
This paper appeared in Proceedings of the 8th USENIX Workshop on Offensive Technologies (WOOT ’14), August 2014.

Zippier ZMap: Internet-Wide Scanning at 10 Gbps

David Adrian, Zakir Durumeric, Gulshan Singh, and J. Alex Halderman
University of Michigan

{davadria, zakir, gulshan, jhalderm}@umich.edu

Abstract
We introduce optimizations to the ZMap network scanner
that achieve a 10-fold increase in maximum scan rate. By
parallelizing address generation, introducing an improved
blacklisting algorithm, and using zero-copy NIC access,
we drive ZMap to nearly the maximum throughput of
10 gigabit Ethernet, almost 15 million probes per second.
With these changes, ZMap can comprehensively scan for
a single TCP port across the entire public IPv4 address
space in 4.5 minutes given adequate upstream bandwidth.
We consider the implications of such rapid scanning for
both defenders and attackers, and we briefly discuss a
range of potential applications.

1 Introduction

In August 2013, we released ZMap, an open-source net-
work scanner designed to quickly perform Internet-wide
network surveys [7]. From a single machine, ZMap is
capable of scanning at 1.44 million packets per second
(Mpps), the theoretical limit of gigabit Ethernet. At
this speed, ZMap can complete a scan targeting one
TCP port across the entire public IPv4 address space in
under 45 minutes—a dramatic improvement compared
to weeks [7] or months [8] required using Nmap. Yet
even at gigabit linespeed, ZMap does not utilize the full
bandwidth of the fastest readily available connections:
10 GigE uplinks are now offered by Amazon EC2 [1] and
at a growing number of research institutions.

In this paper, we scale ZMap to 10 GigE speeds by
introducing a series of performance enhancements. These
optimizations allow scanning speeds that provide higher
temporal resolution when conducting Internet-wide sur-
veys and make it possible to quickly complete complex
multipacket studies.

Scanning at 10 GigE linespeed necessitates sending
nearly 15 Mpps continuously. For single-packet probes
such as SYN scans, this allows only 200 cycles per probe

on a 3 GHz core. An L2 cache miss might incur a cost of
almost 100 cycles, so it essential to make efficient use of
both CPU and memory. In order to generate and transmit
packets at this rate, we introduce modifications that target
the three most expensive per-probe operations in ZMap:

1. Parallelized address generation. ZMap uses a mul-
tiplicative cyclic group to iterate over a random per-
mutation of the address space, but this becomes a
bottleneck at multigigabit speeds. We implement a
mutex-free sharding mechanism that spreads address
generation across multiple threads and cores.

2. Optimized address constraints. Responsible scan-
ning requires honoring requests from networks that
opt out, but over time this can result in large and
complex blacklists. We develop an optimized ad-
dress constraint data structure that allows ZMap to
efficiently cycle through allowed targets.

3. Zero-copy packet transmission. ZMap sends Eth-
ernet frames using a raw socket, which avoids the
kernel’s TCP/IP stack but still incurs a per-packet
context switch. We switch to using the PF_RING
Zero Copy (ZC) interface, which bypasses the kernel
and reduces memory bandwidth.

These enhancements enable ZMap to scan at
14.23 Mpps, 96% of the theoretical limit of 10 GigE. In
order to confirm these performance gains, we completed
a full scan of the IPv4 address space in 4m29s—to our
knowledge, the fastest Internet-wide scan yet reported.

The ability to scan at 10 GigE speeds creates new op-
portunities for security researchers. It allows for truer
snapshots of the state of the Internet by reducing error due
to hosts that move or change during the scan. Likewise, it
enables more accurate measurement of time-critical phe-
nomena, such as vulnerability patching in the minutes and
hours after public disclosure. On the other hand, it raises
the possibility that attackers could use 10 GigE to exploit
vulnerabilities with alarming speed.

2 Related Work

Many network scanning tools have been introduced [7,
11, 13–15], although until recently most were designed
for scanning small networks. One of the most popular
is Nmap [15], a highly capable network exploration tool.
Nmap is well suited for vertical scans of small networks
or individual hosts, but the original ZMap implementation
outperformed it on horizontal Internet-wide scans by a
factor of 1300 [7]. Our enhancements to ZMap improve
its performance by another factor of ten.

ZMap is not the first Internet-wide scanner to use
PF_RING to send at speeds greater than 1 Gbps. Masscan,
released in September 2013, also utilizes PF_RING and
claims the ability to scan at 25 Mpps using dual 10 GigE
ports—84% of the theoretical limit of dual 10 GigE [11].
We present a more detailed comparison to Masscan in
Section 4.3. While the Masscan team did not have the
facilities to perform live network tests at rates higher than
100,000 pps [11], we report what we believe is the first
Internet-wide scan conducted at 10 GigE speeds.

3 Performance Optimizations

ZMap achieves this performance based on a series of
architectural choices that are geared towards very large,
high-speed scans [7]. It avoids per-connection state by
embedding tracking information in packet fields that will
be echoed by the remote host, using an approach similar to
SYN cookies [3]. It eschews timeouts and simplifies flow
control by scanning according to a random permutation
of the address space. Finally, it avoids the OS’s TCP/IP
stack and writes raw Ethernet frames.

This architecture allows ZMap to exceed gigabit Eth-
ernet linespeed on commodity hardware, but there are
several bottlenecks that prevent it from fully reaching
10 GigE speeds. ZMap’s address generation is CPU inten-
sive and requires a global lock, adding significant over-
head. Blacklisting ranges of addresses is expensive and
scales poorly. Sending each packet requires a context
switch and unnecessary copies as packets are passed from
userspace to the kernel and then to the NIC [9]. We imple-
ment optimizations that reduce each of these bottlenecks.

3.1 Address Generation Sharding

Address generation in ZMap is designed to achieve two
goals. First, it avoids flooding destination networks by or-
dering targets according to a pseudorandom permutation
of the address space. Second, it enables statistically valid
sampling of the address space.

ZMap iterates over a multiplicative group of integers
modulo p that represent 32-bit IPv4 addresses. By choos-
ing p to be 232 +15, the smallest prime larger than 232,

we guarantee that the group (Z/pZ)× is cyclic and that
it covers the full IPv4 address space. ZMap derives a
new random primitive root g for each scan in order to
generate new permutation of the address space. The scan-
ner starts at a random initial address a0 and calculates
ai+1 = g · ai mod p to iterate through the permutation.
The iteration is complete when ai+1 equals a0.

The most expensive part of this scheme is the modulo
operation, which must be performed at every step of the
iteration. Unfortunately, the modulo operation cannot cur-
rently be performed by multiple threads at once, because
each address in the permutation is dependent on the pre-
vious—calculating the next address requires acquiring a
lock over the entire iterator state.

To remove this bottleneck and efficiently distribute ad-
dress generation over multiple cores, we extend ZMap to
support sharding. In the context of ZMap, a shard is a par-
tition of the IPv4 address space that can be iterated over
independently from other shards; assigning one shard to
each thread allows for independent, mutex-free execution.
Each shard contains a disjoint subset of the group, with
the union of all the shards covering the entire group.

To define n shards, we choose an initial random
address a0 and assign each sequential address a j in
the permutation to shard j mod n. To implement
this, we initialize shards 1 . . .n with starting addresses
a0, . . . ,an−1, which can be efficiently calculated as a0 ·
g0,...,n−1. To iterate, we replace g with gn, which
“skips forward” in the permutation by n elements at
each step. Each shard computes ai+1 = ai · gn mod p
until reaching its shard specific ending address ae j .
For example, if there were three shards, the first
would scan {a0, a3 = g3 ·a0, a6 = g3 ·a3, . . . , ae1}, sec-
ond {a1, a4 = g3 ·a4, a7 = g3 ·a4, . . . , ae2}, and third
{a2, a5 = g3 ·a0, a8 = g3 ·a5, . . . , ae3}. We illustrate the
process in Figure 1.

After pre-calculating the shard parameters, we only
need to store three integers per shard: the starting address
a0, the ending address ae, and the current address ai. The
iteration factor gn and modulus p are the same for all
shards. Each thread can then iterate over a single shard
independently of the other threads, and no global lock
is needed to determine the next address to scan. Multi-
ple shards can operate within the same ZMap process as
threads (the configuration we evaluate in this paper), or
they can be split across multiple machines in a distributed
scanning mode.

Benchmarks To measure the impact of sharding in
isolation from our other enhancements, we conducted a
series of scans, each covering a 1% sample of the IP ad-
dress space, using our local blacklist file and a 10 GigE
uplink. Without sharding, the average bandwidth utiliza-
tion over 10 scans was 1.07 Gbps; with sharding, the
average increased to 1.80 Gbps, an improvement of 68%.

2

Shard 1

Shard 2

𝑎1

𝑎0

𝑎3

Shard 0

𝑎2

𝑎4

𝑎5

𝑎6

𝑎7
𝑎8

𝑎9

𝑎10

𝑎11

𝑎12

𝑎13

𝑎14

𝑎15

Figure 1: Sharding Visualization — This is a configuration
with three shards (n = 3). Shards 0,1,2 are initialized with
starting addresses a0,a1,a2. Each arrow represents performing
ai ·g3, a step forward by three elements in the permutation.

3.2 Blacklisting and Whitelisting

ZMap address constraints are used to limit scans to spe-
cific areas of the network (whitelisting) or to exclude
particular address ranges (blacklisting), such as IANA
reserved allocations [12]. Blacklisting can also be used to
comply with requests from network operators who want
to be excluded from receiving probe traffic. Good Internet
citizenship demands that ZMap users honor such requests,
but after many scans over a prolonged time period, a user’s
blacklist might contain hundreds of excluded prefixes.

Even with complicated address constraints, ZMap must
be able to efficiently determine whether any given IP
address should be part of the scan. To support 10 GigE
linespeed, we implemented a combination tree- and array-
based data structure that can efficiently manipulate and
query allowed addresses.

The IPv4 address space is modeled as a binary tree,
where each node corresponds to a network prefix. For
example, the root represents 0.0.0.0/0, and its children, if
present, represent 0.0.0.0/1 and 128.0.0.0/1. Each leaf is
colored either white or black, depending on whether or not
the corresponding prefix is allowed to be scanned. ZMap
constructs the tree by sequentially processing whitelist
and blacklist entries that specify CIDR prefixes. For each
prefix, ZMap sets the color of the corresponding leaf,
adding new nodes or pruning the tree as necessary.

Querying whether an address may be scanned involves
walking the tree, beginning with the most significant bit

of the address, until arriving at a leaf and returning the
color. However, a slightly different operation is used dur-
ing scanning. To make efficient use of the pseudorandom
permutation described above, we determine the number
of allowed addresses n (which may be much smaller than
the address space if a small whitelist is specified) and
select a permutation of approximately the same size. We
then map from this permutation of 1, . . . ,n to allowed
addresses a1, . . . ,an. Each node in the tree maintains
the total number of allowed addresses covered by its de-
scendants, allowing us to efficiently find the ith allowed
address using a simple recursive procedure.

As a further optimization, after the tree is constructed,
we assemble a list of /20 prefixes that are entirely allowed
and reassign the address indices so that these prefixes are
ordered before any other allowed addresses. We then use
an array of these prefixes to optimize address lookups. If
there are m /20 prefixes that are allowed, then the first
m ·212 allowed addresses can be returned using only an
array lookup, without needing to consult the tree. The /20
size was determined empirically as a trade off between
lookup speed and memory usage.

3.3 Zero-Copy NIC Access

Despite ZMap’s use of raw Ethernet sockets, sending each
probe packet is an expensive operation, as it involves a
context switch for the sendto system call and requires the
scan packet to be transferred through kernel space to the
NIC [4, 16]. Even with our other enhancements, the high
cost of these in-kernel operations prevented ZMap from
reaching above 2 Gbps. To reduce these costs, we reimple-
mented ZMap’s network functionality using the PF_RING
ZC interface [2]. PF_RING ZC allows userspace code to
bypass the kernel and have direct “zero-copy” access to
the NIC, making it possible to send packets without any
context switches or wasted memory bandwidth.

To boost ZMap to 10 GigE speeds, we implemented a
new probe transmission architecture on top of PF_RING.
This new architecture uses multiple packet creation
threads that feed into a single send thread. We found
that using more than one send thread for PF_RING de-
creased the performance of ZMap, but that a single packet
creation thread was not fast enough to reach line speed.
By decoupling packet creation from sending, we are able
to combine the parallelization benefits of sharding with
the speed of PF_RING.

In the original version of ZMap, multiple send threads
each generated and sent packets via a thread-specific raw
Ethernet socket. We modify thread responsibilities such
that each packet creation thread iterates over one address
generation shard and generates and queues the packets.
In a tight loop, each packet generation loop calculates the
next index in the shard, finds the corresponding allowed

3

Scan Rate Hit Rate Duration

1.44 Mpps (≈1 GigE) 1.00 42:08
3.00 Mpps 0.99 20:47
4.00 Mpps 0.97 15:38
14.23 Mpps (≈10 GigE) 0.63 4:29

Table 1: Performance of Internet-wide Scans — We show the
scan rate, the normalized hit rate, and the scan duration (m:s) for
complete Internet-wide scans performed with optimized ZMap.

IP address using the address constraint tree, and creates
an addressed packet in the PF_RING ZC driver’s mem-
ory. The packet is added to a per-thread single-producer,
single-consumer packet queue. The send thread reads
from each packet queue as packets come available, and
sends them over the wire using PF_RING.

To determine the optimal number of packet creation
threads, we performed a series of tests, scanning for 50
seconds using 1–6 packet creation threads, and measured
the send rate. We find the optimal number of threads
corresponds with assigning one per physical core.

4 Evaluation

We performed a series of experiments to characterize the
behavior of scanning at speeds greater than 1 Gbps. In
our test setup, we completed a full scan of the public IPv4
address space in 4m29s on a server with a 10 GigE uplink.
However, at full speed the number of scan results (the hit
rate) decreased by 37% compared to a scan at 1 Gbps,
due to random packet drop. We find that we can scan at
speeds of up to 2.7 Gbps before seeing a substantial drop
in hit rate.

We performed the following measurements on a Dell
PowerEdge R720 with two Intel Xeon E5-2690 2.9 GHz
processors (8 physical cores each plus hyper-threading)
and 128 GB of memory running Ubuntu 12.04.4 LTS and
the 3.2.0-59-generic Linux kernel. We use a single port
on a Intel X540-AT2 (rev 01) 10 GigE controller as our
scan interface, using the PF_RING-aware ixgbe driver
bundled with PF_RING 6.0.1. We configured ZMap to
use one send thread, one receive thread, one monitor
thread, and five packet creation threads.

We used a 10 GigE network connection at the Uni-
versity of Michigan Computer Science and Engineering
division connected directly to the building uplink, an
aggregated 2× 10 GigE channel. Beyond the 10 GigE
connection, the only special network configuration ar-
ranged was static IP addresses. We note that ZMap’s
performance may be different on other networks depend-
ing on local congestion and upstream network condi-
tions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

H
it

R
at

e
(N

or
m

al
iz

ed
)

Speed (pps)

ZMap
Masscan

Figure 2: Hit-rate vs. Scan-rate — ZMap’s hit rate is roughly
stable up to a scan rate of 4 Mpps, then declines linearly. This
drop off may be due to upstream network congestion. Even
using PF_RING, Masscan is unable to achieve scan rates above
6.4 Mpps on the same hardware and has a much lower hit rate.

We performed all of our experiments using our lo-
cal blacklist file. Our blacklist, which eliminates non-
routable address space and networks that have requested
exclusion from scanning [6], consists of over 1,000 entries
of various-sized network blocks. It results in 3.7 billion
allowed addresses—with almost all the excluded space
consisting of IANA reserved allocations.

4.1 Hit-rate vs. Scan-rate

In our original ZMap study, we experimented with var-
ious scanning speeds up to gigabit Ethernet line speed
(1.44 Mpps) and found no significant effect on the num-
ber of results ZMap found [7]. In other words, from our
network, ZMap did not appear to miss any results when it
ran faster up to gigabit speed.

In order to determine whether hit-rate decreases with
speeds higher than 1 Gigabit, we performed 50 second
scans at speeds ranging from 0.1–14 Mpps. We performed
3 trials at each scan rate. As can be seen in Figure 2, hit-
rate begins to drop linearly after 4 Mpps. At 14 Mpps
(close to 10 GigE linespeed), the hit rate is 68% of the
hit rate for a 1 GigE scan. However, it is not immediately
clear why this packet drop is occurring at these higher
speeds—are probe packets dropped by the network, re-
sponses dropped by the network, or packets dropped on
the scan host due to ZMap?

We first investigate whether response packets are being
dropped by ZMap or the network. In the original ZMap
work, we found that 99% of hosts respond within 1 sec-
ond [7]. As such, we would expect that after 1 second,
there would be negligible responses. However, as can be
seen in Figure 3, there is an unexpected spike in response
packets after sending completes at 50 seconds for scans at
10 and 14 Mpps. This spike likely indicates that response

4

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 10 20 30 40 50

R
at

e
(p

ps
)

Time (s)

1 Mpps
5 Mpps
7 Mpps

10 Mpps
14 Mpps

Figure 3: Response Rate During Scans — This graph shows
the rate of incoming SYN-ACKs during 50-second scans. The
peaks at the end (after sending finishes) at rates above 7 Mpps in-
dicate that many responses are being dropped and retransmitted
before being recorded by ZMap.

packets are being dropped by our network, NIC, or ZMap,
as destination hosts will resend SYN-ACK packets for
more than one minute if an ACK or RST packet is not
received.

In order to determine whether the drop of response
packets is due to ZMap inefficiencies or upstream network
congestion, we performed a secondary scan in which we
split the probe generation and address processing onto
separate machines. The send machine remained the same.
The receive machine was an HP ProLiant DL120 G7,
with an Intel Xeon E3-1230 processor (4 cores with hy-
perthreading) and 16 GB of memory, running Ubuntu
12.04.4 LTS and the 3.5.0-52-generic Linux kernel.

As we show in Figure 4, this spike does not occur
when processing response packets on a secondary server—
instead it closely follows the pattern of the slower scans.
This indicates that ZMap is locally dropping response
packets. However, the split setup received only 4.3%
more packets than the single machine—not enough to
account for the 31.7% difference between a 14 Mpps and
a 1 Mpps scan. If a large number of response packets
were dropped due to network congestion, we would not
have observed an immediate drop in responses—likely
indicating that the root cause of the decreased hit-rate is
dropped probe packets.

It is not immediately clear where probe packets are
dropped—it is possible that packets are dropped locally
by PF_RING, are dropped by local routers due to con-
gestion, or that we are overwhelming destination net-
works. PF_RING records locally dropped packets, which
remained zero throughout our scans, which indicates that
packets are not being dropped locally. In order to locate
where packet drop is occurring on our network, we calcu-
lated the drop rate per AS and found little AS-level corre-

 0

 50000

 100000

 150000

 200000

 0 10 20 30 40 50

R
at

e
(p

ps
)

Time (s)

One Machine
Two Machines

Figure 4: Comparing One and Two Machines — If we scan
at 14 Mpps and use separate machines for the sending and re-
ceiving tasks, the spike in the SYN-ACK rate at 50 s disappears,
indicating that fewer packets are dropped with the workload
spread over two machines. However, overall the two machine
configuration received only 4.3% more responses than with one
machine, which suggests that network packet loss accounts for
the majority of the drop off at higher scan rates.

lation for packets dropped by the 10 GigE scans, which
suggests that random packet drop is occurring close to
our network rather than at particular distant destination
networks.

4.2 Complete Scans

We completed a full Internet-wide scan, allowing ZMap to
operate at its full scan rate. This scan achieved an average
14.23 Mpps—96% of the theoretical limit of 10 GigE,
completing in 4 minutes, 29 seconds and achieving a hit
rate that is 62.5% of that from a 1 GigE scan. We show
a comparison to lower speed scans in Table 1. As we
discussed in the previous section, this decrease is likely
due to local network congestion, which results in dropped
probe packets. However, more investigation is deserved
in order to understand the full dynamics of high-speed
scans.

4.3 Comparison to Masscan

Masscan advertises the ability to emit probes at 25 Mpps
using PF_RING and two 10 GigE adapters, each con-
figured with two RSS queues—84% of linespeed for
dual 10 GigE and 166% of linespeed for a single 10 GigE
adapter [11]. We benchmarked ZMap and Masscan using
the Xeon E3-1230 machine described above. In our ex-
periments, we found that Masscan was able to send at a
peak 7.4 Mpps using a single-adapter configuration with
two RSS queues, 50% of 10 GigE linespeed. On the same
hardware, ZMap is capable of reaching a peak 14.1 Mpps.
While Masscan may be able to achieve a higher maxi-

5

 0

 32

 64

 96

 128

 160

 192

 224

 256

 0 32 64 96 128 160 192 224 256

S
ec

on
d

O
ct

et

First Octet

 0

 32

 64

 96

 128

 160

 192

 224

 256

 0 32 64 96 128 160 192 224 256

S
ec

on
d

O
ct

et

First Octet

Figure 5: Address Randomization Comparison — These plots depict the first 1000 addresses of an Internet-wide scan selected by
Masscan (left) and ZMap (right), with the first and second octets mapped to the x and y coordinates. ZMap’s address randomization
is CPU intensive but achieves better statistical properties than the cheaper approach used by Masscan, enabling valid sampling. We
enhanced ZMap to distribute address generation across multiple cores.

mum speed using multiple adapters, ZMap is able to fully
saturate a 10 GigE uplink with a single adapter.

Masscan uses a custom Feistel network to “encrypt”
a monotonically increasing index to generate a random
permutation of the IPv4 address space [10]. While this
is computation cheaper than using a cyclic group, this
technique results in poor statistical properties, which we
show in Figure 5. This has two consequences: first, it is
not suitable for sampling portions of the address space,
and second, there is greater potential for overloading des-
tination networks. This could explain the discrepency in
Figure 2 if Masscan targeted a less populated subnet.

Masscan and ZMap use a similar sharding approach to
parallelize address generation and distribute scans. Both
programs “count off” addresses into shards by staggering
the offsets of the starting position of each shard within the
permutation and iterating a fixed number of steps through
each of their permutations. In ZMap, this is implemented
by replacing the iteration factor g with gn. In Masscan,
this is simply a matter of incrementing the monotonically
increasing index by more than one.

5 Applications

In this section, we consider applications that could benefit
from 10 GigE scanning and remark on the implications of
high-speed scanning for defenders and attackers.

Scanning at faster rates reduces the blur introduced
from hosts changing IP addresses by decreasing the num-
ber of hosts that may be doubly counted during longer
scans. This also increases the ability to discover hosts
that are only online briefly. Thus, the ability to complete

scans in minutes allows researchers to more accurately
create a snapshot of the Internet at a given moment.

Similarly, the increased scan rate enables researchers
to complete high-resolution scans when measuring tem-
poral effects. For example, while researchers were able
to complete comprehensive scans for the recent Heart-
bleed Vulnerability every few hours [5], many sites were
patched within the first minutes after disclosure. The abil-
ity to scan more rapidly could help shed light on patching
behavior within this critical initial period.

Faster scan rates also allow for a variety of new
scanning-related applications that require multiple pack-
ets, including quickly completing global trace routes or
performing operating system fingerprinting. Furthermore,
the advancement of single-port scanning can be utilized
to quickly perform scans of a large number of ports, al-
lowing scanning all privileged ports on a /16 in under
5 seconds and all ports in 5 minutes, assuming the at-
tacker has sufficient bandwidth to the target.

The most alarming malicious potential for 10 GigE
scanning lies in its ability to find and exploit vulnera-
bilities en masse in a very short time. Durumeric et al.
found that attackers began scanning for the Heartbleed
vulnerability within 22 hours of its disclosure [5]. While
attackers have utilized botnets and worms in order to
complete distributed scans for vulnerabilities, recent
work [6] has shown that attackers are now also using
ZMap, Masscan, and other scanning technology from
bullet-proof hosting providers in order to find vulnerable
hosts. The increase in scan rates could allow attackers
to complete Internet-wide vulnerability scans in minutes
as 10 GigE becomes widely available.

6

Figure 6: 10 GigE Scan Traffic — An Internet-wide scan at full 10 GigE speed dwarfed all other traffic at the university during this
24 hour period. At 14.23 Mpps, a single machine running ZMap generated 4.6 Gbps in outgoing IP traffic and scanned the entire
public IPv4 address space in 4m29s. The massive increase in outbound traffic appears to have caused elevated packet drop. Notable
smaller spikes are due to earlier experiments.

6 Future Work

We demonstrated that it is possible to perform Internet-
wide scans at 10 GigE linespeed, but, at least from our
institutional network, we are unable to sustain the ex-
pected hit rate as scanning approaches this packet rate.
Further investigation is needed to understand this effect
and profile ZMap’s performance on other networks. One
important question is whether the drop off is caused by
nearby network bottlenecks (which might be reduced with
upgraded network hardware) or whether it arises because
such rapid scanning induces congestion on many distant
networks—which would represent an inherent limit on
scan speed. It is also possible that there are a small num-
ber of remote bottlenecks that cause the observed drop in
hit rate at high speeds. In that case, identifying, profiling,
and removing these bottlenecks could improve perfor-
mance.

40 GigE hardware currently exists, and 100 GigE is
under development [17]. As these networks become more
widely available, it may be desirable to optimize and scale
Internet-wide scanning to even higher speeds.

7 Conclusion

In this work, we introduced enhancements to the ZMap
Internet scanner that enable it to scan at up to 14.2 Mpps.
The three modifications we present—sharding, optimized
address constraints, and integration with PF_RING ZC—
enable scanning at close to 10 GigE linespeed. These
modifications are available now on experimental ZMap
branches and will be merged into mainline ZMap.

With these enhancements, we are able to complete a
scan of the public IPv4 address space in 4m29s. How-
ever, despite having a well provisioned upstream network,
coverage in our experiments drops precipitously when
scanning faster than 4 Mpps. While further research is
needed to better characterize and reduce the causes of this
drop off, it may be related to specific conditions on our
network.

As faster network infrastructure becomes more widely
available, 10 GigE scanning will enable powerful new
applications for both researchers and attackers.

Acknowledgments

The authors thank the exceptional sysadmins at the Uni-
versity of Michigan for their help and support throughout
this project. This research would not have been possible
without Kevin Cheek, Chris Brenner, Laura Fink, Paul
Howell, Don Winsor, and others from ITS, CAEN, and
DCO. We are grateful to Michael Bailey for numerous
productive discussions, to Luca Deri and ntop for pro-
viding a PF_RING license, and to the many contributors
to the ZMap open source project. We also thank Denis
Bueno, Jakub Czyz, Henry Fanson, Pat Pannuto, and Eric
Wustrow.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CNS-1255153
and No. CNS-0964545. Any opinions, findings, and con-
clusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

7

References
[1] Amazon EC2 Instance Types. http://aws.amazon.com/ec2/

instance-types/.
[2] Introducing PF_RING ZC. ntop Blog, Apr. 2014. http://www.

ntop.org/pf_ring/introducing-pf_ring-zc-zero-copy/.
[3] D. J. Bernstein. SYN cookies. http://cr.yp.to/syncookies.html,

1996.
[4] L. Deri. Improving passive packet capture: Beyond device polling.

In 4th International System Administration and Network Engineer-
ing Conference (SANE), 2004.

[5] Z. Durmeric, D. Adrian, M. Bailey, and J. A. Halderman. Heart-
bleed bug health report, Apr. 2014. https://zmap.io/heartbleed.

[6] Z. Durumeric, M. Bailey, and J. A. Halderman. An Internet-wide
view of Internet-wide scanning. In Proc. 23rd USENIX Security
Symposium, Aug. 2014.

[7] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast
Internet-wide scanning and its security applications. In Proc. 22nd
USENIX Security Symposium, Aug. 2013.

[8] P. Eckersley and J. Burns. An Observatory for the SSLiverse. In
Proc. DEFCON 18, July 2010.

[9] F. Fusco and L. Deri. High speed network traffic analysis with
commodity multi-core systems. In Proc. 10th ACM SIGCOMM
conference on Internet measurement, Nov. 2010.

[10] R. Graham. Masscan: Designing my own crypto. Errata
Security blog, Dec. 2013. http://blog.erratasec.com/2013/12/
masscan-designing-my-own-crypto.html.

[11] R. Graham. Masscan: The entire Internet in 3 minutes. Er-
rata Security blog, Sept. 2013. http://blog.erratasec.com/2013/09/
masscan-entire-internet-in-3-minutes.html.

[12] IANA. IPv4 address space registry. http://www.iana.org/
assignments/ipv4-address-space/ipv4-address-space.xml.

[13] D. Kaminsky. Paketto simplified (1.0), Nov. 2002. http://
dankaminsky.com/2002/11/18/77/.

[14] R. E. Lee. Unicornscan. http://unicornscan.org.

[15] G. F. Lyon. Nmap Network Scanning: The Official Nmap Project
Guide to Network Discovery and Security Scanning. Insecure,
USA, 2009.

[16] L. Rizzo, L. Deri, and A. Cardigliano. 10 Gbit/s line rate packet
processing using commodity hardware: Survey and new proposals.
http://luca.ntop.org/10g.pdf.

[17] S. J. Vaughan-Nichols. Here comes the 100GigE Internet. ZDNet,
2010. http://www.zdnet.com/blog/networking/here-comes-the-
100gige-internet/334.

8

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://www.ntop.org/pf_ring/introducing-pf_ring-zc-zero-copy/
http://www.ntop.org/pf_ring/introducing-pf_ring-zc-zero-copy/
http://cr.yp.to/syncookies.html
https://zmap.io/heartbleed
http://blog.erratasec.com/2013/12/masscan-designing-my-own-crypto.html
http://blog.erratasec.com/2013/12/masscan-designing-my-own-crypto.html
http://blog.erratasec.com/2013/09/masscan-entire-internet-in-3-minutes.html
http://blog.erratasec.com/2013/09/masscan-entire-internet-in-3-minutes.html
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml
http://dankaminsky.com/2002/11/18/77/
http://dankaminsky.com/2002/11/18/77/
http://unicornscan.org
http://luca.ntop.org/10g.pdf
http://www.zdnet.com/blog/networking/here-comes-the-100gige-internet/334
http://www.zdnet.com/blog/networking/here-comes-the-100gige-internet/334

	Introduction
	Related Work
	Performance Optimizations
	Address Generation Sharding
	Blacklisting and Whitelisting
	Zero-Copy NIC Access

	Evaluation
	Hit-rate vs. Scan-rate
	Complete Scans
	Comparison to Masscan

	Applications
	Future Work
	Conclusion

