
Hierarchical Taxonomy Aware Network Embedding
Jianxin Ma∗

Tsinghua University
majx13fromthu@gmail.com

Peng Cui
Tsinghua University
cuip@tsinghua.edu.cn

Xiao Wang
Tsinghua University

wangxiao007@mail.tsinghua.edu.cn

Wenwu Zhu
Tsinghua University

wwzhu@tsinghua.edu.cn

ABSTRACT
Network embedding learns the low-dimensional representations
for vertices, while preserving the inter-vertex similarity reflected
by the network structure. The neighborhood structure of a vertex is
usually closely related with an underlying hierarchical taxonomy—
the vertices are associated with successively broader categories
that can be organized hierarchically. The categories of different
levels reflects similarity of different granularity. The hierarchy of
the taxonomy therefore requires that the learned representations
support multiple levels of granularity. Moreover, the hierarchical
taxonomy enables the information to flow between vertices via
their common categories, and thus provides an effective mecha-
nism for alleviating data scarcity. However, incorporating the hier-
archical taxonomy into network embedding poses a great challenge
(since the taxonomy is generally unknown), and it is neglected
by the existing approaches. In this paper, we propose NetHiex, a
NETwork embedding model that captures the latent HIErarchical
taXonomy. In our model, a vertex representation consists of mul-
tiple components that are associated with categories of different
granularity. The representations of both the vertices and the cate-
gories are co-regularized. We employ the nested Chinese restaurant
process to guide the search of the most plausible hierarchical tax-
onomy. The network structure is then recovered from the latent
representations via a Bernoulli distribution. The whole model is
unified within a nonparametric probabilistic framework. A scalable
expectation-maximization algorithm is derived for optimization.
Empirical results demonstrate that NetHiex achieves significant
performance gain over the state-of-arts.

KEYWORDS
Network embedding; Network representation learning; Hierarchi-
cal taxonomy; Nested Chinese restaurant process
ACM Reference Format:
Jianxin Ma, Peng Cui, Xiao Wang, and Wenwu Zhu. 2018. Hierarchical
Taxonomy Aware Network Embedding. In KDD ’18: The 24th ACM SIGKDD

∗Beijing National Research Center for Information Science and Technology (BNRist)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3220062

CS

AI

NLP CVRobotics Speech

System

Arch. Network DB

paper paper

Figure 1: The hierarchical taxonomy is a hierarchy of cate-
gories. Each vertex is assigned a path (from the root to a leaf)
in the hierarchy. Each category in the taxonomy has its own
representation. Our model regularizes the representation of
a vertex so that it centers around its associated category rep-
resentations. In the example, the height of the hierarchy is
L = 3. xi ∈ R8 is the representation of vertex i. xi,1:2, xi,3:4, and
xi,5:6 should be close to the representations of category CS,
AI, and NLP, respectively, while xi,7:8 is for characterizing
individual differences and not associated with any category.

International Conference on Knowledge Discovery & Data Mining, August
19–23, 2018, London, United Kingdom. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3219819.3220062

1 INTRODUCTION
Network embedding, also known as network representation learn-
ing, is a recently proposed paradigm that automates the process
of extracting continuous feature vectors for vertices in a network.
One basic requirement of network embedding is that the learned
vertex representations should preserve the inter-vertex similarity
reflected by the network structure [6, 11, 14]. Therefore various net-
work embedding methods have been proposed to preserve the first-,
second-, and kth-order proximity [7, 21, 29], and the neighborhood
structure explored by random walks [13, 23], etc.

The neighborhood structure is usually closely related with an
underlying hierarchical taxonomy, where the successively broader
categories associated with the vertices are hierarchically organized
and form the tree hierarchy of the taxonomy. The categories of dif-
ferent levels reveals similarity of different granularity. For instance,

https://doi.org/10.1145/3219819.3220062
https://doi.org/10.1145/3219819.3220062

in the citation network shown in Figure 1, a paper on Natural
Language Processing (NLP) and a paper on Computer Vision (CV)
belong to two different categories and are deemed dissimilar accord-
ing to their fine-grained neighborhood structure. Nonetheless, the
paper on NLP and the paper on CV can actually be considered sim-
ilar when looking at the coarser-grained structure, since they both
belong to the Artificial Intelligence (AI) category. The hierarchy of
the taxonomy thus requires that the vertex representations encode
the structural information across mulitple levels of granularity, so
as to well support the wide variety of downstream applications.

Moreover, the hierarchical taxonomy provides an effective mech-
anism for alleviating the data scarcity issue. Real world networks
are usually extremely sparse, due to either the difficulty of col-
lecting comprehensive data, or the fact that the entities are not
exposed enough to each other for most links to form. The hierar-
chical taxonomy can facilitate extracting, storing, and reusing the
common knowledge associated with each category. Consequently,
the relations between two remotely connected vertices (that are
several hops away from each other) will be strengthened if the two
vertices share common categories in the hierarchy.

However, the hierarchical taxonomy has been largely neglected
by the existing network embedding approaches, and incorporating
it into network embedding poses great challenges. We are faced
with the daunting task of searching for the proper taxonomy in
the combinatorial space of countless tree structures, because the
underlying hierarchical taxonomy is generally unknown.

In this paper, we propose NetHiex, a network embedding model
that simultaneously detects and leverages the underlying hierar-
chical taxonomy. As illustrated in Figure 1, a vertex representation
in our model consists of multiple components, each of which cor-
responds to a category at the different layer of the hierarchy 1.
The categories of different granularity associated with the vertex
then form a path from the root to a leaf in the tree hierarchy. We
employ the nested Chinese restaurant process (nCRP) [3, 4] as a
prior distribution of the tree structure and the paths. The latent
representations and the observed network structure are then con-
nected with a Bernoulli distribution. Intuitively, the categories at
the top of the hierarchy will be passed by more paths than the
categories at the bottom, and therefore tend to represent coarser-
grained categories. As a result, the different components of vertex
representations that are regularized by the categories at the different
levels will lean towards capturing features of different granularity.
Moreover, the categories distill common knowledge from related
vertex representations, and store it in the form of category repre-
sentations. The relation between two remotely connected vertices
is thus strengthened, because they now share information via the
common categories passed by their paths. Overall, our model is
unified within a nonparametric probabilistic framework. We derive
an efficient expectation-maximization (EM) algorithm to estimate
the parameters. The overall time complexity of our algorithm per
iteration is linear in the size of the network, making our approach
suitable for real world large-scale networks.

We empirically assess our approach on several benchmark datasets.
The results show that our approach can significantly outperform the

1 We assume that all the paths (from the root to a leaf) in the hierarchy to be of the
same length L. Otherwise we can expand the shorter paths until they are of length L.

state-of-the-art approaches in various tasks, such as classification
and link prediction, and is robust to missing data. We further ex-
amine the hierarchical taxonomy learned on a word co-occurrence
network, and visualize the multiple levels of granularity.

The contributions of our paper are summarized as follows:
• We study the important problem of incorporating the hier-
archical taxonomy into network embedding. Our approach,
NetHiex, is able to learn representations that preserve both
the fine-grained and the coarse-grained network structure.

• We derive an efficient EM algorithm, each iteration of which
has a linear time complexity. This makes our approach highly
competitive with the existing scalable ones.

• Extensive quantitative and qualitative experiments demon-
strate the merits of learning representations with multiple
levels of granularity and alleviating data scarcity with the
hierarchical taxonomy.

2 THE HIERARCHICAL MODEL
In this section, we present NetHiex, a unified probabilistic frame-
work for network embedding with a latent hierarchical taxonomy.

2.1 Model Description
We use a tree of height L (all the paths from the root to a leaf is
of length L) to represent the hierarchy of categories (e.g. Figure 1).
Given a network with N vertices, we assume that each vertex is
associated with a path (from the root to leaf) in the tree hierarchy.
Let cn be the path of vertex n. The path cn indicates a series of
successively finer-grained categories to which vertex n belongs.

The exact structure of the tree hierarchy is unknown, and neither
do we know to which path each vertex is assigned. We therefore
use the nested Chinese restaurant process (nCRP) [4] as the prior
distribution over the tree structure and the paths. In other words,
the nCRP provides the prior probability

p(c1, c2, . . . , cN).

We will give the detailed definition of the nCRP in the next subsec-
tion. For the moment, let us focus on the rest part of the model, so
as to provide a comprehensive picture of our approach.

NetHiex aims to learn d-dimensional representations of the ver-
tices, i.e. {xn }Nn=1 ⊂ Rd , as well as the representations of the cate-
gories in the tree hierarchy, i.e. {wt : category t in the hierarchy} ⊂
R∆d , where ∆d =

⌊
d
L+1

⌋
.

The prior distribution of the category representations is

wt ∼ Normal
(
0,σ 2

w I
)
.

We set σw → ∞ in our implementation, since we would like the
categories to be as diverse as possible. In other words, we do not
regularize wt during optimization.

For each vertex n, we divide xn into L + 1 parts. Each part is of
dimension ∆d , except the last part, whose dimension is (d − L∆d).
The first L parts, collectively referred to as xn,1:L∆d , follow the
normal distribution,

xn,1:L∆d ∼ Normal
(
wcn ,σ

2
x I
)
,

where σx is a hyper-parameter, and wcn is the concatenation of all
the wt visited by the path cn . We then let the (L + 1)th part of xn
follow Normal(0,∞), i.e. we do not regularize the last part.

LetD = {ruv } be the set of the observed links. For simplicity, we
assume ruv to be binary, i.e. ruv = 1 if we observe a link between
vertices u and v , and ruv = 0 if we are certain that there is no link
between u and v . Our model assumes that

ruv ∼ Bernoulli
(
e
−

∥xu−xv ∥2

l2

)
,

where ∥ · ∥ is the L2-norm, and l is a hyper-parameter.
In practice, we typically observe only ruv = 1, and do not ob-

serve ruv = 0. We therefore follow previous work [13, 29] and use
negative sampling to generate a number of ruv = 0 equal to the
number of the positive observations, so as to balance the dataset.
In addition, we follow LINE [29] and SDNE [36], and augment the
dataset by adding a number of ruv = 1 (equal to the number of the
observed links) for vertices u and v who share common neighbors,
in order to better capture second-order proximity.

2.2 The nCRP Prior
Before we can give the definition of the nCRP [4], we need to review
its building block, the Chinese restaurant process (CRP) [1]. The
CRP is typically used as a prior for partitioning a set of samples.
Imagine a Chinese restaurant with an infinite number of tables,
each with infinite capacity. The first customer sits at the first table,
i.e. t1 = 1. The probability of the nth customer sitting at table tn is:

p
(
tn = k | t1:(n−1)

)
∝

{
mk if k already exists,
γ if k is a new table,

where mk is the number of customers already sitting at the kth
table, and γ is a hyper-parameter. Intuitively it describes the rich-
get-richer phenomenon.

A nCRP with L levels organizes an infinite number of CRPs
into a tree hierarchy of height L, where each non-leaf node in the
tree represents a CRP (Figure 2). For example, we can think of
the hierarchy as home→city→restaurant→table when L = 4. In
this example, there are an infinite number of cities, each city with
infinite number of restaurants, each restaurant with infinite number
of tables. Customers decide which city to visit according to a top-
level CRP represented by the root. Each customer then chooses a
restaurant according to the CRP associated with the chosen city
(represented by the nodes at the second layer), and chooses a table
according the CRP of the chosen restaurant.

NetHiex assumes that the vertices follow an nCRP with L lev-
els. The path cn of vertex n is therefore decided according to the
probability induced by the CRPs visited by the path, denoted by
p(cn | c1:(n−1)). In other words, in our model,

cn | c1:(n−1) ∼ nCRP
(
γ , c1:(n−1)

)
.

The overall likelihood function of our model is therefore∏
t ∈nCRP

p(wt) ×

N∏
n=1

[
p(cn | c1:(n−1))p(xn | wcn)

]
×

∏
ruv ∈D

p(ruv | xu , xv).

home

cities

restaurants

tables

Figure 2: A nCRP with L = 4 levels. Each node represents a
category. A non-leaf node in the nCRP represents a CRP.

2.3 Model Variants
We have mainly focused on networks that are simple graphs with
no attributes. However, our model can be easily extended to handle
weighted/attributed/directed networks.

In section 2.1, we use a Bernoulli distribution (that depends on
xu and xv) as the distribution over ruv ∈ {0, 1}. If the links are
weighted, we can simply replace the distribution with a Poisson
distribution, a normal distribution, or a Gamma distribution, etc.,
depending on the type of the links. To incorporate vertex attributes
(vertex features), we can modify the distribution over ruv so that it
depends on the attributes (in addition to xu and xv).

To support directed networks, we can follow HOPE [21] and
learn two representations (xu ∈ Rd and yu ∈ Rd) for each vertex u,
so as to preserve asymmetric transitivity [21]. For example, we can
let yu ∼ Normal

(
0,σ 2

y I
)
and ruv ∼ Bernoulli(σ (x⊤u yv)), where

σ (·) is the sigmoid function. ruv and rvu will be different this way,
and hence the direction of a link is preserved.

These modifications bring no technical difficulty when it comes
to optimization. In fact, we only need to adjust a single sub-problem
(the one involving ruv) of the M-step, which is straightforward.

3 OPTIMIZATION
The likelihood function presented in the previous section is not
easy to optimize, as cn heavily depends on c1:(n−1), and there is an
infinite number of categories in the nCRP. We therefore use the
nested stick-breaking construction [27] of the nCRP to decouple the
paths, and derive an EM algorithm that optimizes a finite subtree of
the nCRP at any given time and progressively expand the subtree
when appropriate.

3.1 The Stick-Breaking Construction
A CRP can be reformulated as a stick-breaking process [27]. In the
stick-breaking construction, each table i is associated with a latent
variable vi that follows a Beta distribution parameterized by γ , i.e.
vi ∼ Beta(1,γ). Each customer then independently chooses the ith
table with probability πi = vi

∏i−1
j=1(1 −vj).

Similarly, an nCRP can be reformulated using a nested stick-
breaking construction, by replacing each CRP with a stick-breaking
process. We will use the new construction hereafter, as it decouples
the paths of the vertices and is much easier to optimize.

3.2 Expectation-Maximization
We propose to optimize the model with an EM algorithm. Our
algorithm is based on the idea of maintaining a truncated tree [35].

A truncated tree T is a subtree of the infinite tree specified by the
nCRP. Every path from the root to a leaf in the truncated tree is
of exactly length L, as in the infinite tree. The basic idea is to fix
the values of vt and wt for all the nodes outside the truncated tree
to the means of their prior distributions (p(vt) and p(wt)), while
allowing the vt and wt of the nodes inside the truncated tree to be
optimized. We can then gradually increase the size of the truncated
tree, since a larger truncated tree will always lead to a solution that
is at least as good as the old one.

This subsection focuses on the optimization problem when the
truncated tree T is specified and fixed. Let V = {vt : t ∈ T },
W = {wt : t ∈ T }, X = {xn }Nn=1, and C = {cn }Nn=1. The goal
of the EM routine is to find a point estimate of θ = {X ,W ,V }

that maximizes lnp(D,θ). We choose to marginalize out the path
assignment distribution p(C), which is a discrete distribution with
infinite support, so as to make the problem more smooth.

According to our model,

p(D,C,θ) =p(V)p(W)

[N∏
n=1

p(cn | V)p(xn | wcn)

]
×

∏
ruv ∈D

p(ruv | xu , xv).

We want to maximize the following objective:

lnp(D,θ) =
∑
C

q(C) ln
p(D,C,θ)

q(C)︸ ︷︷ ︸
L(θ,q)

+
∑
C

q(C) ln
q(C)

p(C | D,θ)︸ ︷︷ ︸
DKL(q ∥pθ)

The second term above is the Kullback-Leibler (KL) divergence from
p(C | D,θ) to an auxiliary distribution q(C). The E-step of the EM
algorithm aims to find a setting of q(C) that makes the divergence
zero. The first term L(θ ,q) can be seen as an lower bound, which
the M-step aims to maximize.

Each iteration of the EM algorithm proceeds by first running the
E-step and then the M-step. Let qt (C) and θt be the result of the
t th E-step and M-step, respectively. We then have

lnp(D,θt−1) = L(θt−1,q) + DKL
(
q∥pθt−1

)
= L(θt−1,qt) + 0 (the t th E-step)
≤ L(θt ,qt) (the t th M-step)

≤ L(θt ,qt) + DKL
(
qt ∥pθt

)
= lnp(D,θt)

Therefore the EM algorithm will correctly converge to at least a
local maxima of the objective.

3.2.1 E-Step. The goal of the E-step is to find an auxiliary dis-
tribution q(C) such that DKL (q∥pθ) = 0. We can achieve this by
setting q(C) = p(C | D,θ). Therefore,

q(cn = c) ∝ Sn,c ≜ p(cn = c | V)p(xn | wc).

The tricky part is to compute the normalizing constant
∑
c Sn,c,

because the path c can not only be a path inside the truncated tree,
but also any path outside the truncated tree.

It is straightforward to compute Sn,c for an path completely
inside the truncated tree. The problem is with the infinite number
of paths outside the truncated tree. Let child(t) be the set of paths

that stem from node t (a non-leaf node of the truncated tree) and
are outside the truncated tree starting from t . It is then not hard to
see that

∑
c∈child(t) Sn,c can be efficiently computed using dynamic

programming on the tree.
Oncewe have computed Sn,c for all the paths inside the truncated

tree and
∑
c∈child(t) Sn,c for all the non-leaf nodes of the truncated

tree, we can obtain the normalizing constant
∑
c Sn,c by summing

these results. With the normalizing constant, other quantities such
as q(cn = c) and

∑
c∈child(t) q(cn = c) can be easily computed.

These results are all we need for the following M-step.
For each vertex n, computing

∑
c∈child(t) Sn,c for all t ∈ T costs

O(|T |) when dynamic programming is used, where |T | is the num-
ber of the nodes in the truncated tree T . Therefore an efficient
implementation of the E-step has time complexity O(N |T |).

3.2.2 M-Step. The goal of the M-step is to maximize the lower
bound L(θ ,q)w.r.t. θ , under the auxiliary distributionq(C) produced
by the E-step. We use coordinate ascent for this purpose. We divide
the optimization problem into three sub-problems.

Maximizing w.r.t. V . Maximizing the lower bound w.r.t. V is
equivalent to maximizing the following sub-problem:

L(V) = lnp(V) +
∑
c

N∑
n=1

q(cn = c) lnp(c | V)

The analytical solution can be found by setting the gradient to zero.
Quantities such as q(cn = c) and

∑
c∈child(t) q(cn = c) from the

E-step are used to solve the summation over c, so that the time
compelexity for the summation is reduced to O(|T |). As a result,
the time complexity for this sub-problem is O(N |T |) in total.

Maximizing w.r.t.W . Maximizing the lower bound w.r.t.W is
equivalent to maximizing the following sub-problem:

L(W) = lnp(W) +
∑
c

N∑
n=1

q(cn = c) lnp(xn | wc).

Setting σw → ∞ is then equivalent to ignoring the first term
lnp(W) above. This sub-problem can again be analytically solved
in O(N |T |), in a way similar to the previous one.

Maximizing w.r.t. X . Maximizing the lower bound w.r.t. X is
equivalent to maximizing the following sub-problem:

L(X) =

N∑
n=1

∑
c
q(cn = c) lnp(xn | wc)

+
∑

v : ruv ∈D

lnp(ruv | xu , xv).

We use conjugate ascent to optimize w.r.t. x1, x2, . . . , xN sequen-
tially. For each vertex, we run the conjugate ascent method for
merely one step, as we found that it is sufficient to produce good
results. The gradients can be computed in O (N |T | + |D|) in total.
The termO (N |T |) is due to the summation over n and c, while the
term O (|D|) is due to the summation over ruv .

3.3 Refining the Truncated Tree
We adjust the structure of the truncated tree after every iteration
of the EM algorithm. We adopt the strategy suggested by previous

work [35]. It involves three operations (grow, prune, and merge).
Prune andmerge may theoretically lead to a decreased lower bound.
However, we found that it rarely happens and the effect is negligible
even when it does happen.

Grow. We compute д(t) =
∑
c∈child(t)

∑N
n=1 q(cn = c) for every

non-leaf node t in the truncated tree. We then sample a new path
stemming from a non-leaf node, according to д(t).

Prune. We compute
∑N
n=1 q(cn = c) for every path, and delete

path c if 1
N

∑N
n=1 q(cn = c) < δ . We set δ = 0.01 in our experiments.

Merge. We measure the correlation between path i and path j

with p⊤i pj
∥pi ∥ ∥pi ∥

, where pi = [q(c1 = i),q(c2 = i), . . . ,q(cN = i)]. We
remove one of the paths if the correlation is greater than 0.95.

4 EXPERIMENTS
We first assess the quality of the vertex representations on classifica-
tion and link prediction. We then visualize the learned hierarchical
taxonomy and the multiple levels of granularity. Finally, we inves-
tigate parameter sensitivity and scalability.

4.1 Experimental Setup
Baselines. We compare the performance of our approach with

the following network embedding algorithms:

• DeepWalk [23]: DeepWalk generates a context window for
each vertex from random walks and adopts SkipGram [20]
to model the probability of a vertex appearing in the con-
text. It then learns vertex representations by optimizing the
SkipGram objective function.

• LINE [29]: It learns a d
2 -dimensional representation to pre-

serve first-order proximity (i.e. linked vertices tend to be
similar) and another d

2 -dimensional representation to pre-
serve second-order proximity (i.e. vertices sharing common
neighbors tend to be similar) for each vertex. It produces the
final d-dimensional representation for a vertex by concate-
nating the two parts.

• node2vec [13]: It is a generalization of DeepWalk and uses a
biased random walk sampler. The biased sampler can behave
like either depth-first search (DFS) or breadth-first search
(BFS), depending on its hyper-parameters.

• GraRep [7]: It first computes P, P2, . . . , PK , where P is the
random walk transition matrix. It learns the kth (1 ≤ k ≤ K)
d
K -dimensional vertex representations by factorizing Pk , and
concatenates the K parts to obtain the final d-dimensional
representations.

• Walklets [24]: It is a multi-scale generalization of DeepWalk.
It downsamples the random walks by keeping only every
kth (1 ≤ k ≤ K) step to learn the kth d

K -dimensional vertex
representations, and concatenates them to form the final
d-dimensional representations.

Datasets. We evaluate the algorithms on a social network (Blog-
Catalog [30]), a protein-protein interaction network (PPI [5, 13]),
and two citation networks (Cora and Citeseer [18]). The statistics
of these networks are listed in Table 1, where the labels are user

Table 1: Statistics of the datasets.

Network #Vertices #Edges #Labels

BlogCatalog 10,312 333,983 39
PPI 3,890 76,584 50
Cora 2,708 5,429 7

Citeseer 3,312 4,732 6

interests (BlogCatalog), biological states (PPI), and research areas
(Cora and Citeseer), respectively.

Hyper-parameters. We uniformly set the representation size d to
128. Some baselines, i.e. DeepWalk, node2vec andWalklets, generate
positive observations from randomwalks, and augment the training
set with negative observations using negative sampling [33]. For
these methods, as in node2vec [13], we simulate 80 random walks
of length 80 from each source vertex and sample five negative
observations for each positive observations. For our algorithm, we
set the hyper-parameter γ of the nCRP prior to one, which is the
typical value used by most work that uses an nCRP. All of the other
hyper-parameters of our approach and the baselines are tuned using
grid search for each dataset separately. In particular, we experiment
with K ∈ {1, 2, . . . , 8} for GraRep and Walklets, and choose the
best setting for them. We found that our approach performs well
on all of the datasets with L = 4, σx = 0.50, and l = 2.00. We hence
report results of our approach under this same setting.

We repeat the experiments for ten times and report the averaged
performance.

4.2 Classification
In this section, we evaluate our proposed method on the following
two classification tasks:

• Multiclass classification: A vertex in Cora and Citeseer has
exactly one label. We follow previous work [18, 34] and
report the accuracy scores for this task.

• Multilabel classification: A vertex in BlogCatalog and PPI
can have any number of labels. We follow previous work [13,
23, 30] and report the Macro-F1 and Micro-F1 scores.

Specifically, we train an one-vs-all logistic regression classifier on a
subset of the vertices (treating their representations as features) and
evaluate the performance of the classifier on half of the remaining
vertices (with the other half serves as the validation set).

The results are shown in Figure 3. As we can see, our algorithm
consistently outperforms all the baselines. We observe that preserv-
ing the multiple levels of granularity brings particularly significant
improvement on BlogCatalog and PPI. GraRep and our approach
are among the top performing approaches on these two datasets.
And Walklets also performs better than its vanilla counterpart (i.e.
DeepWalk).

On the other hand, the advantage of GraRep and Walklets over
the other baselines is less significant on Cora and Citeseer. This
is possibly because the labels (which are research areas) of Cora
and Citeseer are roughly at the same scale, and predicting them
does not necessitate multi-scale representations. Nevertheless, our

0 0.2 0.4 0.6 0.8 1

%Labeled Vertices

34

36

38

40

42

M
ic

ro
-F

1
 (

%
)

DeepWalk

LINE

node2vec

GraRep

Walklets

NetHiex

Micro-F1(%), BlogCatalog.

0 0.2 0.4 0.6 0.8 1

%Labeled Vertices

16

18

20

22

24

26

M
ic

ro
-F

1
 (

%
)

DeepWalk

LINE

node2vec

GraRep

Walklets

NetHiex

Micro-F1(%), PPI.

0 0.2 0.4 0.6 0.8 1

%Labeled Vertices

70

75

80

85

A
c
c
u

ra
c
y
 (

%
)

DeepWalk

LINE

node2vec

GraRep

Walklets

NetHiex

Accuracy(%), Cora.

0 0.2 0.4 0.6 0.8 1

%Labeled Vertices

16

18

20

22

24

26

M
a

c
ro

-F
1

 (
%

)

DeepWalk

LINE

node2vec

GraRep

Walklets

NetHiex

Macro-F1(%), BlogCatalog.

0 0.2 0.4 0.6 0.8 1

%Labeled Vertices

12

14

16

18

20

M
a

c
ro

-F
1

 (
%

)

DeepWalk

LINE

node2vec

GraRep

Walklets

NetHiex

Macro-F1(%), PPI.

0 0.2 0.4 0.6 0.8 1

%Labeled Vertices

45

50

55

60

65

A
c
c
u

ra
c
y
 (

%
)

DeepWalk

LINE

node2vec

GraRep

Walklets

NetHiex

Accuracy(%), Citeseer.

Figure 3: Classification results.

Table 2: The four strategies proposed by node2vec [13] for
constructing edge representations.

Strategy Symbol Definition

Hadamard ◦ (xu ◦ xv)i = xu,ixv,i
Average ⊞ (xu ⊞ xv)i =

xu,i+xv,i
2

Weighted-L1 ∥ · ∥1̄ ∥xu · xv ∥1̄,i = |xu,i − xv,i |
Weighted-L2 ∥ · ∥2̄ ∥xu · xv ∥2̄,i = (xu,i − xv,i)

2

approach still outperforms all the baselines. This is probably be-
cause our approach jointly performs representation learning and
hierarchical clustering, and thus the learned vertex representations
are inherently more discriminative.

4.3 Link Prediction
There are two popular ways to perform link prediction with the
learned vertex representations.

• Dot product: Many of the existing approaches, e.g. SDNE [36]
and HOPE [21], measure the similarity between two vertices
by computing the dot product of their representations. The
higher the dot product is, the more similar they are. A high
similarity score between two vertices indicates high proba-
bility of a link being formed between them.

• Edge features: node2vec [13] alternatively suggests fusing
two d-dimensional vertex representations into a single d-
dimensional edge representation, and training a binary clas-
sifier (whose input is the edge representation) to perform
link prediction. The four strategies proposed by node2vec
for constructing the edge representation is listed in Table 2.

We randomly remove a portion of links from the network for
each dataset while ensuring every vertex has at least one neighbor,
and run network embedding algorithms on the remaining part of
the network to obtain vertex representations. The removed links are

positive examples to be predicted. We then generate the negative
examples by sampling an equal number of links that are not in the
original network. The positive examples and the sampled negative
examples form the test set.

We perform link prediction based on both of the dot-product and
the edge-feature approach. We use a logistic regression classifier
for the latter one, and train it with links in the remaining network.
An equal number of negative links are again sampled to make the
training set balanced. We follow previous work [13] and report the
area under curve (AUC) scores.

First, we use Cora as an example to closely examine the results
of the five different strategies (the dot-product approach and the
four strategies used by node2vec) (the results on the other datasets
follow a similar trend, and are omitted due to space constraints). To
comprehensively evaluate the results, we also add another four tra-
ditional link prediction methods as baselines. The detailed results
are shown in Table 3. As we can see, the Hadamard strategy gener-
ally performs best among the four strategies proposed by node2vec.
However, the Hadamard strategy is not necessarily better than
simply using the dot-product approach, even though theoretically
the latter is a special case of the former. We conjecture that it is
caused by the fact that training on the remaining edges for the edge
classifier inevitably introduces bias. Therefore, the dot-product ap-
proach, which does not suffer from training bias, shows much more
robust performance. Another interesting observation is that our al-
gorithm performs best with the dot-product approach, even though
our model is based on the Euclidean distance, rather than cosine
similarity. It is possibly due to the fact that the two are closely
related, i.e. ∥xu − xv ∥2 = ∥xu ∥2 + ∥xv ∥2 − 2x⊤u xv . Our algorithm
satisfies ∥xu ∥ ≈ ∥xv ∥ empirically. Therefore it is reasonable to use
the dot-product approach for our algorithm.

Further, we report the best scores of the five different strategies
on all the tested networks. The results are shown in Table 4. We can
see that our approach consistently achieves significantly superior
performance over all the baselines. Furthermore, the improvement

Table 3: The AUC scores on Cora, with different link predic-
tion strategies. ⟨·, ·⟩ represents the dot-product approach.

%Missing Links

Strategy Algorithm 50% 40% 30% 20% 10%

◦ DeepWalk 72.10 77.48 79.81 81.81 81.33
LINE 66.95 70.96 74.00 75.90 77.94
node2vec 72.63 77.17 79.34 81.39 82.42
GraRep 72.76 76.21 80.39 83.57 82.31
Walklets 71.02 75.11 78.51 81.03 81.65
NetHiex 73.99 79.96 81.08 84.19 84.38

⊞ DeepWalk 58.87 58.46 58.53 59.11 59.71
LINE 62.65 63.09 61.57 62.43 62.00
node2vec 58.34 59.79 59.58 58.70 58.29
GraRep 61.82 61.90 60.38 60.51 61.35
Walklets 60.41 61.31 60.56 60.88 59.93
NetHiex 53.67 54.57 53.55 54.92 54.03

∥ · ∥1̄ DeepWalk 66.71 72.00 75.08 78.39 79.47
LINE 65.19 68.73 71.80 74.09 76.20
node2vec 67.39 72.06 74.47 78.03 79.58
GraRep 69.00 74.35 76.96 80.05 79.69
Walklets 68.33 72.31 74.76 78.34 78.60
NetHiex 71.62 77.90 78.98 82.17 84.38

∥ · ∥2̄ DeepWalk 67.63 72.68 75.95 79.11 80.02
LINE 66.53 70.34 73.17 74.40 77.29
node2vec 68.20 72.99 75.41 78.39 79.36
GraRep 70.18 75.16 77.03 81.86 80.78
Walklets 69.00 73.16 75.27 78.65 78.71
NetHiex 73.64 79.51 81.62 85.18 85.48

⟨·, ·⟩ DeepWalk 74.50 80.48 81.59 84.28 84.22
LINE 73.84 78.81 81.09 82.11 83.75
node2vec 75.16 80.61 82.37 83.72 85.03
GraRep 75.85 82.93 85.94 89.42 90.29
Walklets 71.05 76.75 78.86 80.42 80.84
NetHiex 80.86 87.62 88.21 90.59 90.55

(Results of Traditional Link Prediction Methods)
Common Neighbors 62.37 66.98 70.79 72.13 73.84
Jaccard’s Coefficient 62.35 66.88 70.69 72.07 73.82
Adamic-Adar Score 62.32 66.86 70.66 72.01 73.81
Pref. Attachment 70.60 71.32 70.77 70.31 69.82

over the best baseline is particularly remarkable when the number
of the removed links is high, suggesting that our approach is robust
to extremely sparse networks.

4.4 Hierarchical Taxonomy
We visualize the hierarchical taxonomy (see Figure 4) learned by
our algorithm (with L = 3) on a word co-occurrence network, so as
to intuitively understand the effects of the hierarchical taxonomy.

The word co-occurrence network is constructed from the titles
of all the papers from the conferences listed in Table 5 published
before the end of 2016. We collected the papers from dblp.org. We
remove stop words by keeping the words whose TF-IDF scores are
among the top 5% (the TF-IDF scores are computed by treating the

conferences as documents and the paper titles as sentences). This
leaves us a network with 1,262 vertices and 16,900 edges. For a
category t at the lth layer, we list the five words that are closest to
the category (in terms of ∥xu,(l−1)∆d+1:l∆d −wt ∥).

As we can see from Figure 4, our algorithm correctly identifies
that there are seven research areas, even though we never explicitly
specify the number of leaves. Our algorithm also considers bioinfor-
matics, computational linguistics, and computer vision to be similar,
in that machine learning techniques are widely adopted by them.
Our algorithm therefore groups the three research areas under
the same coarse-grained category, which is occupied by machine
learning terminology, e.g. semi-supervised. Overall, the hierarchy
shown in Figure 4 matches our intuition, and the finer-grained
categories indeed contains words that are more specific than those
of the coarser-grained categories.

4.5 Multiple Levels of Granularity
To better understand the effcacy of our algorithm, we follow Walk-
lets’ [24] approach and visualize the different levels of granular-
ity in detail, as shown in Figure 5. A vertex s in Cora is ran-
domly selected as the seed vertex. We then investigate the lth
part (1 ≤ l ≤ L + 1) of the learned vertex representations, i.e.
xu,[(l−1)∆d+1]:min(l∆d,d),u = 1, 2, . . . ,N , to check whether it re-
flects a different level of granularity. More specifically, we compute
the similarity between the seed vertex and the other vertices re-
garding the lth parts of their representations with

siml (s,u) ≜

{
e−∥xs, (l−1)∆d+1:l∆d−xu, (l−1)∆d+1:l∆d ∥

2
, 1 ≤ l ≤ L,

e−
∆d

d−L∆d ∥xs,L∆d+1:d−xu,L∆d+1:d ∥
2
, l = L + 1.

We then plot the heat maps of the similarity scores, as well as the
distributions of the similarity scores, for l = 1, 3, 5 (note that we
are using L = 4) in Figure 5.

Figure 5 suggests that our algorithm learns representations that
are composed of a series of successively finer-grained components.
Vertices that are considered similar can be many steps away from
each other when looking at the coarser-grained components. On
the other hand, vertices that are considered similar w.r.t. the finer-
grained components tend to cluster in a small neighborhood.

4.6 Parameter Sensitivity
We examine the effect of the hyper-parameters of our model, taking
the classification task on the Citeseer network as the example. Aswe
can see from Figure 6, the performance generally improveswhen the
dimension d of the representations increases. The improvement is
more obvious when the number of labeled vertices is high, possibly
because a high-dimensional space better preserves the diversity
exhibited in a large sample size, while a small sample size benefits
less from a high-dimensional space due to the risk of over-fitting.

The hyper-parameter σx controls how far away the vertices can
be from their associated categories.We can see from Figure 6 that an
ideal choice of σx should be small enough for the categories to play
an important role. It should, however, not be too small, or it would
limit the diversitywithin a category. The hyper-parameter l controls
how far away two drastically different vertices should be from each
other in the vector space. Similar to the pattern we observe for
σx , a good choice of l should be moderately large. However, the

dblp.org

Table 4: Link prediction results.

Baselines This Work

Metric Network %Missing Links DeepWalk LINE node2vec GraRep Walklets NetHiex

AUC(%) Citeseer 50% 77.00 77.25 77.58 74.11 74.57 77.78
40% 79.76 80.36 80.04 76.02 78.09 80.44
30% 82.12 82.41 83.03 81.55 80.80 83.86
20% 82.97 84.00 83.02 85.81 83.86 87.19
10% 86.59 88.44 86.74 87.15 86.16 88.97

PPI 50% 74.60 73.23 75.13 76.81 74.55 76.85
40% 75.00 74.34 75.92 77.73 74.19 78.07
30% 75.49 75.13 76.02 77.80 76.37 77.98
20% 76.73 75.35 77.04 78.51 77.89 78.55
10% 77.30 75.69 77.69 78.96 78.89 78.96

Cora 50% 74.50 73.84 75.16 75.85 71.05 80.86
40% 80.48 78.81 80.61 82.93 76.75 87.62
30% 81.59 81.09 82.37 85.94 78.86 88.21
20% 84.28 82.11 83.72 89.42 81.03 90.59
10% 84.22 83.75 85.03 90.29 81.65 90.55

load

caching

Cholesky

con

semi-supervised

multi-class

multi-label

coding

compressive

video

Gaussian

localization

structure

descriptions

latent

proto

routi

multic

tra

netw

execution

part

st

(Arch

Figure 4: The hierarchical taxonomy learned by NetHiex, on a word co-occurrence network constructed from the titles of
computer science papers (with stop words removed). We list the top five words that have the most similar representations to
the category representation for each category. Our algorithm correctly identifies that there are seven research areas.

Table 5: The conferences from which we collect the publi-
cations and construct the word co-occurrence network. The
taxonomy learned for the network is visualized in Figure 4.

Research Area Conferences

Computer Architecture SC, ISCA
Computer Network INFOCOM, SIGCOMM
Cryptography EUROCRYPT, CRYPTO
Bioinformatics BIBM, RECOMB
Computational Linguistics ACL, COLING
Computer Vision CVPR, ICCV
Data Compression DCC

effect of l is less significant when the number of labeled vertices is
small. This is possibly because capturing the differences between
individual vertices (with a proper choice of l) is much less helpful
than finding the underlying hierarchical taxonomy (with a proper
σx) when the labeled data is scarce.

4.7 Scalability
We found empirically that our EM algorithm is close to convergence
after roughly ten iterations, and all our experiments finished with
less than twenty iterations. Each iteration of our algorithm is linear
in the network size, making our algorithm as scalable as the existing
algorithms such as DeepWalk. To further support the claim, we

1.0

0.5

0

(a) l = 1

1.0

0.5

0

(b) l = 3

1.0

0.5

0

(c) l = 5

(d) l = 1 (e) l = 3 (f) l = 5

Figure 5: The distances of the vertices from a randomly selected seed vertex (pointed to by the arrows in (a)–(c)) in Cora, in
terms of the 1st, 3rd, and 5th parts of their representations, respectively. (a)–(c) visualize the distance as heat maps. (d)–(f) are
the distributions of the distances. The different parts of the representations clearly exhibit different levels of granularity.

50 100 150 200 250 300

d

50

55

60

65

70

75

A
c
c
u
ra

c
y
 (

%
)

%10 Labeled

%50 Labeled

%90 Labeled

0 0.2 0.4 0.6 0.8 1 1.2

x

45

50

55

60

A
c
c
u

ra
c
y
 (

%
)

%10 Labeled

%50 Labeled

%90 Labeled

1 1.5 2 2.5 3 3.5

l

52

54

56

58

60

62

64

A
c
c
u

ra
c
y
 (

%
)

%10 Labeled

%50 Labeled

%90 Labeled

Figure 6: Parameter sensitivity on Citeseer.

0 2000 4000 6000 8000 10000

Number of Vertices

0

50

100

150

200

250

300

350

R
u
n
n
in

g
 T

im
e
 (

s
)

GraRep

NetHiex

Figure 7: NetHiex scales linearly with the network size.

generate a series of random networks according to the Barabási-
Albert model, with increasing sizes from 400 to 10,000 vertices and a
constant average degree of 30. As shown in Figure 7, our algorithm
scales linearly with the network size.

5 RELATEDWORK
Network embedding [6, 11, 14], also known as network representa-
tion learning, gains momentum after the recent success of Deep-
Walk [23]. Unlike the eigendecomposition-based predecessors (e.g.
LLE [26], Laplacian eigenmaps [2], and Isomap [32]), DeepWalk
combines word2vec [19] and random walking, and permits scalable
stochastic optimization. Many new algorithms are presented to bet-
ter capture the network structure since then. LINE [29] proposes to
preserve first-order and second-order proximity, and node2vec [13]
aims to explore diverse neighborhoods with biased random walks.
Other concepts, such as nonlinearity [8, 36], higher-order relation-
ships [7, 21, 24], network communities [38], and structural iden-
tity [25], are also explored. Another line of research focuses on em-
bedding more complex networks, e.g. attributed networks [40], di-
rected networks [21], signed networks [37, 43], heterogeneous infor-
mation networks [9, 10, 12], and dynamic networks [16, 17, 42, 44].
Network embedding has also been integrated into other paradigms,
e.g. semi-supervised learning [41] and inductive learning [15]. We
are, however, not aware of other work on network representation
learning that studies the underlying hierarchical taxonomy.

The hierarchies of entities are more actively studied in the field
of natural language processing (NLP). For example, ontology learn-
ing aims to automatically extract ontologies from text [39], where
the hierarchy of the extracted concepts is constructed. The closest
work to ours from NLP is probably hierarchical topic modeling [4].
In hierarchical topic models, the topics form a hierarchy and each
document is associated with one [4] or more [22] paths (by nesting
CRPs [1] and hierarchical Dirichlet processes [31], respectively).
Our model is also built on the nCRP [4]. However, the way we lever-
age the nCRP is different. Furthermore, previous nCRP-based mod-
els typically adopt MCMC [3, 4] or variational inference (VI) [35]
for optimization, while we present an EM algorithm, which is much
faster than MCMC and easier to implement than VI.

6 CONCLUSION
In this paper, we have presented NetHiex, a network embedding
algorithm that reveals and leverages the hierarchical taxonomy. In
particular, we leverage the hierarchical taxonomy to capture the
different levels of granularity and alleviate data scarcity.

Extending our work to weighted/attributed/directed networks is
straightforward (see section 2.3). It is, however, less clear how to
generalize our algorithm to heterogeneous information networks
(HINs). An interesting direction for future work is to integrate meta
paths [10, 12, 28] and the underlying hierarchical taxonomy, to
learn vertex representations for a HIN.

ACKNOWLEDGMENTS
This work is supported by the National Program on Key Basic
Research Project (No. 2015CB352300), and the National Natural
Science Foundation of China (No. 61702296, No. 61772304, No.
61521002, No. 61531006, and No. U1611461). Thanks for the re-
search fund of the Tsinghua-Tencent Joint Laboratory for Internet
Innovation Technology, and the Young Elite Scientist Sponsorship
Program by CAST.

REFERENCES
[1] D. Aldous. 1985. Exchangeability and Related Topics. Ecole d’Ete de Probabilities

de Saint-Flour XIII 1983 (1985).
[2] Mikhail Belkin and Partha Niyogi. 2001. Laplacian Eigenmaps and Spectral

Techniques for Embedding and Clustering. In Proceedings of NIPS 2001.
[3] D. Blei, T. Griffiths, and M. Jordan. 2010. The Nested Chinese Restaurant Process

and Bayesian Nonparametric Inference of Topic Hierarchies. J. ACM (2010).
[4] D. Blei, T. Griffiths, M. Jordan, and J. Tenenbaum. 2003. Hierarchical Topic Models

and the Nested Chinese Restaurant process. In Proceedings of NIPS 2003.
[5] Bobby-Joe Breitkreutz, Chris Stark, Teresa Reguly, Lorrie Boucher, Ashton Bre-

itkreutz, Michael Livstone, Rose Oughtred, Daniel H. Lackner, JÃĳrg BÃďhler,
Valerie Wood, Kara Dolinski, and Mike Tyers. 2008. The BioGRID Interaction
Database: 2008 update. Nucleic Acids Research (2008).

[6] Hongyun Cai, VincentW. Zheng, and Kevin C.-C. Chang. 2018. A Comprehensive
Survey of Graph Embedding: Problems, Techniques and Applications. TKDE’18
(2018).

[7] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning Graph Repre-
sentations with Global Structural Information. In Proceedings of CIKM 2015.

[8] Shaosheng Cao, Wei Lu, and Xiongkai Xu. 2016. Deep Neural Networks for
Learning Graph Representations. In Proceedings of AAAI 2016.

[9] Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C. Aggarwal, and
Thomas S. Huang. 2015. Heterogeneous Network Embedding via Deep Ar-
chitectures. In Proceedings of KDD 2015.

[10] Ting Chen and Yizhou Sun. 2017. Task-Guided and Path-Augmented Heteroge-
neous Network Embedding for Author Identification. In Proceedings of WSDM
2017.

[11] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2017. A Survey on Network
Embedding. (2017). arXiv:cs.SI/1711.08752

[12] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. Metapath2Vec:
Scalable Representation Learning for Heterogeneous Networks. In Proceedings of
KDD 2017.

[13] Aditya Grover and Jure Leskovec. 2016. Node2Vec: Scalable Feature Learning for
Networks. In Proceedings of KDD 2016.

[14] W. Hamilton, R. Ying, and J. Leskovec. 2017. Representation Learning on Graphs:
Methods and Applications. IEEE Data Engineering Bulletin (2017).

[15] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Proceedings of NIPS 2017.

[16] Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. 2017.
Attributed Network Embedding for Learning in a Dynamic Environment. In
Proceedings of CIKM 2017.

[17] Jianxin Ma, Peng Cui, and Wenwu Zhu. 2018. DepthLGP: Learning Embeddings
of Out-of-Sample Nodes in Dynamic Networks. In Proceedings of AAAI 2018.

[18] Andrew McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. 2000. Au-
tomating the Construction of Internet Portals withMachine Learning. Information
Retrieval Journal (2000).

[19] Tomas Mikolov, Kai Chen, Greg Corrado, , and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. In Proceedings of Workshop
at ICLR 2013.

[20] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. In ICLR Workshop.

[21] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric Transitivity Preserving Graph Embedding. In Proceedings of KDD 2016.

[22] John Paisley, Chong Wang, David M. Blei, and Michael I. Jordan. 2015. Nested
Hierarchical Dirichlet Processes. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2015).

[23] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-
ing of Social Representations. In Proceedings of KDD 2014.

[24] Bryan Perozzi, Vivek Kulkarni, Haochen Chen, and Steven Skiena. 2017. Don’t
Walk, Skip! Online Learning of Multi-scale Network Embedding. In Proceedings
of ASONAM 2017.

[25] Leonardo F. R. Ribeiro, Pedro H. P. Saverese, and Daniel R. Figueiredo. 2017.
struc2vec: Learning Node Representations from Structural Identity. In Proceedings
of KDD 2017.

[26] Sam Roweis and Lawrence Saul. 2000. Nonlinear dimensionality reduction by
locally linear embedding. Science (2000).

[27] J. Sethuraman. 1994. A Constructive Definition of Dirichlet Priors. Statistica
Sinica (1994).

[28] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. Path-
Sim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information
Networks. In Proceedings of VLDB 2011.

[29] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. In Proceedings of
WWW 2015.

[30] Lei Tang and Huan Liu. 2009. Relational Learning via Latent Social Dimensions.
In Proceedings of KDD 2009.

[31] Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. 2006.
Hierarchical Dirichlet processes. J. Amer. Statist. Assoc. (2006).

[32] J. B. Tenenbaum, V. de Silva, and J. C. Langford. 2000. A Global Geometric
Framework for Nonlinear Dimensionality Reduction. Science (2000).

[33] Kai Chen Greg Corrado Tomas Mikolov, Ilya Sutskeve and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality.
In Proceedings of NIPS 2013.

[34] Cunchao Tu,Weicheng Zhang, Zhiyuan Liu, andMaosong Sun. 2016. Max-Margin
DeepWalk: Discriminative Learning of Network Representation. In Proceedings
of IJCAI 2016.

[35] Chong Wang and David M. Blei. 2009. Variational Inference for the Nested
Chinese Restaurant Process. In Proceedings of NIPS 2009.

[36] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network Em-
bedding. In Proceedings of KDD 2016.

[37] Suhang Wang, Jiliang Tang, Charu Aggarwal, Yi Chang, and Huan Liu. 2017.
Signed Network Embedding in Social Media. In Proceedings of SDM 2017.

[38] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017.
Community Preserving Network Embedding. In Proceedings of AAAI 2017.

[39] Wilson Wongx, Wei Liu, and Mohammed Bennamoun. 2012. Ontology Learning
from Text: A Look back and into the Future. Comput. Surveys (2012).

[40] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y. Chang. 2015.
Network Representation Learning with Rich Text Information. In Proceedings of
IJCAI 2015.

[41] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. 2016. Revisiting
Semi-supervised Learning with Graph Embeddings. In Proceedings of ICML 2016.

[42] Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2018. TIMERS:
Error-Bounded SVD Restart on Dynamic Networks. In Proceedings of AAAI 2018.

[43] Q. Zheng and D.B. Skillicorn. 2015. Spectral Embedding of Signed Networks. In
Proceedings of SDM 2015.

[44] Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, and Wenwu Zhu. 2018. High-
order Proximity Preserved Embedding For Dynamic Networks. TKDE’18 (2018).

http://arxiv.org/abs/cs.SI/1711.08752

	Abstract
	1 Introduction
	2 The Hierarchical Model
	2.1 Model Description
	2.2 The nCRP Prior
	2.3 Model Variants

	3 Optimization
	3.1 The Stick-Breaking Construction
	3.2 Expectation-Maximization
	3.3 Refining the Truncated Tree

	4 Experiments
	4.1 Experimental Setup
	4.2 Classification
	4.3 Link Prediction
	4.4 Hierarchical Taxonomy
	4.5 Multiple Levels of Granularity
	4.6 Parameter Sensitivity
	4.7 Scalability

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

