
DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks

Jianxin Ma, Peng Cui, Wenwu Zhu
Department of Computer Science and Technology, Tsinghua University, China
majx13fromthu@gmail.com, cuip@tsinghua.edu.cn, wwzhu@tsinghua.edu.cn

Abstract

Network embedding algorithms to date are primarily de-
signed for static networks, where all nodes are known before
learning. How to infer embeddings for out-of-sample nodes,
i.e. nodes that arrive after learning, remains an open prob-
lem. The problem poses great challenges to existing meth-
ods, since the inferred embeddings should preserve intri-
cate network properties such as high-order proximity, share
similar characteristics (i.e. be of a homogeneous space)
with in-sample node embeddings, and be of low compu-
tational cost. To overcome these challenges, we propose a
Deeply Transformed High-order Laplacian Gaussian Process
(DepthLGP) method to infer embeddings for out-of-sample
nodes. DepthLGP combines the strength of nonparametric
probabilistic modeling and deep learning. In particular, we
design a high-order Laplacian Gaussian process (hLGP) to
encode network properties, which permits fast and scalable
inference. In order to further ensure homogeneity, we then
employ a deep neural network to learn a nonlinear transfor-
mation from latent states of the hLGP to node embeddings.
DepthLGP is general, in that it is applicable to embeddings
learned by any network embedding algorithms. We theoreti-
cally prove the expressive power of DepthLGP, and conduct
extensive experiments on real-world networks. Empirical re-
sults demonstrate that our approach can achieve significant
performance gain over existing approaches.

Introduction
Network embedding (Perozzi, Al-Rfou, and Skiena 2014)
automates the process of extracting low-dimensional feature
vectors, termed embeddings, for nodes in a network. Despite
the remarkable success they are achieving in tasks such as
classification and recommendation, most network embed-
ding algorithms in the literature to date are primarily de-
signed for static networks, where all nodes are known before
learning. However, for large-scale networks, it is infeasible
to rerun network embedding whenever new nodes arrive, es-
pecially considering the fact that rerunning network embed-
ding also results in the need of retraining all downstream
classifiers. How to efficiently infer proper embeddings for
out-of-sample nodes, i.e. nodes that arrive after the embed-
ding process, remains largely unanswered.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Here v6, v7, and v8 are out-of-sample nodes. And
h(·) is a latent function. The values of the shaded nodes
are learned during training. To predict f(v7), DepthLGP first
predicts h(v7) via probabilistic inference, then passes h(v7)
through a neural network to obtain the final result.

Several graph-based methods in literature can be adjusted
to infer out-of-sample embeddings given in-sample ones.
Many of them deduce outcomes (embeddings) of new nodes
by performing information propagation (Zhu and Ghahra-
mani 2002), or optimizing a loss that encourages smooth
changes between linked nodes (Zhu, Ghahramani, and Laf-
ferty 2003; Delalleau, Bengio, and Roux 2005). There are
also methods that aim to learn a mapping from node features
to outcomes (embeddings), by imposing a manifold regular-
izer derived from the graph (Belkin, Niyogi, and Sindhwani
2006). The node features can be text attributes, or rows of the
adjacency matrix when attributes are unavailable. With the
learned mapping, the embeddings of out-of-sample nodes
can then be predicted.

However, the recent progress of network embedding im-
poses new challenges to the existing methods. Firstly, the
inferred embeddings of out-of-sample nodes should pre-
serve intricate network properties with embeddings of in-
sample nodes. For example, high-order proximity, among
many other properties, is deemed particularly essential to
be preserved by network embedding (Tang et al. 2015;
Cao, Lu, and Xu 2015; Ou et al. 2016), and thus must be

reflected by the inferred embeddings. Secondly, as down-
stream applications (e.g. classification) treat in-sample and
out-of-sample nodes equally, the inferred embeddings and
in-sample embeddings should possess similar characteristics
(e.g. magnitude, mean, variance), i.e. be of a homogeneous
space, resulting in the need of a model expressive enough
to characterize the embedding space. Finally, maintaining
high prediction speed is crucial, particularly when consider-
ing the highly dynamic nature of real-world networks. This
final point is even more challenging due to the need for si-
multaneously fulfilling the previous two requirements.

The existing graph-based methods cannot address these
challenges well. They are originally proposed to work on
a constructed similarity graph (instead of a real-world net-
work), and therefore consider primarily the basic smooth-
ness requirement, while important network properties such
as high-order proximity are mostly neglected. Furthermore,
propagation/smoothness-based approaches typically use a
naı̈ve model, which might struggle with fitting the em-
bedding space and can lead to poor homogeneity. On
the other hand, regularization-based approaches (Belkin,
Niyogi, and Sindhwani 2006) that may use a more advanced
model (Tomar and Rose 2014) face an efficiency issue: their
potentially lengthy training procedure cannot start before
new nodes arrive, or they will be unable to utilize edges
among new nodes (though edges between old and new nodes
can be easily leveraged), as their prediction routine will not
try to explore the subnetwork formed by new nodes.

In this paper, we propose a Deeply Transformed High-
order Laplacian Gaussian Process (DepthLGP) method (see
Figure 1) to infer out-of-sample embeddings. We combine
the strength of nonparametric probabilistic modeling and
deep neural networks. More specifically, we first design a
high-order Laplacian Gaussian process (hLGP) prior with a
carefully constructed kernel that encodes important network
properties such as high-order proximity. Each node is associ-
ated with a latent state that follows the prior hLGP. We then
employ a deep neural network to learn a nonlinear trans-
formation function from these latent states to node embed-
dings. The introduction of a deep neural network increases
the expressive power of our model and improves the homo-
geneity of inferred embeddings with in-sample embeddings.
Theories on the expressive power of DepthLGP are derived.
Overall, our method is fast and scalable. Training needs zero
knowledge of out-of-sample nodes, and thus can be carried
out in advance. The prediction routine revisits the evolved
network rapidly and can produce inference results analyti-
cally with desirable time complexity linear to the number of
in-sample nodes. DepthLGP is a general solution, in that it
is applicable to embeddings learned by any network embed-
ding algorithms. Extensive experiments on real-world net-
works further demonstrate that our method can achieve sig-
nificant performance gain over existing approaches.

The DepthLGP Model
In this section, we first formally formulate the out-of-sample
node problem, and then present the DepthLGP model as well
as how to perform prediction and training, after which we
derive theories on the expressive power of DepthLGP.

Problem Definition
We primarily consider undirected networks in this study. Let
G be the set of all possible networks and V be the set of all
possible nodes. Given a specific network G = (V,E) ∈ G
with nodes V = {v1, v2, . . . , vn} ⊂ V and edges E, a net-
work embedding algorithm aims to learn values of a function
f : V → Rd for nodes in V .

As the network evolves over time, a batch ofm new nodes
V ∗ = {vn+1, vn+2, . . ., vn+m} ⊂ V\V arrives and expands
G into a larger network G′ = (V ′, E′). Here V ′ = V ∪ V ∗.
Nodes in V ∗ are called out-of-sample nodes. Our problem,
then, is to infer values of f(v) for v ∈ V ∗, given G′ =
(V ′, E′) and f(v) for v ∈ V .

Model Description
DepthLGP first assumes that there exists a latent function
h : V → Rs, and the embedding function f : V → Rd
is transformed from the said latent function. To be more
specific, let g : Rs → Rd be the transformation func-
tion. DepthLGP then assumes that f(v) = g(h(v)) for all
v ∈ V . Since the transformation can potentially be highly
nonlinear, we use a deep neural network to serve as g(·).
DepthLGP further assumes that the s output dimensions of
h(·), i.e. hk : V → R for k = 1, 2, . . . , s, can be modeled
independently. In other words, we deal with each hk(v) of
h(v) = [h1(v), h2(v), . . . , hs(v)]

> separately.
Let us focus on hk(·) for the moment. Each hk(·) is

associated with a kernel that measures the similarity be-
tween nodes of a network. Take G′ = (V ′, E′) with V ′ =
{v1, v2, . . . , vn+m} for example, the said kernel produces a
kernel matrix Kk ∈ R(n+m)×(n+m) for G′:

Kk ,
[
I+ ηkL(Âk) + ζkL(ÂkÂk)

]−1
,

Âk , diag(αk)A
′diag(αk),

αk , [a(k)v1 , a
(k)
v2 , . . . , a

(k)
vn+m

]>,

where A′ is the adjacency matrix of G′. And ηk ∈
[0,∞), ζk ∈ [0,∞) as well as a(k)v ∈ [0, 1] for v ∈ V are
parameters of the kernel. The function diag(·) returns the
diagonal matrix corresponding to its vector input. The func-
tion L(·) treats its input as an adjacency matrix and returns
the Laplacian matrix, i.e. L(A) = diag(

∑
iA:,i)−A. The

definition of the kernel matrix involves inverting a large ma-
trix. However, the matrix inversion can be avoided without
approximation, as we will illustrate in the next subsection.

The parameters of the proposed kernel have clear phys-
ical meanings. The coefficient ηk indicates the strength of
first-order proximity (i.e. two connected nodes are likely to
be similar), while ζk is for second-order proximity (i.e. two
nodes with common neighbors are likely to be similar). On
the other hand, a(k)v represents a node weight, i.e. how much
attention we should pay to node v when performing pre-
diction. The values of a(k)v for in-sample nodes are learned
along with ηk and ζk (as well as the parameters of the neural
network g(·)) during training. The values of a(k)v for out-of-
sample nodes are set to one during prediction, since we are

always interested in these new nodes when inferring embed-
dings for them. The node weights assist DepthLGP in spot-
ting and avoiding uninformative nodes. For example, this
design alleviates the harmful effect of bot users that follow
many random people in a social network.

It can be shown that the proposed kernel matrix Kk is
positive definite, hence a valid kernel matrix. The kernel can
be seen as a generalization of the regularized Laplacian ker-
nel (Smola and Kondor 2003), in that we further introduce
node weighting and a second-order term. We term the pro-
posed kernel the high-order Laplacian kernel.

DepthLGP assumes that each sub-function hk(·) follows a
zero-mean Gaussian process (GP) (Rasmussen and Williams
2005) parameterized by the high-order Laplacian kernel, i.e.
hk ∼ GP(k)

hLap. In other words, for any Gt = (Vt, Et) ∈ G
with Vt = {v(t)1 , v

(t)
2 , . . . , v

(t)
nt } ⊂ V , we have:

[hk(v
(t)
1), hk(v

(t)
2), . . . , hk(v

(t)
nt

)]> ∼ N (0,K
(t)
k),

where K
(t)
k is the high-order Laplacian kernel matrix com-

puted on Gt.
We can now summarize DepthLGP as follows:

hk ∼ GP(k)
hLap, k = 1, 2, . . . , s,

h(v) , [h1(v), h2(v), . . . , hs(v)]
>, v ∈ V,

f(v) | h(v) ∼ N (g(h(v)), σ2I), v ∈ V,

where σ is a hyper-parameter to be manually specified. The
neural network g(·) is necessary here, since f(·) itself might
not follow the GP prior exactly. The introduction of g(·) al-
lows the model to fit f(·) more precisely.

Prediction
Before new nodes arrive, we have the initial network G =
(V,E) with V = {v1, v2, . . . , vn}. We also know the val-
ues of f(v) for v ∈ V . The prediction routine assumes that
there is a training procedure conducted on G and f(v) for
v ∈ V before new nodes arrive. The training procedure
learns ηk, ζk, hk(v), a

(k)
v for k = 1, 2, . . . , s, v ∈ V , and

the parameters of the transformation function g(·).
As the network evolves over time, m new nodes V ∗ =

{vn+1, vn+2, . . ., vn+m} arrive and G evolves into G′ =
(V ′, E′) with V ′ = V ∪ V ∗. The prediction routine aims to
predict f(v) for v ∈ V ∗ by maximizing p({f(v) : v ∈ V ∗} |
{f(v) : v ∈ V }, {h(v) : v ∈ V }), which, according to our
model, is equal to:

p({f(v) : v ∈ V ∗} | {h(v) : v ∈ V }).

However, this requires integrating over all possible h(v) for
v ∈ V ∗. We hence approximate it by instead maximizing:

p({f(v) : v ∈ V ∗}, {h(v) : v ∈ V ∗} | {h(v) : v ∈ V }).

According to our model, it is equal to:

p({f(v) : v ∈ V ∗} | {h(v) : v ∈ V ∗})
× p({h(v) : v ∈ V ∗} | {h(v) : v ∈ V }).

Algorithm 1 The Prediction Routine
Require: G′ = (V ′, E′) . G = (V,E) evolves into G′.
Ensure: predicted values of f(v), v ∈ V ∗ . V ∗ , V ′ \ V .

1: . Let V = {v1, v2, . . . , vn} be the old nodes.
2: . Let V ∗ = {vn+1, vn+2, . . . , vn+m} be the new nodes.
3: . Let A′ be the adjacency matrix of G′.
4: for k = 1, 2, . . . , s do
5: . Values of a(k)v are set to 1 for v ∈ V ∗.
6: α← [a

(k)
v1 , a

(k)
v2 , . . . , a

(k)
vn+m]>

7: Â← diag(α) A diag(α)

8: . Function L(·) below treats Â and ÂÂ as adja-
cency matrices, and returns their Laplacian matrices.

9: M← I+ ηkL(Â) + ζkL(ÂÂ)
10: M∗,∗ ← the bottom-right m×m block of M
11: M∗,x ← the bottom-left m× n block of M
12: . Let z(k)x , [hk(v1), hk(v2), . . . , hk(vn)]

>.
13: . Compute M∗,xz

(k)
x first below for efficiency.

14: z
(k)
∗ ← −M−1∗,∗M∗,xz

(k)
x . z

(k)
∗ is a prediction of

[hk(vn+1), hk(vn+2), . . . , hk(vn+m)]>.
15: end for
16: for v ∈ V ∗ do
17: . The previous lines have produced a prediction

of h(v) = [h1(v), h2(v), . . . , hs(v)]
>. The line below

now uses the said prediction to further predict f(v).
18: compute g(h(v)) . It is a prediction of f(v).
19: end for

It can be maximized 1 by first maximizing the second
term, i.e. p(h(v) : v ∈ V ∗} | {h(v) : v ∈ V }) =∏s
k=1 p({hk(v) : v ∈ V ∗} | {hk(v) : v ∈ V }), and then

setting f(v) = g(h(v)) for v ∈ V ∗.
Let us now focus on the subproblem of maximizing:

p({hk(v) : v ∈ V ∗} | {hk(v) : v ∈ V }). (1)

Since hk ∼ GPhLap, by definition we have:

[hk(v1), hk(v2), . . . ,hk(vn), hk(vn+1), . . . , hk(vn+m)]>

∼ N (0,Kk),

where Kk is the kernel matrix computed on G′. We then
have the following result:

z
(k)
∗ | z(k)x ∼ N (K∗,xK

−1
x,xz

(k)
x ,K∗,∗ −K∗,xK

−1
x,xK

>
∗,x),

z(k)x , [hk(v1), hk(v2), . . . , hk(vn)]
>
,

z
(k)
∗ , [hk(vn+1), hk(vn+2), . . . , hk(vn+m)]

>
,

where Kx,x, K∗,x, and K∗,∗ are the upper-left n × n
block, the bottom-left m × n block, and the bottom-right
m×m block of Kk, respectively. Computing K∗,xK

−1
x,xz

(k)
x

is expensive. However, it can be shown to be equivalent to

1The first term p({f(v) : v ∈ V ∗} | {h(v) : v ∈ V ∗}) is
maximized with f(v) = g(h(v)), and the maximum value of this
probability density is a constant independent of h(v). Hence we
can focus on maximizing the second term first.

−M−1∗,∗M∗,xz
(k)
x , where M∗,x and M∗,∗ are the bottom-left

m×n block and the bottom-right m×m block of K−1k , re-
spectively. Obtaining K−1k is cheap, because the matrix in-
version gets cancelled out. Computing M−1∗,∗ is much easier,
since m� n. As a result, Equation 1 is maximized with:

z
(k)
∗ = −M−1∗,∗M∗,xz(k)x .

As a side node, maximizing Equation 1 is equivalent to
minimizing the following criterion:∑

u∈V ′
[hk(u)]

2
+

1

2
ηk

∑
u,v∈V ′

a(k)u A′uva
(k)
v [hk(u)− hk(v)]2 +

1

2
ζk

∑
u,v,w∈V ′

a(k)u A′uwa
(k)
w a(k)w A′wva

(k)
v [hk(u)− hk(v)]2 ,

where A′uv is the weight of the edge between u and v. This
alternative formula illustrates the physical meaning of η, ζ
and a(k)v , from a different perspective.

The prediction routine is summarized in Algorithm 1.

Training
Training is conducted on the initial network G = (V,E)
with the values of f(v) for v ∈ V . Since it does not de-
pend on the evolved network G′ = (V ′, E′), it can be car-
ried out before new nodes arrive. It aims to find suitable
parameters of the neural network g(·) and proper values of
ηk, ζk, a

(k)
v , hk(v) for v ∈ V and k = 1, 2, . . . , s.

We train the model with empirical risk minimization
(ERM). The idea of training a probabilistic model with ERM
has been explored before by many researchers, e.g. (Stoy-
anov, Ropson, and Eisner 2011). Using ERM training here
eliminates the need to specify σ, and is faster and more scal-
able as it avoids computing determinants.

The basic idea of the training procedure (Algorithm 2) is
to first sample some subgraphs from G, then treat a small
portion of nodes in each subgraph as if they were out-of-
sample nodes, and minimize the empirical risk on these
training samples. For each sample G′t = (V ′t , E

′
t), we first

sample a small set of seed nodes V ∗t from G along a ran-
dom walk path. We then sample a set of nodes Vt from the
neighborhood of V ∗t . The neighborhood of V ∗t consists of
the nodes that are no more than two steps away from V ∗t .
Let V ′t = V ∗t ∪Vt. The subgraph G′t is then induced in G by
V ′t . The nodes in V ∗t are treated as out-of-sample nodes.

We use Adam (Kingma and Ba 2015), a method similar to
stochastic gradient descent, for optimizing the parameters.
Gradients are computed using back-propagation (Rumel-
hart, Hinton, and Williams 1988; Dreyfus 1962).

On the Expressive Power of DepthLGP
The first theorem below demonstrates the expressive power
of DepthLGP, while the second theorem emphasizes the im-
portance of second-order proximity.

Algorithm 2 The Training Routine
Require: G = (V,E); f(v) for v ∈ V
Ensure: ηk, ζk, a

(k)
v , hk(v) for v ∈ V and k = 1, 2, . . . , s;

parameters of the neural network g(·)
1: for t = 1, 2, . . . , T do
2: V ∗t ← a few nodes sampled along a random walk
3: Vt ← some nodes in V ∗t ’s neighborhood
4: V ′t ← Vt ∪ V ∗t
5: G′t ← the subgraph induced in G by V ′t
6: Execute Algorithm 1, but using G′t in place of G′,
Vt in place of old nodes, and V ∗t in place of new nodes.
Save its prediction of f(v) as f̃(v) for v ∈ V ∗t .

7: loss← 1
|V ∗t |

∑
v∈V ∗t

‖f(v)− f̃(v)‖2l2
8: Use back-propagation to compute the gradient of the

loss with respect to ηk, ζk, a
(k)
v , hk(v) for v ∈ Vt, and

the parameters of g(·).
9: Apply gradient descent.

10: end for

Theorem 1 (Expressive Power). For any ε > 0, any non-
trivial G = (V,E) and any f : V → Rd, there exists a pa-
rameter setting for DepthLGP, such that: for any v∗ ∈ V ,
after deleting all information (except G) related with v∗,
DepthLGP can still recover f(v∗) with error less than ε, by
treating v∗ as a new node and using Algorithm 1 on G.
Remark. A nontrivial G means that all connected compo-
nents ofG have at least three nodes. The information related
with v∗ includes f(v∗), hk(v∗) and a(k)v∗ for k = 1, 2, . . . , s.
During prediction, a(k)v∗ is set to one, since v∗ is treated as
a new node. The error is expressed in terms of l2-norm.
The proof is a constructive proof based on the universal ap-
proximation property of neural networks (Cybenko 1989;
Hornik 1991) (see supplement material).
Theorem 2 (On Second-Order Proximity). Theorem 1 will
not hold if DepthLGP does not model second-order proxim-
ity. That is, there will exist G = (V,E) and f : V → Rd that
DepthLGP cannot model, if ζk is fixed to zero.
Remark. It can be verified by finding a counterexample (see
supplement material).

Extensions and Variants
Integrating into an Embedding Algorithm
DepthLGP can be incorporated into an existing network
embedding algorithm to derive a new network embedding
algorithm capable of handling out-of-sample nodes. Take
node2vec (Grover and Leskovec 2016) for example. The ob-
jective of node2vec can be abstracted into:

min
θ,F
Lθ(F, G).

The columns of F ∈ Rd×n are the embeddings to be learned,
and θ contains other parameters.

We now define a function fφ : V → Rd parameterized by
φ. For each v ∈ V , it first samples nodes from the neigh-
borhood of v and induces the subgraph that contains v and

Table 1: The ten research areas selected from DBLP.
Research Field Conference

Database ICDE, VLDB, SIGMOD
Data Mining KDD, ICDM, SDM, CIKM
Information Retrieval SIGIR
Artificial Intelligence IJCAI, AAAI, ICML, NIPS
Computer Vision CVPR, ICCV
Theory STOC, SODA, COLT
Computational Linguistics ACL, EMNLP, COLING
Computer Networks SIGCOMM, INFOCOM
Operating Systems SOSP, OSDI
Programming Languages POPL

the sampled nodes. It treats v as an out-of-sample node and
the nodes from the neighborhood as in-sample nodes. It then
runs Algorithm 1 on the subgraph to obtain the embedding
of v, which is the value of fφ(v). By definition, φ contains
parameters of a neural network, ηk, ζk, a(k)v , and hk(v) for
v ∈ V , k = 1, 2, . . . , s. To derive a new embedding algo-
rithm, which we name node2vec++, we replace F with fφ(·):

min
θ,φ
Lθ([fφ(v1), fφ(v2), . . . , fφ(vn)], G).

Efficient Variants
Handling new nodes in a batch-by-batch manner is more
memory-saving when the number of new nodes is large. For
each unprocessed new node v, we first find the largest con-
nected component that contains v and consists of new nodes
only. Let V ∗t be the connected component. We then sample
a set of old nodes Vt from the neighborhood of V ∗t . Finally,
we run the prediction routine on the subgraph induced by
V ∗t ∪ Vt to obtain embeddings for the new nodes in V ∗t . We
can repeat this procedure until all new nodes are processed.

Some simplifications can be made in order to allow a more
efficient implementation. In particular, sharing node weights
across different dimensions hurts little for most embedding
algorithms. Though theoretically it will reduce the expres-
sive power. Additionally, we can keep η1 = . . . = ηs and
ζ1 = . . . = ζs when the network embedding algorithm uses
the same objective to learn the different dimensions.

Empirical Results
Experiment Settings
We conduct experiments on the datasets listed below.
• DBLP: We extract a co-author network from dblp.org,

consisting of ten research areas (see Table 1). We treat
the research areas as labels. We take the snapshot at the
end of 2015 as the initial network (59,277 nodes, 205,804
edges), and the snapshot at the end of 2016 as the evolved
network (4,944 new nodes, 25,612 new edges).

• PPI (Breitkreutz et al. 2008): A protein-protein interaction
network. We use the largest connected component (3,852
nodes, 37,841 edges, 50 labels) extracted from the version
provided by (Grover and Leskovec 2016). We sample 256
nodes with degree less than sixteen along a random walk

to serve as out-of-sample nodes, as the network contains
no timestamp.

• BlogCatalog (Tang and Liu 2009): An online social net-
work (10,312 users, 333,983 edges, 39 labels). Again, we
sample 256 nodes to serve as out-of-sample nodes.

We compare DepthLGP to the baselines listed below.
• LocalAvg: This baseline produces an embedding for

an out-of-sample node by averaging the embeddings of
neighboring in-sample nodes.

• Manifold Regularization (MRG): This baseline is a man-
ifold regularized neural network (Tomar and Rose 2014).
It does not perform well when trained solely on the initial
network. We therefore train it on the evolved network for
fair comparison, even though it is impractical to do so in
a production environment (due to lengthy optimization).
We found that initializing the weights of the first layer
with in-sample node embeddings and using l1-normalized
rows of the adjacency matrix as features greatly improve
its convergence speed.

• LabelProp: Recent propagation/smoothness-based meth-
ods are mostly proposed for classification. A small por-
tion of them can be adjusted to solve our problem (a mul-
tivariate regression problem). We found that the more re-
cent methods (that can be adjusted to solve the regression
problem) do not beat the vanilla version of label propa-
gation (Zhu and Ghahramani 2002) when it comes to our
problem. We hence report performance of the vanilla ver-
sion (Zhu and Ghahramani 2002).
We first run an embedding algorithm (node2vec, LINE,

or GraRep) on the initial network to obtain 128-dimensional
embeddings for in-sample nodes. We then train DepthLGP
on the initial network. Finally, we run DepthLGP’s predic-
tion routine, as well as our baselines, on the evolved network
to produce embeddings for out-of-sample nodes.

We use g(x) = x + g̃(x) for DepthLGP, where g̃(x) is
a neural network with a single hidden layer of 64 units. We
use LeakyReLU as the activation function. This choice of
g(·) resembles a residual network (He et al. 2016). It allows
us to initialize values of h(v) with values of f(v) for in-
sample nodes. We set the number of seed nodes to be four
when sampling a subgraph for training. We ensure that the
sampled neighborhood of the seed nodes contains at most
512 one-step nodes, and further restrict the number of sam-
pled two-step nodes to be less than a half of the number of
sampled one-step nodes. We find this setting provides good
convergence speed, based on our experience on a develop-
ment dataset (a tenth of the DBLP network).

We repeat the experiments for ten times and report av-
eraged performance. Additionally, we rerun the embedding
algorithm on the evolved network to obtain ground-truth
embeddings for new nodes, and report their performance
(titled Upper Bound in Table 2 and Table 3). Ideally we
want DepthLGP’s performance to be as close to these upper
bounds as possible. To illustrate the importance of ensuring
homogeneity, we also report performance of hLGP, which is
mostly the same as DepthLGP, except that it uses g(x) = x
instead of a neural network.

Table 2: Quality of the inferred out-of-sample embeddings in terms of their performance in multi-label classification. hLGP is
a simplified version of DepthLGP, in that it removes the neural transformation.

Baselines This Work Upper Bound

Metric Embedding Network LocalAvg MRG LabelProp hLGP DepthLGP (rerunning)

Macro-F1(%) LINE DBLP 37.89 42.15 40.83 47.33 48.25 (49.07)
PPI 10.52 10.02 12.42 13.42 13.72 (13.91)

BlogCatalog 13.25 11.30 17.07 17.41 18.03 (18.90)
GraRep DBLP 50.61 55.79 55.02 57.43 58.67 (62.92)

PPI 13.65 13.75 12.38 14.80 14.84 (15.33)
BlogCatalog 14.76 14.80 14.71 15.94 18.45 (20.15)

node2vec DBLP 53.83 59.34 59.25 60.89 62.63 (64.87)
PPI 15.05 13.43 13.78 15.85 16.54 (16.81)

BlogCatalog 15.10 14.04 19.16 19.77 20.32 (20.82)

Micro-F1(%) LINE DBLP 49.58 50.49 50.88 54.01 54.94 (55.84)
PPI 18.10 15.71 18.81 20.71 21.42 (21.43)

BlogCatalog 27.40 23.21 30.79 31.36 31.90 (32.20)
GraRep DBLP 60.17 60.62 60.48 61.44 62.29 (65.44)

PPI 20.23 20.35 20.23 20.79 21.44 (21.88)
BlogCatalog 36.44 30.79 33.90 37.57 38.14 (38.37)

node2vec DBLP 60.54 62.29 62.52 62.83 64.56 (65.63)
PPI 19.70 18.25 18.25 22.63 23.11 (23.41)

BlogCatalog 34.83 25.82 36.94 37.96 39.64 (40.34)

Multi-label Classification
We first measure the quality of the inferred out-of-sample
embeddings, in terms of their performance in multi-label
classification. We use the in-sample embeddings (as fea-
tures) and their corresponding labels to train a one-vs-all
logistic regression classifier, and then use the classifier to
predict the labels of the out-of-sample nodes given the in-
ferred out-of-sample embeddings. We report Macro-F1 and
Micro-F1 scores in Table 2.

DepthLGP significantly outperforms all the baselines
consistently. And the margin between DepthLGP and re-
running the whole network embedding algorithm is close
enough for DepthLGP to be useful in practice. The fact that
hLGP outperforms all the other baselines indicates the im-
portance of preserving properties such as high-order prox-
imity, while the fact that hLGP is weaker than DepthLGP
suggests the necessity of ensuring homogeneity.

Link Prediction
We then measure the quality of the inferred embeddings
when it comes to link prediction. We hide half of the new
edges (they serve as positive links to be predicted) when in-
ferring out-of-sample embeddings, and report the area under
the receiver operating characteristic curve (AUC) (see Ta-
ble 3). Again, DepthLGP significantly outperforms the base-
lines and achieves closer performance to the upper bounds.

Computational Efficiency
We assess the efficiency of the prediction routine with a
performance-versus-time analysis, conducted on PPI (see
Figure 2). We observe that DepthLGP can indeed produce
high-performing embeddings in a very short period of time.

Integrating into node2vec
We derive node2vec++, a new embedding algorithm based
on DepthLGP and node2vec, and assess its performance
on DBLP. node2vec++ can predict embeddings for out-of-
sample nodes by itself. We use DepthLGP to assist node2vec
in inferring out-of-sample embeddings. The results (Table 4)
suggest that node2vec++ produces comparable in-sample
embeddings and infers better out-of-sample embeddings.

Related Work
Network Embedding. After DeepWalk (Perozzi, Al-
Rfou, and Skiena 2014), several network embedding algo-
rithms are proposed to better characterize network properties
such as high-order proximity (Tang et al. 2015; Cao, Lu, and
Xu 2015), nonlinearity (Wang, Cui, and Zhu 2016), neigh-
borhood (Grover and Leskovec 2016), non-transitivity (Ou
et al. 2015), and community structure (Wang et al. 2017b).
Embedding special networks are also explored (Ou et al.
2016; Zheng and Skillicorn 2015; Wang et al. 2017a; Yang
et al. 2015; Dong, Chawla, and Swami 2017). Yet, few
of them can deal with out-of-sample nodes. For example,
factorization-based embedding algorithms (Cao, Lu, and Xu
2015; Ou et al. 2016; Wang et al. 2017b) are inherently crip-
pled when it comes to out-of-sample nodes, since new nodes
imply dimension expansion of matrices to be factorized and
necessitates retraining. On the other hand, though some al-
gorithms (Tang et al. 2015; Wang, Cui, and Zhu 2016) can
quickly infer embeddings for a subset of new nodes based
on low-order proximity, they can only handle new nodes di-
rectly connected with the embedded part, as they do not ex-
plore edges among new nodes.

Table 3: Quality of the inferred out-of-sample embeddings in terms of their performance in link prediction.
Baselines This Work Upper Bound

Metric Embedding Network LocalAvg MRG LabelProp hLGP DepthLGP (rerunning)

AUC(%) LINE DBLP 72.87 72.87 77.39 80.63 81.18 (82.33)
PPI 52.34 51.78 52.77 57.04 60.45 (60.57)

BlogCatalog 55.51 51.01 54.71 54.74 55.53 (55.76)
GraRep DBLP 84.15 85.88 86.32 87.25 87.40 (91.95)

PPI 62.80 68.55 66.48 67.60 68.85 (69.61)
BlogCatalog 45.60 41.24 47.29 47.42 48.11 (48.26)

node2vec DBLP 68.49 76.90 77.98 81.36 82.54 (89.02)
PPI 38.90 40.54 46.79 53.16 55.37 (59.74)

BlogCatalog 54.65 38.41 55.40 55.43 55.47 (55.86)

0 20 40 60 80 100

10

15

20

25

DepthLGP

LINE

0 20 40 60 80 100

10

15

20

25

P
e
rf

o
rm

a
n
c
e
 (

M
ic

ro
-F

1
)

DepthLGP

GraRep

0 20 40 60 80 100

Time (sec)

10

15

20

25

DepthLGP

node2vec

Figure 2: Performance versus time. DepthLGP and GraRep
are represented by points, as they are closed-form solvers.
node2vec and LINE iteratively learn embeddings of new
nodes, we hence report their performance every fixed num-
ber of iterations. DepthLGP can infer high-performing em-
beddings in much shorter time.

Learning on Graphs. Several methods originated from
graph-based semi-supervised learning (GSSL) (Chapelle,
Schlkopf, and Zien 2010; Zhu 2005) can serve as base-
lines to solve the out-of-sample node problem (see section
“Introduction” on limitations of these methods). Some of
these methods take a propagation approach (Szummer and
Jaakkola 2001; Zhu and Ghahramani 2002), while the others
optimize a loss that encourages smoothness (Zhu, Ghahra-
mani, and Lafferty 2003; Joachims 2003; Delalleau, Ben-
gio, and Roux 2005; Subramanya and Bilmes 2008). There
are also methods based on regularizing a traditional pre-
dictor with a graph (Belkin, Niyogi, and Sindhwani 2006;
Karlen et al. 2008; Chen, Tsang, and Xu 2012; Tomar and
Rose 2014). Historically, these methods focus primarily on
classification and only a portion of them can be adjusted to
solve our problem (a multivariate regression problem).

Table 4: Performance of node2vec++, a new embedding al-
gorithm derived by integrating DepthLGP into node2vec.

Metric node2vec node2vec++

In-Sample Macro-F1(%) 64.87 65.17
Micro-F1(%) 65.63 65.61
AUC(%) 90.02 89.20

Out-of-Sample Macro-F1(%) 62.63 63.88
Micro-F1(%) 64.56 64.60
AUC(%) 82.54 85.88

Gaussian Processes. To the extent of our knowledge,
(Chu et al. 2006; Yu et al. 2006; Yu and Chu 2007;
Silva, Chu, and Ghahramani 2007) pioneer the application
of Gaussian processes (Rasmussen and Williams 2005) to
learning on networks. They target various tasks, such as su-
pervised learning, semi-supervised learning, link prediction,
and transfer learning. Our problem and model are drasti-
cally different from theirs. As far as we know, we are the
first to use a GP model for network embedding. GP models
are demonstrated to be effective in working with network
data, mainly because they can model uncertainty exhibited
in both observed and unobserved edges and provide high-
quality generalization on unseen nodes.

Conclusion
In this work, we propose DepthLGP to infer embeddings
for out-of-sample nodes in an effective and efficient manner.
DepthLGP combines the strength of nonparametric proba-
bilistic modeling and deep learning. In the future, we hope
to extend our work to special networks, or apply it to solve
similar problems such as out-of-vocabulary words.

Acknowledgements
This work is supported by the National Program on Key Ba-
sic Research Project (No. 2015CB352300), and the National
Natural Science Foundation of China (No. 61772304, No.
61521002, No. 61531006, and No. U1611461). Thanks for
the research fund of Tsinghua-Tencent Joint Laboratory for
Internet Innovation Technology, and the Young Elite Scien-
tist Sponsorship Program by CAST.

References
Belkin, M.; Niyogi, P.; and Sindhwani, V. 2006. Manifold
regularization: A geometric framework for learning from la-
beled and unlabeled examples. JMLR.
Breitkreutz, B.-J.; Stark, C.; Reguly, T.; Boucher, L.; Bre-
itkreutz, A.; Livstone, M.; Oughtred, R.; Lackner, D. H.;
Bhler, J.; Wood, V.; Dolinski, K.; and Tyers, M. 2008. The
biogrid interaction database: 2008 update. Nucleic Acids Re-
search.
Cao, S.; Lu, W.; and Xu, Q. 2015. Grarep: Learning graph
representations with global structural information. In Pro-
ceedings of CIKM 2015.
Chapelle, O.; Schlkopf, B.; and Zien, A. 2010. Semi-
Supervised Learning. The MIT Press.
Chen, L.; Tsang, I. W.; and Xu, D. 2012. Laplacian embed-
ded regression for scalable manifold regularization. IEEE
Transactions on Neural Networks and Learning Systems.
Chu, W.; Sindhwani, V.; Ghahramani, Z.; and Keerthi, S. S.
2006. Relational learning with gaussian processes. In Pro-
ceedings of NIPS 2006.
Cybenko, G. 1989. Approximation by superpositions of a
sigmoidal function. Mathematics of Control, Signals and
Systems.
Delalleau, O.; Bengio, Y.; and Roux, N. L. 2005. Efficient
non-parametric function induction in semi-supervised learn-
ing. In Proceedings of AISTATS 2005.
Dong, Y.; Chawla, N. V.; and Swami, A. 2017. Metap-
ath2vec: Scalable representation learning for heterogeneous
networks. In Proceedings of KDD 2017.
Dreyfus, S. 1962. The numerical solution of variational
problems. Journal of Mathematical Analysis and Applica-
tions.
Grover, A., and Leskovec, J. 2016. Node2vec: Scalable
feature learning for networks. In Proceedings of KDD 2016.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of CVPR
2016.
Hornik, K. 1991. Approximation capabilities of multilayer
feedforward networks. Neural Networks.
Joachims, T. 2003. Transductive learning via spectral graph
partitioning. In Proceedings of ICML 2003.
Karlen, M.; Weston, J.; Erkan, A.; and Collobert, R. 2008.
Large scale manifold transduction. In Proceedings of ICML
2008.
Kingma, D., and Ba, J. 2015. Adam: A method for stochastic
optimization. In Proceedings of ICLR 2015.
Ou, M.; Cui, P.; Wang, F.; Wang, J.; and Zhu, W. 2015.
Non-transitive hashing with latent similarity components. In
Proceedings of KDD 2015.
Ou, M.; Cui, P.; Pei, J.; Zhang, Z.; and Zhu, W. 2016. Asym-
metric transitivity preserving graph embedding. In Proceed-
ings of KDD 2016.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In Proceedings of
KDD 2014.

Rasmussen, C. E., and Williams, C. K. I. 2005. Gaus-
sian Processes for Machine Learning (Adaptive Computa-
tion and Machine Learning). The MIT Press.
Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1988.
Learning representations by back-propagating errors. In
Neurocomputing: Foundations of Research. The MIT Press.
Silva, R.; Chu, W.; and Ghahramani, Z. 2007. Hidden com-
mon cause relations in relational learning. In Proceedings of
NIPS 2007.
Smola, A. J., and Kondor, R. 2003. Kernels and regulariza-
tion on graphs. In Proceedings of COLT 2003.
Stoyanov, V.; Ropson, A.; and Eisner, J. 2011. Empirical
risk minimization of graphical model parameters given ap-
proximate inference, decoding, and model structure. In Pro-
ceedings of AISTATS 2011.
Subramanya, A., and Bilmes, J. 2008. Soft-supervised learn-
ing for text classification. In Proceedings of EMNLP 2008.
Szummer, M., and Jaakkola, T. 2001. Partially labeled clas-
sification with markov random walks. In Proceedings of
NIPS 2001.
Tang, L., and Liu, H. 2009. Relational learning via latent
social dimensions. In Proceedings of KDD 2009.
Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; and Mei, Q.
2015. Line: Large-scale information network embedding. In
Proceedings of WWW 2015.
Tomar, V. S., and Rose, R. C. 2014. Manifold regularized
deep neural networks. In Proceedings of INTERSPEECH
2014.
Wang, S.; Tang, J.; Aggarwal, C.; Chang, Y.; and Liu, H.
2017a. Signed network embedding in social media. In Pro-
ceedings of SDM 2017.
Wang, X.; Cui, P.; Wang, J.; Pei, J.; Zhu, W.; and Yang, S.
2017b. Community preserving network embedding. In Pro-
ceedings of AAAI 2017.
Wang, D.; Cui, P.; and Zhu, W. 2016. Structural deep net-
work embedding. In Proceedings of KDD 2016.
Yang, C.; Liu, Z.; Zhao, D.; Sun, M.; and Chang, E. Y. 2015.
Network representation learning with rich text information.
In Proceedings of IJCAI 2015.
Yu, K., and Chu, W. 2007. Gaussian process models for link
analysis and transfer learning. In Proceedings of NIPS 2007.
Yu, K.; Chu, W.; Yu, S.; Tresp, V.; and Xu, Z. 2006. Stochas-
tic relational models for discriminative link prediction. In
Proceedings of NIPS 2006.
Zheng, Q., and Skillicorn, D. 2015. Spectral embedding of
signed networks. In Proceedings of SDM 2015.
Zhu, X., and Ghahramani, Z. 2002. Learning from labeled
and unlabeled data with label propagation. Technical report,
Carnegie Mellon University.
Zhu, X.; Ghahramani, Z.; and Lafferty, J. 2003. Semi-
supervised learning using gaussian fields and harmonic
functions. In Proceedings of ICML 2003.
Zhu, X. 2005. Semi-supervised Learning with Graphs.
Ph.D. Dissertation, Carnegie Mellon University.

