
ZAWA: A ZKSNARKWASM Emulator
SINKA GAO, Delphinus Lab., Australia
HONGFEI FU, Shanghai Jiao Tong University, China

HENG ZHANG, Delphinus Lab., Australia
JUNYU ZHANG, Delphinus Lab., Australia
GUOQIANG LI∗, Shanghai Jiao Tong University, China

WebAssembly, or WASM for short, is a binary code format for a stack-based virtual machine, first published in

2018 and now becomes a main-steam technology for providing distributed serverless functions. Recently, the

demand for privacy and trustless serverless functions has started to grow in cloud, edge, and grid computation,

which poses a question for those serverless function providers: what feature they need to add to make WASM

runtime more secure so that the application run on top it become trustless to their users. To address this, we

leverage the technology ZKSNARK (zero-knowledge Succinct Non-interactive Argument of Knowledge), a

powerful proof system that allows efficient verification of the evaluation problem of statements, to give WASM

runtime the ability to provide trustless computation service. More precisely, we present ZAWA, a ZKSNARK

backed virtual machine that emulates the execution of WASM bytecode and generates zero-knowledge-proofs

for the emulation result. The proof generated by the ZAWA virtual machine can then be used to convince an

entity, with no leakage of confidential information, that the result of the emulation enforces the semantic

specification of WASM.

ACM Reference Format:
Sinka Gao, Hongfei Fu, Heng Zhang, Junyu Zhang, and Guoqiang Li. 2022. ZAWA: A ZKSNARK WASM

Emulator. Proc. ACM Program. Lang. 1, 1 (November 2022), 22 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
WASM (or WebAssembly) is an open standard binary code format close to assembly. Its initial

objective is to provide an alternative to java-script with better performance in the current web

ecosystems. Benefiting from its platform independence, front-end flexibility (can be compiled from

the majority of languages including C, C++, assembly script, rust, etc.), good isolated runtime

and speed that is close to native binary, its usage starts to arise in the distributed cloud and edge

computing. Recently it has become a popular binary format for users to run customized functions

on AWS Lambda, Open Yurt, AZURE, etc.

As with the technology of WASM runtime for cloud and edge computing shifts, security and

privacy [20, 37] issues emerge in scenarios that demand trustless computation [11, 33, 43] and

privacy computing [40, 46]. For instance, suppose that there is a voting hub hosted in the cloud to

∗
Corresponding Author.

Authors’ addresses: Sinka Gao, xgao@zoyoe.com, Delphinus Lab., P.O. Box 1212, Sydney, NSW, Australia, 43017-6221;

Hongfei Fu, jt002845@sjtu.edu.cn, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, China, 200240; Heng

Zhang, shindar90@gmail.com, Delphinus Lab., P.O. Box 1212, Sydney, NSW, Australia, 43017-6221; Junyu Zhang, junyu92@

gmail.com, Delphinus Lab., P.O. Box 1212, Sydney, NSW, Australia, 43017-6221; Guoqiang Li, li.g@sjtu.edu.cn, Shanghai

Jiao Tong University, 800 Dongchuan Rd., Shanghai, China, 200240.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

2475-1421/2022/11-ART $15.00

https://doi.org/XXXXXXX.XXXXXXX

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

HTTPS://ORCID.ORG/1234-5678-9012
HTTPS://ORCID.ORG/0000-0001-9005-7112
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/1234-5678-9012
https://orcid.org/0000-0001-9005-7112
https://doi.org/XXXXXXX.XXXXXXX

2 Sinka Gao, Hongfei Fu, Heng Zhang, Junyu Zhang, and Guoqiang Li

collect votes for proposals. The role of this service is to report the voting results to users while not

leaking any information about any voters’ choices. In this scenario, we would like a service that not

only provides the voting results but also provides proof to convince users that the provided results

are calculated with predefined protocols (voting protocols). However, since the service cannot leak

voters’ personal choices, it should not reveal any information about the voting tickets that are

signed by voters, which makes it tricky to provide evidence of the result.

Traditional ways to achieve trustlessness and privacy usually involve invasive modification

[1, 15, 17, 28] to the source code of the service running on the cloud and those changes are usually

applied in a case-by-case manner. In this work, instead of changing the code itself, we propose a

novel approach by implementing ZAWA, which is a WASM virtual machine that not only runs the

WASM bytecode but also provides a zero-knowledge proof to convince a verifier that the execution

result is trustworthy.

The idea of ZAWA is derived from ZKSNARK (Zero-Knowledge Succinct Non-Interactive Ar-

gument of Knowledge) [3, 22, 35], which is a combination of SNARG (Succinct non-interactive

arguments) and zero-knowledge proof. In general, the adoption of ZKSNARK usually requires

implementing a program in arithmetic circuits or circuit-friendly languages (Pinocchio [27, 34],

TinyRAM [4], Buffet/Pequin [42], Geppetto [16], xJsnark framework [30], ZoKrates [18]) that forms

a barrier for existing programs to leverage the power of it. An alternative way is that instead of

applying ZKSNARK on the source code, we apply it on the bytecode level of a virtual machine

and implement a ZKSNARK-backed virtual machine (Similar ideas can be found in Risc0 [39] and

ZKEVM [2, 41] while the underlying bytecode they support has less flexibility and portability for

cloud application). In this work, we take the approach of writing the whole WASM virtual machine

in ZKSNARK circuits so that existing WASM applications can benefit from ZKSNARK by simply

running on the ZAWA without any modification. Therefore, the cloud service provider can prove

to any user that the computation result is computed honestly and no private information is leaked.

The Problem. To implement a ZKSNARK-backed WASM virtual machine, we need to connect the

implementation of WASM runtime with the proof system of ZKSNARK. In general, a ZKSNARK

system is represented in arithmetic circuits with polynomial constraints. Therefore we need to

abstract the full imperative logic of a WASM virtual machine systematically and rewrite it into

arithmetic circuits with constraints. Given two outputs, one is generated by emulating the WASM

bytecode in WASM runtime that enforces the semantics of WASM specification, and the other

satisfies the constraints imposed on the arithmetic circuits. If the circuits we write preserve the

semantics, these two outputs must be the same. Hence the proof of the ZKSNARK derived from the

circuits also shows that the output is valid as a result of emulating the bytecode in WASM runtime.

Our Contribution. In this paper, we systematically abstract the WASM runtime implementation

and rewrite it into arithmetic circuits with constraints. By doing so, we have proposed and imple-

mented the first ZKSNARK WASM virtual machine that supports WASM specification and produce

succinct zero-knowledge correctness proofs of the execution result. Moreover, by providing ZAWA,

an existing program compiled to WASM can then satisfy (without any modification) the privacy

and trustless requirements that have recently emerged in the cloud and edge computing.

Organization of the Paper. After a brief introduction to the basic ideas about how to connect

a stateful virtual machine with ZKSNARK in Section 2, we describe the basic building block and

ingredients used to construct ZAWA circuits in Section 3 and then present the circuits architecture

in Section 4. After the architecture is settled, we discuss the circuits of every category of WASM

instructions in Section 5. In addition, in Section 5.4 we discuss foreign instruction expansion which

provides a way to extend the virtual machine for better performance and integration. In Section 6,

we present the partition and proof batching technique to solve the long execution trace problem,

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

ZAWA: A ZKSNARK WASM Emulator 3

and then discuss the performance benchmark in Section 7. In the end, we draw our conclusion and

pursue the future work in Section 8.

2 OVERVIEW
Throughout the paper, we use the notation 𝑎 : 𝐴 to specify a variable of type 𝐴, F to specify a

number field, and F𝑛 to specify a multi-dimensional vector with dimension 𝑛. We denote by 𝐴 → 𝐵

the function type from 𝐴 to 𝐵 and use ◦ for function composition. Moreover, we use G[𝑖] [𝑗] to
specify the value of the cell of matrix G at the 𝑖-th row and 𝑗-th column.

2.1 WASM Run-Time as a State Machine
We consider theWASMvirtualmachine as a gigantic program,with the input as a tuple (I(C,H), E, IO),
where I is a WASM executable image that contains a code image C and an initial memory H, E is

its entry point, and IO represents the (stdin, stdout) firmware. In the serverless setup, the WASM

run-time starts with an initial state based on the loaded image I, then jumps to the entry point E
and starts executing the bytecode based on the WASM specification.

Internally theWASM run-time maintains a stateS denoted by a tuple (𝑖𝑎𝑑𝑑𝑟, F ,M,G,SP, I, IO)
where 𝑖𝑎𝑑𝑑𝑟 is the current instruction address, F is the calling frame with a 𝑑𝑒𝑝𝑡ℎ field, M is the

memory state, SP is the stack and G is the set of global variables. The run-time simulates the

semantic of each instruction start at E until it reaches the exit. The instructions it simulates form

an execution trace [𝑡0, 𝑡1, 𝑡2, 𝑡3, · · ·] and each transition 𝑡𝑖 is a function between states that takes an

input 𝑠 : S and outputs a new state 𝑠′ : S. For simplicity, we will use the notation of record field to

specify a field in state 𝑠 : S. For example, 𝑠 .𝑖𝑎𝑑𝑑𝑟 denotes the current instruction address of state 𝑠 ,

𝑠 .IO.stdin denotes the input of state 𝑠 , etc. We also use 𝑜𝑝 (𝑖𝑎𝑑𝑑𝑟) to denote the opcode (operation

code that specifies the operation to be performed) at address 𝑖𝑎𝑑𝑑𝑟 in the code section C of image I.
Based on the above definition, we define the criteria for a list of state transitions to be valid

under (I(C,H), E, IO), as follows.

Definition 2.1 (Valid Execution Trace). Given a WASM machine with input (I(C,H), E, IO), and 𝑠0

is the initial state with 𝑠0.𝑖𝑎𝑑𝑑𝑟 = E. A valid execution trace is a list of transition functions 𝑡𝑖 such

that the following holds:

(1) 𝑡0 matches the semantic of the instruction 𝑜𝑝 at the entry 𝑖𝑎𝑑𝑑𝑟0 = E.
(2) For all 𝑘 , 𝑠𝑘 = 𝑡𝑘−1 ◦ · · · 𝑡1 ◦ 𝑡0 (𝑠0), 𝑡𝑘 enforces the semantics of 𝑜𝑝 (𝑠𝑘 .𝑖𝑎𝑑𝑑𝑟).
(3) If 𝑠𝑒 is the last state, then the depth of the calling frame is zero: 𝑠𝑒 .F .𝑑𝑒𝑝𝑡ℎ = 0.

We take the output of the final state 𝑠𝑒 .IO.𝑜𝑢𝑡𝑝𝑢𝑡 to be the result of the WASM run-time with

input (I(C,H), E, IO). The 𝑜𝑢𝑡𝑝𝑢𝑡 is a valid result if and only if there exists an valid execution

sequence [𝑡0, 𝑡1, · · ·] such that 𝑠𝑒 is the last state of 𝑡𝑖 under (I(C,H), E, IO).

2.2 Succinct Proof of a Program
Compared with a standard WASM run-time, ZAWA aims to provide a proof to prove that the

output is valid so that it can be used in scenarios which require trustless and privacy computation.

Moreover, the verifying algorithm needs to be simple in the sense of complexity to be useful in

practical. Before we dive into how to construct such a proving and verifying scheme for the complex

WASM run-time, we go through a few basics about how to construct such a scheme for functions.

Suppose that we have a pure function 𝑓 , a list of parameters 𝑝𝑎𝑟𝑎𝑚𝑠 for 𝑓 , an entity 𝐴 that

calculates 𝑟 = 𝑓 (𝑝𝑎𝑟𝑎𝑚𝑠) and an entity 𝐵 that would like to know 𝑟 but does not willing to do the

exact computation. A scheme that enables 𝐴 to prove to 𝐵 about the correctness of 𝑟 is of great

interests in cryptography design if the complexity for 𝐵 to verify the proof is negligible comparing

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

4 Sinka Gao, Hongfei Fu, Heng Zhang, Junyu Zhang, and Guoqiang Li

to the complexity to do the actual calculation. If such a scheme is not interactive and the verifying

complexity is negligible comparing to the initial complexity of 𝑓 , then we say it is a SNARK (succinct

non-interactive argument of knowledge). If the SNARK proof also leaks no information then it is a

ZKSNARK (zero-knowledge succinct non-interactive argument of Knowledge).

Topics about constructing ZKSNARK has been well studied in the literature [8–10, 14, 21–

23, 23, 32] where functions 𝑓 are defined by a computational program P. A common approach for

constructing such ZKSNARK is to turn the program P : F𝑚 → F𝑟 into a special form of constraint

systems𝐶𝑖 (𝑥) = 0 (where𝐶 : F𝑛 → F), such that for any parameters 𝑝𝑎𝑟𝑎𝑚 : F𝑚 of P, there exists a
unique vector of witness𝑤 : F𝑛−𝑚−𝑟

and a unique vector of result 𝑟 : F𝑟 that satisfy

𝐶𝑖 (𝑝𝑎𝑟𝑎𝑚0, 𝑝𝑎𝑟𝑎𝑚1, · · · ,𝑤0,𝑤1, · · · , 𝑟0, 𝑟1, · · ·) = 0.

We call such constraint system arithmetic circuits (see 2.3 for the precise definition). Once the

arithmetic circuits are constructed based on P, the problem of proving P(𝑝𝑎𝑟𝑎𝑚𝑠) = 𝑟 becomes

the problems of finding witness vector 𝑤 and prove that the vector 𝑣 = (𝑝𝑎𝑟𝑎𝑚𝑠;𝑤 ; 𝑟) satisfies
𝐶 (𝑣) = 0.

Once the problem of constructing ZKSNARK for a program P is turned into the problem of

constructing ZKSNARK for the correspondent constraint system C, various approach can be

applied based on the shapes of C. The basic idea to construct ZKSNARK for C is to turn the

proof for the constraint system C into proofs of polynomial evaluations, that is deriving a list of

polynomials 𝑝 and a list of evaluation pairs (𝑥𝑖 , 𝑣𝑖) such that ∀𝑖, 𝑝𝑖 (𝑥𝑖) = 𝑣𝑖 implies C. The technical
and implementation details of such transform is not the focus of this paper. We omit the details and

give an example to motivate the basic technique behind it. For example, suppose that a constraint

system C𝑖 (𝑥) = 0 can be rewritten into the matrix form

∑
𝑗 𝑐𝑖 𝑗𝑥 𝑗 = 0 (linear constraints are used

here for simplicity). By Lagrange interpolating on each column vector of C and vector 𝑥 we get

a list of polynomials 𝑐𝑖 (𝑋) and 𝑝 (𝑋) such that 𝑐𝑖 (𝑗) = 𝑐𝑖 𝑗 and 𝑝 (𝑗) = 𝑥 𝑗 . Therefore, C𝑖 (𝑥) = 0

is equivalent to the polynomial equation

∑
𝑐𝑖 (𝑋)𝑝 (𝑋) = 0 when 𝑋 = 1, 2, 3 · · · . It follows that

the proof of C can be turned into the proof of the polynomial evaluation problem by proving the

evaluation of

∑
𝑐𝑖 (𝑋)𝑝 (𝑋) = 0 at 𝑋 = 0, 1, 2 · · · .

A powerful tool for constructing ZKSNARK schemes for the statement of polynomial evaluation

is PCS (Polynomial Commitment Schemes [6, 7, 29]). In this paper, without specification, we use

KZG (Kate, Zaverucha and Goldberg [29]) as our polynomial commitment scheme. Below we will

put more efforts on explaining the specific arithmetic circuits we use to describe the semantics of

our target program P which is a WASM virtual machine.

2.3 Arithmetic Circuits
Arithmetic circuits are a crucial building block in the ZKSNARK of a program. Among various

arithmetic circuit systems investigated recently [19, 26, 36], we use the Halo2’s [25] circuit system

for its flexibility in customization and better integration with polynomial lookup which we needed

for table lookup and range check.

Based on the arithmetic circuits provided by ZAWA, the Halo2’s zero-knowledge proof system

generating execution proofs in a ZKSNARK way. The feature of zero-knowledge makes ZAWA

extremely useful in scenarios where the prover would like to prove that certain output is calculated

from the execution of a particular program image but does not want to leak the data used.

Due to the complicated structure of a full WASM virtual machine, we need to pick a constraint

system C that is rich in expressiveness and fast in proof producing.

A circuit in Halo2 is defined by a tuple (G,C) where G is a 𝑛 column matrix with rows to be

filled later and C is a set of constraints on a row basis. More precisely, suppose that each cell in 𝐺

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

ZAWA: A ZKSNARK WASM Emulator 5

is indexed (relative to a row 𝑙) as G𝑙,𝑐,𝑟 = G[𝑙 + 𝑟] [𝑐], then each constraint C𝑖 in C is one of the

following form

C𝑖 (𝑙) =
{

P
(
G𝑙,𝑐0,𝑟0

,G𝑙,𝑐1,𝑟1
, · · · ,G𝑙,𝑐𝑘 ,𝑟𝑘

)
= 0 or(

G𝑙,𝑐0,𝑟0
,G𝑙,𝑐1,𝑟1

, · · · ,G𝑙,𝑐𝑘 ,𝑟𝑘

)
∈ T

(1)

where 𝑐𝑘 , 𝑟𝑘 are constants, P is a fixed multi-linear polynomial and T is a table.

Remark 1. There are two ways to define constraint in Halo2’s constraint system C. One way is
using polynomial equations of cells and the other is using polynomial lookup. Polynomial lookup is a
special constraint that can enforce that an expression 𝑒𝑥𝑝𝑟 of cells belongs to an existing table T. In
the rest of the paper, we use the expression 𝑝𝑙𝑜𝑜𝑘𝑢𝑝 (T, 𝑒𝑥𝑝𝑟) = 0 to indicate 𝑒𝑥𝑝𝑟 ∈ T.

In the rest of this paper, we use 𝑐𝑢𝑟 as the current row that C𝑖 is apply on and use the notation

𝑟𝑖 .(𝑐𝑢𝑟 + 𝑟) to denote G𝑐𝑢𝑟,𝑖,𝑟 to emphasize the column 𝑟𝑖 . With this notation, we see that the

constraint system C provides a flexible way for us to define constraint of cells of a row and their

siblings. For example, given the following summarize function 𝑠𝑢𝑚

function sum(v) {
for (suc=0,i=0;i<v.length;i++) {

suc +=v[i];
}
return suc;

}

The circuit for it can be constructed as in Table 1 and the constraint system enforced on each row

is defined in Equation 2.

Table 1. Circuit matrix of sum

s acc operand

1 𝑠𝑢𝑚0 = 0 𝑣0

1 𝑠𝑢𝑚1 = 𝑠𝑢𝑚0 + 𝑣0 𝑣1

1 · · · · · ·
0 𝑠𝑢𝑚𝑘 𝑛𝑖𝑙

C(𝑐𝑢𝑟) =
{

𝑠 .(𝑐𝑢𝑟) × (𝑎𝑐𝑐.(𝑐𝑢𝑟) + 𝑜𝑝𝑒𝑟𝑎𝑛𝑑.(𝑐𝑢𝑟) − 𝑎𝑐𝑐.(𝑐𝑢𝑟 + 1)) = 0

𝑠 .(𝑐𝑢𝑟) × (1 − 𝑠 .(𝑐𝑢𝑟)) = 0

(2)

Remark 2. Notice that the first constraint ensures that addition is applied to each row except for
the last row, and the second constraint enforces that 𝑠 is either 1 or 0).

Motivated by the above example, we present the formal definition of arithmetic circuits as

follows.

Definition 2.2 (Arithmetic Circuit). An arithmetic circuit is a matrix with𝑚 columns equipped

with a constraint system C that each constraint C𝑖 of C is defined as in Equation 1 and for each

row 𝑐𝑢𝑟 in the matrix C(𝑐𝑢𝑟) holds.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

6 Sinka Gao, Hongfei Fu, Heng Zhang, Junyu Zhang, and Guoqiang Li

2.4 Connecting ZAWA Virtual Machine with Arithmetic Circuits
Now we are ready to make one step further. Instead of constructing a ZKSNARK scheme for simple

programs, we would like to construct a ZKSNARK, for a WASM virtual machine. ZAWA needs

to emulate the execution of I start with E under IO.stdin to generate IO.stdout and provide a

ZKSNARK proof which proves that IO.stdout is valid. Just like what needs to be done for simple

programs to produce a ZKSNARK, we need to construct a huge arithmetic circuits with carefully

designed constraints C such that the following two are equivalent:

(1) IO.stdout is the unique valid output if the execution of I start with E under IO.stdin satisfies

the WASM specification.

(2) There exists a list of witness 𝑠𝑖 such that C(I, E, IO, 𝑠0, 𝑠1, · · · , 𝑠𝑒) = 0.

We noticed that a valid execution trace will always produce a valid output respecting the WASM

specification. So to construct ZKSNARK for WASM virtual machine, it is sufficient to construct

an arithmetic circuit C of two states before and after an instruction so that the following two are

equivalent.

(1) Given (I, E, IO) and 𝑠0 is the initial state, [𝑡0, 𝑡1, 𝑡2, · · ·] is a valid execution trace satisfy Definition
2.1.

(2) Given an execution trace [𝑡0, 𝑡1, · · ·] of (I, E, IO, 𝑠0) and 𝑠𝑘 = 𝑡𝑘−1◦· · · 𝑡1◦𝑡0 (𝑠0).C(I, E, IO, 𝑠𝑘 , 𝑠𝑘+1) =
0 implies 𝑡𝑘 enforces the semantics of 𝑜𝑝 (𝑠𝑘 .𝑖𝑎𝑑𝑑𝑟).
We do not construct such circuit C from scratch, we construct it from small building blocks in

Section 3 then create the architecture of C in Section 4 and present all the details in Section 5.

3 BASIC BUILDING BLOCKS OF ZAWA CIRCUITS
As described in Section 2.4, the arithmetic circuit of execution trace is crucial in constructing

SNARKS of WASM virtual machine. In this section we will give a brief of some basic techniques

and elementary circuits used to construct our final arithmetic circuits in ZAWA.

3.1 Representing Basic Types in Halo2 Constraint System
Recall that to prove an arithmetic circuit matrix with constraint C holds, the Plonkish proof

system interpolates each column 𝑐𝑖 into polynomials 𝑐𝑖 (𝑥) such that 𝑐𝑖 (𝑗) = 𝑐𝑖 𝑗 and then uses KCG

commitment scheme to prove C(𝑐𝑖 (𝑥)) = 0 holds for all 𝑥 = 1, 2, 3, · · · .
However, to use KZG commitment scheme on polynomial 𝑐𝑖 , we require 𝑐𝑖 (𝑥) ∈ F where F is the

scalar field of some elliptic curve C. Therefore, each 𝑐𝑖 (𝑗) is in the scalar field F of the elliptic curve

C in Halo2’s arithmetic circuit system. Since the basic types in WASM are i64 and i32 which do not

match the number field F in Halo2, we need to add a constraint 𝑥 < 2
32
(or 𝑥 < 2

64
) to represent a

variable 𝑥 with type 𝑖32 or 𝑖64. In ZAWA, we use TN to denote a table containing elements from 0

to 2
𝑁 − 1 and then we use a polynomial lookup to prove that values of some column 𝑐𝑖 are less

than 2
𝑁 − 1 by 𝑝𝑙𝑜𝑜𝑘𝑢𝑝 (TN, 𝑐𝑖 (𝑗)) = 0. When 𝑁 is large (e.g. 64) and TN becomes too big, we will

decompose an i64 into several parts and prove that each part is less then 2
8 − 1. Below we use the

notation 𝑥 ∈ TN to denote 𝑥 < 2
𝑁
and omit the details of decomposing 𝑥 into small pieces when

necessary.

3.2 Representing Map Using Polynomial Lookup of Tables
Other than specifying a range for cells, another usage of polynomial lookup is that we can encode

the state of key-value map into tables and use polynomial lookup to specify the semantics of getting

a value of a certain key in a map.

Here is an example. Recall that we represent the state of ZAWA by (𝑖𝑎𝑑𝑑𝑟, F ,M,G,SP, I, IO)
where C and H are fixed by the WASM image. We encode state C and H in tables TC : 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 ×

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

ZAWA: A ZKSNARK WASM Emulator 7

𝑂𝑝𝑐𝑜𝑑𝑒 and TH : 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 ×𝑈 64. By doing this, we can use the polynomial lookup to specify the

semantic of getting opcode 𝑜𝑝 at address 𝑎𝑑𝑑𝑟 in C by (𝑖𝑎𝑑𝑑𝑟, 𝑜𝑝) ∈ TC and specify the semantic

of WASM of getting the initial byte data 𝑣 at address 𝑎𝑑𝑑𝑟 in H by (𝑑, 𝑎𝑑𝑑𝑟) ∈ TH .

3.3 Representing Math Semantic as Arithmetic Circuits
According to the WASM specification, the semantics of opcodes are usually defined as mathematical

equations and state transformation. Thus we need to construct arithmetic circuits to enforce the

semantics of the opcodes. For example, suppose that the opcode 𝑑𝑖𝑣𝑢 (a division of unsigned int)

has the following semantics:

𝑑𝑖𝑣𝑢 (𝑎, 𝑏) = (𝑎 − 𝑎 mod 𝑏) ÷ 𝑏

It follows that to write the above mathematical definition into polynomial constraints we need to

introduce intermediate witness 𝑟 such that the above semantics can be rewritten as follows:{
𝑎 = 𝑑𝑖𝑣𝑢 (𝑎, 𝑏) ∗ 𝑏 + 𝑟
𝑟 < 𝑏

(3)

However, since 𝑟 and 𝑏 are in F, it needs more work to represent 𝑟 < 𝑏 into polynomial constraints.

Fortunately, in ZAWA, we use range check to constraint 𝑟 and𝑏 within 64 bits. The above constraints

can be further rewritten into the following polynomial constraints with one more extra witness 𝑘 :
𝑎 = 𝑑𝑖𝑣𝑢 (𝑎, 𝑏) ∗ 𝑏 + 𝑟
𝑏 = 𝑟 + 𝑘
𝑎, 𝑟, 𝑏, 𝑘 ∈ 𝑇64,

(4)

When dealing with opcode that has more complicated mathematical semantics, we need a way to

formally prove that the derived constraints represent the same semantic. In ZAWA, we use Z3 to

formally check that the mathematical definition is correctly refined to the arithmetic circuits.

3.4 Enforcing Valid Dynamic State Accessing using Polynomial Lookup Tables
Given a sequence of state transition function {𝑡𝑖 } such that each transition might read or write

finitely many key-value pairs (e.g. access memory M, stack SP or global G) in the state S.
We label each read or write of {𝑡𝑖 } in a sub sequence {𝑡𝑘𝑖 } and use the tuple (𝑡𝑖𝑑 = 𝑖,𝑚𝑖𝑑 =

𝑘, 𝑎𝑐𝑐𝑒𝑠𝑠𝑇𝑦𝑝𝑒, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑣𝑎𝑙𝑢𝑒) to denote the access log of {𝑡𝑘𝑖 } such that each access log has the

following semantic:

• Init memory: (𝑡𝑖𝑑,𝑚𝑖𝑑, 𝑖𝑛𝑖𝑡, 𝑎𝑑𝑑𝑟, 𝑣) := {𝑠 .𝑎𝑑𝑑𝑟 = 𝑣 ; }
• Write value 𝑣 to memory: (𝑡𝑖𝑑,𝑚𝑖𝑑,𝑤𝑟𝑖𝑡𝑒, 𝑎𝑑𝑑𝑟, 𝑣) := {𝑠 .𝑎𝑑𝑑𝑟 = 𝑣 ; }
• Read from memory: (𝑡𝑖𝑑,𝑚𝑖𝑑, 𝑟𝑒𝑎𝑑, 𝑎𝑑𝑑𝑟, 𝑣) := {𝑎𝑠𝑠𝑒𝑟𝑡 (𝑠 .𝑎𝑑𝑑𝑟 ≡ 𝑣); }

As the address in 𝑡𝑘𝑖 can be randomly distributed which makes it hard to reason about the fact

that a read from a address 𝑎𝑑𝑑𝑟 should get the value 𝑣 that related to the latest write or init of that

𝑎𝑑𝑑𝑟 . To solve this, we do the following. First, we create a lookup table T by rearranging the log by

their access address and order them by (tid, mid) within each address block (see Table 2).

Second, we enforce the semantic of init, read and write by equip Table 2 with constraints of each

row using Equation 5.

CT (𝑐𝑢𝑟) =


𝑟 (𝑐𝑢𝑟).𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ≡ 𝑟 (𝑛𝑒𝑥𝑡).𝑎𝑑𝑑𝑟𝑒𝑠𝑠 → 𝑟 (𝑐𝑢𝑟) .𝑖𝑑 ≤ 𝑟 (𝑛𝑒𝑥𝑡).𝑖𝑑
𝑟 (𝑛𝑒𝑥𝑡).𝑎𝑐𝑐𝑒𝑠𝑠𝑇𝑦𝑝𝑒 ≡ 𝑟𝑒𝑎𝑑 → 𝑟 (𝑛𝑒𝑥𝑡).𝑣𝑎𝑙𝑢𝑒 ≡ 𝑟 (𝑐𝑢𝑟).𝑣𝑎𝑙𝑢𝑒
𝑟 (𝑐𝑢𝑟).𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ≠ 𝑟 (𝑝𝑟𝑒𝑣).𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ↔ 𝑟 (𝑐𝑢𝑟).𝑎𝑐𝑐𝑒𝑠𝑠𝑇𝑦𝑝𝑒 ≡ 𝑖𝑛𝑖𝑡

𝑟 (𝑐𝑢𝑟).𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ≠ 𝑟 (𝑝𝑟𝑒𝑣).𝑎𝑑𝑑𝑟𝑒𝑠𝑠 → 𝑟 (𝑐𝑢𝑟).𝑎𝑑𝑑𝑟𝑒𝑠𝑠 > 𝑟 .(𝑛𝑒𝑥𝑡).𝑎𝑑𝑑𝑟𝑒𝑠𝑠

(5)

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

8 Sinka Gao, Hongfei Fu, Heng Zhang, Junyu Zhang, and Guoqiang Li

Table 2. Memory access table

address id = (tid, mid) accessType value

𝑎𝑑𝑑𝑟1 𝑡𝑖𝑑1 𝑎𝑐𝑐1 𝑣1

𝑎𝑑𝑑𝑟1 𝑡𝑖𝑑2 𝑎𝑐𝑐2 𝑣2

𝑎𝑑𝑑𝑟1 𝑡𝑖𝑑3 𝑎𝑐𝑐3 𝑣3

𝑎𝑑𝑑𝑟2 𝑡𝑖𝑑4 𝑎𝑐𝑐3 𝑣4

𝑎𝑑𝑑𝑟2 𝑡𝑖𝑑5 𝑎𝑐𝑐4 𝑣5

· · · 𝑡𝑖𝑑𝑘 𝑎𝑐𝑐𝑘 𝑣𝑘

Remark 3. Rearranging means the map from access log to T is a one to one map. The first constraint
enforces that for access logs visiting the same address, they are sorted by their accessing order. The
second constraint enforces that the read access get the correct value and the third constraint enforces
that init happens once and only once at the beginning of each address block.

Theorem 3.1. Give an memory access log 𝐿𝑖 , the log 𝐿𝑖 is valid if there exists a table T such that T
satisfies the above constraints and each 𝐿𝑖 is in T and vice versa.

Proof. First, for init access log, the only constraint we need to enforce is that each address can

only be init once. Suppose there are two init access logs 𝐿𝑎 and 𝐿𝑏 init the same address in the

access log 𝐿𝑖 , then they must both exists in T in the same address block, which contradicts the

third constraint of Equation 5. Second, for read access log 𝐿𝑟 = (𝑡𝑖𝑑,𝑚𝑖𝑑, 𝑟𝑒𝑎𝑑, 𝑎𝑑𝑑𝑟, 𝑣), we need to

prove that the latest write or init access log 𝐿𝑙𝑎𝑡𝑒𝑠𝑡 to 𝑎𝑑𝑑𝑟 has put value 𝑣 into 𝑎𝑑𝑑𝑟 . Consider the

second constraint of Equation 5, it is sufficient to prove that the 𝐿𝑙𝑎𝑡𝑒𝑠𝑡 is the closest entry to 𝐿𝑟 in

T. Suppose that 𝐿𝑙𝑎𝑡𝑒𝑠𝑡 is not the closest rewrite (init) entry to 𝐿𝑟 in T, then there exists another

write access log 𝐿𝑜 between 𝐿𝑙𝑎𝑡𝑒𝑠𝑡 and 𝐿𝑟 such that 𝐿𝑜 .𝑖𝑑 > 𝐿𝑙𝑎𝑡𝑒𝑠𝑡 .𝑖𝑑 (by the first constraint of

Equation 5) which means that 𝐿𝑜 is the latest update of 𝑎𝑑𝑑𝑟 and contradicts the assumption. In

the end, all the write access are valid because all the parameters are explicit. □

In the end, as a consequence of Theorem 3.1, given any read access at address 𝑎𝑑𝑑𝑟 with

fixed 𝑡𝑖𝑑 , 𝑚𝑖𝑑 and 𝑎𝑐𝑐𝑒𝑠𝑠𝑇𝑦𝑝𝑒 , we can check the validity of the return value 𝑣 by checking

(𝑡𝑖 ,𝑚𝑖𝑑, 𝑎𝑐𝑐𝑒𝑠𝑠𝑇𝑦𝑝𝑒, 𝑎𝑑𝑑𝑟, 𝑣) ∈ 𝑇 .

4 ZAWA ARCHITECTURE CIRCUITS
As we have prepared our circuit building blocks in Section 3, we start constructing the main circuits

involved in ZAWA. We will first describe the workflow of ZAWA by splitting it into four stages to

give a big picture of how different circuits (see Figure 1) interplay with each other and then we will

present the details of each circuit.

Step 1: Image Setup. Defined by the WASM specification, a WASM image I is divided into sections.

Among them, there are sections that do not affect the execution of WASM (custom section, type

section, export section, data count section) and sections that decide the execution semantics (initial

memory section, code section, global data section). At the image setup stage, we encode the code

section into the lookup table TI and the data section into the lookup table TH. These two tables will

be used to enforce that each instruction in the execution trace is a valid instruction and that all the

initialization of the memory access log table complies with the initial data section of image 𝐼 .

Step 2: Execution Trace Generation. Recall that a valid execution trace is a sequence of transition

functions [𝑡0, 𝑡1, · · ·] such that each 𝑡𝑖 is related to the 𝑖th instruction during the execution of

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

ZAWA: A ZKSNARK WASM Emulator 9

Fig. 1. Architecture circuits

(I, E, IO). We uses the standard WASM run-time interpreter to generate 𝑡𝑖 that is valid as defined in

Definition 2.1.

Remark 4. We do not require the WASM run-time interpreter to be a trust component since if it
generates an invalid sequence, the constraints of the Execution Circuit fail because our Execution
Circuit enforces the semantics of each instruction.

Step 3: Synthesis Circuits. Once a valid execution trace is generated, it can be used to fill our main

execution circuit TE , together with other lookup tables TF (calling frame table), TM (memory

access log table), TG (global access log table) and TSP (stack access log table).

Step 4: Proof Generation. After all the circuits are synthesised, we can generate a ZKSNARK proof

via Halo2’s proof system. The proof can be used to prove that the execution trace and its output

are valid.

4.1 Setup Circuits
Setup circuits are filled by the ZAWA compiler component and its purpose is to provide lookup

tables TC , TH , TG that encode code section, initial memory section and global data section.

Code Section. The elementary items in the code section are 𝑜𝑝𝑐𝑜𝑑𝑒s of instructions that are grouped

in a tree-like hierarchy. Each instruction can be indexed by𝑚𝑜𝑖𝑑 (modular id),𝑚𝑚𝑖𝑑 (memory

block instance id), 𝑓 𝑖𝑑 (function id) and 𝑖𝑖𝑑 (offset of the instruction in a particular function). We

denote 𝑖𝑎𝑑𝑑𝑟 to be the tuple of (𝑚𝑜𝑖𝑑,𝑚𝑚𝑖𝑑, 𝑓 𝑖𝑑, 𝑖𝑖𝑑) and represent the code section as a map from

𝑖𝑎𝑑𝑑𝑟 to 𝑜𝑝𝑐𝑜𝑑𝑒 . Using the technique in Section 3.2, it is equivalent to encoding the code section

into TC (see Table 3). Code table TC is later used to constrain entries in execution table TE (see

Section 4.2) such that if 𝑒 ∈ TE then (𝑒.𝑖𝑎𝑑𝑑𝑟, 𝑒 .𝑜𝑝𝑐𝑜𝑑𝑒) must also in TC .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

10 Sinka Gao, Hongfei Fu, Heng Zhang, Junyu Zhang, and Guoqiang Li

Table 3. Code table

moid mmid fid iid opcode

0𝑥00 0𝑥01 0𝑥01 0𝑥00 𝑎𝑑𝑑

0𝑥00 0𝑥01 0𝑥01 0𝑥01 𝑠𝑢𝑏

· · · · · · · · · · · · sub

Initial Memory & Global Data. The element items in the memory section of WASM image are

unsigned 64 bit words (u64). The address of each 𝑢64 word can be indexed by𝑚𝑚𝑖𝑑 and 𝑜 𝑓 𝑓 𝑠𝑒𝑡 .

Besides the value, memory can have types that are either mutable or immutable. Thus the memory

section can be represented as a map from (𝑚𝑚𝑖𝑑, 𝑜 𝑓 𝑓 𝑠𝑒𝑡) to (𝑣𝑎𝑙𝑢𝑒, 𝑖𝑠𝑀𝑢𝑡𝑎𝑏𝑙𝑒). Similarly, using

the technique in Section 3.2, we can encode the initial memory section into TH . Similar to the init

memory section, the global data section contains variable instances that can be shared between dif-

ferent modules which can also be represented as a map from (𝑚𝑚𝑖𝑑, 𝑜 𝑓 𝑓 𝑠𝑒𝑡) to (𝑣𝑎𝑙𝑢𝑒, 𝑖𝑠𝑀𝑢𝑡𝑎𝑏𝑙𝑒).
Thus we merge two tables into one and use 𝑙𝑡𝑦𝑝𝑒 = 𝑀𝑒𝑚𝑜𝑟𝑦 |𝐺𝑙𝑜𝑏𝑎𝑙 to distinguish them (see Table

4 for an example of TH).

Table 4. Initial memory table

𝑙𝑡𝑦𝑝𝑒 𝑚𝑚𝑖𝑑 offset 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠𝑀𝑢𝑡𝑎𝑏𝑙𝑒

𝐻𝑒𝑎𝑝 𝑚𝑚𝑖𝑑0 1 0𝑥01 𝑡𝑟𝑢𝑒

𝐻𝑒𝑎𝑝 𝑚𝑚𝑖𝑑1 1 0𝑥01 𝑡𝑟𝑢𝑒

𝐺𝑙𝑜𝑏𝑎𝑙 𝑚𝑚𝑖𝑑2 1 0𝑥01 𝑡𝑟𝑢𝑒

𝐺𝑙𝑜𝑏𝑎𝑙 𝑚𝑚𝑖𝑑3 1 0𝑥01 𝑓 𝑎𝑙𝑠𝑒

We use TH to constrains entries in the memory access log table TM (see Table 2) so that

∀𝑒, 𝑒 ∈ TM ∧ 𝑒.𝑎𝑐𝑐𝑒𝑠𝑠𝑇𝑦𝑝𝑒 = 𝐼𝑛𝑖𝑡 → (𝑒.𝑖𝑎𝑑𝑑𝑟, 𝑣𝑎𝑙𝑢𝑒) ∈ TH . The meaning of this constraint is that

for each init access log in TM it must be defined in the initial memory section or global data section.

4.2 Execution Trace Circuits
Execution Trace Circuits are used to constraint the execution trace [𝑡0, 𝑡1, 𝑡2, · · ·] (see Section 2.1)

emulated from WASMI (WASM interpreter). Each trace element is related to an instruction in the

code table TC and has a predefined semantic based on the opcode. The semantics of a WASM

opcode is defined based on its parameters derived from the stack and the micro operations. First,

since WASM is a stack machine, we define the operands of an opcode 𝑜𝑝 to be

𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠 (𝑜𝑝) = 𝑝0, 𝑝1, 𝑝2 · · · , 𝑝𝑘
where 𝑝𝑖 are values on the stack and 𝑝𝑖 = 𝑠𝑡𝑎𝑐𝑘 [𝑠𝑝 + 𝑖]. Second, we define the semantics of 𝑜𝑝 by a

sequence of microoperations

𝑚𝑜𝑝𝑖 =



𝑤𝑖 = 𝑙𝑜𝑎𝑑 (𝑙𝑡𝑦𝑝𝑒, 𝑎𝑑𝑑𝑟) where 𝑎𝑑𝑑𝑟 ∈ {𝑝1, 𝑝2, · · · , 𝑝𝑘 ,𝑤0,𝑤1, · · · ,𝑤𝑖−1}
𝑤𝑟𝑖𝑡𝑒 (𝑙𝑡𝑦𝑝𝑒, 𝑎𝑑𝑑𝑟, 𝑣) where 𝑎𝑑𝑑𝑟, 𝑣 ∈ {𝑝1, 𝑝2, · · · , 𝑝𝑘 ,𝑤0,𝑤1, · · · ,𝑤𝑖−1}
𝑤𝑖 = 𝑎𝑟𝑖𝑡ℎ(𝑝1, 𝑝2, · · · , 𝑝𝑘 ,𝑤0,𝑤1, · · · ,𝑤𝑖−1);
FALLTHOUGH;

𝐺𝑂𝑇𝑂 (𝑖𝑎𝑑𝑑𝑟);
𝑖 𝑓 𝑏 𝑡ℎ𝑒𝑛 {𝑚𝑜𝑝𝑖+1, · · ·𝑚𝑜𝑝 𝑗 } 𝑒𝑙𝑠𝑒 {𝑚𝑜𝑝 𝑗+1, · · · }.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

ZAWA: A ZKSNARK WASM Emulator 11

When filling execution trace into the execution circuit, we arrange the instruction into small blocks

(see Table 5) of the execution circuit such that each block represents an instruction. Within each

block, we use the 𝑠𝑡𝑎𝑟𝑡 column to indicate whether this row is the start of a new instruction block

and put 𝑜𝑝 and𝑚𝑜𝑝 in the opcode column. In the address column, we push all used addresses and

the first row is the instruction address of this instruction in TC and in the 𝑠𝑝 column we record all

the changes of stack pointer.

Table 5. Execution table

start opcode bit cell state aux 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ∈ 𝑇𝐼 𝑠𝑝 u64 cell

true 𝑜𝑝 𝑏0 𝑡𝑖𝑑0 𝑎𝑢𝑥 𝑖𝑎𝑑𝑑𝑟0 𝑠𝑝 𝑤0

0 𝑚𝑜𝑝0 𝑏1 𝑓 𝑟𝑎𝑚𝑒 𝑎𝑢𝑥0 𝑎𝑑𝑑𝑟0 · · · 𝑤1

0 𝑚𝑜𝑝1 𝑏2 .. 𝑎𝑢𝑥1 𝑎𝑑𝑑𝑟1 · · · 𝑤2

0 𝑚𝑜𝑝2 𝑏3 𝑠3 𝑎𝑢𝑥2 𝑎𝑑𝑑𝑟2 · · · 𝑤3

· ·
true 𝑜𝑝1 𝑏 𝑡𝑖𝑑1 𝑎𝑢𝑥 𝑖𝑎𝑑𝑑𝑟1 sp’ 𝑤

· ·

Although different opcodes might have different semantics thus different𝑚𝑜𝑝𝑘 , 𝑎𝑑𝑑𝑟𝑖 , etc. There

are some common constraints that we need to enforce in the execution circuit. First. we need to

enforce that each instruction exists in the code section, thus (𝑖𝑎𝑑𝑑𝑟, 𝑜𝑝𝑐𝑜𝑑𝑒) ∈ TC . Second, suppose
that 𝑜𝑝𝑒𝑟𝑎𝑛𝑑 𝑝𝑖 is got from stack pointer 𝑠𝑝 as a result of𝑚𝑜𝑝𝑘 (𝑠𝑝), then (𝑠𝑝, 𝑟𝑒𝑎𝑑, 𝑖𝑎𝑑𝑑𝑟, 𝑘, 𝑝𝑖) ∈
TM , which means the result 𝑝𝑖 is enforced from a valid memory access log table. Similarly, suppose

that witness𝑤𝑖 is got from memory access of 𝑎𝑑𝑑𝑟 𝑗 with access type 𝑙𝑡𝑦𝑝𝑒 as a result of𝑚𝑜𝑝𝑘 , then

(𝑚𝑒𝑚, 𝑎𝑑𝑑𝑟 𝑗 , 𝑙𝑡𝑦𝑝𝑒, 𝑘,𝑤𝑖) ∈ TM . Third, we enforce that all the cells in bit column are either zero or

one and all the cells in u64 witness column and operand column are in T64 (less than 2
64
).

4.3 Frame Circuit
Frame Circuit is a table (see Figure 2) that helps us to find out the next 𝑖𝑎𝑑𝑑𝑟 of the return

instruction (see Section 5.2). Each entry of TF is a tuple of (𝑝𝑟𝑒𝑣𝐹𝑟𝑎𝑚𝑒, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑟𝑎𝑚𝑒, 𝑖𝑎𝑑𝑑𝑟)
where 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑟𝑎𝑚𝑒 is the tid of the call instruction that starts this call frame, 𝑝𝑟𝑒𝑣𝐹𝑟𝑎𝑚𝑒 is the 𝑡𝑖𝑑

of the call instruction of previous call frame and 𝑖𝑎𝑑𝑑𝑟 is the call instruction address of the current

call frame. Suppose that 𝑡𝑖 is a return instruction at state 𝑠𝑖 with (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑟𝑎𝑚𝑒, 𝑝𝑟𝑒𝑣𝐹𝑟𝑎𝑚𝑒) and
the state 𝑠𝑖+1 = 𝑡𝑖 ◦ 𝑡𝑖−1 ◦ · · · 𝑡0 (𝑠0), then we constrain that

𝑝𝑙𝑜𝑜𝑘𝑢𝑝 (TF, (𝑝𝑟𝑒𝑣𝐹𝑟𝑎𝑚𝑒, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑟𝑎𝑚𝑒, 𝑠𝑖+1.(𝑖𝑎𝑑𝑑𝑟 − 1))) = 0

to make sure the return address is correct (see Figure 2).

4.4 Access Log Circuit
Recall that the access log circuit is a unique table corresponding to a valid memory access log

sequence and satisfies Equation 5. In WASM specification, an access log is used for three different

types that are memory access, stack access and global access. Each access log has a type field that is

either Init, Read or Write and all logs are sorted by (𝑎𝑑𝑑𝑟𝑒𝑠𝑠, (𝑡𝑖𝑑, 𝑡𝑚𝑖𝑑)) where 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 is indexed
by (𝑚𝑚𝑖𝑑, 𝑜 𝑓 𝑓 𝑠𝑒𝑡), 𝑡𝑖𝑑 is the transition index of the execution log that contains the access and

𝑡𝑚𝑖𝑑 is the index of the access micro-op in that instruction (see Table 2).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

12 Sinka Gao, Hongfei Fu, Heng Zhang, Junyu Zhang, and Guoqiang Li

Fig. 2. Frame circuit

4.5 IO Circuits that Support Zero-knowledge
Zero-knowledge of inputs is not supported in WASM specification. Thus to support the private

inputs which we do not want to leak, we need to add special instructions in the ZAWA to distinguish

between private and public inputs. We represent public inputs in a separate column and use the

polynomial lookup to link input values with the result of get_public_input(inputCursor) (See Figure
3). Similarly, we use a separate column to hold output data and use a polynomial lookup to enforce

Fig. 3. Public input circuit

that the value we output in the execution circuit 𝑎𝑢𝑥 cell lies in the output column. When dealing

with private inputs from get_private_input(inputCursor), we put them into the related cell with no

constraints as the proof system will hide the value for us.

5 INSTRUCTION CIRCUITS
Once the architecture circuits are all prepared in Section 4, the remaining things are constructing

the circuits C𝑜𝑝 of various opcode 𝑜𝑝 for instructions supported by WASM specification. Since the

constraint defined on the execution trace circuit will be applied on a row basis, and the cells of the

constraints of each 𝑜𝑝 will span over multiple rows, we use the notation 𝑐.(𝑐𝑢𝑟𝑟 + 𝑘) to denote the

𝑘th cell in column 𝑐 followed by the current row.

For example, suppose that we want to define the constraints of add instruction (see Figure 4)

using the circuit layout in Table 6 where 𝑤1, 𝑤2 are got from the stack and 𝑤0 is equal to the

result of the add instruction which is pushed back to the stack. First, we know that by definition of

𝑎𝑑𝑑 , 𝑤0 = (𝑤1 +𝑤2) mod 2
64
. Thus by introducing a new witness 𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤 we encode the mod

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

ZAWA: A ZKSNARK WASM Emulator 13

Table 6. Add circuit within execution trace circuit

start opcode bit cell state aux 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ∈ 𝑇𝐼 𝑠𝑝 ∈ 𝑇F u64 cell extra

true 𝑎𝑑𝑑 𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤 𝑡𝑖𝑑 𝑛𝑖𝑙 𝑖𝑎𝑑𝑑𝑟0 sp 𝑤0 𝑛𝑖𝑙

0 𝑟𝑒𝑎𝑑𝑆𝑡𝑎𝑐𝑘 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 – 𝑤1 𝑛𝑖𝑙

0 𝑟𝑒𝑎𝑑𝑆𝑡𝑎𝑐𝑘 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 – 𝑤2 𝑛𝑖𝑙

0 𝑤𝑟𝑖𝑡𝑒𝑆𝑡𝑎𝑐𝑘 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 – 𝑤3 𝑛𝑖𝑙

true 𝑜𝑡ℎ𝑒𝑟𝑜𝑝 – 𝑡𝑖𝑑 + 1 𝑛𝑖𝑙 𝑖𝑎𝑑𝑑𝑟1 𝑠𝑝′ 𝑤 ′
0

𝑛𝑖𝑙

def add :=
w1 = read(stack sp);
w2 = read(stack sp-1);
sp' = sp-1;
w0 = (w1 + w0) mod 2^64;
write(stack, sp-1, w0);
FALLTHROUGH

Fig. 4. Add instruction definition

semantic into arithmetic constraint as𝑤0 + 𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤 × 2
64 = 𝑤1 +𝑤2. Second, we enforce the stack

operation are valid, that is (𝑠𝑡𝑎𝑐𝑘, 𝑟𝑒𝑎𝑑, 𝑠𝑝 − 1, 𝑡𝑖𝑑, 0,𝑤0) ∈ 𝑇M , (𝑠𝑡𝑎𝑐𝑘, 𝑟𝑒𝑎𝑑, 𝑠𝑝, 𝑡𝑖𝑑, 1,𝑤1) ∈ 𝑇M
and (𝑠𝑡𝑎𝑐𝑘,𝑤𝑟𝑖𝑡𝑒, 𝑠𝑝−1, 𝑡𝑖𝑑, 2,𝑤2) ∈ 𝑇M . Third, we need to constrain that the next instruction must

follow 𝑖𝑎𝑑𝑑𝑟0 in address, therefore 𝑖𝑎𝑑𝑑1 = 𝑖𝑎𝑑𝑑𝑟0 + 1. In the end, we constrain the 𝑠𝑝 column by

𝑠𝑝′ + 1 = 𝑠𝑝 . Put it all together, and replace variables using the notation of 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒.(𝑐𝑢𝑟𝑟 +𝑘),
we have Equation 6.

Cadd =



𝑤.(𝑐𝑢𝑟𝑟) + 𝑏𝑖𝑡 .(𝑐𝑢𝑟𝑟) × 2
64 −𝑤.(𝑐𝑢𝑟𝑟 + 1) + (𝑤.𝑐𝑢𝑟𝑟 + 2) = 0

𝑃𝑙𝑜𝑜𝑘𝑢𝑝 (𝑇M, (𝑠𝑡𝑎𝑐𝑘, 𝑟𝑒𝑎𝑑, 𝑠𝑝.(𝑐𝑢𝑟𝑟), 𝑡𝑖𝑑, 0,𝑤1)) = 0

𝑃𝑙𝑜𝑜𝑘𝑢𝑝 (𝑇M, (𝑠𝑡𝑎𝑐𝑘, 𝑟𝑒𝑎𝑑, 𝑠𝑝.(𝑐𝑢𝑟𝑟) − 1, 𝑡𝑖𝑑, 1,𝑤2)) = 0

𝑃𝑙𝑜𝑜𝑘𝑢𝑝 (𝑇M, (𝑠𝑡𝑎𝑐𝑘,𝑤𝑟𝑖𝑡𝑒, 𝑠𝑝.(𝑐𝑢𝑟𝑟) − 1, 𝑡𝑖𝑑, 2,𝑤0) = 0

𝑖𝑎𝑑𝑑𝑟 .𝑐𝑢𝑟𝑟 + 1 − 𝑖𝑎𝑑𝑑𝑟 .(𝑐𝑢𝑟𝑟 + 4) = 0

𝑠𝑝.(𝑐𝑢𝑟𝑟 + 4) + 1 − 𝑠𝑝.(𝑐𝑢𝑟𝑟) = 0

(6)

Since constraints are applied on a row basis of a circuit, we need to make sure that C𝑎𝑑𝑑 does

not apply on rows that are not a starting row of an instruction block or a block with other

opcodes. So a natural way to apply C𝑎𝑑𝑑 only on necessary rows is to multiply C𝑎𝑑𝑑 (𝑐𝑢𝑟𝑟) with
𝑐𝑢𝑟𝑟 .𝑠𝑡𝑎𝑟𝑡 × (𝑐𝑢𝑟𝑟 .𝑜𝑝𝑐𝑜𝑑𝑒 == 𝑜𝑝) and the final constraint related to opcode add is C𝑎𝑑𝑑 (𝑐𝑢𝑟𝑟) :=

𝑐𝑢𝑟𝑟 .𝑠𝑡𝑎𝑟𝑡 × (𝑐𝑢𝑟𝑟 .𝑜𝑝𝑐𝑜𝑑𝑒 == 𝑜𝑝) × C𝑎𝑑𝑑 (𝑐𝑢𝑟𝑟) = 0.

Remark 5. For better readability, from this point we will simply use the name of the cell instead of
the notation 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒.(𝑐𝑢𝑟𝑟 + 𝑘) if no confusion is introduced by doing so.

The content of the rest of this section is arranged in subsections to describe circuits of instructions

in different categories. After we have constructed all the constraints C𝑜𝑝𝑖 for all opcodes 𝑜𝑝𝑖 , we
simply sum them up and get the final constraint C𝑜𝑝 (𝑐𝑢𝑟𝑟) :=

∑
𝑖 𝑐𝑢𝑟 .𝑠𝑡𝑎𝑟𝑡 × (𝑐𝑢𝑟 .𝑜𝑝𝑐𝑜𝑑𝑒 ==

𝑜𝑝) × C𝑜𝑝𝑖 (𝑐𝑢𝑟𝑟) = 0 for TE .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

14 Sinka Gao, Hongfei Fu, Heng Zhang, Junyu Zhang, and Guoqiang Li

5.1 Numeric Instructions
Numeric Instructions are the majority of instructions inWASM. In general, the semantics of numeric

instructions contain file parts, parameters preparation, arithmetic calculation, writing result back

to stack, update stack pointer and FALLTHROUGH as in Figure 5.

def arithop :=
param1 = read(stack sp); \\ parameters preparation
param2 = read(stack (sp-1)); \\ parameters preparation
...
paramN = read(stack (sp-N+1)); \\ parameters preparation
result = arith(param1, param2, param3, ..., paramN); \\ calculation
write(stack, (sp-N+1), result); \\ result write back
sp = sp-N+1;
FALLTHROUGH;

Fig. 5. Arithmetic instruction

Based on the arithmetic definition, we assign the cells in the execution trace circuit TE in Table

7 and the constraints of arithmetic opcode are defined in Equation 7.

Table 7. Add circuit in execution trace circuit

start opcode bit cell state aux 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ∈ 𝑇𝐼 𝑠𝑝 ∈ 𝑇F u64 cell extra

true 𝑎𝑟𝑖𝑡ℎ𝑂𝑝 𝑛𝑖𝑙𝑙 𝑡𝑖𝑑 𝑛𝑖𝑙 𝑖𝑎𝑑𝑑𝑟0 sp 𝑝𝑎𝑟𝑎𝑚0 𝑛𝑖𝑙

0 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 · · · 𝑛𝑖𝑙

0 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑝𝑎𝑟𝑎𝑚𝑁 𝑛𝑖𝑙

0 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑟𝑒𝑠𝑢𝑙𝑡 𝑛𝑖𝑙

true 𝑜𝑡ℎ𝑒𝑟𝑜𝑝 – 𝑡𝑖𝑑 + 1 𝑛𝑖𝑙 𝑖𝑎𝑑𝑑𝑟1 𝑠𝑝′ 𝑤 ′
0

𝑛𝑖𝑙

C𝑎𝑟𝑖𝑡ℎ =



𝑎𝑟𝑖𝑡ℎ(𝑝𝑎𝑟𝑎𝑚0, 𝑝𝑎𝑟𝑎𝑚1, ..., 𝑝𝑎𝑟𝑎𝑚𝑁) − 𝑟𝑒𝑠𝑢𝑙𝑡 = 0

𝑃𝑙𝑜𝑜𝑘𝑢𝑝 (TM, (𝑠𝑡𝑎𝑐𝑘, 𝑟𝑒𝑎𝑑, 𝑠𝑝 − 𝑘, 𝑡𝑖𝑑, 𝑘, 𝑝𝑎𝑟𝑎𝑚𝑘) = 0

𝑃𝑙𝑜𝑜𝑘𝑢𝑝 (TM, (𝑠𝑡𝑎𝑐𝑘,𝑤𝑟𝑖𝑡𝑒, 𝑠𝑝′ − 1, 𝑡𝑖𝑑, 𝑁 , 𝑟𝑒𝑠𝑢𝑙𝑡) = 0

𝑖𝑎𝑑𝑑𝑟0 + 1 − 𝑖𝑎𝑑𝑑𝑟1 = 0

𝑠𝑝 − 𝑠𝑝′ − 𝑁 + 1 = 0

(7)

5.2 Control Flow Instructions
In WASM specification, there are three different categories of control flow: FALLTHROUGH, branch,
and call (return). Implementation of the FALLTHROUGH is already covered in Section 5.1. Thus it

is sufficient to implement call (return) and branch.

Call (Return) Circuit. Call instruction will first add a new frame table entry (𝑡𝑖𝑑, 𝑝𝑟𝑒𝐹𝑟𝑎𝑚𝑒𝐼𝑑, 𝑖𝑎𝑑𝑑𝑟0)
into the frame circuits TF and then load calling parameters onto the stack and go to the 𝑖𝑎𝑑𝑑𝑟1 for

next instruction (see Table 8 for the circuit layout of call). The circuit constraint for call instruction
is Equation 8.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

ZAWA: A ZKSNARK WASM Emulator 15

Table 8. Circuit layout of call

start opcode bit cell state aux 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ∈ 𝑇𝐼 𝑠𝑝 ∈ 𝑇F u64 cell extra

true 𝑐𝑎𝑙𝑙 (𝑡𝑎𝑟𝑔𝑒𝑡𝐼𝑎𝑑𝑑𝑟) 𝑛𝑖𝑙𝑙 𝑡𝑖𝑑 𝑛𝑖𝑙 𝑖𝑎𝑑𝑑𝑟0 sp 𝑝𝑎𝑟𝑎𝑚0 𝑛𝑖𝑙

0 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑝𝑟𝑒𝐹𝑟𝑎𝑚𝑒𝐼𝑑 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 · · · 𝑛𝑖𝑙

0 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑝𝑎𝑟𝑎𝑚𝑁 𝑛𝑖𝑙

true 𝑜𝑡ℎ𝑒𝑟𝑜𝑝 – 𝑡𝑖𝑑 + 1 𝑛𝑖𝑙 𝑖𝑎𝑑𝑑𝑟1 𝑠𝑝′ 𝑛𝑖𝑙 𝑛𝑖𝑙

0 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑡𝑖𝑑 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙

𝐶𝑐𝑎𝑙𝑙 =



𝑃𝑙𝑜𝑜𝑘𝑢𝑝 (TM, (𝑠𝑡𝑎𝑐𝑘,𝑤𝑟𝑖𝑡𝑒, 𝑠𝑝 + 𝑖, 𝑡𝑖𝑑, 𝑖, 𝑝𝑎𝑟𝑎𝑚𝑖)) = 0

𝑃𝑙𝑜𝑜𝑘𝑢𝑝 (TF, (𝑡𝑖𝑑, 𝑝𝐹𝑟𝑎𝑚𝑒𝐼𝑑, 𝑖𝑎𝑑𝑑𝑟0)) = 0

𝑖𝑎𝑑𝑑𝑟1 − 𝑡𝑎𝑟𝑔𝑒𝑡𝐼𝑎𝑑𝑑𝑟 = 0

𝑠𝑝′ − 𝑠𝑝 − 𝑁 = 0

𝑛𝐹𝑟𝑎𝑚𝑒𝐼𝑑 − 𝑡𝑖𝑑 = 0.

(8)

To define the constraint for Return instruction, we need to find the correct return address of the

current frame and set the frame state to the previous frame. Recall that, as described in Section

4.3, the entries in TF are used to help the return instruction to find the correct calling frame and

previous frame. Thus we can define the semantics of return by finding the correct return iaddr from
𝑇F and then enforce that the next instruction address is equal to iaddr and update the frame state

accordingly (see Table 9 for the circuit layout and Equation 9 for the circuit constraint).

Table 9. Circuit layout of return

start opcode bit cell state aux 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ∈ T𝐼 𝑠𝑝 ∈ TF u64 cell extra

true 𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑖𝑙𝑙 𝑡𝑖𝑑 𝑛𝑖𝑙 𝑖𝑎𝑑𝑑𝑟0 sp 𝑛𝑖𝑙 𝑛𝑖𝑙

0 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑝𝑟𝑒𝑣𝐹𝑟𝑎𝑚𝑒𝐼𝑑 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙

true 𝑜𝑡ℎ𝑒𝑟𝑜𝑝 – 𝑡𝑖𝑑 + 1 𝑛𝑖𝑙 𝑖𝑎𝑑𝑑𝑟1 𝑠𝑝′ 𝑛𝑖𝑙 𝑛𝑖𝑙

0 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝐹𝑟𝑎𝑚𝑒𝐼𝑑 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙

𝐶𝑟𝑒𝑡𝑢𝑟𝑛 =

{
𝑃𝑙𝑜𝑜𝑘𝑢𝑝 (TF, (𝑝𝐹𝑟𝑎𝑚𝑒𝐼𝑑, 𝑛𝐹𝑟𝑎𝑚𝑒𝐼𝑑, 𝑖𝑎𝑑𝑑𝑟1 − 1)) = 0

𝑠𝑝′ − 𝑠𝑝 = 0

(9)

Branch Circuit. Branch instructions in WASM include br, br_if, if * then * else *, etc. The semantics

of branch instructions can be uniformly abstracted as three steps (see Figure 6). The circuit layout

def branchop :=
param1 = read(stack sp); \\ parameters preparation
param2 = read(stack (sp-1)); \\ parameters preparation
...
paramN = read(stack (sp-N+1)); \\ parameters preparation
iaddr1 = select(param1, param2, ..., paramN); \\ calculate branch address
GOTO iaddr2; \\branch to target address

Fig. 6. Semantic of branch instruction

of the branch instruction is sketched in Table 10 and its circuit constraint is defined in Equation 10.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

16 Sinka Gao, Hongfei Fu, Heng Zhang, Junyu Zhang, and Guoqiang Li

Table 10. Circuit layout of call

start opcode bit cell state aux 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ∈ 𝑇𝐼 𝑠𝑝 ∈ 𝑇F u64 cell extra

true 𝑏𝑟𝑎𝑛𝑐ℎ𝑜𝑝 𝑛𝑖𝑙𝑙 𝑡𝑖𝑑 𝑛𝑖𝑙 𝑖𝑎𝑑𝑑𝑟0 sp 𝑝𝑎𝑟𝑎𝑚0 𝑛𝑖𝑙

0 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑓 𝑟𝑎𝑚𝑒𝐼𝑑 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 · · · 𝑛𝑖𝑙

0 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑝𝑎𝑟𝑎𝑚𝑁 𝑛𝑖𝑙

true 𝑜𝑡ℎ𝑒𝑟𝑜𝑝 – 𝑡𝑖𝑑 + 1 𝑛𝑖𝑙 𝑖𝑎𝑑𝑑𝑟1 𝑠𝑝′ 𝑛𝑖𝑙 𝑛𝑖𝑙

0 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑓 𝑟𝑎𝑚𝑒𝐼𝑑 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙

𝐶𝑏𝑟𝑎𝑛𝑐ℎ =


𝑃𝑙𝑜𝑜𝑘𝑢𝑝 (𝑇M, (𝑠𝑡𝑎𝑐𝑘,𝑤𝑟𝑖𝑡𝑒, 𝑠𝑝 + 𝑖, 𝑡𝑖𝑑, 𝑖, 𝑝𝑎𝑟𝑎𝑚𝑖)) = 0

𝑖𝑎𝑑𝑑𝑟1 − 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑝𝑎𝑟𝑎𝑚0, 𝑝𝑎𝑟𝑎𝑚1, · · ·) = 0

𝑛𝐹𝑟𝑎𝑚𝑒𝐼𝑑 − 𝑝𝐹𝑟𝑎𝑚𝑒𝐼𝑑 = 0.

(10)

5.3 Memory (Stack, Global) Instructions
Memory, Stack and Global instructions can be abstracted as a tuple of (𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝑡𝑦𝑝𝑒 , 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ,

𝑠𝑖𝑧𝑒 = 8|16|32|64, 𝑣𝑎𝑙𝑢𝑒) where 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 can be Memory, Stack or Global and 𝑡𝑦𝑝𝑒 can be Init, Read

or Write. The layout of the circuit is defined in Table 11. By using the access log circuit defined in

Chapter 4.4, the constraint for the memory circuit is simply (𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝑙𝑡𝑦𝑝𝑒, 𝑡𝑖𝑑, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑣𝑎𝑙𝑢𝑒′) ∈
𝑇M ∧ 𝑡𝑟𝑢𝑛𝑐 (𝑣𝑎𝑙𝑢𝑒′, 𝑠𝑖𝑧𝑒) = 𝑣𝑎𝑙𝑢𝑒 .

Remark 6. For read, this constraint ensures the result read from 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 is valid. For write, 𝑇M
ensures that the next 𝑟𝑒𝑎𝑑 of 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 will return the previously written value correctly.

Table 11. Memory access circuit within execution trace circuit

start opcode bit cell state aux 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ∈ 𝑇𝐼 𝑠𝑝 ∈ 𝑇F u64 cell extra

true 𝑜𝑝 (𝑡𝑦𝑝𝑒, 𝑠𝑖𝑧𝑒) 𝑛𝑖𝑙𝑙 𝑡𝑖𝑑 𝑛𝑖𝑙 𝑖𝑎𝑑𝑑𝑟0 sp 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑛𝑖𝑙

0 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑓 𝑟𝑎𝑚𝑒𝐼𝑑 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑣𝑎𝑙𝑢𝑒 𝑛𝑖𝑙

true 𝑜𝑡ℎ𝑒𝑟𝑜𝑝 – 𝑡𝑖𝑑 + 1 𝑛𝑖𝑙 𝑖𝑎𝑑𝑑𝑟1 𝑠𝑝′ 𝑤 ′
0

𝑛𝑖𝑙

0 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑓 𝑟𝑎𝑚𝑒𝐼𝑑 = 𝑡𝑖𝑑 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑛𝑖𝑙 𝑤3 𝑛𝑖𝑙

5.4 Customized Instruction Extension
Given a fixed image, an entry function and an array of input arguments, the execution trace is

then decided which means the number of instructions is fixed. As described in Section 4.2, each

instruction occupies 𝑛 (a fixed number of) rows in the execution circuit TE . Thus the total rows of
TE are fixed. When doing proof in Halo2 using KZG commitment, each column is interpolated into

polynomials using FFT (fast fourier transform). Because FFT is an algorithm of 𝑁𝑙𝑜𝑔𝑁 complexity,

the total rows of 𝑇E affect the overall performance in a nonlinear way. Thus to reduce the number

of columns, a good way is to compress multiple instructions into one.

ZAWA supports two ways of customizing foreign instructions for the purpose of compressing.

One is implementing customized inline opcodes and the other is using external proofs of specific

foreign functions.

Compress using customized inline instruction.When the semantics of instructions we would like

to compress is simple and can fit into one instruction block, we can use the inline extension. For

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

ZAWA: A ZKSNARK WASM Emulator 17

example, suppose that we want to sum the lowest 4 bits 𝑥 : 𝑢64 by function 𝑠𝑢𝑚𝐿𝑜𝑤𝑒𝑠𝑡 (𝑥). If we
use a standard loop to implement the algorithm, it will take 4 instructions to extract 4 bits and

another 2 to do the sum. However, if we inline this function into a customized inline instruction,

then we can encode the arithmetic constraint within one instruction block. As a case study, we

compare the SHA256 execution trace with and without inline instructions in Table 12.

Table 12. Row reduce by using customized instructions

original original

rows

customized optimized

rows

𝜆𝑥,𝑦, (𝑥&𝑦) | (𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 (𝑥)&𝑧) 4 𝑐ℎ(𝑥,𝑦) 1

𝜆𝑥,𝑦, 𝑧, 𝑧 | (𝑥&(𝑦 |𝑧)) 2 𝑚𝑎𝑗 (𝑥,𝑦, 𝑧) 1

𝜆𝑥, 𝑟𝑜𝑡𝑟32 (𝑥, 2) |𝑟𝑜𝑡𝑟32 (𝑥, 13) |𝑟𝑜𝑡𝑟32 (𝑥, 22) 5 𝑙𝑠𝑖𝑔𝑚𝑎0(𝑥) 1

𝜆𝑥, 𝑟𝑜𝑡𝑟32 (𝑥, 6) |𝑟𝑜𝑡𝑟32 (𝑥, 11) |𝑟𝑜𝑡𝑟32 (𝑥, 25) 5 𝑙𝑠𝑖𝑔𝑚𝑎1(𝑥) 1

Compress using customized foreign functions. When the semantics of instructions we would like to

compress is too complex to fit into one instruction block and the semantic of these instructions

can be abstracted into a pure function then we can using foreign functions to compressing the

execution trace. A foreign function 𝑓 in ZAWA is a special purpose circuit that can be used to

constraint that the input and output of 𝑓 is valid. Although foreign calls saves the size of it will

introduce extra costs when more circuits are added.

6 PROGRAM PARTITION AND PROOF BATCHING
As discussed in Section 5.4, when encoding execution trace in 𝑇E , each instruction will take a

constant number of rows. In Halo2 proof system, there is a limit to the total number of rows of

arithmetic circuits [25]. Therefore, for large WASM images, we probably can not fit the whole

execution trace into 𝑇E . To solve the problem of long execution trace, ZAWA use the technique of

program partition and proof batching. The idea is that we split the execution trace [𝑡0, 𝑡1, · · ·] into
a group of sub sequences, generate execution proof for each group and batch all the proofs in the

end. Here we first give a bold sketch of the overview of the technique and then presents the extra

constraints we need to provide when batching sub proofs.

Given an execution sequence 𝑡𝑖 , we split it into small execution chunks 𝑡 [𝑎,𝑏] = 𝑡𝑎, 𝑡𝑎+1, · · · , 𝑡𝑏−1

and denote the M[𝑎,𝑏],SP [𝑎,𝑏] , G[𝑎,𝑏] to be the memory, stack and global access log related to

𝑡 [𝑎,𝑏] . We notice that given an execution trace 𝑡 [𝑎,𝑏] , by using the arithmetic circuits constructed

in Section 4, we can prove 𝑡 [𝑎,𝑏] is valid under the context (F ,M[𝑎,𝑏],SP [𝑎,𝑏], I(C,H), IO). We

denote P[𝑎,𝑏] the proof of the valid execution of 𝑡 [𝑎,𝑏] and P is the proof of the valid execution of 𝑡𝑖
under the full access log (𝑖𝑎𝑑𝑑𝑟, F ,M,G,SP, I, IO). Now it remains to find out what conditions

we need to enforce so that

(P[0,𝑘−1] ∧ P[𝑘,2𝑘−1] ∧ · · · ∧ P[0,𝑒𝑛𝑑]) → P .

Thus it is sufficient to make sure that for each 𝑡𝑖 ∈ 𝑡 [𝑎,𝑏] the constraints applied on it in P[𝑎,𝑏] is
equivalent to the constraints applied on it in P. As we have presented in Section 4, constraints

applied on each instruction block in 𝑇E contains two parts, that are polynomial constraints about

cells of the current and next instruction block and constraints of polynomial lookup of state (mem-

ory, stack, global) access logs.

Equivalent of Polynomial Constraints. Regarding the polynomial constraints of cells, it is easy to

check that if 𝑡𝑖 ∈ 𝑡 [𝑎,𝑏] and 𝑖 < 𝑏 then all polynomial constraints of cells of the instruction block of

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

18 Sinka Gao, Hongfei Fu, Heng Zhang, Junyu Zhang, and Guoqiang Li

𝑡𝑖 in P[𝑎,𝑏] are equal to the those in P. So it remains to constrain that the last instruction of 𝑡 [𝑎,𝑏]
has the same polynomial constraints both in P[𝑎,𝑏] and P. However, it is not true in general since

if we split the execution sequence into blocks that are disjoint, then the connection between the

two sequences is lost. Therefore, to solve this problem, we need to pad a glue instruction at the

end of each sub sequence and enforce the address of the glue instruction equal to the address of

the first instruction of the next block (see Figure 7). By doing so we can check that the polynomial

constraints of each 𝑡𝑖 in P[𝑎,𝑏] is equivalent as it is in P.

Fig. 7. Split execution sequence into sub sequence

Equivalent of Polynomial Lookup. Given a constraint of polynomial lookup for a cell in 𝑡𝑖 , we need

to show that 𝑐 ∈ TM if and only if 𝑐 ∈ ∪TM𝑘
. By the definition of Equation 5 we know that the

property hold if and only if the concatenate of TM𝑘
satisfies Equation 5. Notice that Equation 5

only constraints adjacent rows, we extract a glue table TGM for TM𝑘
(𝑘 = 1, 2, · · ·) as in (Figure 8)

and then it follows that TM = ∪TM𝑘
if TM , TM𝑘

and TGM all satisfy Equation 5.

Fig. 8. Split memory access log into sub log

As a conclusion, to solve the long execution trace problem, we split the execution trace into

𝑡 [𝑎0,𝑏0], 𝑡 [𝑎1,𝑏1], 𝑡 [𝑎2,𝑏2], · · · and construct TM𝑘
TSP𝑘

TG𝑘
for execution block 𝑡 [𝑎𝑘 ,𝑏𝑘] . Suppose that

P𝑘 proves the valid execution of 𝑡 [𝑎𝑘 ,𝑏𝑘] and TGM is the gluing map constructed as in Figure 8,

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

ZAWA: A ZKSNARK WASM Emulator 19

then we claim that a proof P𝑏𝑎𝑡𝑐ℎ can prove that the execution sequence 𝑡𝑖 is a valid execution if

and only if P𝑏𝑎𝑡𝑐ℎ is the batched proof of all the constraints in Equation 11.
P𝑘 proves 𝑡 [𝑎𝑘 ,𝑏𝑘] is a valid execution under (F ,M[𝑎𝑘 ,𝑏𝑘],SP [𝑎𝑘 ,𝑏𝑘],I(C,H)) .
𝑡𝑏𝑘+1

.𝑖𝑎𝑑𝑑𝑟 = 𝑡𝑎𝑘 .𝑖𝑎𝑑𝑟 when 𝑘 > 0 .

𝑡𝑏𝑘 is a glue instruction when 𝑘 > 0 and 𝑡 [𝑎𝑘 ,𝑏𝑘] is not the last exectuion block.

𝑇𝐺M satisfies Constraint 5.

(11)

In ZAWA, we write the verifying algorithm of P𝑘 into arithmetic circuitsV𝑘 and the total batch

circuit of Equation 11 is construct by putting the verifying circuits together with the circuits that

do the other simple checks.

Remark 7. Proof batching is an active research topic. Instead of writing verify function into arith-
metic circuits, there are other methods [5, 13, 24, 31] that are worth trying as well. Since we focus more
on the consistency of program partition and memory access log in this paper, we leave the analysis of
trying different batching methods as future work.

7 PERFORMANCE BENCHMARK
All the benchmark test suites are run on a machine with AMD Ryzen 7 5800X3D 8-Core Processor,

one GeForce RTX 3090 graphic card and 32G * 4 DDR4 2133 ram.

7.1 Performance without Program Partition and Proof Batching
Among programs whose valid execution trace fits into the max sequence size of ZAWA, we measure

the performance of ZAWA when dealing with two special programs: the Fibonacci function which

has a deep call stack and the binary search function which has frequent memory access. As shown

in Table 13 and Table 14, circuit size 𝐶𝑆 denotes the total number of rows of circuits in ZAWA as a

power of 2 and trace size denotes the total instructions included in the execution trace. Proof time

is the time ZAWA used to create the proof for the valid execution and the verify time is the time

for a verifier to check the proof. The column memory swap indicates whether the overall memory

consumption of ZAWAis large than 128G.

Table 13. Benchmark for fibonacci in ZAWA

circuit size trace size call depth proof time verify time memory swap

18 9037 13 44s 22 ms false

19 23677 15 88s 24 ms false

20 38317 16 178s 22 ms false

21 100333 18 358s 22ms false

22 162349 19 828s 29ms true

From Table 13 and Table 14 we see that the verifying time is O(1) and proof time grows linearly

when the size of the circuit grows. When the memory consumption of the simulated image (Fi-

bonacci) is small, the instruction volume grows linearly as the circuit size grows (see Table 13).

When the memory consumption of the simulated image (binary search) grows linearly as the circuit

size grows, the instruction volume grows slowly as shown in Table 14.

7.2 Performance for Large Program with Proof Batching
For a program with a large execution sequence, we split the execution trace into partitions and

generate a sub-proof for each partition. To batch these sub proofs, we use the batching circuit

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

20 Sinka Gao, Hongfei Fu, Heng Zhang, Junyu Zhang, and Guoqiang Li

Table 14. Benchmark for binary search in ZAWA

circuit size trace size search buf size (64k per page) proof time verify time memory swap

18 585 26 44.200s 22 ms false

19 616 63 87.200s 24 ms false

20 647 124 173.200s 22 ms false

21 678 246 342.200s 24ms false

22 809 490 803.200s 25ms true

(see Section 6) to generate a batched proof. Therefore the time of creating a final proof of a large

program is the sum of sub-proof generation time plus the proof batching time. It can be seen in

Table 15. Benchmark for proof batching in ZAWA

partition CS partition proof total pieces batching CS batching proof verify time memory swap

18 2 1 22 168s 4.7 ms false

18 2 2 22 326s 4.63 ms false

20 2 1 22 168s 4.77 ms false

20 2 2 22 324s 5.05ms false

22 2 1 22 168s 5.07ms false

22 2 2 22 325s 4.93ms true

Table 15 that the proving time for batching sub-proofs with different partition size is constant and

the only factor that affects the batching proof time is the number of pieces of sub-proof.

In conclusion, if we have a large program for ZAWA and we want to optimize the total time of

generating the final proof, then the factors we need to consider are the following: First, What is the

partition size we use to split the whole transaction sequence. Second, how many pieces we should

put together in one proof batch. Third, how we generate the proofs in parallel.

8 CONCLUSION & FURTHERWORK
We presented ZAWA, a WASM virtual machine that leverages the technology of ZKSNARK. As far

as know, we are the first to present a novel way to implement the semantics of a WASM virtual

machine in arithmetic circuits. Using ZAWA, we are able to deploy serverless service in an untrusted

cloud since ZAWA does not only emulates the execution but also gives a correctness proof of

the execution result. Hence any vulnerability on the cloud will not affect the correctness of the

verifiable result (a faulty result cannot have correct ZKSNARK proof).

For large applications that provide large execution traces, we successfully applied the execu-

tion partition and proof batching technique so the ZAWA scales when the program size grows.

Regarding the performance, various optimization can be applied in the future including improving

the commitment scheme [12], adopting a better parallel computing strategy [44], using SNARK

specific hardware [38, 45], etc.

REFERENCES
[1] Farag Azzedin and Muthucumaru Maheswaran. Evolving and managing trust in grid computing systems. In IEEE

CCECE2002. Canadian Conference on Electrical and Computer Engineering. Conference Proceedings (Cat. No. 02CH37373),
volume 3, pages 1424–1429. IEEE, 2002.

[2] Olivier Bégassat, Alexandre Belling, Théodore Chapuis-Chkaiban, and Nicolas Liochon. A specification for a zk-evm,

2021.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

ZAWA: A ZKSNARK WASM Emulator 21

[3] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Snarks for c: Verifying program

executions succinctly and in zero knowledge. In Annual cryptology conference, pages 90–108. Springer, 2013.
[4] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Snarks for c: Verifying program

executions succinctly and in zero knowledge. In Annual cryptology conference, page 90–108. Springer, 2013.
[5] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via cycles of elliptic

curves. Algorithmica, 79(4):1102–1160, 2017.
[6] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Efficient polynomial commitment schemes for multiple points

and polynomials. Cryptology ePrint Archive, 2020.
[7] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo infinite: Recursive zk-snarks from any additive polynomial

commitment scheme. Cryptology ePrint Archive, 2020.
[8] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient zero-knowledge arguments

for arithmetic circuits in the discrete log setting. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, page 327–357. Springer, 2016.

[9] Benedikt B"unz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. Bulletproofs: Short

proofs for confidential transactions and more. In 2018 IEEE symposium on security and privacy (SP), page 315–334.
IEEE, 2018.

[10] Benedikt B"unz, Ben Fisch, and Alan Szepieniec. Transparent snarks from dark compilers. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, page 677–706. Springer, 2020.

[11] Bor-Yuh Evan Chang, Karl Crary, Margaret DeLap, Robert Harper, Jason Liszka, Tom Murphy VII, and Frank Pfenning.

Trustless grid computing in concert. In International Workshop on Grid Computing, pages 112–125. Springer, 2002.
[12] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. Hyperplonk: Plonk with linear-time prover and high-

degree custom gates. Cryptology ePrint Archive, 2022.
[13] Alessandro Chiesa, Lynn Chua, and Matthew Weidner. On cycles of pairing-friendly elliptic curves. SIAM Journal on

Applied Algebra and Geometry, 3(2):175–192, 2019.
[14] Alessandro Chiesa, Yuncong Hu, MaryMaller, PratyushMishra, Noah Vesely, and NicholasWard. Marlin: preprocessing

zksnarks with universal and updatable srs. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, page 738–768. Springer, 2020.

[15] Stephen Chong, Eran Tromer, and Jeffrey A Vaughan. Enforcing language semantics using proof-carrying data.

Cryptology ePrint Archive, 2013.
[16] Craig Costello, C’edric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael Naehrig, Bryan Parno,

and Samee Zahur. Geppetto: Versatile verifiable computation. In 2015 IEEE Symposium on Security and Privacy, page
253–270. IEEE, 2015.

[17] Karl Crary and Susmit Sarkar. Foundational certified code in a metalogical framework. In International Conference on
Automated Deduction, pages 106–120. Springer, 2003.

[18] Jacob Eberhardt and Stefan Tai. Zokrates-scalable privacy-preserving off-chain computations. In 2018 IEEE International
Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), page 1084–1091. IEEE, 2018.

[19] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk: Permutations over lagrange-bases for oecumenical

noninteractive arguments of knowledge. Cryptology ePrint Archive, 2019.
[20] Phani Kishore Gadepalli, Sean McBride, Gregor Peach, Ludmila Cherkasova, and Gabriel Parmer. Sledge: A serverless-

first, light-weight wasm runtime for the edge. In Proceedings of the 21st International Middleware Conference, pages
265–279, 2020.

[21] Jens Groth. Efficient zero-knowledge arguments from two-tiered homomorphic commitments. In International
Conference on the Theory and Application of Cryptology and Information Security, page 431–448. Springer, 2011.

[22] Jens Groth. On the size of pairing-based non-interactive arguments. In Annual international conference on the theory
and applications of cryptographic techniques, pages 305–326. Springer, 2016.

[23] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge from simulation-extractable snarks.

In Annual International Cryptology Conference, page 581–612. Springer, 2017.
[24] Ulrich Haböck, Alberto Garoffolo, and Daniele Di Benedetto. Darlin: Recursive proofs using marlin. arXiv preprint

arXiv:2107.04315, 2021.
[25] Halo2. The halo2 book, 2020. Accessed on 2022-9-3.

[26] Max Hoffmann, Michael Klooß, and Andy Rupp. Efficient zero-knowledge arguments in the discrete log setting,

revisited. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pages
2093–2110, 2019.

[27] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using garbled circuits: how to prove

non-algebraic statements efficiently. In 2013 ACM SIGSAC Conference on Computer and Communications Security,
(CCS’13), pages 955–966. ACM, 2013.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

22 Sinka Gao, Hongfei Fu, Heng Zhang, Junyu Zhang, and Guoqiang Li

[28] Yier Jin and Yiorgos Makris. Proof carrying-based information flow tracking for data secrecy protection and hardware

trust. In 2012 IEEE 30th VLSI Test Symposium (VTS), pages 252–257. IEEE, 2012.
[29] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Polynomial commitments. Tech. Rep, 2010.
[30] Ahmed Kosba, Charalampos Papamanthou, and Elaine Shi. xjsnark: A framework for efficient verifiable computation.

In 2018 IEEE Symposium on Security and Privacy (SP), page 944–961. IEEE, 2018.
[31] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-knowledge arguments from folding

schemes. In Annual International Cryptology Conference, pages 359–388. Springer, 2022.
[32] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge snarks from linear-size

universal and updatable structured reference strings. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, page 2111–2128, 2019.

[33] Brian McFadden, Tyler Lukasiewicz, Jeff Dileo, and Justin Engler. Security chasms of wasm. NCC Group Whitepaper,
2018.

[34] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical verifiable computation.

Communications of the ACM, 59(2):103–112, 2016.

[35] Juha Partala, Tri Hong Nguyen, and Susanna Pirttikangas. Non-interactive zero-knowledge for blockchain: A survey.

IEEE Access, 8:227945–227961, 2020.
[36] Luke Pearson, Joshua Fitzgerald, Héctor Masip, Marta Bellés-Muñoz, and Jose Luis Muñoz-Tapia. Plonkup: Reconciling

plonk with plookup. Cryptology ePrint Archive, 2022.
[37] Siani Pearson. Taking account of privacy when designing cloud computing services. In 2009 ICSE Workshop on Software

Engineering Challenges of Cloud Computing, pages 44–52. IEEE, 2009.
[38] BO Peng, Yongxin Zhu, Naifeng Jing, Xiaoying Zheng, and Yueying Zhou. Design of a hardware accelerator for

zero-knowledge proof in blockchains. In International Conference on Smart Computing and Communication, pages
136–145. Springer, 2020.

[39] risc zero. risc zero: overview of the zkvm, 2022. Accessed on 2022-9-3.

[40] Hassan Takabi, James BD Joshi, and Gail-Joon Ahn. Security and privacy challenges in cloud computing environments.

IEEE Security & Privacy, 8(6):24–31, 2010.
[41] Vitalik. The different types of zk-evms, 2022. Accessed on 2022-9-3.

[42] Riad S Wahby, Srinath Setty, Max Howald, Zuocheng Ren, Andrew J Blumberg, and Michael Walfish. Efficient ram and

control flow in verifiable outsourced computation. Cryptology ePrint Archive, 2014.
[43] Gavin Wood and Jutta Steiner. Trustless computing—the what not the how. In Banking Beyond Banks and Money,

pages 133–144. Springer, 2016.

[44] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion Stoica. {DIZK}: A distributed zero

knowledge proof system. In 27th USENIX Security Symposium (USENIX Security 18), pages 675–692, 2018.
[45] Charles F Xavier. Pipemsm: Hardware acceleration for multi-scalar multiplication. Cryptology ePrint Archive, 2022.
[46] Zhifeng Xiao and Yang Xiao. Security and privacy in cloud computing. IEEE communications surveys & tutorials,

15(2):843–859, 2012.

Received 10 November 2022

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: November 2022.

	Abstract
	1 Introduction
	2 Overview
	2.1 WASM Run-Time as a State Machine
	2.2 Succinct Proof of a Program
	2.3 Arithmetic Circuits
	2.4 Connecting ZAWA Virtual Machine with Arithmetic Circuits

	3 Basic building blocks of ZAWA circuits
	3.1 Representing Basic Types in Halo2 Constraint System
	3.2 Representing Map Using Polynomial Lookup of Tables
	3.3 Representing Math Semantic as Arithmetic Circuits
	3.4 Enforcing Valid Dynamic State Accessing using Polynomial Lookup Tables

	4 ZAWA Architecture Circuits
	4.1 Setup Circuits
	4.2 Execution Trace Circuits
	4.3 Frame Circuit
	4.4 Access Log Circuit
	4.5 IO Circuits that Support Zero-knowledge

	5 Instruction Circuits
	5.1 Numeric Instructions
	5.2 Control Flow Instructions
	5.3 Memory (Stack, Global) Instructions
	5.4 Customized Instruction Extension

	6 Program partition and proof batching
	7 Performance Benchmark
	7.1 Performance without Program Partition and Proof Batching
	7.2 Performance for Large Program with Proof Batching

	8 Conclusion & Further Work
	References

