
Palm® File Format 
Specification



Document Number 3008-004

CONTRIBUTORS

Written by Gary Hillerson
Production by <dot>PS Document Production Services
Engineering contributions by Kenneth Albanowski, John Marshall, Keith Rollin

Copyright © 1996 - 2001, Palm, Inc. All rights reserved. This documentation may be printed and copied 
solely for use in developing products for Palm OS software. In addition, two (2) copies of this documenta-
tion may be made for archival and backup purposes. Except for the foregoing, no part of this documenta-
tion may be reproduced or transmitted in any form or by any means or used to make any derivative work 
(such as translation, transformation or adaptation) without express written consent from Palm, Inc.

Palm, Inc. reserves the right to revise this documentation and to make changes in content from time to 
time without obligation on the part of Palm, Inc. to provide notification of such revision or changes. 
PALM, INC. MAKES NO REPRESENTATIONS OR WARRANTIES THAT THE DOCUMENTATION IS 
FREE OF ERRORS OR THAT THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE DOCUMEN-
TATION IS PROVIDED ON AN “AS IS” BASIS. PALM, INC. MAKES NO WARRANTIES, TERMS OR 
CONDITIONS, EXPRESS OR IMPLIED, EITHER IN FACT OR BY OPERATION OF LAW, STATUTORY 
OR OTHERWISE, INCLUDING WARRANTIES, TERMS, OR CONDITIONS OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE, AND SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, PALM, INC. ALSO EXCLUDES FOR ITSELF AND ITS SUP-
PLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING NEGLIGENCE), 
FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAMAGES OF 
ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF INFORMATION 
OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION WITH THIS DOCU-
MENTATION, EVEN IF PALM, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Palm Computing, Palm OS, Graffiti, HotSync, and Palm Modem are registered trademarks, and Palm III, 
Palm IIIe, Palm IIIx, Palm V, Palm Vx, Palm VII, Palm, Palm Powered, More connected., Simply Palm, the 
Palm logo, Palm Computing platform logo, Palm III logo, Palm IIIx logo, Palm V logo, and HotSync logo 
are trademarks of Palm, Inc. or its subsidiaries. All other product and brand names may be trademarks or 
registered trademarks of their respective owners. 

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE OTHER SOFTWARE AND 
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENT AC-
COMPANYING THE COMPACT DISC. 

Palm File Format Specification
Document Number 3008-004
May 1, 2001
For the latest version of this document, visit 
http://www.palmos.com/dev/tech/docs/. 

Palm, Inc.
5470 Great America Pkwy.
Santa Clara, CA 95052
USA
www.palmos.com

http://www.palmos.com/dev/tech/docs/
http://www.palmos.com


Palm File Format Specification 3

Table of Contents
1 Introduction to File Formats 7

About the File Format Types  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 8
File Formats Versus Memory Formats .   .   .   .   .   .   .   .   .   .   .   . 8
Palm Database (PDB) Files.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 9
Palm Resource (PRC) Files.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 9
Palm Web Clipping Application (PQA) Files .   .   .   .   .   .   .   .   . 9
Data Structures    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 9

About Records and Resources   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 9
About Database Formats    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   10
The Palm Database Header    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   12

Palm Database Header Structure .   .   .   .   .   .   .   .   .   .   .   .   .   13
The Record List.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   15

Palm Database Record List Structure   .   .   .   .   .   .   .   .   .   .   .   16
About Multiple Record or Resource Lists in 

a Database  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   17
The Application and Sort Information Blocks    .   .   .   .   .   .   .   18

About Third Party Tools .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   19
Additional Resources  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   19

2 PDB and PRC Database Formats 21
Overview of PDB and PRC Databases .   .   .   .   .   .   .   .   .   .   .   .   22
Record and Resource Entries .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   23

PDB Record Entries.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   23
PRC Resource Entry Fields    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   24

The Application Information Block  .   .   .   .   .   .   .   .   .   .   .   .   .   25
Finding the Length of the Application 

Information Block .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   25
Standard Category Data in an Application 

Information Block .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   25
The Sort Information Block    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   27

Finding the Length of the Sort Information Block .   .   .   .   .   .   27
PDB and PRC Raw Data .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   27
Reading and Writing PDB and PRC Data    .   .   .   .   .   .   .   .   .   .   28



4 Palm File Format Specification

3 PQA Database Format 29
PQA Overview .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   30

How PQAs are Different Than PDBs and PRCs .   .   .   .   .   .   .   31
PQA Record Entries.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   32
PQA Application Information Block.   .   .   .   .   .   .   .   .   .   .   .   .   33
Web Content Records  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   36

Web Content Record Content Types.   .   .   .   .   .   .   .   .   .   .   .   40
Web Record Compression Types  .   .   .   .   .   .   .   .   .   .   .   .   .   41

4 PQA Encoding Format 43
About PQA Data  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   43

An Example of Converting HTML to PQA Format   .   .   .   .   .   44
How PQA Differs From HTML.   .   .   .   .   .   .   .   .   .   .   .   .   .   45

The PQA Data Format.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   46
About Bit Packed Compression    .   .   .   .   .   .   .   .   .   .   .   .   .   46
Representing Text in PQA Format    .   .   .   .   .   .   .   .   .   .   .   .   49
PQA Tags  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   50
Data Termination.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   52

Unpacked Notation .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   52

5 PQA Tag Reference 57
Specifying PQA Data in Compact Notation    .   .   .   .   .   .   .   .   .   57

About Compact Data Structure Notation    .   .   .   .   .   .   .   .   .   57
Data Types in PQA Format    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   58

PQA Tag Definitions   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   61
cmlTag8BitEncoding   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   62
cmlTagAddress    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   62
cmlTagAnchor .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   62
cmlTagBGColor   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   63
cmlTagBlockQuote  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   63
cmlTagCaption.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   64
cmlTagClear .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   64
cmlTagCMLEnd  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   65
cmlTagForm .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   65
cmlTagH1 .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   67
cmlTagH2 .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   68



Palm File Format Specification 5

cmlTagH3 .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   69
cmlTagH4 .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   69
cmlTagH5 .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   70
cmlTagH6 .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   71
cmlTagHistoryListText   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   71
cmlTagHorizontalRule   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   72
cmlTagHyperlink.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   73
cmlTagImage   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   77
cmlTagInputCheckBox   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   79
cmlTagInputDatePicker .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   81
cmlTagInputHidden   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   81
cmlTagInputPassword   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   82
cmlTagInputRadio  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   83
cmlTagInputReset   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   84
cmlTagInputSubmit    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   85
cmlTagInputTextArea .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   86
cmlTagInputTextLine  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   86
cmlTagInputTimePicker .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   87
cmlTagLinkColor.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   88
cmlTagListDefinition  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   89
cmlTagListItemCustom  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   89
cmlTagListItemDefinition  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   91
cmlTagListItemNormal  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   91
cmlTagListItemTerm   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   91
cmlTagListOrdered .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   92
cmlTagListUnordered .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   93
cmlTagParagraphAlign  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   94
cmlTagSelect.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   94
cmlTagSelectItemCustom  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   95
cmlTagSelectItemNormal  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   96
cmlTagTable .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   96
cmlTagTableData .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   99
cmlTagTableHeader    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 101
cmlTagTableRow .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 102
cmlTagTextBold   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 104



6 Palm File Format Specification

cmlTagTextColor .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 104
cmlTagTextItalic   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 104
cmlTagTextMono .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 105
cmlTagTextSize    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 105
cmlTagTextStrike .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 106
cmlTagTextSub.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 106
cmlTagTextSup.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 106
cmlTagTextUnderline .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 107

Summary of CML Tags   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 107

 Index 109



Palm File Format Specification 7

1
Introduction to File 
Formats
Currently, there are three types of file formats that are commonly 
used in the Palm OS® platform:

• Palm™ database (PDB)

• Palm query application (PQA)

• Palm resource (PRC)

Files with a .pdb or .pqa extension are record databases. Files with 
a .prc extension are resource databases. Please note, however, that 
the filename and extension on the desktop do not determine the 
name or type of database created on the handheld. The database 
header information inside the file determines a database name and 
type.

NOTE: Resource databases contain resources, not records; 
however, in some places the documentation and structure types 
use the term record generically to refer to the individual data 
entities stored inside of databases, including resource databases.

This book describes each of the three file formats listed above, in the 
following chapters:

• This chapter provides an overview of the common 
characteristics of all of the file formats described in this book, 
including the database header that is used for each format.

• Chapter 2, “PDB and PRC Database Formats,” on page 21 
describes the PDB and PRC file formats, which are almost 
identical.

• Chapter 3, “PQA Database Format,” on page 29 describes the 
PQA file format.



Introduction to File Formats
About the File Format Types

8 Palm File Format Specification

• Chapter 4, “PQA Encoding Format,” on page 43 describes the 
data encoding used in PQA files.

• Chapter 5, “PQA Tag Reference,” on page 57 provides 
reference information for each PQA tag type used in PQA 
files.

About the File Format Types
This section provides an introduction to the three file format types 
that are described in this book. Each file format type is stored as a 
database.

In general, a database contains header information and a sequential 
list of records or resources. In addition, each database can contain 
one or two pieces of free-form data whose format is defined by the 
application that created it. The records within a database are 
similarly structured with record header information and record 
data.

File Formats Versus Memory Formats
This book describes the format of Palm databases that are stored in 
files on desktop computers. When one of these databases is loaded 
into a Palm Powered™ handheld, the database is stored in memory 
in a format that is similar to, but different than the format described 
in this book. The in-memory format of Palm databases is subject to 
change and is not documented by Palm, Inc.

Databases are typically imported into handheld devices when a 
user performs a HotSync® operation that installs an application. 
When a database is imported into a Palm Powered handheld, the 
Palm OS converts the database into standard Memory Manager 
objects. The Memory Manager tracks the size of each record or 
resource, and thus adds memory overhead; this means that the size 
of a database on the device is larger than its size on the desktop 
computer.

NOTE: The databases stored in ROM on Palm Powered 
handhelds are stored in a memory format, not in the file formats 
described in this book.



Introduction to File Formats
About Records and Resources

Palm File Format Specification 9

Palm Database (PDB) Files
A PDB is a record database generally used to store data for an 
application.

Palm Resource (PRC) Files
A Palm resource file contains a different type of data (resources 
instead of records), but has an almost identical structure to a PDB 
file. Palm OS applications are resource databases. A Palm OS 
application contains code resources as well as user interface 
resource elements.

Palm Web Clipping Application (PQA) Files
A PQA is a PDB that contains world-wide web content. On the Palm 
device all PQAs are associated through the Launcher with the Web 
Clipping Application Viewer (Viewer) software. When a user opens 
a PQA file for viewing, the Applications Launcher starts the Viewer, 
which in turn displays the contents of the selected PQA.

NOTE: The acronym PQA stands for “Palm Query Application.” 
Beginning with version 4.0 of the Palm OS, these databases are 
referred to as “Web Clipping Applications” and the acronym WCA 
is used instead. The suffix for these databases remains .pqa.

Data Structures 
The objects in Palm Database files can be represented by C 
structures, which are described in the chapters that follow. 

About Records and Resources
Records and resources are both blocks of memory that contain any 
data you want. The exact definition of a record or resource is up to 
the application. From a low-level perspective, the difference 
between records and resources is the size and contents of the header 
for each object.

Records and resources are used for different purposes:



Introduction to File Formats
About Database Formats

10 Palm File Format Specification

• Records are used to store application data such as memos or 
address book entries.

• Records are used to store web content in PQA databases.

• Resources are used to store the code and user interface 
objects for an application.

You can treat records and resources as ordered or unordered 
databases. You can use a callback function to sort record databases; 
however, you cannot sort resources on a device. You can compare 
two records to determine the order in which they belong; however, 
an index does not exist.

About Database Formats
Each database is stored in a file on a desktop computer in sequential 
format, as shown in Figure 1.1. The format of each database file is 
logically structured as shown in Figure 1.2.

Each database contains the following component parts:

• a database header that describes the database, references the 
appInfo and sortInfo blocks, and contains the record list, 
which references each record in the database

• an optional application information (appInfo) block in 
which you can store information specific to your application

• an optional sorting information (sortInfo) block in which 
you can store unique ID cross-reference tables or other meta 
information

• raw record or resource data

NOTE: All structure elements in all headers are byte-packed in 
network (big-endian) order.



Introduction to File Formats
About Database Formats

Palm File Format Specification 11

Figure 1.1 Database Storage Format

Figure 1.2 shows the logical representation of a record database file, 
with the header referencing the application information and sort 
information blocks, and with each record list referencing the raw 
data for the records stored in the database. The logical 
representation of a resource database file is the same, except that the 
record lists that refer to raw record data are replaced by resource 
lists that refer to raw resource data. The logical representation of a 
web clipping application database is also very similar.

Figure 1.2 Logical Database Format for a Record Database

Palm Database Header

List of Record Entries

AppInfo Block (optional)

Standard PDB header
information

.

.

.

.

.

.

SortInfo Block (optional)

Sequence of raw record Application-specific
records or resources

Application-specific
information (variable size)

(includes variable-length
list of record entries)

or resource data
.
.
.

Database Header

RecordList 1

AppInfo

SortInfo

Record

Record

Record

Record



Introduction to File Formats
The Palm Database Header

12 Palm File Format Specification

The Palm Database Header
The Palm database header is a standard DatabaseHdrType 
structure that is used to represent the header in PDB, PRC, and PQA 
database files. The format of the header is shown in Figure 1.3. The 
byte values shown are offsets, in hexadecimal, from the beginning 
of the database (and of the header).

Figure 1.3 Palm database header

Note that the structure shown in Figure 1.3 is how the header of a 
Palm Database is represented in a file on a desktop computer.

.

.

.

appInfoID

sortInfoID

type

creator

uniqueIDSeed

recordList

modificationNumber

lastBackupDate

modificationDate

creationDate

attributes version

name

20

24

28

2C

30

34

38

3C

40

44

48

4C

0byte



Introduction to File Formats
The Palm Database Header

Palm File Format Specification 13

Palm Database Header Structure
The following structure represents a database file header:

typedef struct {
UInt8 name[dmDBNameLength];

UInt16 attributes;
UInt32 creationDate;
UInt32 modificationDate;
UInt32 lastBackupDate;
UInt32 modificationNumber;
LocalID appInfoID;
LocalID sortInfoID;
UInt32 type;
UInt32 creator;
UInt32 uniqueIDSeed;
RecordListType recordList;

} DatabaseHdrType;

Field Descriptions

name A 32-byte long, null-terminated string 
containing the name of the database on the 
Palm Powered handheld. The name is 
restricted to 31 bytes in length, plus the 
terminator byte.

This name is also used to create the file 
name of the PDB when it is backed up 
during the HotSync process.

attributes The attribute flags for the database.

For PQA databases, this field always has 
the value dmHdrAttrBackup | 
dmHdrAttrLaunchableData

version The application-specific version of the 
database layout.



Introduction to File Formats
The Palm Database Header

14 Palm File Format Specification

creationDate The creation date of the database, specified 
as the number of seconds since 12:00 A.M. 
on January 1, 1904.

modificationDate The date of the most recent modification of 
the database, specified as the number of 
seconds since 12:00 A.M. on January 1, 
1904.

lastBackupDate The date of the most recent backup of the 
database, specified as the number of 
seconds since 12:00 A.M. on January 1, 
1904.

modificationNumber The modification number of the database. 

appInfoID The local offset from the beginning of the 
database header data to the start of the 
optional, application-specific appInfo 
block.

This value is set to NULL for databases that 
do not include an appInfo block.

sortInfoID The local offset from the beginning of the 
PDB header data to the start of the 
optional, application-specific sortInfo 
block. 

This value is set to NULL for databases that 
do not include an sortInfo block

type The database type identifier. 

For PDB databases, the value of this field 
depends on the creator application.

For PRC databases, this field usually has 
the value 'appl'.

For PQA databases, this field always has 
the value 'pqa'.



Introduction to File Formats
The Record List

Palm File Format Specification 15

IMPORTANT: There is always a gap between the final record 
list in the header and the first block of data in the database, where 
the first block might be one of the following: the appInfo block, the 
sortInfo block, raw record or resource data, or the end of the file. 
The gap is traditionally two bytes long; however, if you write code 
to parse a database, your code should be able to handle any size 
gap, from zero bytes long and up.

The Record List
The Palm database header ends with a record list. The record list has 
its own header, followed by 0 or more record entries. Each record 
entry describes a single record in the file.

The record list has a variable length. When the database is loaded 
into a Palm Powered handheld, the Palm OS attempts to grow the 
list. If it cannot grow the list, the OS creates another record list and 
links it to the previous one by filling in the nextRecordListID 
field with the location of the new list. This capability is rarely used, 

creator The database creator identifier. 

For PQA databases, this feld always has 
the value 'clpr'.

uniqueIDSeed Used internally by the Palm OS to generate 
unique identifiers for records on the Palm 
device when the database is loaded into 
the device.

For PRC databases, this value is normally 
not used and is set to 0.

For PQA databases, this value is not used, 
and is set to 0.

recordList A list of the records or resources in the 
database, as described in the next section.



Introduction to File Formats
The Record List

16 Palm File Format Specification

and its use is discouraged by Palm. For more information, see 
“About Multiple Record or Resource Lists in a Database” on 
page 17.

Each record entry references the location of the raw data for the 
record or resource and contains the attribute and ID information for 
that record or resource.

The remainder of this chapter describes the record list structure. 
However, the format of the record entries is different for different 
Palm database types. The record entry format for PDB databases 
and the resource entry format for PRC databases are shown in 
Chapter 2, “PDB and PRC Database Formats.” The record layout 
format for PQA databases is shown in Chapter 3, “PQA Database 
Format.”

Figure 1.4 shows the structure of a record list.

Figure 1.4 Palm Database record list

Palm Database Record List Structure
The following structure declaration represents a Palm Database 
record list:

typedef struct {
LocalID nextRecordListID;
UInt16 numRecords;
UInt16 firstEntry;

} RecordListType;

nextRecordListID

numRecords 

localChunkID

attributes numRecords count

.

.

.

0

4

6

8

placeholder bytes

uniqueID
of record list entries
(RecordEntryType) 

Placeholder bytes are only
present if no records are in the list



Introduction to File Formats
The Record List

Palm File Format Specification 17

NOTE: The placeholder bytes shown in Figure 1.4 appear at the 
end of the record list, if there is one. If there is no list, these bytes 
appear just after the list header; otherwise, they appear after the 
last entry in the list.

Field Descriptions

About Multiple Record or Resource Lists in a 
Database
The structure of Palm databases allows for multiple record lists in a 
single database; the record lists are chained together by setting the 
nextRecordListID field of the first record list to the offset of the 
next list in the database.

In practice, this capability is very rarely used, and the 
nextRecordListID field in the database header is almost always 
set to 0, which indicates that there is only one record list in the 
database. Since a single record list can be used to describe the 
maximum number of records (64K) in a file, multiple record lists are 
never required.

Palm, Inc. recommends against building databases with chained 
headers, and that your parsing code reject databases that have a 

nextRecordListID The local chunk ID of the next record list in 
this database. This is 0 if there is no next 
record list, which is almost always the 
case. 

For more information, see “About Multiple 
Record or Resource Lists in a Database” on 
page 17.

numRecords The number of record entries in this list.

firstEntry The start of an array of record entry 
structures, each of which represents a 
single record in the list.



Introduction to File Formats
The Record List

18 Palm File Format Specification

non-zero value in the nextRecordListID field, to avoid 
potentially truncating such a database if your code encounters one.

A database with chained record lists might be encountered under 
very specific circumstances:

• when a huge database (one containing more than 
approximately 6000 records that has caused the headers to 
fragment) is beamed to a desktop OBEX stack from a Palm 
handheld device running version 3.5 or earlier of the Palm 
OS

• when code on a Palm handheld device uses the ExgDbWrite 
function to produce a PRB or PRC file image from such a 
database

NOTE: Version 4.0 and later of the Palm OS never produces 
chained record lists.

The Application and Sort Information Blocks
The database header can reference two optional application-specific 
blocks of information:

• The sort information (sortInfo) block

• The application information (appInfo) block

The sortInfo block is under your control. The OS does not use 
sortInfo. You can use it to store meta information about the 
database. 

You are free to include whatever data you want in the appInfo 
block. However, there are restrictions on how you use this block if 
one of the following applies:

• your application uses Palm OS category functionality, as 
described in Chapter 2, “PDB and PRC Database Formats,” 
on page 21.

• the database has the dmHdrAttrLaunchableData 
attribute, as described in Chapter 3, “PQA Database Format,” 
on page 29.



Introduction to File Formats
About Third Party Tools

Palm File Format Specification 19

About Third Party Tools
There are a number of third party tools available for creating Palm 
databases on desktop computers, and for converting images in 
various formats into Palm image format. Rather than include a 
partial list, Palm, Inc. encourages you to search on the Internet for 
these tools, and recommends the following search terms:

• convert pdb

• convert pqa

• convert prc

Additional Resources
• Documentation 

Palm publishes its latest versions of this and other 
documents for Palm OS developers at 

http://www.palmos.com/dev/tech/docs/ 

• Training 

Palm and its partners host training classes for Palm OS 
developers. For topics and schedules, check 

http://www.palmos.com/dev/tech/support/
classes/ 

• Knowledge Base 

The Knowledge Base is a fast, web-based database of 
technical information. Search for frequently asked questions 
(FAQs), sample code, white papers, and the development 
documentation at 

http://www.palmos.com/dev/kb/ 

http://oasis.palm.com/dev/kb/
http://www.palmos.com/dev/tech/docs/
http://www.palmos.com/dev/tech/support/classes/
http://www.palmos.com/dev/tech/support/classes/




Palm File Format Specification 21

2
PDB and PRC 
Database Formats
This chapter describes the format of Palm OS® record (PDB) and 
resource (PRC) databases. Palm™ record databases contain records 
that are used with applications that run on Palm Powered™ 
handhelds. Palm resource databases contain application resources, 
including the code and the user interface objects for the application.

These databases are stored in memory on handheld devices, and are 
stored in file form on desktop computers. This chapter describes the 
file format of these databases, which is slightly different than their 
in-memory format. The in-memory format is subject to change and 
is not documented by Palm, Inc.

This chapter contains the following sections:

• “Overview of PDB and PRC Databases” provides an 
overview of the database representation and shows an image 
of that representation.

• “Record and Resource Entries” on page 23 describes the 
entries that provide information about each record or 
resource in a database.

• “The Application Information Block” on page 25 describes 
the application information block that can optionally be 
included in PDB and PRC databases.

• “The Sort Information Block” on page 27 describes the 
sorting information block that can optionally be included in 
PDB and PRC databases.

• “PDB and PRC Raw Data” on page 27 describes how the raw 
record data is stored in PDB and PRC databases.

• “Reading and Writing PDB and PRC Data” on page 28 
describes the Palm OS functions that you can use to convert a 
chunk of data to a Palm database, or convert a Palm database 
to a chunk of data.



PDB and PRC Database Formats
Overview of PDB and PRC Databases

22 Palm File Format Specification

For an overview of Palm databases and file formats, including a 
detailed description of the database header format, see Chapter 1, 
“Introduction to File Formats.”

NOTE: This chapter describes the format of PDB and PRC 
databases that are stored in files on desktop computers. When 
one of these databases is loaded into a Palm Powered handheld, 
the database is stored in memory in a format that is similar to, but 
different from the format described here. The in-memory format of 
PDBs and PRCs is subject to change and is not documented by 
Palm, Inc.

Overview of PDB and PRC Databases
Each PDB and PRC database contains the following components:

• A header containing fields that describe the database and 
refer to the information blocks and raw record data in the 
database. The Palm Database header is described in “The 
Palm Database Header” on page 12.

• A list of record entries, each of which describes a block of raw 
record or resource data. 

• Two optional information blocks: the application information 
block and the sort information block.

• The raw record data, which is stored in linear format and 
referenced from the record list in the header. 

Figure 2.1 shows the structure of a Palm database, as stored in a file 
on a desktop computer.



PDB and PRC Database Formats
Record and Resource Entries

Palm File Format Specification 23

Figure 2.1 PDB and PRC database format

Record and Resource Entries
The record list in the Palm database header contains a list of entries 
that describe the raw data records or resources in the database. The 
record list is described in “The Record List” on page 15. The entries 
in PDB and PRC databases have different structures, and are 
described separately in this section.

PDB Record Entries
The following structure declaration represents a record entry in a 
PDB file:

typedef struct {
LocalID localChunkID;
UInt8 attributes;
UInt8 uniqueID[3];

} RecordEntryType;



PDB and PRC Database Formats
Record and Resource Entries

24 Palm File Format Specification

Field Descriptions

PRC Resource Entry Fields
The following structure declaration represents a resource entry in a 
PRC file:

typedef struct {
UInt32 type;
UInt16 id;
LocalID localChunkID;

} RsrcEntryType;

Field Descriptions

localChunkID The local offset from the top of the PDB to 
the start of the raw record data for this 
entry. 

Note that you can determine the size of 
each chunk of raw record data by 
subtracting the starting offset of the chunk 
from the starting offset of the following 
chunk. If the chunk is the last chunk, it’s 
end is determined by the end of the file.

attributes Attributes of the record.

uniqueID A three-byte long unique ID for the record.

type The resource type.

id The ID of the resource.

localChunkID The local offset from the top of the PRC to 
the start of the resource data for this entry. 

Note that you can determine the size of 
each chunk of raw resource data by 
subtracting the starting offset of the chunk 
from the starting offset of the following 
chunk. If the chunk is the last chunk, it’s 
end is determined by the end of the file.



PDB and PRC Database Formats
The Application Information Block

Palm File Format Specification 25

The Application Information Block 

Each Palm Database can optionally include an application 
information (appInfo) block that contains arbitrary information.

The format of the appInfo block is determined by the creator of the 
database. However, PDBs that support the standard Palm OS 
category data, the appInfo block contains specific information, as 
described in “Finding the Length of the Application Information 
Block,” below.

NOTE: PRCs can also contain application information blocks; 
however, this is rarely the case.

Finding the Length of the Application 
Information Block
If the database includes an application information block, you can 
find its length by finding the block that follows it:

• If the database includes a sort information block, that block 
immediately follows the application information block. 

• If the database does not include a sort information block, but 
does include one or more records, then the end of the 
application information block is just before the start of the 
first record block.

• If the database does not contain a sort information block and 
does not contain any records, then the end of the application 
information block is the end of the file.

Standard Category Data in an Application 
Information Block
A PDB for an application that supports standard Palm OS category 
data includes the category data in the standard format shown in 
Figure 2.2.



PDB and PRC Database Formats
The Application Information Block

26 Palm File Format Specification

Figure 2.2 PDB appInfo bock for standard category data

The following structure declaration represents an application 
information block for an application that uses standard Palm OS 
category information:

typedef struct {
UInt16 renamedCategories;
Char categoryLabels[16][16];
UInt8 categoryUniqIDs[16];
UInt8 lastUniqID;
UInt8 padding;

} AppInfoType;



PDB and PRC Database Formats
The Sort Information Block

Palm File Format Specification 27

Field Descriptions

The Sort Information Block 

The structure of the optional sortInfo block is completely up to 
the application; there is no standard format, nor is there a structure 
declared for this block. Most PDBs that contain a sortInfo block 
use it to store ordering information based on record IDs.

PRCs can contain a sortInfo block, but they rarely do.

Finding the Length of the Sort Information 
Block
If the database includes a sort information block, you can find its 
length by finding the block that follows it:

• If the database includes one or more records, then the end of 
the sort information block is just before the start of the first 
record block.

• If the database does not contain any records, then the end of 
the sort information block is the end of the file.

PDB and PRC Raw Data
Record data in a PDB is stored as a block of contiguous records. The 
local offset to the beginning of each record is stored in the record 
list(s) in the database header. The length and format of the record 
data is application-specific.

renamedCategories Specifies which categories have been 
renamed. 

categoryLabel An array of 16 null-terminated category 
labels, each of which is 16 bytes long.

categoryID An array of 16 category ID values, each of 
which is one byte long.

lastUniqID The last unique category ID assigned.

padding Unused.



PDB and PRC Database Formats
Reading and Writing PDB and PRC Data

28 Palm File Format Specification

Similarly, resource data in a PRC database is stored as a block of 
contiguous resources. The local offset to the beginning of each 
resource is stored in the record list(s) in the database header. The 
length and format of the resource data is not documented in this 
book.

Reading and Writing PDB and PRC Data
The Palm OS provides functions that you can use to convert data 
into or out of Palm Database formats:

• If you have a chunk of data on the handheld device that is 
formatted as described in this chapter, you can use either the 
DmCreateDatabaseFromImage function or the 
ExgDBRead function to convert that data into a Palm 
Database.

• If you want to convert a Palm Database into a chunk of data 
on the handheld device, you can use the ExgDbWrite 
function.

The DmCreateDatabaseFromImage, ExgDBRead, and 
ExgDbWrite functions are documented in the Palm OS 
Programmer’s API Reference.



Palm File Format Specification 29

3
PQA Database 
Format 
Palm web clipping applications contain HTML content that can be 
displayed on Palm Powered™ handhelds; typically each such 
application contains an HTML form with which the user can 
interact to access information on the Internet. 

Each web clipping application (WCA) is a database that is opened 
by the Web Clipping Application Viewer (Viewer) program: when 
the user taps on a WCA in the Palm OS® Application Launcher, the 
Launcher launcher the Viewer, which displays the home page of the 
web clipping application.

Web clipping applications were originally called Palm Query 
Applications, the Viewer was originally called the Clipper, and each 
web clipping application was stored as a .pqa file. Starting with 
version 4.0 of the Palm OS, the applications are called web clipping 
applications; however the .pqa suffix is still used, and ‘clpr’ is 
still used as the creator ID for web clipping applications. 

This chapter uses the term PQA database to refer to the format of 
web clipping applications as stored in files on desktop computers. 
Note that a PQA database is a PDB database with records that 
contain web content in a specific format, and thus the logical 
structure of a PQA file is the same as the logical structure of a PDB 
file.

This chapter contains the following sections:

• “PQA Overview” provides an overview of the PQA 
representation and shows an image of that representation.

• “PQA Application Information Block” describes the 
application information block in a PQA, which contains 
information about the web clipping application.

• “Web Content Records” describes the web content records 
that are stored in PQA databases.



PQA Database Format
PQA Overview

30 Palm File Format Specification

NOTE: This chapter describes the format of PQA databases 
that are stored in files on desktop computers. When one of these 
databases is loaded into a Palm Powered handheld, the PQA is 
stored in memory in a format that is similar to, but different than 
the format described here. The in-memory format of PQAs is 
subject to change and is not documented by Palm, Inc.

For more information about web clipping applications, see Web 
Clipping Developer’s Guide.

PQA Overview
Each PQA database contains the following components:

• A header containing fields that describe the database and 
refer to the application information block and web content 
records in the database. The PQA header has the same 
structure as other Palm databases, and is described in “The 
Palm Database Header” on page 12.

• The application information block, which contains specific 
PQA information and is described in “PQA Application 
Information Block” on page 33.

• The web content record data, which is stored in linear format 
and referenced from the record list in the header. For more 
information, see “Web Content Records” on page 36.

NOTE: PQA databases never contain the optional sortInfo 
block that can be stored in Palm databases.

Figure 3.1 shows the structure of a PQA database, as stored in a file 
on a desktop computer.



PQA Database Format
PQA Overview

Palm File Format Specification 31

Figure 3.1 PQA database format

How PQAs are Different Than PDBs and PRCs
PQA database files have the same structure as do PDB and PRC 
databases. However, the information stored in PQA database files 
has some specific differences:

• The appInfo block is always present in a PQA database and 
always contains specific information, as described in “PQA 
Application Information Block” on page 33

• The sortInfo block is never present in a PQA database.

• The record list entries in PQA databases have the same 
structure as the entries in PDB database, but some fields are 
not used, as described in “PQA Record Entries” on page 32.

• The raw record data in PQA databases has a specific 
structure, as described in “Web Content Records” on 
page 36.

• Certain fields in the PQA database header contain specific 
values:

– the attributes field always contains the value 
dmHdrAttrBackup | dmHdrAttrLaunchableData

– the type field always contains the value ‘pqa’

– the creator field always contains the value ‘clpr’

Palm Database Header

List of record entries

appInfo block (PQA header)

Standard PDB header
information

.

.

.

.

.

.

Sequence of web content records
Specific to PQA
databases

NULL byte NULL byte



PQA Database Format
PQA Record Entries

32 Palm File Format Specification

PQA Record Entries
The record list in the PQA header contains a list of PQA record 
entries. Each entry describes a web content record that is stored in 
the database.

The record list in PQA databases is the same as the record list in 
other Palm databases. For more information, see “The Record List” 
on page 15.

The following structure declaration represents a record entry in a 
PQA file. Note that this is the same structure that is used in PDB 
database files; however, two of the fields in the structure are always 
set to 0 in PQA files.

typedef struct {
LocalID localChunkID;
UInt8 attributes;
UInt8 uniqueID[3];

} RecordEntryType;

Field Descriptions

localChunkID The local offset from the top of the PQA to 
the start of the web content record’s header 
for this entry. See “Web Content Records” 
on page 36 for more information about the 
format of the records.

Note that you can determine the size of 
each chunk of raw record data by 
subtracting the starting offset of the chunk 
from the starting offset of the following 
chunk. If the chunk is the last chunk, it’s 
end is determined by the end of the file.

attributes Always set to 0 in PQA databases.

uniqueID Always set to 0 in PQA databases.



PQA Database Format
PQA Application Information Block

Palm File Format Specification 33

PQA Application Information Block
The header in each PQA file refers to an application information 
block that provides specific information about the web clipping 
application. The structure of this block is shown in Figure 3.2.

NOTE: Field names that are shown ending with an asterisk (*) in 
Figure 3.2 are variable-length fields that are padded, if necessary, 
to the next word boundary.

Figure 3.2 PQA appInfo Block

signature

.

.

.

hdrVersion encVersion

verStrWords verStr*

.

.

.

.

.

.

.

.

.

pqaTitleWords pqaTitleStr*

iconWords icon*

smIconWords smIcon*

byte

31
bits

0

0

4

8



PQA Database Format
PQA Application Information Block

34 Palm File Format Specification

Field Descriptions

signature This is always set to ‘lnch’ 
(0x6C6E6368).

hdrVersion The version number for this PQA 
information block.

encVersion For PQAs that contain HTML data 
encoded into the PQA format, the version 
of the encoding. All web content records 
within a given PQA are assumed to have 
the same encoding version.

verStrWords The length of the string in the verStr 
field, specified as the number of 16-bit 
words, including any pad byte at the end.

verStr A sequence of (verStrWords * 2) bytes. 
This is a null-terminated version string 
that the Viewer displays, and represents 
the version information for the web 
clipping application.

If the value of verStrWords is zero, this 
field contains zero bytes.

The end of this sequence of bytes must be 
word-aligned. If the size of the data 
(including the string’s null terminator) is 
an odd number of bytes, the data must be 
followed by a null pad byte.

pqaTitleWords The length of the string in the 
pqaTitleStr field, specified as the 
number of 16-bit words, including any 
pad byte at the end.



PQA Database Format
PQA Application Information Block

Palm File Format Specification 35

pqaTitleStr A sequence of (pqaTitleWords * 2) 
bytes. This is a null-terminated version 
string that the Launcher displays for this 
PQA’s icon, and represents the title string 
for the PQA itself. This is not the title 
string included in the original home page 
HTML source code, which is shown when 
the Viewer displays that page.

If the value of pqaTitleWords is zero, 
this field contains zero bytes.

The end of this sequence of bytes must be 
word-aligned. If the size of the data 
(including the string’s null terminator) is 
an odd number of bytes, the data must be 
followed by a null pad byte.

iconWords The length of the bitmap data in the icon 
field, specified as the number of 16-bit 
words, including any pad byte at the end.

icon A sequence of (iconWords * 2) bytes. 
This is a Palm bitmap (BitmapType and 
associated bitmap data) that represents 
the large icon that appears on the device 
for this PQA.a

If the value of iconWords is zero, this 
field contains zero bytes.

The end of this sequence of bytes must be 
word-aligned. If the size of the data is an 
odd number of bytes, the data must be 
followed by a null pad byte.



PQA Database Format
Web Content Records

36 Palm File Format Specification

Web Content Records
Following the appInfo block in a PQA file is a sequence of web 
content records; one for each record list entry in the PDB header 
record list.

Each web content record begins on a word boundary, and contains:

• A record header.

• The content’s original URL.

• The content itself, which is either HTML data encoded into 
PQA format or graphic data.

The layout of a web content record is shown in Figure 3.3, and the 
fields in the records are described below.

smIconWords The length of the bitmap data in the 
smIcon field, specified as the number of 
16-bit words, including any pad byte at 
the end.

smIcon A sequence of (smIconWords * 2) bytes. 
This is a Palm bitmap (BitmapType and 
associated bitmap data) that represents 
the small icon that appears on the device 
for this PQA.a

If the value of smIconWords is zero, this 
field contains zero bytes.

The end of this sequence of bytes must be 
word-aligned. If the size of the data is an 
odd number of bytes, the data must be 
followed by a null pad byte.

a. The icon sizes are 32 by 32 for the large icon and 15 by 9 for the small icon.
There is no color table present in these bitmaps. Currently, images convert-
ed to Palm bitmaps for use as icons have their color depth reduced to 1 bit
per pixel.



PQA Database Format
Web Content Records

Palm File Format Specification 37

Figure 3.3 Web Content Record

urlOffset

4

A

E

C

12

14

0byte

6

bits
0

..
Web content byte sequence

URL string of content

reserved

uncompressedDataSize

contentType compressionType

dataLength

dataOffset

urlLength

flags

..



PQA Database Format
Web Content Records

38 Palm File Format Specification

Field Descriptions

urlOffset The offset, in bytes, from the top of this 
record header to the start of the URL 
for this web content resource.

For this version of the web content 
record, this field’s value is always 
0x14. This field is included for 
historical reasons.

urlLength The length of the URL string, in bytes. 
This is the size of the URL string itself, 
without including the null terminator 
byte or any pad byte that follows the 
string data.

dataOffset The offset, in bytes, from the top of this 
record header to the start of the data 
for this web content resource.

dataLength The length of the data, in bytes.

contentType A code for the type of content, defined 
in CMLConst.h and described in 
“Web Content Record Content Types” 
on page 40. 

The contentType indicates the type 
of resource encoded in this record, e.g. 
HTML, text, JPEG, or GIF. The content 
type is determined either from a MIME 
string passed from a server or by the 
filename extension of the original 
resource. 

compressionType A code for the type of compression 
used for the content, defined in 
CMLConst.h and described in “Web 
Record Compression Types” on 
page 41. 



PQA Database Format
Web Content Records

Palm File Format Specification 39

uncompressedDataSize The uncompressed size, in bytes, of the 
web content. If the compression type of 
the record is 
cmlCompressionTypeNone, the 
value of this field equals the value of 
the dataLength field.

If the web content is an image, this 
field contains the size of the Palm OS 
bitmap data before compression.

flags Unused and set to 0.

reserved Currently unused and set to 0.

URL string The URL string, which follows the end 
of the header.

This string contains the filename of the 
individual resource as it existed on the 
development system when the PQA 
was built (for example, “palm.htm”).

The URL string may be followed by a 
zero pad byte, if necessary, to align the 
string data on a word boundary.

Web document data Document data begins on a word 
boundary following the end of the 
URL string. The data can contain 
various content types, as explained in 
the contentType field description.

For more information about the format 
used to encode data, see and Chapter 
4, “PQA Encoding Format.” 



PQA Database Format
Web Content Records

40 Palm File Format Specification

Web Content Record Content Types
The content type constants are used in the contentType field of 
each content record to specify the type of data found in a web 
content record in a PQA database. 

The current version of the Viewer processes only content identified 
with either content type cmlContentTypeTextCml or 
cmlContentTypeImagePalmOS.

The web content encoder, which is used by both the WCA Builder 
application and the Palm proxy server, interprets the following 
resources as “plain text” content:

• MIME type text/plain

• any text that is not identified as text/html, image/gif, or 
image/jpeg

The encoder processes the source content and produces plain text 
consisting only of characters that fall within the defined ANSI text 
character set (0x20 through 0x7e, 0x82 through 0x8c, 0x91 through 
0x9e, and 0xa1 through 0xff) together with ASCII tab (0x09), 
linebreak (0x0a), and carriage return (0x0d) codes. The encoder 
identifies this content as type cmlContentTypeTextCml since 
that is the only non-image content type that Viewer handles.

Content type cmlContentTypeImagePalmOS is standard Palm 
OS bitmap image data, which may be compressed according to the 
Palm OS bitmap standard. The encoder converts MIME content 
types image/gif and image/jpeg into compressed Palm OS bitmaps.

Constant Value Description

cmlContentTypeTextPlain 0 Plain text

cmlContentTypeTextHTML 1 HTML text

cmlContentTypeImageGIF 2 GIF images

cmlContentTypeImageJPEG 3 JPEG images

cmlContentTypeTextCml 4 CML text

cmlContentTypeImagePalmOS 5 Palm OS bitmap image format



PQA Database Format
Web Content Records

Palm File Format Specification 41

See BitmapType and BitmapFlagsType in the header file 
Bitmap.h for information on the Palm OS bitmap format and 
compression.

The encoder converts resources with MIME type text/html to 
content with type cmlContentTypeTextCml. The format of the 
data is specified in Chapter 4, “PQA Encoding Format.”

Web Record Compression Types
The compression type constants specify the type of compression 
applied to the data found in a web content record in a PQA 
database.

Type cmlCompressionTypeNone is an intermediate form; the 
WCA Builder and Palm proxy server always generate 
cmlCompressionTypeBitPacked data. For more information, 
see the sections “About Bit Packed Compression” on page 46 and 
“Unpacked Notation” on page 52.

Constant Value Description

cmlCompressionTypeNone 0 Uncompressed data

cmlCompressionTypeBitPacked 1 Data compressed in Palm bit-packed 
format, which is described in 
Chapter 4, “PQA Encoding Format,” 
on page 43.

cmlCompressionTypeLZ77 2 Data compressed in Lz77 format.

The Palm implementation of Lz77 
format is described in an appendix in 
the Web Clipping Developer’s Guide.





Palm File Format Specification 43

4
PQA Encoding 
Format
This chapter describes the web clipping application (PQA) data 
encoding format, which is a compressed data format shared by the 
web clipping application viewer (Viewer) program, the Palm proxy 
servers, and the web clipping application builder (WCA Builder) 
program.

The PQA encoding format is a binary translation of HTML source 
data known as Compressed Markup Language (CML). This data is 
compressed with a bit-packed scheme that is proprietary to Palm, 
Inc.

This chapter describes the PQA data encoding format and the 
associated bit-packed compression scheme, in the following 
sections:

• “About PQA Data” provides an overview of the PQA data 
format and how it differs from standard HTML.

• “The PQA Data Format” on page 46 describes specific 
elements of the PQA data format.

• “Unpacked Notation” on page 52 describes the unpacked, 
intermediate representation of PQA data streams, which you 
can use when debugging a PQA encoder.

This document describes the version of the PQA encoding and 
compressing scheme that is current with release 4.0 of the Palm OS®.

About PQA Data
PQA data is a stream of text and image data with embedded 
formatting tags. PQA data is generated from HTML data; PQA tags 
embedded in the data correspond to HTML tags. For example, some 
common HTML tags (BR, P, DIV) are mapped to single newline 
characters; other PQA tags and their parameters are embedded as 



PQA Encoding Format
About PQA Data

44 Palm File Format Specification

binary data rather than ASCII characters, as described in the section 
“Unpacked Notation” on page 52).

A PQA data format encoder transforms HTML tags to their PQA 
representations, ignoring unsupported HTML tags, and converts 
images to Palm OS bitmaps to be embedded in the PQA output file. 
The result is uncompressed PQA format data.

After transforming the HTML source to a PQA representation, the 
encoder may compress the data using the bit-packed compression 
scheme.

The PQA encoding form results in a compact representation relative 
to the size of the original HTML, as shown in the next section.

An Example of Converting HTML to PQA 
Format
This section provides an example of translating HTML input into 
bit-packed PQA format. Listing 4.1 shows the original HTML file.

Listing 4.1 Sample HTML file before conversion to PQA

<html>
<head>

<title>Example</title>
</head>
<body>
Body text
</body>
</html>

The unpacked PQA data representation of the file is shown in 
Listing 4.2, the top line of which lists the hexadecimal value of each 
byte, and the bottom line of which lists the corresponding ASCII 
data.

Listing 4.2 The unpacked PQA representation of the HTML 
file

45 78 61 6D 70 6C 65 00 42 6F 64 79 20 74 65 78 74 01 71
E  x  a  m  p  l  e \0  B  o  d  y sp  t  e  x  t cmlEnd



PQA Encoding Format
About PQA Data

Palm File Format Specification 45

Listing 4.3 shows the bit-packed data representation of the PQA 
data, in hexadecimal.

Listing 4.3 The PQA data in bit-packed format

12 2F 4D 2A C5 40 12 15 13 E2 E5 5D C8 5C 40

Note that the hexadecimal representation above includes zero bits 
that are not actually part of the PQA bit stream, which actually ends 
with the last “on” (1) bit in the byte with the value 40h.

For an explanation of the bit-packed representation used in PQA 
files, see “About Bit Packed Compression” on page 46.

The remainder of this chapter describes how HTML elements are 
encoded and compressed into PQA format to produce a bit stream 
like the one shown in this section.

How PQA Differs From HTML
The major emphasis of the PQA format is that it is optimized for 
size. This was done to promote speedier transmission of data using 
wireless communications, which are currently slower than typical 
dial-up connections from home computers. The PQA format 
sacrifices some readability and flexibility in exchange for enhanced 
compactness.

One major design difference between HTML and PQA format is 
that PQA format is not designed as a content creation language. It is 
instead a temporary format used to represent content as it is being 
transferred between a server and a client. As such, it is always 
algorithmically generated from HTML source, a process similar to 
object code being generated from a compilation of source code. 

Another important difference between PQA format and HTML is 
that white space and line breaks in the PQA format text are 
significant. That is, the equivalent of the HTML line break tag 
(<BR>) is not required in PQA format since line breaks are 
embedded directly into the text as newline characters.

Lastly, unlike HTML, the PQA data format specifies no 
identification scheme of any kind; successful data transfer and 
handling depends entirely upon context. There is no header or 



PQA Encoding Format
The PQA Data Format

46 Palm File Format Specification

magic number at the start of a stream of PQA data, unless such 
identification is part of some enclosing transport mechanism for the 
data. For example, PQA data is expected in a response from the 
Palm Web Clipping Proxy server and within a PQA resource, and is 
identified by the appropriate headers in each case.

For details on the HTML tags and attributes that are supported in 
the Palm system, refer to the HTML markup appendix of the Web 
Clipping Developer’s Guide.

The PQA Data Format
This section describes the PQA data format, in the following 
sections:

• “About Bit Packed Compression” describes the bit-packed 
compression scheme used in the PQA data format.

• “Representing Text in PQA Format” on page 49 describes 
how text is represented in PQA data format.

• “Data Termination” on page 52 describes the tag used to 
terminate a PQA data stream.

Note that the effects of a tag in the PQA data stream are ended 
either by a cmlCharEndCharacter, or by the appearance in the 
data stream of another tag that overrides the previous effects.

About Bit Packed Compression
In its raw form, unpacked PQA data is an encoded form of HTML, 
smaller in size than the original content, and is considered to have 
the compression type cmlCompressionTypeNone. 

The WCA Builder program, the Palm proxy servers, and the Viewer 
program all work with PQA data that has been compressed using a 
proprietary, bit-packed compression scheme. This data is 
considered to have the cmlCompressionTypeBitPacked 
compression type.

The fundamental idea behind bit-packed compression is simply to 
map single- or multiple-byte data elements in an unpacked PQA 
data stream to data elements represented by fewer bits in a bit 
stream. A bit-packed PQA data stream is by default a 5-bit character 



PQA Encoding Format
The PQA Data Format

Palm File Format Specification 47

text stream. That is, until a special character, as noted below, 
appears in the stream, each sequence of 5 bits is assumed to 
represent a single text character. Table 4.1 lists the possible 5-bit 
characters.

The table columns have the following meanings:

• Value is the 5-bit numeric value.

• Special indicates whether or not the value is an encoding 
escape or text. A PQA encoder may produce sections of 
output containing 8-bit characters; however, even within 
these sections, the character values 0, 1, and 2 always have 
special meaning. For more information about using 8-bit 
characters, see “cmlTag8BitEncoding” on page 62.

• Reset indicates whether or not a decoder that is currently 
processing a cmlTag8BitEncoding of 8-bit text characters 
should reset to 5-bit mode when the decoder encounters this 
character. 

Table 4.1 Bit-Packed Encoding 5-bit Characters

Value Special? Reset
?

CML Tag Description

0 Yes Yes cmlCharEnd Used to end a TextZ type and 
certain tags.

1 Yes Yes cmlCharStart Followed by an 8-bit Tag ID

2 Yes No cmlCharEsc Single character escape; 
followed by a single ASCII 
character

3 No No cmlCharFormFeed ASCII Formfeed (0x0c)

4 No No cmlCharLineBreak ASCII Carriage return (0x0d)

5 No No cmlCharSpace ASCII Space (0x20)

6-31 No No N/A ASCII lowercase letters (0x61 
through 0x7a)



PQA Encoding Format
The PQA Data Format

48 Palm File Format Specification

Bit Packed Compression Encoding

As you can see, the bit-packing compression scheme saves space 
when applied to input consisting of lowercase ASCII text characters 
and HTML tags and attribute values (including image data).

Table 4.2 provides a summary of how the different data types are 
represented in the bit-packed compression scheme.
Table 4.2 Bit-packed Compression Encoding Summary

Encoding type Description

ASCII text Lowercase ASCII text characters, the space character and 
the newline character are mapped to corresponding 5-bit 
codes. All other ASCII text characters are encoded either 
by a 5-bit single-character escape code or within a tagged 
run of 8-bit ASCII characters.

HTML tag Each tag is encoded as a 5-bit start tag code followed by 
an 8-bit tag identifier.

If the tag includes attributes, then the encoding also 
includes encoded tag parameters, using numeric 
parameter values and ASCII text encoding.

If the tag encloses associated tag data, such as a hyperlink 
tag enclosing a link or an image tag specifying an image 
URL, the encoding also includes encoded tag data, using 
ASCII text encoding and image compression.

If the tag requires an end tag, such as a hyperlink tag’s </
A>, the encoding includes a 5-bit “end tag” code.

Numeric parameter value Numeric HTML parameter values may be compressed by 
encoding the numeric values as binary numbers. Further, 
the binary representations may be further compressed 
using variable-length integer representations, defined 
under “Data Types in PQA Format” on page 58.

Image compression The encoder converts all original source image data to 
Palm OS bitmap data. A bit-packing compressor 
compresses all Palm OS images in the data with standard 
Palm OS bitmap image compression.



PQA Encoding Format
The PQA Data Format

Palm File Format Specification 49

NOTE: The 5-bit compressor used by the WCA Builder and the 
Palm proxy servers takes only ASCII text or uncompressed PQA 
data as input. That compressor does not directly interpret HTML 
tags and end-tags in the input, and it generates bit-packed plain 
text only from plain ASCII text data or as part of PQA data.

Data Parsing Modes

If you are parsing a PQA data stream, you need to be able to operate 
in three modes:

• 5-bit character mode, in which each group of 5 bits of input is 
interpreted as one of the bit-packed encoding characters.

• Single-character escape mode, in which the next 8 bits of 
input is taken as a single character.

• Tag mode, in which the bits of input are interpreted 
according to the tag encoding definitions specified Chapter 5, 
“PQA Tag Reference.”

Representing Text in PQA Format
This section shows two examples of how a simple section of text is 
represented in PQA format. The first example is:

abc d
ef

is represented as:

Bit[5] char = 6  // 'a'
Bit[5] char = 7  // 'b'
Bit[5] char = 8  // 'c'
Bit[5] char = 5  // ' '
Bit[5] char = 9  // 'd'
Bit[5] char = 4  // line break
Bit[5] char = 10 // 'e'
Bit[5] char = 11 // 'f'

which, as a binary bit stream is:

00110 00111 01000 00101 01001 00100 01010 01011



PQA Encoding Format
The PQA Data Format

50 Palm File Format Specification

If the data stream includes an 8-bit ASCII character, that character is 
preceded in the data stream by the single-character escape code, 
which has the value 2. For example, the following text contains the 
8-bit uppercase character ‘C’ and thus includes the escape code.

a Cow

The above text is represented in PQA format as the following 
sequence:

Bit[5] char = 6  // 'a'
Bit[5] char = 5  // ' '
Bit[5] char = 2  // single character escape
Bit[8] char = 67 // 'C'
Bit[5] char = 20 // 'o'
Bit[5] char = 28 // 'w'

where the 67 is the 8 bit sequence 01000011 which represents the 
ASCII value for ‘C’ (67 decimal, 0x43 hexadecimal), and all other 
characters are 5 bits long. 

Multiple sequences of non-lower case alpha or international 
characters can also be included in the stream by including the 
appropriate text encoding tag in the stream, followed by the 8-bit or 
16-bit character text string. Tags are described in the next sections.

PQA Tags
Each PQA tag in the data stream is preceded by the PQA tag start 
character, which is a 5-bit character with the value 1. The tag start 
character is always followed by an 8-bit tag ID. And some of the 
tags are followed in the data stream by parameter values.

IMPORTANT: Whenever the tag start character is encountered 
in the data stream, the text encoding mode is reset to 5-bit 
character mode.

This section provides an overview of the PQA tags. For reference 
information on tag, see Chapter 5, “PQA Tag Reference.”



PQA Encoding Format
The PQA Data Format

Palm File Format Specification 51

Text Encoding Tags

The PQA compression format is size-optimized for lowercase ASCII 
characters, each of which can be represented in 5 bits. When the 
data stream includes characters other than lowercase ASCII 
character, the data stream includes a text encoding tag, followed by 
those characters. 

All data following the text encoding tag is assumed to be encoded in 
accordance with the tag, until one of the text mode reset tags 
(cmlCharEnd or cmlCharStart) is encountered. 

For example, the cmlTag8BitEncoding tag indicates a string of 8 
bit characters follows. The string of 8 bit characters is assumed to 
continue in the stream until a reset character is encountered. 
However, because the stream is now built up of 8 bit characters, all 
special characters (which includes the reset characters and single 
character escape) are also now 8 bits long. For example, the 
cmlCharEnd character becomes the 8 bit sequence 00000000 and 
the cmlCharStart character becomes the 8 bit sequence 
00000001.

Whenever the reset character is encountered in the data stream, the 
text mode reverts to 5-bit characters.

Listing 4.4 shows an example of using the cmlTag8BitEncoding 
tag to represent a a sequence of uppercase characters in the text 
string “a BIG dog.”

Listing 4.4 Example of using the cmlTag8BitEncoding tag

Bit[5] char = 6 // 'a'
Bit[5] char = 5 // ' '
Bit[5] char = 1 // tag escape character
Bit[8] tagID = cmlTag8BitEncoding
Bit[8] char = 'B' // 'B'
Bit[8] char = 'I' // 'I'
Bit[8] char = 'G' // 'G'
Bit[8] char = 0 // cmlCharEnd, switches text      
                // encoding back to 5-bit mode
Bit[5] char = 9 // 'd'
Bit[5] char = 20 // 'o'
Bit[5] char = 12 // 'g'



PQA Encoding Format
Unpacked Notation

52 Palm File Format Specification

An important thing to note is the interaction of alternate text 
encoding sections with the cmlCharEnd character. Besides being 
used as a way to reset the text encoding mode, the cmlCharEnd 
character is sometimes used to separate two elements or to indicate 
the end of a block level element. 

For example, when a list needs to be represented in PQA format, the 
list items are separated from each other by the cmlCharEnd 
character. In these instances, if a list item was represented using 8-
bit encoded text, there would be two cmlCharEnd characters in a 
row in the stream. The first cmlCharEnd character, needed to end 
the 8-bit encoded text, would be 8 bits long. Then, to indicate the 
actual start of another list item, a 5-bit cmlCharEnd character 
would be placed in the stream.

Added Overhead for Text Encoding Tags

Including the cmlCharStart, cmlTag8BitEncoding, and 
cmlCharEnd characters adds a fixed amount of data to the stream. 
This makes sense for long runs of characters that use the encoding, 
but does not make sense for small character runs. Instead, for small 
runs, you can use the single character escape code in front of each 8-
bit character in the stream.

The WCA Builder program and the Palm Web Clipping Proxy 
servers use the following rule when encoding 8-bit text runs: if the 
text run includes a sequence of four or less 8-bit characters, encode 
each as a single character escape. If the text run includes more than 
four 8-bit characters, the entire text run is encoded as an 8-bit 
encoding, with start, stop, and encoding tags.

Data Termination
A PQA format data stream is terminated with a cmlTagCMLEnd 
tag. PQA data streams always end with the last 1 bit of the 
cmlTagCMLEnd tag value; they are not padded with any following 
bits.

Unpacked Notation
Originally, the PQA format was envisioned as a tag-encoding 
method with one representation, which is currently the 



PQA Encoding Format
Unpacked Notation

Palm File Format Specification 53

cmlCompressionTypeBitPacked compressed form. Later, it 
became apparent that it would be advantageous to define a byte-
aligned uncompressed, or unpacked, representation for debugging 
purposes. This unpacked form became the 
cmlCompressionTypeNone form. 

Unpacked PQA format then was defined to consist of only the tag 
encoding. PQA data is thus representable in two forms: unpacked 
and bit-packed compressed. In unpacked form, HTML tags are 
encoded as PQA tags, including start and end tag characters in byte 
form. In bit-packed compressed form, text characters (ASCII text, 
start and end tag characters), tag attribute values, and image data 
are encoded according to the bit-packed compression scheme. 

The encoding module used by the WCA Builder application and by 
the Palm Web Clipping Proxy server encodes data in two passes:

• in the first pass, HTML is encoded as unpacked data 
(cmlCompressionTypeNone)

• in the second pass, a bit-packing compressor produces bit-
packed (cmlCompressionTypeBitPacked) data.

The reason to know about the cmlCompressionTypeNone format 
is that it makes debugging a PQA data stream much easier. If you 
are writing a PQA encoder, you will probably want to debug using 
the intermediate cmlCompressionTypeNone data. 

NOTE: The reference sections in Chapter 5 denote bit-packed 
compressed content. You must interpret definitions of bit-packed 
elements to produce the equivalent unpacked elements. 

The following sections describe how to interpret the bit-packed 
notation to identify data elements of cmlCompressionTypeNone.



PQA Encoding Format
Unpacked Notation

54 Palm File Format Specification

Translation of Bit-Packed to Uncompressed Data

Unpacked PQA data includes just two special characters, as shown 
in Table 4.3.

The translation from bit stream data in 
cmlCompressionTypeBitPacked form to byte-oriented data in 
cmlCompressionTypeNone form is straightforward:

• All bit-packed data elements less than 8 bits in width are 
coded as one byte. 

• All ASCII data is coded as 8-bit. 

• All variable length UIntV and IntV types are encoded using 
four bytes (DWord). 

• All variable length Uint16V and Int16V types are encoded 
using two bytes (Word). 

• All variable length Uint8V and Int8V types are encoded 
using one byte.

• Palm bitmap image data is uncompressed, and no 
uncompressedDataSize value follows the header bytes, as 
it does in the compressed form of the bitmap.

• The single character escape and the tag 
cmlTag8BitEncoding are never used in a 
cmlCompressionTypeNone byte stream.

All other characters are encoded in their ASCII form.

Here are examples of possible bit-packed data elements and 
equivalent uncompressed translations:

Table 4.3 Unpacked Encoding Characters

Value Special Reset Description

0 Yes Yes cmlCharEnd character. Used to 
end TextZ data and certain tags.

1 Yes Yes cmlCharStart character, 
followed by an 8-bit Tag ID.



PQA Encoding Format
Unpacked Notation

Palm File Format Specification 55

Five-bit tags are treated in the following manner:

You can see that there is not a one-to-one mapping from elements of 
a bit-packed data stream to elements of an unpacked data stream. 
For example, bit-packed data includes single character escapes, 8-bit 
character runs and variable-length integers; data encoded without 
bit-packed compression does not include these escapes and number 
packings. In other words, the special escape characters and bit 
encodings are part of the bit-packed compression scheme only, not 
part of the uncompressed encoding scheme.

Bit-packed Data Uncompressed Data

Bit = 1 Byte = 0x01

Bit[3] = 1, 0, 1 Byte = 0x05

TextZ = “foo” “foo”, NULL terminated ASCII string

Byte = 0xCD Byte = 0xCD

IntV = -1 DWord = 0xFFFFFFFF (-1)

UIntV = 7 DWord = 0x00000007

Uint8V = 2 Byte = 0x02

Bit-packed Data Uncompressed Data

cmlCharEnd (0) Byte = 0x00

cmlCharStart (1) Byte = 0x01

cmlCharEsc (2) Unused

cmlCharFormFeed (3) Byte = 0x0C

cmlCharLineBreak (4) Byte = 0x0D

cmlCharSpace (5) Byte = 0x20

cmlTag8BitEncoding Unused

cmlCharA (6)… cmlCharZ (31) Byte = 0x61… 0x7a



PQA Encoding Format
Unpacked Notation

56 Palm File Format Specification

Example Translation

Here is an example translation from bit-packed data to unpacked 
data. The bit-packed representation is shown in Listing 4.5.

Listing 4.5 Bit-packed representation of an HTML page

00010 <single character escape>
01000101 E
   11101 x
   00110 a
   10010 m
   10101 p
   10001 l
   01010 e
   00000 <title string textz null terminator>
   00010 <single character escape>
01000010 B
   10100 o
   01001 d
   11110 y
   00101 <space>
   11001 t
   01010 e
   11101 x
   11001 t
   00001 <start of tag>
01110001 cmlTagCMLEnd

Listing 4.6 shows the same HTML code in unpacked representation.

Listing 4.6 Unpacked representation of an HTML page

45 78 61 6D 70 6C 65 00 42 6F 64 79 20 74 65 78 74 01 71
E  x  a  m  p  l  e \0  B  o  d  y sp  t  e  x  t cmlEnd



Palm File Format Specification 57

5
PQA Tag Reference
This chapter provides reference information for the tags found in 
PQA data streams. This chapter contains three sections:

• “Specifying PQA Data in Compact Notation” describes the 
notation used to specify PQA data streams.

• “PQA Tag Definitions” on page 61 presents a reference 
description of each PQA tag. The tags are presented in 
alphabetical order.

• “Summary of CML Tags” on page 107 provides a summary 
table that organizes the tags according to usage.

Specifying PQA Data in Compact Notation
This section describes a notation that is used in the remainder of this 
chapter for representing PQA data. The notation is described in the 
following sections:

• “About Compact Data Structure Notation” describes the 
notation.

• “Data Types in PQA Format” on page 58 describes the data 
types used in the compact data structure notation.

About Compact Data Structure Notation
This notation, known as Compact Data Structure Notation (CDSN), 
describes data elements that use the 
cmlCompressionTypeBitPacked compression. CDSN has the 
general form:

<data type> <identifier> = <legal value>

For example, the notation for a three bit value:

Bit[3] aValue = 7

Note that <legal value> may be an identifier, the value of which 
is a legal value. Also, note that the values of Bit[5] arrays are 



PQA Tag Reference
Specifying PQA Data in Compact Notation

58 Palm File Format Specification

typically denoted by the numeric values of characters defined in bit-
packed encoding, and given as the code for that character (for 
example, 6 for ‘a’, 0 for the end tag code, etc.).

The following is another example:

Bit enabled = 1
Bit[3] type = typeRound
Int16 length = 0x1234

The above structure represents the following sequence of 20 bits:

1 010 0001001000110100

Which breaks down as follows:

• The first field, enabled, is a 1-bit field that has the value 1.

• The second field, type, is a 3-bit field that has the value 
typeRound, which is a constant defined to be 2. 

• The third field, length, is a 16-bit integer with the value 
0x1234. 

Fields in CDSN are never padded to fall on word or byte 
boundaries. That is, each field starts off on the next free bit after the 
previous field. All multi-bit values are stored with the most-
significant-bit first. 

Data Types in PQA Format
This section describes the data types used in PQA format:

• Primitive Data Types

• Variable Length Integer Data Types

• Text Data Types



PQA Tag Reference
Specifying PQA Data in Compact Notation

Palm File Format Specification 59

Primitive Data Types

A number of primitive data types are used in CDSN. The basic 
types are shown in Table 5.1.

Variable Length Integer Data Types

CDSN also provides a number of variable length integer types, each 
of which uses a varying number of bits to represent different value 
ranges. These variable-length integer types work by using the first 1 
to 4 bits to identify the number of value bits that follow.

Table 5.2 shows the number of bits used for each value range in one 
variable integer type: the UIntV data type.

Table 5.1 CDSN primitive data types

Type Description

Bit A single bit

UInt8 8-bit unsigned integer value

Int8 8-bit signed integer value

UInt16 16-bit unsigned integer value

Int16 16-bit signed integer value

UInt32 32-bit unsigned integer value

Int32 32-bit signed integer value

Table 5.2 Total bits used for each value range for the UIntV 
data type

Type bits 
value

# of value 
bits

Value range Total bits 
used

0 0 0 1

10 3 0 to 0x07 5

110 6 0 to 0x3F 9

1110 16 0x to 0xFFFF 20

1111 32 0x to 0xFFFFFFFF 36



PQA Tag Reference
Specifying PQA Data in Compact Notation

60 Palm File Format Specification

Table 5.3 summarizes the value ranges for each variable length 
integer type in CDSN. The heading rows show the number of 
integer value bits for each value type bit combination, and the data 
cells show the range of integer values that can be stored for each 
data type.

Text Data Types

CDSN notation provides two data types: Text and TextZ.

The Text data type is used in CDSN notation to represent a string 
of characters, which can include a mix of 8-bit and 5-bit characters. 
This type conveniently masks the complexities of including escape 
and reset characters. 

The combination of the Tag and Text types makes representing 
combinations of formatting and text sequences much easier. For 
example, the following text:

a cow

can be represented in CDSN Notation as:

Table 5.3 Value ranges for each variable length type

Variable
Integer
Type

Integer range for each value type bits value

Bits = 0 Bits = 10 Bits = 110 Bits = 1110 Bits = 1111

(0 value 
bits)

(3 value 
bits)

(6 value bits) (16 value 
bits)

(32 value 
bits)

UIntV 0 0 to 7 0 to 63 0 to 65535 4,294,967,295

IntV 0 -4 to 3 -32 to 31 -32768 to 
32767

-2,147,483,648 
to 
2,147,483,647

UIntV16 0 0 to 7 0 to 63 0 to 65535 N/A

IntV16 0 -4 to 3 -32 to 31 -32768 to 
32767

N/A

UIntV8 0 0 to 7 0 to 63 N/A N/A

IntV8 0 -4 to 3 -32 to 31 N/A



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 61

Text string = "a "
Tag tag = cmlTagTextBold
Text string = "cow"

The TextZ type is the Text type that always ends with a 
cmlCharEnd character. This type is most commonly used in tag 
parameter lists. For example, the format of the anchor tag is defined 
as:

Tag tag = cmlTagAnchor
TextZ name

In this specification, the name parameter is a string that holds the 
local anchor name. In the data stream, the string is followed by a 
cmlCharEnd character that delimits it from the following data.

NOTE: If a parameter is defined as type TextZ, the string value 
must end with the cmlCharEnd character. 

PQA Tag Definitions

NOTE: Some tags have parameter values that must be included 
if another parameter has a certain value. Most of the time the 
second parameter is required if the value of the first parameter is 
True. 

The parameter descriptions for these parameters state something 
like the following: “This parameter is required if the value of the 
hasAlign parameter is True.” This means that the parameter is 
required if hasAlign is True, and is not expected in the input 
stream if hasAlign is False.



PQA Tag Reference
PQA Tag Definitions

62 Palm File Format Specification

cmlTag8BitEncoding

Description Marks the beginning of 8-bit encoded text while in 5-bit encoding 
mode. This tag is only used within bit-packed data.

End Tag
Delimited

Yes

Parameters None

Example Tag tag = cmlTag8BitEncoding
Text "THIS IS 8-BIT ENCODED TEXT"
// End 8-bit encoded text
Char  end = cmlCharEnd

cmlTagAddress

Description Delimits address data.

End Tag
Delimited

Yes

Parameters None

Example Tag tag = cmlTagAddress
Text "Big Bird\nSesame St.\nNY, NY"
Char cmlCharEnd  // end address

cmlTagAnchor

Description Marks a named document anchor, or fragment identifier, within a 
document. 

Only use this tag to define local named anchors. Use the 
cmlTagHyperlink tag to define hyperlinks. 

End Tag
Delimited

Yes 



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 63

Parameters TextZ name String holding the local anchor name (not 
including the “#” character that precedes the 
anchor name in the HTML).

Example Tag tag = cmlTagAnchor
TextZ name = "anchor"

cmlTagBGColor

Description Sets the background color.

End Tag
Delimited

No

Parameters Byte red A value from 0 to 255 that indicates the amount 
of red in the RGB color specification.

Byte green A value from 0 to 255 that indicates the amount 
of green in the RGB color specification.

Byte blue A value from 0 to 255 that indicates the amount 
of blue in the RGB color specification.

Example Tag tag = cmlTagBGColor
Byte red = 0xFF
Byte green = 0x80
Byte blue = 0x80

cmlTagBlockQuote

Description Delimits block quotations.

End Tag
Delimited

Yes

Parameters None

Example Tag tag = cmlTagBlockQuote
Text "The whole problem with the world is that fools and 
fanatics are always so certain of themselves, but wiser 
people so full of doubts."



PQA Tag Reference
PQA Tag Definitions

64 Palm File Format Specification

Text "- Bertrand Russell"
Char cmlCharEnd // end block quote

cmlTagCaption

Description Marks the caption to be placed above or below a table. It can appear 
anywhere in a table.

End Tag
Delimited

Yes 

Parameters Bit captionAtTop
A Boolean value. 0 means place the caption 
below the table; 1 means place the caption 
above the table.

Example Tag tag = cmlTagCaption
Bit captionAtTop = 1
Text "Table Title"
Char cmlCharEnd  // end of caption

cmlTagClear

Description Indicates that the browser should insert a line break and avoid 
floating images before continuing to draw text. Corresponds to the 
HTML element <BR CLEAR>.

End Tag
Delimited

No 

Parameters Bit[2] clearAlign
An enumerated type. One of:

cmlClearLeft
Break the line, and move vertically down 
until there is a clear left margin (where 
there are no floating images).

cmlClearAll
Break the line, and move vertically down 
until both margins are clear of images.



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 65

cmlClearRight
Break the line, and move vertically down 
until there is a clear right margin (where 
there are no floating images).

Example Tag tag = cmlTagClear
Bit[2] clearAlign = cmlClearAll

cmlTagCMLEnd

Description Indicates the end of data for this resource.

End Tag
Delimited

No 

Parameters None 

Example Tag tag = cmlTagCMLEnd

cmlTagForm

Description Marks the start of a form. A form encloses one or more input items 
and is cmlCharEnd delimited.

There are essentially two classes of forms: stand-alone forms (like in 
standard HTML) and server dependent forms. Server dependent 
forms can be much smaller than standard forms and are typically 
the only type of form received over a wireless link. Stand-alone 
forms, on the other hand, are designed to be contained within a 
PQA resident on the Palm device.

A stand-alone form is indicated by a 1 in the standalone attribute of 
the form tag. A 1 in this bit indicates that the form also has post and 
action attributes and that each of its input fields has the necessary 
attributes (name and value) for submitting the form without 
making the proxy reference the original HTML form on the Internet 
first. 

A server dependent form is indicated by a 0 in the standalone 
attribute. A 0 in this bit indicates that the form does not have post 
or action attributes and that its input fields do not have associated 



PQA Tag Reference
PQA Tag Definitions

66 Palm File Format Specification

name or value attributes. When this type of form is sent to the 
proxy server, the proxy server must first reference the original 
HTML form on the Internet before it can actually submit the 
request. 

End Tag
Delimited

Yes 

Parameters Uint16V formIndex
Assigned by the proxy server; starts at 0 for the 
first form in a document.

Bit[3] flags Flags controlling these attributes:

cmlFlagFormIsLocalAction[2]
Set when the protocol scheme identifies 
an action that is local to the device; that 
is, it is one of the set (file:, mailto:, palm:, 
palmcall:).

cmlFlagFormIsSecure[1]
Used only for server-dependent forms. 
Set if the action URL for the form is for a 
secure site (uses the https scheme). It is 
used by the client to determine if it 
should send the form submission to the 
proxy in encrypted form or not. For 
stand-alone forms, the client should 
instead check the scheme that’s in the 
action URL parameter so see if the 
submission should be encrypted or not. 

cmlFlagFormIsStandalone[0]
Set if the form is stand-alone; not set if 
the form is server dependent.

Bit post This parameter is required if the value of the 
cmlFlagFormIsStandalone parameter is 
True. If this value is set to 1, the form is 
submitted to the CGI script using the HTTP 
POST method; if set to 0, the form is submitted 
to the CGI script using the HTTP GET method.



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 67

TextZ encType This parameter is required if the value of the 
cmlFlagFormIsStandalone parameter is 
True. This is a string that specifies the type of 
form encoding. If no format is specified in the 
HTML, then this string is NULL and the default, 
“application/x-www-form-urlencoded” is 
implied.

TextZ action This parameter is required if the value of the 
cmlFlagFormIsStandalone parameter is 
True. This is the URL of the CGI script on the 
server that handles the form submission.

Example Tag tag = cmlTagForm
Uint16V formIndex = 0
Bit[3] flags = 1 // cmlFlagFormIsStandalone
Bit post = 0
TextZ encType = 0   
TextZ action = "http://www.server.com/cgi-bin/submit"

// The form input items
Text "Age 0-12:"
Tag tag = cmlTagInputRadio
Uint16V group = 0
Bit [4] flags = 3 // has name, value
TextZ name = "age"
TextZ value = "0-12"

Text "Age 13-17:"
Tag tag = cmlTagInputRadio
Uint16V group = 0
Bit [4] flags = 7 // has name, value, is checked
TextZ name = "age"
TextZ value = "13-17"

Tag tag = cmlTagInputSubmit
Bit[2] flags = 2 // has value
TextZ value = "OK"    

Char endForm = cmlCharEnd

cmlTagH1

Description Marks a first level document heading.



PQA Tag Reference
PQA Tag Definitions

68 Palm File Format Specification

End Tag
Delimited

Yes

Parameters Bit hasAlign A flag that is set if the align attribute is used.

Bit[2] align This parameter is required if the value of the 
hasAlign parameter is True. This is an 
enumerated type that sets how the heading is 
aligned horizontally in the window. The value 
must be one of the following:

cmlAlignLeft

cmlAlignCenter

cmlAlignRight

Example Tag tag = cmlTagH1
Bit hasAlign = 1
Bit[2] align = alignCenter
Text "This is an H1 Heading"
Char cmlCharEnd // end heading tag

cmlTagH2

Description Marks a second level document heading.

End Tag
Delimited

Yes

Parameters Bit hasAlign A flag that is set if the align attribute is used.

Bit[2] align This parameter is required if the value of the 
hasAlign parameter is True. This is an 
enumerated type that sets how the heading is 
aligned horizontally in the window. The value 
must be one of the following:

cmlAlignLeft

cmlAlignCenter

cmlAlignRight

Example Tag tag = cmlTagH2



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 69

Bit hasAlign = 1
Bit[2] align = alignCenter
Text "This is an H2 Heading"
Char cmlCharEnd // end heading tag

cmlTagH3

Description Marks a third level document heading.

End Tag
Delimited

Yes

Parameters Bit hasAlign A flag that is set if the align attribute is used.

Bit[2] align This parameter is required if the value of the 
hasAlign parameter is True. This is an 
enumerated type that sets how the heading is 
aligned horizontally in the window. The value 
must be one of the following:

cmlAlignLeft

cmlAlignCenter

cmlAlignRight

Example Tag tag = cmlTagH3
Bit hasAlign = 1
Bit[2] align = alignCenter
Text "This is an H3 Heading"
Char cmlCharEnd // end heading tag

cmlTagH4

Description Marks a fourth level document heading.

End Tag
Delimited

Yes

Parameters Bit hasAlign A flag that is set if the align attribute is used.



PQA Tag Reference
PQA Tag Definitions

70 Palm File Format Specification

Bit[2] align This parameter is required if the value of the 
hasAlign parameter is True. This is an 
enumerated type that sets how the heading is 
aligned horizontally in the window. The value 
must be one of the following:

cmlAlignLeft

cmlAlignCenter

cmlAlignRight

Example Tag tag = cmlTagH4
Bit hasAlign = 1
Bit[2] align = alignCenter
Text "This is an H4 Heading"
Char cmlCharEnd // end heading tag

cmlTagH5

Description Marks a fifth level document heading.

End Tag
Delimited

Yes

Parameters Bit hasAlign A flag that is set if the align attribute is used.

Bit[2] align This parameter is required if the value of the 
hasAlign parameter is True. This is an 
enumerated type that sets how the heading is 
aligned horizontally in the window. The value 
must be one of the following:

cmlAlignLeft

cmlAlignCenter

cmlAlignRight

Example Tag tag = cmlTagH5
Bit hasAlign = 1
Bit[2] align = alignCenter
Text "This is a Heading"
Char cmlCharEnd // end heading tag



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 71

cmlTagH6

Description Marks a sixth level document heading.

End Tag
Delimited

Yes

Parameters Bit hasAlign A flag that is set if the align attribute is used.

Bit[2] align This parameter is required if the value of the 
hasAlign parameter is True. This is an 
enumerated type that sets how the heading is 
aligned horizontally in the window. The value 
must be one of the following:

cmlAlignLeft

cmlAlignCenter

cmlAlignRight

Example Tag tag = cmlTagH6
Bit hasAlign = 1
Bit[2] align = alignCenter
Text "This is an H6 Heading"
Char cmlCharEnd // end heading tag

cmlTagHistoryListText

Description Transmits the content attribute of an HTML meta tag with the name 
attribute = “HistoryListText”. The value is stored as a null-
terminated string.

End Tag
Delimited

No 

Parameters TextZ Null-terminated string value.

Example Tag tag = cmlTagHistoryListText
TextZ "Portfolio&Date&Time"



PQA Tag Reference
PQA Tag Definitions

72 Palm File Format Specification

cmlTagHorizontalRule

Description Places a horizontal rule graphic in the window. If no attributes are 
specified, the default rule appearance is set by the Viewer 
application. However, if one or more attributes are specified, the 
defaults listed below apply (which may be different from Viewer).

End Tag
Delimited

No 

Parameters Bit[5] flags Flags controlling these attributes:

cmlFlagHRIsPercent[4]
Set if the percent or width attributes 
are included to specify rule width. The 
default is true.

cmlFlagHRNoShade[3]
Set if the rule is not shaded. Not set if the 
rule is shaded.

cmlFlagHRAlign[2-1]
An enumerated type that sets how the 
rule is horizontally aligned if it is less 
than the full width of the window. One of 
{cmlAlignLeft, cmlAlignCenter, 
cmlAlignRight}.

cmlFlagHRCustom[0]
Set if other parameters are used. If not 
set, this indicates that no other 
parameters follow and a default rule is 
used, as determined by the Viewer 
application.

Uint16V size This parameter is required if the value of the 
cmlFlagHRCustom parameter is True. This is 
the height (thickness) of the rule in pixels. The 
default is 1.



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 73

Byte percent This parameter is required if the value of the 
cmlFlagHRIsPercent parameter is True. 
This is the relative width of the rule in 
percentage of display width. The default is 100.

Uint16V width This parameter is required if the value of the 
cmlFlagHRIsPercent parameter is False. 
This is the absolute width of the rule in pixels.

Example // A default rule
Tag tag = cmlTagHorizontalRule
Bit[5] flags = 0
Text "Some random text"

// A custom rule
Tag tag = cmlTagHorizontalRule
Bit[5] flags = 0x13 // cmlFlagHRCustom,

cmlAlignCenter, cmlFlagHRIsPercent
Uint16V size = 3
Byte percent = 20

cmlTagHyperlink

Description Marks a hyperlink. All text enclosed between the 
cmlTagHyperlink tag and the terminating cmlCharEnd is part of 
the hyperlink. 

Unlike the anchor (<A>) element in HTML, which can be used to 
define both hyperlinks and named anchors (that is, fragment 
identifiers using the NAME attribute), the cmlTagHyperlink tag 
is used only to define hyperlinks. Use the cmlTagAnchor tag to 
define named anchors.

End Tag
Delimited

Yes 

Parameters Bit[2] flags2 Flags controlling these attributes:

cmlFlagLinkIsBinary[1]
Not currently used.



PQA Tag Reference
PQA Tag Definitions

74 Palm File Format Specification

cmlFlagLinkIsLocalRef[0]
Set if this hyperlink’s URL specifies a 
device-side scheme (e.g. file:).

Bit[8] flags Flags controlling these attributes:

cmlFlagLinkIsFakeRemote[7]
Set if this hyperlink is used by the 
Palm OS and is set to simulate a wireless 
request by delaying access to the 
(hopefully) internal data.

cmlFlagLinkIsSameDoc[6]
Set if this is a hyperlink into the current 
document.

cmlFlagLinkHasHref[5]
Set if an hRef attribute is included. If 
hasHRef is false, then the 
extLinkIndex and hashValue 
attributes are provided. In this case, the 
data was probably received via the 
server and the enumeration of 
hyperlinks present in the current file 
must be used in the data request.1 

cmlFlagLinkIsSecure[4]
Set if the hyperlink is to a secure page.

cmlFlagLinkIsFragment[3]
Set if the hyperlink references a fragment 
within the same page; the 
fragmentName attribute is provided.

cmlFlagLinkInternal[2]
Set if this hyperlink references a 
document in the current PQA file. In this 
case, the PQFIndex attribute is 
provided. If internal is false, then a 

1. By default, pages received from the Palm proxy server contain hash coded hy-
perlink indexes, instead of full URL specifications. In version 4.0 or later of the
Palm OS, page designers can override this and send full URLs.



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 75

complete representation of the URL is 
provided if the hasHRef bit is true. 

cmlFlagLinkHasTitle[1]
Set if a title attribute is included.

cmlFlagLinkIsButton[0]
Set if this hyperlink should be displayed 
as a button rather than text.

TextZ fragmentName
This parameter is required if both the 
cmlFlagLinkIsSameDoc and 
cmlFlagLinkIsFragment parameter values 
are True. This is a string holding the fragment 
portion of the URL. For example, if the URL is 
file:\foo.htm#section1, then the 
fragment is section1.

Uint16V PQFIndex
This parameter is required if both the 
cmlFlagLinkIsSameDoc and 
cmlFlagLinkInternal parameter values are 
True. This is the index of the resource 
(referenced by the hyperlink) in the current 
PQA file. The first resource has an index of 1.

TextZ href This parameter is required if the 
cmlFlagInternal parameter value is 
False and cmlFlagHasHref parameter 
values is True. This is a string holding the 
complete URL.

Uint16V extLinkIndex
This parameter is required if the 
cmlFlagInternal parameter value is False 
and cmlFlagHasHref parameter values is 
False. This is the index of the link on the page. 
This is used only for external links from 
external (non-PQA) pages.



PQA Tag Reference
PQA Tag Definitions

76 Palm File Format Specification

Uint16V hashValue
A hash value for the page that is used to check 
if the page source has changed when it is 
refetched to retrieve a URL. (See the previous 
footnote.) This is used only for external links 
from external (non-PQA) pages.

TextZ title This parameter is required if the value of the 
cmlFlagLinkTitle parameter is True. This 
is a string holding the title of the referenced 
page. 

Example The following is an example of an external explicit link that would 
typically be used by a document designed to be loaded onto a Palm 
device through the HotSync® mechanism or some other non-
wireless means:

Tag tag = cmlTagHyperlink
Bit[2] flags 2 = 0
Bit[8] flags = 0x22  // cmlFlagLinkHasTitle,

cmlFlagLinkHasHref
TextZ href = "http://www.Palm.com/"
TextZ title = "Palm home page"
Text "Click on this text"
Char cmlCharEnd // terminates cmlTagHyperlink

The following is an example of an external indexed link that would 
typically be used by a document that was obtained from a wireless 
link. Notice that, to conserve space, it does not include a URL or a 
title.

Tag tag = cmlTagHyperlink
Bit[2] flags2 = 0
Bit[8] flags = 0
Uint16V extLinkIndex = 14
Uint16V hashValue = 3056
Text "Click on this text"
Char cmlCharEnd // terminates cmlTagHyperlink

The following is an example of an internal link that is used to jump 
to another document within the same PQA: the fourth resource in 
the current PQA file.



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 77

Tag tag = cmlTagHyperlink
Bit[2] flags2 = 0
Bit[6] flags = 4 // cmlFlagLinkInternal
Uint16V PQFIndex = 4  
Text "Click on this text"
Char cmlCharEnd // terminates cmlTagHyperlink

cmlTagImage

Description Marks an image.

End Tag
Delimited

No 

Parameters Bit[8] flags Flags controlling these attributes:

cmlFlagImageLocalPQA[7]
Set if the image is a resource in the 
current PQA.

cmlFlagImageHasAlt[6]
Set if an alt attribute is included.

cmlFlagImageHasSrc[5]
Set if a src attribute is included.

cmlFlagImageHasVSpace[4]
Set if a vSpace attribute is included.

cmlFlagImageHasHSpace[3]
Set if an hSpace attribute is included.

cmlFlagImageHasBorder[2]
Set if a border attribute is included.

cmlFlagImageHasAlign[1]
Set if an align attribute is included.

cmlFlagImageEmbedded[0]
Set if the image is embedded into the 
data stream received from the Palm Web 
Clipping Proxy server. The image data is 
included in the imageData attribute.



PQA Tag Reference
PQA Tag Definitions

78 Palm File Format Specification

Uint16V PQFLinkIndex
This parameter is required if the value of the 
cmlFlagImageLocalPQA parameter is True. 
This is the index of the image resource in the 
current PQA file. The first resource has an 
index of 1.

TextZ alt This parameter is required if the value of the 
cmlFlagImageHasAlt parameter is True. 
This is the alternate text string for the image.

TextZ src This parameter is required if the value of the 
cmlFlagImageHasSrc parameter is True. 
This is the source URL; only for references to 
resources in other (than the current) PQA files.

Uint8V vSpace This parameter is required if the value of the 
cmlFlagImageHasVSpace parameter is 
True. This is the vertical space between the 
image and the text above and below, in pixels, 
minus 1.

Uint8V space This parameter is required if the value of the 
cmlFlagImageHasSpace parameter is True. 
This is the horizontal space between the image 
and the text to the left and right, in pixels, 
minus 1.

Uint8V border This parameter is required if the value of the 
cmlFlagImageHasBorder parameter is 
True. This is the border width in pixels, minus 
1.

Bit[3] align This parameter is required if the value of the 
cmlFlagImageHasAlign parameter is True. 
This is an enumerated type that sets how the 
image is aligned relative to the text. One of: 

cmlIAlignLeft
Image is aligned to left side of window, 
and subsequent text wraps around right 
side of image. Creates a “floating” image.

cmlIAlignRight
Image is aligned to right side of window, 



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 79

and subsequent text wraps around left 
side of image. Creates a “floating” image.

cmlIAlignTop
Subsequent text is aligned to the top of 
the image.

cmlIAlignMiddle
Baseline of the current text line is aligned 
with the middle of the image.

cmlIAlignBottom
Bottom of the image is aligned with the 
baseline of the current text line.

Image imageData
This parameter is required if the value of the 
cmlFlagImageEmbedded parameter is True. 
This is the image data in Palm OS bitmap 
format.

Example Tag tag = cmlTagImage
Bit[8] flags = 0x01 // IsEmbedded
Image imageData = //image data stream

Tag tag = cmlTagImage
Bit[8] flags = 0x86 // cmlFlagImageHasAlign,

cmlFlagImageHasBorder, cmlFlagImageLocalPQA
Uint16V PQFLinkIndex = 4
Bit[3] Align = cmlIAlignTop
Uint8V Border = 3 // border of 4 pixels

cmlTagInputCheckBox

Description Marks a checkbox in a form.

End Tag
Delimited

No 

Parameters Bit[4] flags Flags controlling these attributes:

cmlFlagInputHasText[3]
Set if the Text attribute is included as an 
active part of the checkbox; that is, in 



PQA Tag Reference
PQA Tag Definitions

80 Palm File Format Specification

Viewer, the user can tap the text as well 
as the checkbox to operate the control. 
The encoder automatically sets this bit 
for HTML pages that are identified by 
the PalmComputingPlatform meta tag. If 
this bit is not set, then the checkbox label 
appears as a separate text string before or 
after the checkbox tag.

cmlFlagInputChecked[2]
Indicates the initial state of the control. If 
set, the control is checked.

cmlFlagInputHasValue[1]
Set if the hasValue attribute is used. If 
this attribute is not used, the string “on” 
is sent to the server if the control is 
selected.

cmlFlagInputHasName[0]
Set if the hasName attribute is used. Set 
only in stand-alone forms.

TextZ name This parameter is required if the value of the 
cmlFlagInputHasName parameter is True. 
This is a string specifying the name of the 
checkbox.

TextZ value This parameter is required if the value of the 
cmlFlagInputHasValue parameter is True. 
This is a string holding the value for the 
checkbox. This value is sent to the server if the 
control is selected.

TextZ Text This parameter is required if the value of the 
cmlFlagInputHasText parameter is True. 
This is a string holding the text label next to the 
control. This label is included as an active part 
of the checkbox.

Example Tag tag = cmlTagInputCheckBox
Bit[4] flags = 3 // cmlFlagInputHasName |

cmlFlagInputHasValue
TextZ name = "newsletter"



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 81

TextZ value = "1"

// Checkbox label is not part of the object.
// It could be formatted text or an image.
Text "Yes" // checkbox label, not active

cmlTagInputDatePicker

Description Marks a date picker.

End Tag
Delimited

No 

Parameters Bit hasName Set if the name attribute is used to set a name 
for the date field.

UIntV date The initial value of the date field; the number of 
seconds since midnight, 1/1/1904 GMT. 
Specify 0 to use the current date.

TextZ name This parameter is required if the value of the 
hasName parameter is True. This is a string 
holding the name of the date field.

Example Tag tag = cmlTagInputDatePicker
Bit hasName = 1
UIntV date = 0xA1234000
TextZ name = "yesterday"

cmlTagInputHidden

Description Marks a hidden input field in a form. This tag is not generated for 
server supplied forms except for value strings of either 
“%zipcode” or “%deviceid”.

End Tag
Delimited

No 

Parameters Bit[2] flags Flags controlling these attributes:



PQA Tag Reference
PQA Tag Definitions

82 Palm File Format Specification

cmlFlagInputHasValue[1]
Set if the hasValue attribute is used to 
set a custom button label.

cmlFlagInputHasName[0]
Set if the hasName attribute is used. Set 
only in stand-alone forms.

TextZ name This parameter is required if the value of the 
cmlFlagInputHasName parameter is True. 
This is a string holding the name of the input 
field.

TextZ value This parameter is required if the value of the 
cmlFlagInputHasValue parameter is True. 
This is a string holding the initial value for the 
input field.

Example Tag tag = cmlTagInputHidden
Bit[2] flags = 3
TextZ name = "Age" 
TextZ value = "21"

cmlTagInputPassword

Description Marks a single line password input field in a form.

End Tag
Delimited

No 

Parameters Uint16V size Visible width of field in characters.

Uint16V maxLength
Maximum number of allowed characters. 
Specify 0 for no limit.

Bit[2] flags Flags controlling these attributes:

cmlFlagInputHasValue[1]
Set if the hasValue attribute is used.

cmlFlagInputHasName[0]
Set if the hasName attribute is used. Set 
only in stand-alone forms.



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 83

TextZ name This parameter is required if the value of the 
cmlFlagInputHasName parameter is True. 
This is a string holding the name of the input 
field.

TextZ value This parameter is required if the value of the 
cmlFlagInputHasValue parameter is True. 
This is a string holding the initial value for the 
input field.

Example Text "Enter Password:"
Tag tag = cmlTagInputPassword
Uint16V size = 20
Uint16V maxLength = 0
Bit[2] flags = 1
TextZ name = "passwd"

cmlTagInputRadio

Description Marks a radio button in a form.

End Tag
Delimited

No 

Parameters Uint16V group Assigned by the proxy server; it allows the 
client to perform mutual exclusion selecting.

Bit[4] flags Flags controlling these attributes:

cmlFlagInputHasText[3]
Set if the Text attribute is included as an 
active part of the radio button; that is, in 
Viewer, the user can tap the text as well 
as the button to operate the control. The 
encoder automatically sets this bit for 
HTML pages that are identified by the 
PalmComputingPlatform meta tag. If 
this bit is not set, then the radio button 
label appears as a separate text string 
before or after the radio button tag.



PQA Tag Reference
PQA Tag Definitions

84 Palm File Format Specification

cmlFlagInputChecked[2]
Indicates the initial state of the control. If 
set, the control is selected.

cmlFlagInputHasValue[1]
Set if the hasValue attribute is used. If 
this attribute is not used, the string “on” 
is sent to the server if the control is 
selected.

cmlFlagInputHasName[0]
Set if the hasName attribute is used. Set 
only in stand-alone forms.

TextZ name This parameter is required if the value of the 
cmlFlagInputHasName parameter is True. 
This is a string holding the name of the radio 
button control.

TextZ value This parameter is required if the value of the 
cmlFlagInputHasValue parameter is True. 
This is a string holding the value for the radio 
button. This value is sent to the server if the 
control is selected.

TextZ Text This parameter is required if the value of the 
cmlFlagInputHasText parameter is True. 
This is a string holding the text label next to the 
control. This label is included as an active part 
of the radio button.

Example Tag tag = cmlTagInputRadio
Uint16V group = 0
Bit[4] flags = 0xB // cmlFlagInputHasName |

cmlFlagInputHasValue | cmlFlagInputHasText
TextZ name = "age"
TextZ value = "13-17"
TextZ Text = "Age 13-17:"

cmlTagInputReset

Description Marks a reset button in a form.



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 85

End Tag
Delimited

No 

Parameters Bit hasValue Set if the hasValue attribute is used to set a 
custom button label.

TextZ value This parameter is required if the value of the 
hasName parameter is True. This is a string 
holding the button label. If this parameter is not 
included, the default button label is “reset.”

Example Tag tag = cmlTagInputReset
Bit hasValue = 1
TextZ value = "Clear Form"

cmlTagInputSubmit

Description Marks a submit button in a form. 

End Tag
Delimited

No 

Parameters Bit[2] flags Flags controlling these attributes:

cmlFlagInputHasValue[1]
Set if the hasValue attribute is used to 
set a custom button label.

cmlFlagInputHasName[0]
Set if the hasName attribute is used. Set 
only in stand-alone forms.

TextZ name This parameter is required if the value of the 
cmlFlagInputHasName parameter is True. 
This is a string holding the name of the button.

TextZ value This parameter is required if the value of the 
cmlFlagInputHasValue parameter is True. 
This is a string holding the button label. If this 
parameter is not included, the default button 
label is “submit.”

Example Tag tag = cmlTagInputSubmit



PQA Tag Reference
PQA Tag Definitions

86 Palm File Format Specification

Bit[2] flags = 2
TextZ value = "OK"

cmlTagInputTextArea

Description Marks a multi-line input text field within a form. 

End Tag
Delimited

Yes 

Parameters Uint16V rows Number of rows in the input field.

Uint16V cols Width of the input field in characters.

Bit hasName Set if the hasName attribute is used to set an 
input field name. Set only in stand-alone forms.

TextZ name This parameter is required if the value of the 
cmlFlagInputHasName parameter is True. 
This is a string holding the name of the input 
field.

TextZ value String holding the initial value for the input 
field. The end of the initial text is indicated by a 
cmlCharEnd character.

Example Text "Enter Address:"
Tag tag = cmlTagInputTextArea
Uint16V rows = 2
Uint16V cols = 20
Bit hasName = 1
TextZ name = "address"
TextZ value = "your address \nhere: "
Char cmlCharEnd

cmlTagInputTextLine

Description Marks a single line input text field in a form.

End Tag
Delimited

No 

Parameters Uint16V size Visible width of field in characters.



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 87

Uint16V maxLength
Maximum number of allowed characters. 0 
means no limit.

Bit[2] flags Flags controlling these attributes:

cmlFlagInputHasValue[1]
Set if the hasValue attribute is used.

cmlFlagInputHasName[0]
Set if the hasName attribute is used. Set 
only in stand-alone forms.

TextZ name This parameter is required if the value of the 
cmlFlagInputHasName parameter is True. 
This is a string holding the name of the input 
field.

TextZ value This parameter is required if the value of the 
cmlFlagInputHasValue parameter is True. 
This is a string holding the initial value for the 
input field.

Example Tag tag = cmlTagForm
Text "Enter Name:"

Tag tag = cmlTagInputTextLine
Uint16V size = 20
Uint16V maxLength = 0
Bit[2] flags = 3
TextZ name = "name"
TextZ value = "your name here"

cmlTagInputTimePicker

Description Marks a time picker.

End Tag
Delimited

No 

Parameters Bit hasName Set if the name attribute is used to set a name 
for the time field.



PQA Tag Reference
PQA Tag Definitions

88 Palm File Format Specification

UIntV seconds The initial value of the time field; the number of 
seconds since midnight. Specify 0 to use the 
current time.

TextZ name This parameter is required if the value of the 
hasName parameter is True. This is a string 
holding the name of the time field.

Example Tag tag = cmlTagInputTimePicker
Bit hasName = 0
UIntV seconds = 3600 // 1:00 am

cmlTagLinkColor

Description Sets the text color used to display unvisited, visited, and active 
links. 

End Tag
Delimited

No

Parameters Bit[2] type An enumerated type that indicates what type of 
link the color is being set for. One of

cmlLinkColor
A link the user has not followed.

cmlLinkColorVisited
A link the user has followed previously.

cmlLinkColorActive
A link the user is tapping (the pen is 
down) at the moment. Once the pen is 
lifted, the color changes to the 
visitedLinkColor.

Byte red A value from 0 to 255 that indicates the amount 
of red in the color.

Byte green A value from 0 to 255 that indicates the amount 
of green in the color.

Byte blue A value from 0 to 255 that indicates the amount 
of blue in the color.



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 89

Example Tag tag = cmlTagLinkColor
Bit[2] type = cmlLinkColorVisited
Byte red = 0xFF
Byte green = 0x80
Byte blue = 0x80

cmlTagListDefinition

Description Marks the beginning of a definition list. A cmlTagListItemTerm 
tag precedes each term and a cmlTagListItemDefinition 
precedes each definition. An cmlCharEnd character delimits the 
entire list. 

End Tag
Delimited

Yes

Parameters None

Example Tag tag = cmlTagListDefinition

Tag tag = cmlTagListItemTerm
Text "This data corresponds to the first <DT> tag's data."
Tag tag = cmlTagListItemDefinition
Text "This data corresponds to the first <DD> tag's data."

Tag tag = cmlTagListItemTerm
Text "This data corresponds to the second <DT> tag's data."
Tag tag = cmlTagListItemDefinition
Text "This data corresponds to the second <DD> tag's data."

Char cmlCharEnd // end of list

cmlTagListItemCustom

Description Marks the beginning of a custom list item in either an ordered or 
unordered list. If the bullet style, numbering style, or sequence 
number of an item is not the default for the current list, this tag must 
be used.

The mods parameter indicates whether type, value, or both are 
specified.



PQA Tag Reference
PQA Tag Definitions

90 Palm File Format Specification

End Tag
Delimited

No

Parameters Bit[2] mods Flags controlling these attributes:

cmlFlagListModValue[1]
Set if the value attribute is used.

cmlFlagListModType[0]
Set if the type attribute is used.

Uint16V value This parameter is required if the value of the 
cmlFlagListModValue parameter is True. 
This is ignored for unordered lists. In ordered 
lists, value is the numeric value for this 
element, minus 1. 

Bit[3] type This parameter is required if the value of the 
cmlFlagListModType parameter is True. 
This is the bullet or number style. An 
enumerated type. One of:

cmlListTDisc
Filled circle bullet

cmlListTSquare
Filled square bullet

cmlListTCircle
Open circle bullet

cmlListT1
Counting numbers (1, 2, 3, ...)

cmlListTa
Lowercase letters (a, b, c, ...)

cmlListTA
Uppercase letters (A, B, C, ...)

cmlListTi
Lowercase Roman numerals (i, ii, iii, ...)

cmlListTI
Uppercase Roman numerals (I, II, III, ...)

Example Tag tag = cmlTagListItemCustom



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 91

Bit[2] mods = 0x03
Uint16V value = 0
Text "Third item"

cmlTagListItemDefinition

Description Marks the beginning of a definition of a term in a definition list. 

End Tag
Delimited

No 

Parameters None

Example Tag tag = cmlTagListItemDefinition
Text "Definition of term."

cmlTagListItemNormal

Description Marks the beginning of a normal list item in either an ordered or 
unordered list. If the bullet style, numbering style, or sequence 
number of an item is not the default for the current list, the 
cmlTagListItemCustom tag must be used.

End Tag
Delimited

No

Parameters None

Example Tag tag = cmlTagListItemNormal
Text "Third item"

cmlTagListItemTerm

Description Marks the beginning of a definition term in a definition list. 

End Tag
Delimited

No 

Parameters None



PQA Tag Reference
PQA Tag Definitions

92 Palm File Format Specification

Example Tag tag = cmlTagListItemTerm
Text "Term for definition"

cmlTagListOrdered

Description Marks the beginning of an ordered (numbered) list of items. Each 
item in the list is preceded by either a cmlTagListItemNormal or 
cmlTagListItemCustom tag. A final cmlCharEnd character 
indicates the end of the list.

End Tag
Delimited

Yes

Parameters Bit[3] type An enumerated type that indicates the type of 
numbering scheme. One of:

cmlListT1
Counting numbers (1, 2, 3, ...)

cmlListTa
Lowercase letters (a, b, c, ...)

cmlListTA
Uppercase letters (A, B, C, ...)

cmlListTi
Lowercase Roman numerals (i, ii, iii, ...)

cmlListTI
Uppercase Roman numerals (I, II, III, ...)

Uint16V start The starting sequence number, minus 1. (0 
means start numbering with 1.)

Example // The list header
Tag tag = cmlTagListOrdered
Bit[3] type = cmlListT1
Uint16V start = 0
// The list items.   
Tag tag = cmlTagListItemNormal
Text "First item"
Tag tag = cmlTagListItemNormal
Text "Second item"
Tag tag = cmlTagListItemCustom
Bit[2] mods = 0x03



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 93

Bit[3] type = cmlListTa
Uint16V value = 4
Text "Third item"
Char  end = cmlCharEnd // end of list

cmlTagListUnordered

Description Marks the beginning of an unordered list of items. Either a 
cmlTagListItemNormal or cmlTagListItemCustom tag 
precedes each item in the list. A final cmlCharEnd character 
indicates the end of the list.

End Tag
Delimited

Yes

Parameters Bit[3] type An enumerated type that specifies the bullet 
type. One of:

cmlListTDisc
Filled circle bullet

cmlListTSquare
Filled square bullet

cmlListTCircle
Open circle bullet

Example // The list header
Tag tag = cmlTagListUnordered
Bit[3] type = cmlListTDisc
// The list items.
Tag tag = cmlTagListItemNormal
Text "First item"
Tag tag = cmlTagListItemNormal
Text "Second item"
Tag tag = cmlTagListItemCustom
Bit[2] mods = 0x01
Bit[3] type = cmlListTSquare
Text "Third item"
Char cmlCharEnd // end of list



PQA Tag Reference
PQA Tag Definitions

94 Palm File Format Specification

cmlTagParagraphAlign

Description Sets paragraph alignment. 

End Tag
Delimited

No

Parameters Bit[2] align An enumerated type that sets how the 
paragraph is aligned horizontally in the 
window. One of {cmlAlignLeft, 
cmlAlignCenter, cmlAlignRight}

Example // Turn on center alignment
Tag tag = cmlTagParagraphAlign
Bit[2] align = cmlAlignCenter
Text "\nThis paragraph is centered."
// Turn off center alignment
Tag tag = cmlTagParagraphAlign
Bit[2] align = cmlAlignLeft
Text "\nThis paragraph is left aligned."

cmlTagSelect

Description Marks a selection menu in a form. 

This element is always followed by one or more TextZ elements 
that represent the menu items; these are separated by 
cmlTagSelectItemNormal or cmlTagSelectItemCustom 
tags. The cmlTagSelectItemCustom tag is used for preselected 
items. A cmlCharEnd character follows the last item and indicates 
the end of the selection menu.

End Tag
Delimited

Yes 

Parameters Bit[2] flags Flags controlling these attributes:

cmlFlagInputMultiple[1]
Set if multiple item selection is allowed.



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 95

cmlFlagInputHasName[0]
Set if the hasName attribute is used. Set 
only in stand-alone forms.

Uint16V size Number of items visible at once in the selection 
list, minus 1.

TextZ name This parameter is required if the value of the 
cmlFlagInputHasName parameter is True. 
This is a string holding the name of the 
selection menu.

Example Tag tag = cmlTagSelect
Bit[2] flags = 3
Uint16V size = 2  
TextZ name = "choice"

// The select items.
Tag tag = cmlTagSelectItemNormal
TextZ "First choice"
Tag tag = cmlTagSelectItemCustom
Bit[2] flags = 1
TextZ "Second choice"
Tag tag = cmlTagSelectItemNormal
TextZ "Third choice"

Char endSelect = cmlCharEnd

cmlTagSelectItemCustom

Description Precedes a custom item in a selection menu.

End Tag
Delimited

No 

Parameters Bit[2] flags Flags controlling these attributes:

cmlFlagInputHasValue[1]
Set if the hasValue attribute is used. Set 
only in stand-alone forms.

cmlFlagInputSelected[0]
Set if the item is to be preselected in the 
menu.



PQA Tag Reference
PQA Tag Definitions

96 Palm File Format Specification

TextZ value This parameter is required if the value of the 
cmlFlagInputHasName parameter is True. 
This is a string holding text that should be used 
as the value of this item at form submission. If 
this parameter is omitted, then the TextZ 
string that follows the 
cmlTagSelectItemCustom tag is used 
instead.

Example Tag tag = cmlTagSelectItemCustom
Bit[2] flags = 3
TextZ value = "3"
TextZ "Third item"

cmlTagSelectItemNormal

Description Precedes a normal item in a selection menu. A normal item means 
that it is not preselected and it does not have a value different from 
its text content. 

End Tag
Delimited

No 

Parameters None

Example Tag tag = cmlTagSelectItemNormal
TextZ "Third item"

cmlTagTable

Description Indicates the start of a table.

Each row in the table begins with a cmlTagTableRow tag that has 
optional parameters for the horizontal and vertical alignment of the 
cells in that row.

Each cell in a row begins with either a cmlTagTableData or a 
cmlTagTableData tag. The only difference is that header cells are 
rendered in bold typeface. After the last row, an additional 
cmlCharEnd indicates the end of the table.



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 97

End Tag
Delimited

Yes 

Parameters Bit[7] flags Flags controlling these attributes:

cmlFlagTableHasAlign[0]
Set if the hAlign attribute is used.

cmlFlagTableHasWidth[1]
Set if the width attribute is used.

cmlFlagTableHasBorder[2]
Set if the border attribute is used.

cmlFlagTableHasCellSpacing[3]
Set if the cellSpacing attribute is used.

cmlFlagTableHasCellPadding[4]
Set if the cellPadding attribute is used.

reserved1[5]
Not used.

reserved2[6]
Not used.

Bit[2] hAlign This parameter is required if the value of the 
cmlFlagTableHasAlign parameter is True. 
This is an enumerated type setting how the 
table is aligned on the page. This must be one of 
the following values:

cmlAlignLeft

cmlAlignCenter

cmlAlignRight

Uint16V width This parameter is required if the value of the 
cmlFlagTableHasWidth parameter is True. 
This is the table width in pixels. 0 indicates to 
calculate the width of the table is from the 
contents. 

Uint8V border This parameter is required if the value of the 
cmlFlagTableHasBorder parameter is 
True. This is the border width in pixels. 0 
indicates to suppress the border. 



PQA Tag Reference
PQA Tag Definitions

98 Palm File Format Specification

Uint8V cellSpacing
This parameter is required if the value of the 
cmlFlagTableHasCellSpacing parameter 
is True. This is the cell spacing in pixels. The 
cell spacing is the distance between the borders 
of each cell. If non-zero, then cells are spaced 
apart from each other. The default is 0.

Uint8V cellPadding
This parameter is required if the value of the 
cmlFlagTableHasCellPadding parameter 
is True. This is the cell padding in pixels. The 
cell padding is the distance between the border 
around each cell and the cell’s contents. The 
default is 0.

Example Tag tag = cmlTagTable
Bit[7] flags = 0x01 // cmlFlagTableHasAlign
Bit[2] hAlign = cmlAlignCenter

Tag tag = cmlTagTableRow
Bit hasAlign = 0
Tag tag = cmlTagTableHeader
Bit[7] flags = 0
Text "Row1, Col2 Head"
Char cmlCharEnd
Tag tag = cmlTagTableHeader
Bit[7] flags = 0
Text "Row1, Col2 Head"
Char cmlCharEnd

Tag tag = cmlTagTableRow
Bit hasAlign = 0
Tag tag = cmlTagTableData
Bit[7] flags = 0
Text "row2, col1"
Char cmlCharEnd
Tag tag = cmlTagTableData
Bit[7] flags = 0
Text "row2, col2"
Char cmlCharEnd

Char cmlCharEnd // end of table



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 99

cmlTagTableData

Description Marks a data cell in a table. Contrast this tag with cmlTagTableData.

End Tag
Delimited

Yes 

Parameters Bit[7] flags Flags controlling these attributes:

cmlFlagCellHasHAlign[0]
Set if the hAlign attribute is used.

cmlFlagCellHasVAlign[1]
Set if the vAlign attribute is used.

cmlFlagCellHasColSpan[2]
Set if the colSpan attribute is used.

cmlFlagCellHasRowSpan[3]
Set if the rowSpan attribute is used.

cmlFlagCellHasHeight[4]
Set if the height attribute is used.

cmlFlagCellHasWidth[5]
Set if the width attribute is used.

cmlFlagCellNoWrap[6]
Set if automatic word wrap within the 
contents of the cell is disabled.

Parameters Bit[2] hAlign This parameter is required if the value of the 
cmlFlagCellHasAlign parameter is True. 
This is an enumerated type that sets horizontal 
cell alignment. The must be one of the 
following values: 

cmlAlignLeft

cmlAlignCenter

cmlAlignRight}.



PQA Tag Reference
PQA Tag Definitions

100 Palm File Format Specification

Bit[2] vAlign This parameter is required if the value of the 
cmlFlagCellHasVAlign parameter is True. 
This is an enumerated type that sets vertical cell 
alignment. The must be one of the following 
values: 

cmlVAlignTop

cmlVAlignCenter

cmlVAlignBottom

Uint8V colSpan
This parameter is required if the value of the 
cmlFlagCellHasColSpan parameter is 
True. This is the number of columns spanned 
by the cell, minus 1. For example, if the cell 
spans one column, this is set to 0.

Uint8V rowSpan
This parameter is required if the value of the 
cmlFlagCellHasRowSpan parameter is 
True. This is the number of rows spanned by 
the cell, minus 1.

Uint16V height
This parameter is required if the value of the 
cmlFlagCellHasHeight parameter is True. 
This is the height of the cell in pixels.

Uint16V width This parameter is required if the value of the 
cmlFlagCellHasWidth parameter is True. 
This is the width of the cell in pixels.

Example Tag tag = cmlTagTableData
Bit[7] flags = 0x11 // cmlFlagCellHasColSpan |

cmlFlagCellHasHAlign
Uint8V colSpan = 1
Bit[2] hAlign = cmlAlignCenter
Text "row2, col2"
Char cmlCharEnd



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 101

cmlTagTableHeader

Description Marks a header cell in a table. Header cells are rendered in bold 
typeface. Contrast this tag with cmlTagTableData.

End Tag
Delimited

Yes 

Parameters Bit[7] flags Flags controlling these attributes:

cmlFlagCellHasHAlign[0]
Set if the hAlign attribute is used.

cmlFlagCellHasVAlign[1]
Set if the vAlign attribute is used.

cmlFlagCellHasColSpan[2]
Set if the colSpan attribute is used.

cmlFlagCellHasRowSpan[3]
Set if the rowSpan attribute is used.

cmlFlagCellHasHeight[4]
Set if the height attribute is used.

cmlFlagCellHasWidth[5]
Set if the width attribute is used.

cmlFlagCellNoWrap[6]
Set if automatic word wrap within the 
contents of the cell is disabled.

Parameters Bit[2] hAlign This parameter is required if the value of the 
cmlFlagCellHasAlign parameter is True. 
This is an enumerated type that sets horizontal 
cell alignment. The must be one of the 
following values: 

cmlAlignLeft

cmlAlignCenter

cmlAlignRight



PQA Tag Reference
PQA Tag Definitions

102 Palm File Format Specification

Bit[2] vAlign This parameter is required if the value of the 
cmlFlagCellHasVAlign parameter is True. 
This is an enumerated type that sets vertical cell 
alignment. The must be one of the following 
values: 

cmlVAlignTop

cmlVAlignCenter

cmlVAlignBottom

Uint8V colSpan
This parameter is required if the value of the 
cmlFlagCellHasColSpan parameter is 
True. This is the number of columns spanned 
by the cell, minus 1. For example, if the cell 
spans one column, this is set to 0.

Uint8V rowSpan
This parameter is required if the value of the 
cmlFlagCellHasRowSpan parameter is 
True. This is the number of rows spanned by 
the cell, minus 1.

Uint16V height
This parameter is required if the value of the 
cmlFlagCellHasHeight parameter is True. 
This is the height of the cell in pixels.

Uint16V width This parameter is required if the value of the 
cmlFlagCellHasWidth parameter is True. 
This is the width of the cell in pixels.

Example Tag tag = cmlTagTableHeader
Bit[7] flags = 0x14 // cmlFlagCellHasColSpan |

cmlFlagCellHasHeight
Uint8V colSpan = 1
Uint16V height = 10
Text "row1, col2"
Char cmlCharEnd

cmlTagTableRow

Description Separates rows of a table.



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 103

Each row in the table begins with a cmlTagTableRow tag.

End Tag
Delimited

Yes 

Parameters Bit hasAlign Set if the hAlign and vAlign attributes are 
used.

Bit[2] hAlign This parameter is required if the value of the 
hasAlign parameter is True. This is an 
enumerated type that sets how text is aligned 
horizontally within the cells in the row. This 
value must be one of the following:

cmlAlignLeft

cmlAlignCenter

cmlAlignRight

Bit[2] vAlign This parameter is required if the value of the 
hasAlign parameter is True. This is an 
enumerated type that sets how text is aligned 
vertically within the cells in the row. This value 
must be one of the following:

cmlVAlignTop

cmlVAlignCenter

cmlVAlignBottom

Example Tag tag = cmlTagTableRow
Bit hasAlign = 0
Tag tag = cmlTagTableHeader
Bit[7] flags = 0
Text "row1, col1"
Char cmlCharEnd

Tag tag = cmlTagTableRow
Bit hasAlign = 1
Bit[2] hAlign = cmlAlignRight
Bit[2] vAlign = cmlVAlignTop
Tag tag = cmlTagTableData
Bit[7] flags = 0
Text "row2, col1"
Char cmlCharEnd



PQA Tag Reference
PQA Tag Definitions

104 Palm File Format Specification

cmlTagTextBold

Description Marks bold text style. 

End Tag
Delimited

Yes

Parameters None

Example // Start bold text
Tag tag = cmlTagTextBold
Text "This is bold text"
// End bold text
Char end = cmlCharEnd

cmlTagTextColor

Description Sets the text color. 

End Tag
Delimited

No

Parameters Byte red A value from 0 to 255 that indicates the amount 
of red in the RGB color specification

Byte green A value from 0 to 255 that indicates the amount 
of green in the RGB color specification.

Byte blue A value from 0 to 255 that indicates the amount 
of blue in the RGB color specification.

Example Tag tag = cmlTagTextColor
Byte red = 0xFF
Byte green = 0x80
Byte blue = 0x80

Text "This text is reddish"

cmlTagTextItalic

Description Marks italic text style. 



PQA Tag Reference
PQA Tag Definitions

Palm File Format Specification 105

End Tag
Delimited

Yes

Parameters None

Example // Start italic text
Tag tag = cmlTagTextItalic
Text "This is italic text"
// End italic text
Char end = cmlCharEnd

cmlTagTextMono

Description Marks monospace text style.

End Tag
Delimited

Yes

Parameters None

Example // Start monospace text
Tag tag = cmlTagTextMono
Text "This is monospace text"
// End monospace text
Char  end = cmlCharEnd

cmlTagTextSize

Description Sets the current text size. 

End Tag
Delimited

No

Parameters Bit[3] size HTML font size; a value from 1-7. 

Example Tag tag = cmlTagTextSize
Bit[3] size = 3



PQA Tag Reference
PQA Tag Definitions

106 Palm File Format Specification

cmlTagTextStrike

Description Marks strike-through text style.

End Tag
Delimited

Yes

Parameters None

Example // Start Strike-through text
Tag tag = cmlTagTextStrike
Text "This is strike-through text"
// End strike-through text
Char  end = cmlCharEnd

cmlTagTextSub

Description Marks subscript text style.

End Tag
Delimited

Yes

Parameters None

Example // Start subscript text
Tag tag = cmlTagTextSub
Text "This is subscript text"
// End subscript text
Char  end = cmlCharEnd

cmlTagTextSup

Description Marks superscript text style.

End Tag
Delimited

Yes

Parameters None

Example // Start superscript text



PQA Tag Reference
Summary of CML Tags

Palm File Format Specification 107

Tag tag = cmlTagTextSup
Text "This is superscript text"
// End superscript text
Char  end = cmlCharEnd

cmlTagTextUnderline

Description Marks underlined text style.

End Tag
Delimited

Yes

Parameters None

Example // Start underlined text
Tag tag = cmlTagTextUnderline
Text "This is underlined text"
// End underlined text
Char  end = cmlCharEnd

Summary of CML Tags
The following table categorizes the CML tags.

CML Tags

Background Attributes

cmlTagBGColor

Forms

cmlTagForm
cmlTagInputCheckBox
cmlTagInputDatePicker
cmlTagInputHidden
cmlTagInputPassword
cmlTagInputRadio
cmlTagInputReset

cmlTagInputSubmit
cmlTagInputTextArea
cmlTagInputTextLine
cmlTagInputTimePicker
cmlTagSelect
cmlTagSelectItemCustom
cmlTagSelectItemNormal

Graphical Elements

cmlTagHorizontalRule cmlTagImage



PQA Tag Reference
Summary of CML Tags

108 Palm File Format Specification

Hyperlinks

cmlTagAnchor cmlTagHyperlink

Lists

cmlTagListDefinition
cmlTagListItemCustom
cmlTagListItemDefinition
cmlTagListItemNormal

cmlTagListItemTerm
cmlTagListOrdered
cmlTagListUnordered

Other Elements

cmlTagClear cmlTagCMLEnd

Paragraph Attributes

cmlTagAddress
cmlTagBlockQuote

cmlTagParagraphAlign

Tables

cmlTagCaption
cmlTagTable
cmlTagTableData

cmlTagTableHeader
cmlTagTableRow

Text Attributes

cmlTag8BitEncoding
cmlTagH1
cmlTagH2
cmlTagH3
cmlTagH4
cmlTagH5
cmlTagH6
cmlTagHistoryListText
cmlTagLinkColor

cmlTagTextBold
cmlTagTextColor
cmlTagTextItalic
cmlTagTextMono
cmlTagTextSize
cmlTagTextStrike
cmlTagTextSub
cmlTagTextSup
cmlTagTextUnderline

CML Tags (continued)



Palm File Format Specification 109

Index

Numerics
5-bit special characters 47
8-bit encoding tag 62

A
address tag 62
alignment of paragraphs 94
anchor tag 73
anchor, named 62
appInfo. See application information block
application information block 18

PDB 25
PQA 33
PRC 25

ASCII encoding 48

B
background color 63
bit packed compression 46

ASCII encoding 48
image encoding 48
numeric parameter encoding 48
tag encoding 48
translating to uncompressed data 54

bit packed compression encoding 48
block quote tag 63
bold text 104
byte packing 10

C
checkbox 79
clear tag 64
CML 43
cmlCompressionTypeBitPacked 41
cmlCompressionTypeNone 41
cmlContentTypeImagePalmOS 40
cmlContentTypeTextCml 41
cmlTag8BitEncoding 62
cmlTagAddress 62
cmlTagAnchor 62
cmlTagBGColor 63
cmlTagBlockQuote 63
cmlTagCaption 64

cmlTagClear 64
cmlTagCMLEnd 52, 65
cmlTagForm 65
cmlTagH1 67
cmlTagH2 68
cmlTagH3 69
cmlTagH4 69
cmlTagH5 70
cmlTagH6 71
cmlTagHistoryListText 71
cmlTagHorizontalRule 72
cmlTagHyperlink 73
cmlTagImage 77
cmlTagInputCheckBox 79
cmlTagInputDatePicker 81
cmlTagInputHidden 81
cmlTagInputPassword 82
cmlTagInputRadio 83
cmlTagInputReset 84
cmlTagInputSubmit 85
cmlTagInputTextArea 86
cmlTagInputTextLine 86
cmlTagInputTimePicker 87
cmlTagLinkColor 88
cmlTagListDefinition 88
cmlTagListItemCustom 89
cmlTagListItemDefinition 91
cmlTagListItemNormal 91
cmlTagListItemTerm 91
cmlTagListOrdered 92
cmlTagListUnordered 93
cmlTagParagraphAlign 94
cmlTagSelect 94
cmlTagSelectItemCustom 95
cmlTagSelectItemNormal 96
cmlTagTable 96
cmlTagTableData 99
cmlTagTableHeader 99
cmlTagTableRow 102
cmlTagTextBold 104
cmlTagTextColor 104
cmlTagTextItalic 104
cmlTagTextMono 105



110 Palm File Format Specification 

cmlTagTextSize 105
cmlTagTextStrike 106
cmlTagTextSub 106
cmlTagTextSup 106
cmlTagTextUnderline 107
color

background 63
link 88
text 104

compact data structure notation 57
data types 58

compressed PQA data 46
compression types 41

D
data cell of table 99
data termination 52
database format

PDB 22, 30
PRC 22

DatabaseHdrType 12
databases

byte packing in 10
gap in header 15
in file 8
in memory 8
logical format of 11
storage format of 11
with multiple record lists 17

date picker 81
definition list start 88
definition, list 91

E
encoding format 43, 57

F
form

checkbox 79
date picker 81
hidden field 81
password input line 82
radio button 83
reset button 84

selection item, custom 95
selection item, normal 96
selection menu 94
submit button 85
text area 86
text input line 86
time picker 87

form tag 65
format of PQA 43, 57

G
gap bytes 15
graphic tag 77

H
header

PDB 12
header cell of table 99
heading tags 67
hidden field 81
history list tag 71
horizontal rule 72
HotSync 8
HTML

converting to PQA format 44
differences from PQA format 45

HTML text content 41
hyperlink tag 73

I
image content 40
image encoding 48
image tag 77
input line 86
IntV 60
IntV16 60
IntV8 60
italic text 104

L
link color 88
list

custom item 89



Palm File Format Specification 111

definition in 91
definition start 88
normal item 91
ordered 92
term 91
unordered 93

M
monospace text 105

N
named anchor 62
numeric parameter encoding 48

O
ordered list 92

P
Palm database 7
Palm database header 12

record list in 15
Palm database header structure 13
Palm database types 7
Palm databases

and third party tools 19
Palm proxy servers 46
Palm query application 7
Palm resource 7
paragraph alignment 94
password input line 82
PDB 7, 9

application information block 25
database format 22, 30
header 12
raw record data 27
sort information block 27

PQA 7, 9
application information block 33
header 12

PQA databases 29
compression types 41
content types 40
HTML differences 45

PQA encoding format 43, 57
PQA format 44
PQA tags

definitions 61
overview 50

PRC 7, 9
application information block 25
database format 22
header 12
raw record data 27
sort information block 27

Q
quote, block 63

R
radio button 83
raw record data, PDB 27
raw record data, PRC 27
record database 21
record list 15

multiple instances in database 17
record list structure 16
Records

and resources 9
reset button 84
resource database 21
resources

and records 9
row, table 102
rule 72

S
selection menu 94
sort information block 18

PDB 27
PRC 27

sortInfo. See sort information block
special 5-bit characters 47
strike-through text 106
submit button 85
subscript text 106
superscript text 106



112 Palm File Format Specification 

T
table 96

data cell 99
header cell 99
row 102

table caption 64
tag

definitions 61
encoding 48
PQA overview 50
text encoding 51

term, list 91
termination of data 52, 65
text

bold 104
color 104
encoding tags 51
italic 104
monospace 105
size 105
strike-through 106
subscript 106
superscript 106
underline 107

text area 86
third party tools 19
time picker 87
translation of bit-packed to uncompressed data 54

U
UIntV 60
UIntV16 60
UIntV8 60
uncompressed notation 52
underline text 107
unordered list 93
unpacked notation 52

V
Viewer 46

W
WCA 9, 29
WCA Builder program 46
web content record 36


	Palm® File Format Specification
	Table of Contents
	Introduction to File Formats
	About the File Format Types
	File Formats Versus Memory Formats
	Palm Database (PDB) Files
	Palm Resource (PRC) Files
	Palm Web Clipping Application (PQA) Files
	Data Structures

	About Records and Resources
	About Database Formats
	The Palm Database Header
	Palm Database Header Structure

	The Record List
	Palm Database Record List Structure
	About Multiple Record or Resource Lists in a Database
	The Application and Sort Information Blocks

	About Third Party Tools
	Additional Resources

	PDB and PRC Database Formats
	Overview of PDB and PRC Databases
	Record and Resource Entries
	PDB Record Entries
	PRC Resource Entry Fields

	The Application Information Block
	Finding the Length of the Application Information Block
	Standard Category Data in an Application Information Block

	The Sort Information Block
	Finding the Length of the Sort Information Block

	PDB and PRC Raw Data
	Reading and Writing PDB and PRC Data

	PQA Database Format
	PQA Overview
	How PQAs are Different Than PDBs and PRCs

	PQA Record Entries
	PQA Application Information Block
	Web Content Records
	Web Content Record Content Types
	Web Record Compression Types


	PQA Encoding Format
	About PQA Data
	An Example of Converting HTML to PQA Format
	How PQA Differs From HTML

	The PQA Data Format
	About Bit Packed Compression
	Representing Text in PQA Format
	PQA Tags
	Data Termination

	Unpacked Notation

	PQA Tag Reference
	Specifying PQA Data in Compact Notation
	About Compact Data Structure Notation
	Data Types in PQA Format

	PQA Tag Definitions
	cmlTag8BitEncoding
	cmlTagAddress
	cmlTagAnchor
	cmlTagBGColor
	cmlTagBlockQuote
	cmlTagCaption
	cmlTagClear
	cmlTagCMLEnd
	cmlTagForm
	cmlTagH1
	cmlTagH2
	cmlTagH3
	cmlTagH4
	cmlTagH5
	cmlTagH6
	cmlTagHistoryListText
	cmlTagHorizontalRule
	cmlTagHyperlink
	cmlTagImage
	cmlTagInputCheckBox
	cmlTagInputDatePicker
	cmlTagInputHidden
	cmlTagInputPassword
	cmlTagInputRadio
	cmlTagInputReset
	cmlTagInputSubmit
	cmlTagInputTextArea
	cmlTagInputTextLine
	cmlTagInputTimePicker
	cmlTagLinkColor
	cmlTagListDefinition
	cmlTagListItemCustom
	cmlTagListItemDefinition
	cmlTagListItemNormal
	cmlTagListItemTerm
	cmlTagListOrdered
	cmlTagListUnordered
	cmlTagParagraphAlign
	cmlTagSelect
	cmlTagSelectItemCustom
	cmlTagSelectItemNormal
	cmlTagTable
	cmlTagTableData
	cmlTagTableHeader
	cmlTagTableRow
	cmlTagTextBold
	cmlTagTextColor
	cmlTagTextItalic
	cmlTagTextMono
	cmlTagTextSize
	cmlTagTextStrike
	cmlTagTextSub
	cmlTagTextSup
	cmlTagTextUnderline

	Summary of CML Tags

	Index

