢. The
scheme is exactly analogous to sampling schemes for estimating
the bias in a coin, as explained for example by Berger and Berry
(1988). To estimate the bias in a coin one could sample until
reaching a threshold number of flips and count the number of
heads, or one could sample until attaining a threshold number of
heads and count the number of flips. The point is that for any given
result involving a specific 7., and N, there is no unique p value
because p is the rarity of the result in the space of possible ¢, or
N, values sampled from the null hypothesis, and that space
depends on the intention of the data collector.

Conclusion regarding dependence of p value on sampling
intention.  This section has emphasized that any specific 7,
and N, has many different p values, depending on the sam-
pling intentions of the data collector. Conventional p values
assume that the data collector intended to collect data until N
reached a preset threshold. Conventional methods also recog-
nize that p values change when the intended comparisons
change and therefore prescribe various corrections for various
intended comparisons. This section showed examples of p val-
ues under other sampling intentions, such as fixed duration,
unexpected windfall or interruption, and sampling until thresh-
old 7., instead of sampling until threshold N, ... Again, the
point is that any specific ¢, and N,,, has many different p
values, and therefore basing conclusions on “the” p value and
“the” significance is a misleading ritual.

It is important to recognize that NHST cannot be salvaged by
attempting to fix or set the sampling intention explicitly in ad-
vance. For example, consider two researchers who are interested in
the effects of a smart drug on 1Q. They collect data from identical
conditions. The first researcher obtains the data shown in Figure 3.
The second researcher happens to obtain identical data (or at least
data with identical 7, and N_.,). Should the conclusions of the
researchers be the same? Common sense, and scientific acumen,
suggests that the conclusions should indeed be the same because
the data are the same. But NHST says no, the conclusions should
be different, because, it turns out, the first researcher collected the
data with the explicit intention to stop at the end of the week and
compare with another group of data to be collected the next week,
and the second researcher collected the data with the explicit
intention to stop when a threshold sample size of N, = N, = 50
was achieved but had an unexpected interruption. Bayesian anal-
ysis, on the other hand, considers only the actual data obtained, not
the space of possible but unobtained data that may have been
sampled from the null hypothesis.
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NHST Has 100% False Alarm Rate in Sequential
Testing

Under NHST, sequential testing of data generated from the null
hypothesis will eventually lead to a false alarm. With infinite
patience, there is 100% probability of falsely rejecting the null.
This is known as “sampling to reach a foregone conclusion” (e.g.,
Anscombe, 1954). To illustrate this phenomenon, a computer
simulation generated random values from a normal distribution
with mean zero and standard deviation one, assigning each sequen-
tial value alternately to one or the other of two groups, and at each
step conducting a two-group ¢ test assuming the current sample
sizes were fixed in advance. Each simulated sequence began with
N1 = N2 = 3. If at any step the ¢ test indicated p < .05, the
sequence was stopped and the total N (= N1 + N2) was recorded.
Otherwise, another random value was sampled from the zero-mean
normal and included in the smaller group, and a new ¢ test was
conducted. For purposes of illustration, each sequence was limited
to a maximum sample size of N = 5,000. The simulation ran 1,000
sequences.

The results are displayed in the left panel of Figure 12, which
shows the proportion of the 1,000 sequences that had (falsely)
rejected the null with a sample size of N or less. As can be seen,
by the time N = 5, 000, nearly 60% of the sequences had falsely
rejected the null. The increase is false alarm proportion is essen-
tially linear on log(N), and rises to 100% as N grows arbitrarily
large. Intuitively, this 100% false alarm rate occurs because NHST
can only reject the null and therefore must do so eventually.

Bayesian decision making, using the HDI and ROPE, does not
suffer a 100% false alarm rate in sequential testing. Instead, the
false alarm rate asymptotes at a much lower level, depending on
the choice of ROPE. For illustration, again a computer simulation
generated random values from a normal distribution with mean of
zero and standard deviation of one, assigning each sequential value
alternately to one or the other of two groups but at each step
conducting a Bayesian analysis and checking whether the 95%
HDI completely excluded or was contained within a ROPE from
—0.15 to 0.15.
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The right panel of Figure 12 shows the results. The false alarm
rate rose to an asymptotic level of 8.7% at a sample size of about
200 per group (400 total). Once the sample size got to approxi-
mately 300 per group (600 total), the 95% HDI became small
enough to fall completely inside the ROPE when the sample means
happened to be nearly equal. When the sample size got to approx-
imately 1,850 per group (3,700 total), the 95% HDI essentially
always fell within the ROPE, correctly accepting the null hypoth-
esis. The qualitative behavior exhibited in the right panel of
Figure 12 is quite general, with the quantitative detail depending
on the width of the ROPE. When the ROPE is wider, the asymp-
totic false alarm rate is lower, and a smaller sample size is required
for the 95% HDI to fall inside the ROPE.

Confidence Intervals Provide No Confidence

The previous sections focused on p values and false alarm rates
in NHST. This section focuses on confidence intervals.

A confidence interval depends on sampling intentions.
There are various equivalent definitions of the confidence interval,
but they all are based on sampling distributions. The most general
and coherent definition is this:

A 95% confidence interval on a parameter is the range of parameter
values that would not be rejected at p = .05 by the observed set of
data.

In the case of the NHST 1 test, instead of checking merely whether
the null hypothesis, p;, — ., = 0, can be rejected at p = .05, one
checks whether every other value of w, — w, can be rejected at
p = .05. The range of unrejected values is the 95% confidence
interval. This definition is general because it applies to any model
and any stopping rule. And the definition is coherent because it
makes explicit that the confidence interval is directly linked to the
p value.

A crucial implication of the definition is this: When the sam-
pling intention changes, the p value changes and so does the
confidence interval. There is a different 95% confidence interval

B sequential testing by HDI with ROPE
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Figure 12. Proportion of decisions when data are sequentially sampled from the null hypothesis and testing is
conducted with every datum. Left panel shows that the probability of false alarm in NHST continually rises with
sample size. Right panel shows that the probability of false alarm in Bayesian analysis asymptotes at a relatively
small value. NHST = null hypothesis significance testing; HDI = highest density interval; ROPE = region of

practical equivalence.
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for every different sampling intention, which includes different
comparison intentions. Standard software packages for NHST
typically implement changes in confidence intervals only for a
subset of multiple-comparison intentions in ANOVA, but the
software should also implement changes in confidence intervals
for other sorts of multiple tests and for sampling intentions other
than threshold sample size.

A confidence interval carries no distributional information.
A confidence interval provides no information regarding which
values within its bounds are more or less credible. In particular, a
confidence interval on the difference of means does not indicate
that a difference of means in its middle is more credible than a
difference of means at its end points.

It is tempting to imbue the confidence interval with distribu-
tional information that is not actually present. As an example of
imposing distributional information on a confidence interval, con-
sider a plot of the p value (for a particular sampling intention) as
a function of the parameter value (e.g., Poole, 1987; Sullivan &
Foster, 1990). Such a graph captures the intuition that some sort of
probability is higher in the middle of the interval than near its ends.
Unfortunately, the plot of p(any [f,,,| > |, as a function of
hypothesized w, — w, is not a probability distribution at all; for
instance, it does not integrate to one, as probability distributions
must. Moreover, the p value is not the probability of the hypoth-
esized parameter difference conditional on the data, which is
provided only by the Bayesian posterior distribution. More sophis-
ticated forms of the approach construct actual probability distri-
butions over the parameter space, such that different areas under
the distribution correspond to confidence levels (e.g., Schweder &
Hjort, 2002; Singh, Xie, & Strawderman, 2007). These confidence
distributions can correspond exactly with the Bayesian posterior
distribution when using a particular form of noninformative prior
(Schweder & Hjort, 2002, pp. 329-330). But unlike Bayesian
posterior distributions, confidence distributions change when the
sampling intention changes, just as p values and confidence inter-
vals change.

Another way to imbue a confidence interval with a distributional
interpretation is by superimposing a sampling distribution upon it.
In particular, take the sampling distribution of the difference of
sample means from the null hypothesis, denoted p(y, — y,|u, —
W, = 0), re-center it on the observed difference of sample means,
and then superimpose that distribution on the parameter axis, ., —
W, (Cumming, 2007; Cumming & Fidler, 2009). Unfortunately,
this approach already assumes that ., — ., has a specific, fixed
value to generate the sampling distribution; hence, the result can-
not represent a probability distribution over other candidate values
of w, — w,. Moreover, this approach is possible only because the
parameter value p. and the sample estimator y happen to be on
commensurate scales, so the sampling distribution of y, — ¥, can
be superimposed on the parameter difference w, — p, despite their
different meanings. As an example in which the sampling distri-
bution of an estimator is quite different than the underlying pa-
rameter, consider estimating the probability of left handedness in
a population. The parameter is a value on a continuous scale from
zero to one, and the confidence interval on the parameter is a
continuous subinterval. But the sample estimator is the proportion
of left handers out of the sample size N, and the sampling distri-
bution is a binomial distribution on discrete values 0/N, 1/N, 2/N,
..., N/IN. There is no way to re-center the discrete sampling
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distribution of the observed proportion to produce a continuous
distribution on the parameter scale.

In summary, the classic confidence interval has no distributional
information about the parameter values. A value in the middle of
a confidence interval cannot be said to be more or less credible
than a parameter value at the limits of the confidence interval.
Superimposing a sampling distribution, from a fixed parameter
value, onto the parameter scale says nothing about the probability
of parameter values and is not generally possible. Recent elabo-
rations of the confidence-interval concept into confidence distri-
butions are dependent on the sampling intention of the data col-
lector. Only the Bayesian posterior distribution explicitly indicates
the probability of parameter values without being dependent on
sampling intentions.

ROPE method cannot be used to accept null value in NHST.
Because an NHST confidence interval (CI) has some properties
analogous to the Bayesian posterior HDI, it may be tempting to try
to adopt the use of the ROPE in NHST. Thus, we might want to
accept a null hypothesis in NHST if a 95% CI falls completely
inside the ROPE. This approach goes by the name of equivalence
testing in NHST (e.g., Rogers, Howard, & Vessey, 1993; West-
lake, 1976, 1981). Unfortunately, the approach fails because the
meaning of the CI is not the same as the HDI. In a Bayesian
approach, the 95% HDI actually includes the 95% of parameter
values that are most credible. Therefore, when the 95% HDI falls
within the ROPE, we can conclude that 95% of the credible
parameter values are practically equivalent to the null value. But a
95% CI from NHST says nothing directly about the credibility of
parameter values. Crucially, even if a 95% CI falls within the
ROPE, a change of intention will change the CI and the CI may no
longer fall within the ROPE. For example, if the two groups being
compared are intended to be compared to other groups, then the
95% CI is much wider and may no longer fall inside the ROPE.

Summary regarding NHST confidence interval. In sum-
mary, a confidence interval provides very little information. Its end
points can vary dramatically depending on the sampling intention
of the data collector because the end points of a confidence interval
are defined by p values, which depend on sampling intentions.
Moreover, there is no distributional information regarding points
within a confidence interval, and we cannot say that a parameter
value in the middle of a confidence interval is more probable than
a parameter value at the end of a confidence interval. One conse-
quence of this dearth of information is that the confidence interval
cannot be used with a ROPE to decide to accept the null hypoth-
esis. Another consequence is that power estimates are extremely
uncertain, as is shown next.

In NHST, Power Is Extremely Uncertain

In NHST, power is computed by assuming a punctate value for
the effect size, even though there is uncertainty in the effect size.
In retrospective power analysis, the range of uncertainty in the
NHST power estimate is indicated by computing power at the
limits of the 95% confidence interval on the effect size. Unfortu-
nately, this typically results in a huge range on the power estimate,
rendering it virtually useless, as many authors have pointed out
(e.g., Gerard et al., 1998; Miller, 2009; Nakagawa & Foster, 2004;
O’Keefe, 2007; Steidl et al., 1997; Sun et al., 2011; Thomas,
1997). As an example, recall the data in Figure 3. A traditional
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two-group ¢ test yielded #87) = 1.62, p = .110, with a 95%
confidence interval on the difference of means from —0.361 to
3.477. (Because these data have outliers, the traditional ¢ test is not
applicable to these data, as discussed earlier in the article, but this
issue is tangential to the points made here about the poverty of
information in an NHST power analysis.) At the point estimate of
the effect size, the power is 35.0%. But at the limits of the 95%
confidence interval on the effect size, the power is 5.0% and
94.0%, which spans almost the full possible range of power. Thus,
NHST power analysis tells us almost nothing about the power of
the experiment. Consider instead the large-sample (N > 1, 000)
data of Figure 5, which showed essentially no difference between
sample means. The NHST power at the point estimate of the effect
size is 5.0% (i.e., the false alarm rate for the null hypothesis). But
at the limits of the confidence interval on the effect size, the NHST
power is 49.5% and 50.6% (for effects of opposite signs). The
reason that there is such a high probability of rejecting the null,
even at the small limits of the confidence interval, is that a large
sample size can detect a small effect. Thus, even with a huge
sample size, NHST estimates of retrospective power can be very
uncertain. These uncertain power estimates by NHST contrast with
the precise estimates provided by the Bayesian approach.

In prospective power analysis, frequentists can try different
hypothetical parameter values, but because the hypothetical values
are not from a probability distribution, they are not integrated into
a single power estimate. The Bayesian approach to power, illus-
trated in Figure 6, is awkward to implement in a frequentist
framework. The approach requires that the hypothesis is expressed
as a probability distribution over parameters (shown in the leftmost
box of Figure 6), which is shunned in frequentist ontology. Per-
haps more important, even if a frequentist admits a hypothesis
expressed as a probability distribution over parameter values, it is
difficult to imagine where the distribution would come from,
especially for complex multidimensional parameter spaces, if it
were not generated as a Bayesian posterior distribution. Finally,
even if the approach were adapted, with NHST conducted on
simulated data instead of Bayesian analysis, there would still be
the inherent fickleness of the resulting p values and confidence
intervals. In other words, the simulated data could be generated by
one sampling intention, but the NHST could assume many differ-
ent sampling intentions (because the data bear no signature of the
sampling intention), and many different powers could be computed
for the same hypothetical effect size.

Conclusion

In the examples presented above, which contrasted results
from Bayesian estimation (BEST) and the NHST ¢ test, the
advantage of BEST was not solely from model flexibility in
Bayesian software. The main advantage was in Bayesian esti-
mation per se, which yields an explicit posterior distribution
over parameters unaffected by sampling intentions. Recall that
BEST revealed far richer information than the NHST ¢ test even
when parametric modeling assumptions were removed from
NHST by using resampling. A crucial argument against NHST
is completely general and does not rely on any particular
illustrative model, namely, that in NHST p values and CIs are
based on sampling distributions, and sampling distributions are
based on sampling intentions, and different sampling intentions

change the interpretation of data even though the intentions
have no effect on the data.

Some people may have an impression that Bayesian estima-
tion merely substitutes an assumption about a prior distribution
in place of an assumption about a sampling intention in NHST,
and therefore both methods are equally dubious. This perspec-
tive is not correct, because the assumptions of Bayesian esti-
mation are epistemologically appropriate, and the assumptions
of NHST are not.

In NHST, the sampling intentions of the data collector (which
determine the p value and CI) are unknowable and, more impor-
tant, irrelevant. The intentions are unknowable in the sense that
true intentions can be subconscious and hidden from one’s self,
covert and hidden from one’s peers, or overt but changing through
time in response to a dynamic environment. The intentions are
especially unknowable to the data themselves, which are collected
in such a way as to be insulated from the experimenter’s intentions.
More important, because the data were not influenced by the
intentions, the intentions are irrelevant to one’s interpretation of
the data. There is no reason to base statistical significance on
whether the experimenter intended to stop collecting data when
N = 47 or when the clock reached 5:00 p.m.

On the other hand, in Bayesian estimation the prior distribu-
tion is both explicitly presented and relevant. The prior cannot
be chosen capriciously or covertly to predetermine a desired
conclusion. Instead, the prior must be justified to a skeptical
audience. When there is lack of prior knowledge, the prior
distribution explicitly expresses the uncertainty, and modest
amounts of data will overwhelm the prior. When there is
disagreement about appropriate priors, different priors can be
used and the resulting posterior distributions can be examined
and checked for differences in conclusions. When there is
strong prior information, it can be a serious blunder not to use
it. For example, consider random drug or disease tests. Suppose
a person selected at random from a population is tested for an
illicit drug, and the test result is positive. What is the proba-
bility that the person actually used the drug? If the prior
probability of drug use in the population is small (and the test
is realistically imperfect), then the posterior probability that the
person used the drug is also surprisingly small. (e.g., Berry,
2006; Kruschke, 2011b, p. 71). The proper interpretation of the
data (i.e., the test result) depended on the Bayesian incorpora-
tion of prior knowledge. Thus, the prior distribution in Bayesian
estimation is both explicitly justified and epistemologically
relevant.

Some people may wonder which approach, Bayesian or NHST,
is more often correct. This question has limited applicability be-
cause in real research we never know the ground truth; all we have
is a sample of data. If we knew the ground truth, against which to
compare the conclusion from the statistical analysis, we would not
bother to collect the data. If the question of correctness is instead
asked of some hypothetical data generator, the assessment is
confined to that particular distribution of simulated data, which
likely has only limited resemblance to real-world data encountered
across research paradigms. Therefore, instead of asking which
method is more often correct in some hypothetical world of sim-
ulated data, the relevant question is asking which method provides
the richest, most informative, and meaningful results for any set of
data. The answer is always Bayesian estimation.
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Beyond the general points about the relative richness of infor-
mation provided by Bayesian estimation, there are also many
practical advantages to Bayesian estimation over NHST. The soft-
ware for Bayesian estimation (i.e., JAGS/BUGSY) is very flexible
and can accommodate realistic data situations that cause difficul-
ties for NHST. For example, the Bayesian software can incorpo-
rate non-normal data distributions, censored data, unequal vari-
ances, unbalanced sample sizes, nonlinear models, and multiple
layers of hierarchical structure in a straightforward unified frame-
work. NHST can have great difficulties with those situations
because it can be problematic to derive sampling distributions for
p values (even when assuming a fixed N sampling intention).

Summary

Some people have the impression that conclusions from NHST
and Bayesian methods tend to agree in simple situations such as
comparison of two groups: “Thus, if your primary question of
interest can be simply expressed in a form amenable to a 7 test, say,
there really is no need to try and apply the full Bayesian machinery
to so simple a problem” (Brooks, 2003, p. 2694). The present
article has shown, to the contrary, that Bayesian estimation always
provides much richer information than the NHST ¢ test and some-
times comes to different decisions.

Bayesian estimation provides rich and complete information
about the joint distribution of credible parameter values, including
the means, standard deviations, effect size, and normality. Bayes-
ian estimation can accept the null value by using a decision
procedure involving the HDI and ROPE. Bayesian estimation
provides precise power analysis for multiple goals of research.

The NHST 1 test, on the other hand, has many foundational
problems. The p values on which it bases decisions are ill defined,
as are confidence intervals because they are inherently linked to p
values. Confidence intervals (CIs) carry no distributional informa-
tion and therefore render power to be virtually unknowable be-
cause of its uncertainty. And NHST has no way to accept the null
hypothesis, because a CI changes when the sampling intention
changes, and a CI does not have the meaning of an HDI.

Appendix D explains that Bayesian estimation is typically also
more informative than the Bayesian model-comparison approach,
which involves the Bayes factor. The Bayes factor can be ex-
tremely sensitive to the choice of alternative-hypothesis prior
distribution. The Bayes factor hides the uncertainty in the param-
eter estimation, even concluding substantial evidence for the null
hypothesis when there is great uncertainty.

The software for Bayesian parameter estimation is free, easy to
use, and extendable to complex designs and models (as explained
in the section that described the model and in Appendix B). The
programs can be downloaded from http://www.indiana.edu/
~kruschke/BEST/, where instructions for software installation are
also provided. An extensive introduction to the methods used in
those programs is available in a textbook (Kruschke, 2011b).

All of these facts point to the conclusion that Bayesian param-
eter estimation supersedes the NHST 7 test.
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Appendix A

The Prior Distribution on v

Figure Al shows the prior distribution on the normality parameter, v. Mathematically, it is p(v|]\) = (1/\)
exp[—(v — 1)/\] forv =1 and A = 29. This prior was selected because it balances nearly normal distributions
(v > 30) with heavy tailed distributions (v < 30). This prior distribution was chosen instead of several others
that were considered, including various uniform distributions, various shifted gamma distributions, and
various shifted and folded ¢ distributions. It is easy to change this prior if the user desires, as described in
Appendix B.

exponential(A=29) shifted+1

mean = 30
95% HDI
87.7
[ T T T 1
0 50 100 150 200
A%
mode = 1.47
95% HDI
0.298 2.08
[ T T T T 1
0.0 0.5 1.0 1.5 2.0 2.5
log10(v)

Figure Al. The prior distribution on the normality parameter v. The upper panel shows the distribution on v,
as graphed iconically in the middle of Figure 2. The lower panel shows the same distribution on log,,(v) for easy
comparison with the posterior distributions shown in Figure 3. HDI = highest density interval.

(Appendices continue)
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Appendix B

Modifying the Program for Other Priors or Likelihoods

This appendix explains how to modify the Bayesian estimation
program BEST.R to use other prior distributions or likelihood
functions. This Appendix assumes that the reader is familiar with
the basic operation of the programs available from http://
www.indiana.edu/~kruschke/BEST/. Because of space con-
straints, I must assume that the reader is familiar with the basic
structure of JAGS/BUGS programs, as explained, for example, by
Kruschke (2011b, Chapter 7).

The model of Figure 2 is expressed in JAGS as

model {
for (iin 1:Ntotal ) {
yli] ~ dt( mulx[i]], tau[x[i]], nu)
}
for (jin1:2){
mu(j] ~ dnorm( muM, muP )
tau[j] <- 1/pow( sigma(j], 2)
sigma(j] ~ dunif( sigmalLow, sigmaHigh )
}
nu <- nuMinusOne + 1
nuMinusOne ~ dexp(1/29)
}

where x[i] is the group membership (1 or 2) of the ith datum. The
values for the constants in some of the priors are provided by the
data statement later in the program:

muM = mean(y),

muP = 0.000001 * 1/sd(y)" 2,
sigmalow = sd(y)/1000,
sigmaHigh = sd(y) * 1000

where Yy is the vector of pooled data. The second line above says
that the precision on the prior for w;, namely muP, is 0.000001
times the precision in the pooled data. The third line above says
that the lowest value considered for o; is the standard deviation
of the pooled data divided by 1,000. The fourth line above says
that the highest value considered for o; is the standard deviation of
the pooled data times 1,000. The prior on v is set in the model
specification above, in the line nuMinusOne ~ dexp(1/29). The
value 1/29 makes the mean of the exponential to be 29.

If the user has strong previous information about the plausible
values of the means and standard deviations, that information can
be used to set appropriate constants in the prior. It is important to
understand that the prior should be set to be agreeable to a
skeptical audience.

For example, it could be that Group 2 is a control group drawn
from the general population and Group 1 is a novel treatment. In
this case one might have strong prior information about the control
group but not about the novel treatment. In the case of IQ scores,

it is known that the mean of the general population is 100 and the
standard deviation is 15. But one’s particular control group may
deviate somewhat from the general population. Therefore one
might want to change the prior specification in the model to

# Group 1 mean is uncertain:

mu[1] ~ dnorm(muM, muP)

tau[1] <- 1/pow(sigmal1], 2)

# Group 1 SD is uncertain:

sigma[1] ~ dunif(sigmalLow, sigmaHigh)
# Group 2 mean is nearly 100:

mu[2] ~ dnorm(100, 0.25)

tau[2] <- 1/pow(sigma[2], 2)

# Group 2 SD is between 10 and 20:
sigma[2] ~ dunif(10, 20)

In actual research analysis, the user would have to strongly justify
the choice of informed prior, to convince a skeptical audience that
the analysis is cogent and useful.

Changing the likelihood function for the data is also straight-
forward in JAGS. For example, suppose that one wanted to de-
scribe the data with a log-normal distribution instead of with a ¢
distribution. Then the model specification could be as follows:

model {
for (i in 1:Ntotal ) {
# log-normal likelihood:
y[i] ~ dinorm( log(mu[x[i]]), tau[x[i]] )
}
for (jin1:2){
mu(j] ~ dnorm( muM, muP )
tau[j] <- 1/pow( sigma(j], 2 )
sigma(j] ~ dunif( sigmalLow, sigmaHigh )
}
}

Because the log-normal function has no normality parameter v,
that parameter is removed from the prior specification and from
the rest of the program.

JAGS has many different distributions that can be used to define
likelihood functions. For example, for modeling skewed distribu-
tions such as response times, a Weibull distribution could be used
(Rouder, Lu, Speckman, Sun, & Jiang, 2005). If the analyst desires
a likelihood function other than one already built into JAGS, the
Poisson zeros trick can be used to specify virtually any likelihood
function (e.g., Ntzoufras, 2009, p. 276). It is also straightforward
to model censored data in JAGS; search my blog (http://
doingbayesiandataanalysisogspot.com/) with the term “censor” for
a detailed example.

(Appendices continue)
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Appendix C

Doing Power Analysis

Examples for doing power analyses are provided in the program
BESTexamplePower.R. Excerpts from that program are pre-
sented here.

For doing prospective power analysis, the user first creates an
idealized data set that expresses the hypothesis. The function
makeData creates the data in the following code:

prospectData = makeData(
mul = 108, # mean of group 1
sd1 = 17, # standard deviation of group 1
mu2 = 100, # mean of group 2
sd2 = 15, # standard deviation of group 2
nPerGrp = 1000, # sample size in each group
pcntOut = 10, # percent from outlier distrib.
sdOutMult = 2.0, # SD multiplier of outlier dist.
rnd.seed = NULL # seed for random number )

# Rename for convenience below:

y1pro = prospectData$y1

y2pro = prospectData$y?2

(The resulting data are displayed in Figure 7.) Then the idealized
data are submitted to a Bayesian data analysis. Only a short
MCMC chain is created because it will be used for simulating
experiments, not for creating a high-resolution representation of a
posterior distribution from real data.

mcmcChainPro = BESTmcmc(y1pro, y2pro,
numSavedSteps = 2000)

BESTplot(y1pro, y2pro, mcmcChainPro,
pairsPlot = TRUE)

(The resulting posterior is displayed in Figures 8 and 9.) Then the
power is estimated with the function BESTpower, as follows:

N1plan = N2plan = 50 # specify planned sample size
powerPro = BESTpower(
# MCMC chain for the hypothetical parameters:
mcmcChainPro,
# sample sizes for the proposed experiment:
N1 = Niplan, N2 = N2plan,
# number of simulated experiments to run:
nRep = 1000,
# number of MCMC steps in each simulated run:
mcmclLength = 10000,
# number of simulated posteriors to display:
showFirstNrep = 5,
# ROPE on the difference of means:
ROPEmM = c(—1.5, 1.5),
# ROPE on the difference of standard dev’s:
ROPEsd = ¢(—0.0,0.0),
# ROPE on the effect size:
ROPEeff = ¢(—0.0,0.0),
# maximum 95% HDI width on the diff. of means:
maxHDIWm = 15.0,
# maximum 95% HDI width on the diff. of SD’s:
maxHDIWsd = 10.0,
# maximum 95% HDI width on the effect size:
maxHDIWeff = 1.0,
# file name for saving results:
saveName = “BESTexampleProPower.Rdata”

)

Retrospective power analysis uses the same call to the function
BESTpower, but it uses an MCMC chain from a previous real
data analysis instead of from a hypothetical data analysis and uses
the actual sample sizes in the experiment rather than planned
sample sizes.

(Appendices continue)
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Appendix D

The Bayes-Factor Approach to Null Hypothesis Testing

The main body of this article explains Bayesian estimation of
parameters in a descriptive model for data from two groups. From
the complete posterior distribution on those parameters, one could
make discrete decisions about the credibility of particular values of
interest, such as null values. The Bayesian estimation approach
provides rich information about the magnitude of the difference
between means, difference between standard deviations, effect
size, and normality.

If the researcher is not interested in estimating effect size or
other aspects of the groups but instead is focused on rejecting or
accepting a specific value relative to a distribution of alternative
values, then there is another Bayesian approach to consider. This
approach is called Bayesian model comparison, and it involves a
statistic called the Bayes factor. 1 have previously discussed this
topic with different examples (Kruschke, 2011a, 2011b, Chapter
12). Here I focus on the specific case of testing the difference of
means between two groups.

Null Hypothesis Model and Alternative Hypothesis
Model

In the model-comparison approach to null value assessment, one
model expresses the null hypothesis, wherein the only available
value for the difference of means is zero. This model effectively
puts a spike-shaped prior distribution on the difference of means,
such that the prior probability of non-zero differences of means is
zero, and the prior probability density of zero difference of means
is infinity. The second model expresses a particular alternative
hypothesis, wherein there is a complete spectrum of available
values for the difference of means, with a specific prior probability
distribution on those values. The model comparison therefore
contrasts a model that requires the difference to be zero against a
model that allows many non-zero differences with particular prior
credibility.

It is important to emphasize that this method compares the null
hypothesis, expressed as a spike-shaped prior, against a particular
shape of an alternative broad prior, for which there is no unique
definition. The results of the model comparison do not provide an
absolute preference for or against the null hypothesis; instead, the
results indicate only the relative preference for or against the null
with respect to the particular shape of alternative prior. There are
typically a variety of alternative-hypothesis priors, and the relative
preference for the null hypothesis c