
Trace Processors

Eric Rotenberg*, Quinn Jacobson, Yiannakis Sazeides, Jim Smith
Computer Sciences Dept.* and Dept. of Electrical and Computer Engineering

University of Wisconsin - Madison

Copyright 1997 IEEE. Published in the Proceedings of Micro-30, December 1-3, 1997 in Research Triangle Park, North
Carolina. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works, must be obtained from the IEEE. Contact:

Manager, Copyrights and Permissions
IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331, USA
Telephone: + Intl. 908-562-3966

Trace Processors

Eric Rotenberg*, Quinn Jacobson, Yiannakis Sazeides, Jim Smith
Computer Sciences Dept.* and Dept. of Electrical and Computer Engineering

University of Wisconsin - Madison

Abstract
Traces are dynamic instruction sequences constructed

and cached by hardware. A microarchitecture organized
around traces is presented as a means for efficiently exe-
cuting many instructions per cycle. Trace processors
exploit both control flow and data flow hierarchy to over-
come complexity and architectural limitations of conven-
tional superscalar processors by (1) distributing execution
resources based on trace boundaries and (2) applying
control and data prediction at the trace level rather than
individual branches or instructions.

Three sets of experiments using the SPECInt95 bench-
marks are presented. (i) A detailed evaluation of trace
processor configurations: the results affirm that significant
instruction-level parallelism can be exploited in integer
programs (2 to 6 instructions per cycle). We also isolate
the impact of distributed resources, and quantify the value
of successively doubling the number of distributed ele-
ments. (ii) A trace processor with data prediction applied
to inter-trace dependences: potential performance
improvement with perfect prediction is around 45% for all
benchmarks. With realistic prediction,gcc achieves an
actual improvement of 10%. (iii) Evaluation of aggressive
control flow: some benchmarks benefit from control inde-
pendence by as much as 10%.

1. Introduction

Improvements in processor performance come about
in two ways - advances in semiconductor technology and
advances in processor microarchitecture. To sustain the
historic rate of increase in computing power, it is impor-
tant for both kinds of advances to continue. It is almost
certain that clock frequencies will continue to increase.
The microarchitectural challenge is to issue many instruc-
tions per cycle and to do so efficiently. We argue that a
conventional superscalar microarchitecture cannot meet
this challenge due to itscomplexity - its inefficient
approach to multiple instruction issue - and due to its
architectural limitations on ILP - its inability to extract
sufficient parallelism from sequential programs.

In going from today’s modest issue rates to 12- or 16-
way issue, superscalar processors face complexity at all
phases of instruction processing. Instruction fetch band-
width is limited by frequent branches. Instruction dis-
patch, register renaming in particular, requires

increasingly complex dependence checking among all
instructions being dispatched. It is not clear that wide
instruction issue from a large pool of instruction buffers or
full result bypassing among functional units is feasible
with a very fast clock.

Even if a wide superscalar processor could efficiently
exploit ILP, it still has fundamental limitations in finding
the parallelism. These architectural limitations are due to
the handling of control, data, and memory dependences.

The purpose of this paper is to advocate a next gener-
ation microarchitecture that addresses both complexity
and architectural limitations. The development of this
microarchitecture brings together concepts from a signifi-
cant body of research targeting these issues and fills in
some gaps to give a more complete and cohesive picture.
Our primary contribution is evaluating the performance
potential that this microarchitecture offers.

1.1 Trace processor microarchitecture

The proposed microarchitecture (Figure 1) is orga-
nized aroundtraces. In this context, a trace is a dynamic
sequence of instructions captured and stored by hard-
ware. The primary constraint on a trace is a hardware-
determined maximum length, but there may be a number
of other implementation-dependent constraints. Traces are
built as the program executes, and are stored in a trace
cache [1][2]. Using traces leads to interesting possibilities
that are revealed by the following trace properties:

• A trace can contain any number and type of control
transfer instructions, that is, any number of implicit
control predictions.

This property suggests the unit of control prediction
should be a trace, not individual control transfer
instructions. Anext-trace predictor [3] can make pre-
dictions at the trace level, effectively ignoring the
embedded control flow in a trace.

• A trace uses and produces register values that are
either live-on-entry, entirely local, or live-on-exit
[4][5]. These are referred to as live-ins, locals, and
live-outs, respectively.

This property suggests a hierarchical register file
implementation: a local register file per trace for hold-
ing values produced and consumed solely within a
trace, and a global register file for holding values that

are live between traces. The distinction between local
dependences within a trace and global dependences
between traces also suggests implementing a distrib-
uted instruction window based on trace boundaries.

The result is a processor composed of processing ele-
ments (PE), each having the organization of a small-scale
superscalar processor. Each PE has (1) enough instruction
buffer space to hold an entire trace, (2) multiple dedicated
functional units, (3) a dedicated local register file for hold-
ing local values, and (4) a copy of the global register file.

Figure 1. A trace processor.

1.1.1 Hierarchy: overcoming complexity

An organization based on traces reduces complexity
by taking advantage ofhierarchy. There is a control flow
hierarchy - the processor sequences through the program
at the level of traces, and contained within traces is a finer
granularity of control flow. There is also a value hierarchy
- global and local values - that enables the processor to
efficiently distribute execution resources. With hierarchy
we overcome complexity at all phases of processing:

• Instruction fetch: By predicting traces, multiple
branches are implicitly predicted - a simpler alternative
to brute-force extensions of single-branch predictors.
Together the trace cache and trace predictor offer a
solution to instruction fetch complexity.

• Instruction dispatch: Because a trace is given a local
register file that is not affected by other traces, local
registers can be pre-renamed in the trace cache [4][5].
Pre-renaming by definition eliminates the need for
dependence checking among instructions being dis-
patched, because locals represent all dependences
entirely contained within a trace. Only live-ins and
live-outs go through global renaming at trace dispatch,
thereby reducing bandwidth pressure to register maps
and the free-list.

• Instruction issue: By distributing the instruction win-
dow among smaller trace-sized windows, the instruc-
tion issue logic is no longer centralized. Furthermore,
each PE has fewer internal result buses, and thus a
given instruction monitors fewer result tag buses.

• Result bypassing: Full bypassing of local values
among functional units within a PE is now feasible,
despite a possibly longer latency for bypassing global
values between PEs.

• Register file: The size and bandwidth requirements of
the global register file are reduced because it does not
hold local values. Sufficient read port bandwidth is
achieved by having copies in each PE. Write ports
cannot be handled this way because live-outs must be
broadcast to all copies of the global file; however, write
bandwidth is reduced by eliminating local value traffic.

• Instruction retirement: Retirement is the “dual” of dis-
patch in that physical registers are returned to the free-
list. Free-list update bandwidth is reduced because
only live-outs are mapped to physical registers.

1.1.2 Speculation: exposing ILP

To alleviate the limitations imposed by control, data,
and memory dependences, the processor employs aggres-
sive speculation.

Control flow prediction at the granularity of traces can
yield as good or better overall branch prediction accuracy
than many aggressive single-branch predictors [3].

Value prediction [6][7] is used to relax the data depen-
dence constraints among instructions. Rather than predict
source or destination values of all instructions, we limit
value predictions to live-ins of traces. Limiting predic-
tions to a critical subset of values imposesstructure on
value prediction; predicting live-ins is particularly appeal-
ing because it enables traces to execute independently.

Memory speculation is performed in two ways. First,
all load and store addresses are predicted at dispatch time.
Second, we employ memory dependence speculation -
loads issue as if there are no prior stores, and disambigua-
tion occurs after the fact via a distributed mechanism.

1.1.3 Handling misspeculation: selective reissuing

Because of the pervasiveness of speculation, handling
of misspeculation must fundamentally change. Misspecu-
lation is traditionally viewed as an uncommon event and is
treated accordingly: a misprediction represents a barrier
for subsequent computation. However, data misspecula-
tion in particular should be viewed as a normal aspect of
computation.

Data misspeculation may be caused by a mispredicted
source register value, a mispredicted address, or a memory

Preprocess
Trace

Construct
Trace

Instruction

Branch
Predict

Cache

Global
Registers

Local

Live-in
Value
Predict

Trace
Cache

Reorder
Buffer

1 segment
per trace

Next
Trace
Predict

Maps
Rename
Global

Registers
Predicted

Issue Buffers

Registers

Func
Units

Processing Element 1

Processing Element 2

Processing Element 3

Processing Element 0

Sp
ec

ul
at

iv
e

St
at

e
D

at
a

C
ac

he

dependence violation. If an instruction detects a mispre-
diction, it will reissue with new values for its operands. A
new value is produced and propagated to dependent
instructions, which will in turn reissue, and so on. Only
instructions along the dependence chain reissue. The
mechanism forselective reissuing is simple because it is in
fact the existing issue mechanism.

Selective reissuing due to control misprediction,
while more involved, is also discussed and the perfor-
mance improvement is evaluated for trace processors.

1.2 Prior work

This paper draws from significant bodies of work that
either efficiently exploit ILP via distribution and hierarchy,
expose ILP via aggressive speculation, or do both. For the
most part, this body of research focuses on hardware-
intensive approaches to ILP.

Work in the area of multiscalar processors [8][9] first
recognized the complexity of implementing wide instruc-
tion issue in the context of centralized resources. The
result is an interesting combination of compiler and hard-
ware. The compiler divides a sequential program into
tasks, each task containing arbitrary control flow. Tasks,
like traces, imply a hierarchy for both control flow and val-
ues. Execution resources are distributed among multiple
processing elements and allocated at task granularity. At
run-time tasks are predicted and scheduled onto the PEs,
and both control and data dependences are enforced by the
hardware (with aid from the compiler in the case of regis-
ter dependences).

Multiscalar processors have several characteristics in
common with trace processors. Distributing the instruc-
tion window and register file solves instruction issue and
register file complexity. Mechanisms for multiple flows of
control not only avoid instruction fetch and dispatch com-
plexity, but also exploit control independence. Because
tasks are neither scheduled by the compiler nor guaranteed
to be parallel, these processors demonstrate aggressive
control speculation [10] and memory dependence specula-
tion [8][11].

More recently, other microarchitectures have been
proposed that address the complexity of superscalar pro-
cessors. The trace window organization proposed in [4] is
the basis for the microarchitecture presented here. Con-
ceivably, other register file and memory organizations
could be superimposed on this organization; e.g. the origi-
nal multiscalar distributed register file [12], or the distrib-
uted speculative-versioning cache [13].

So far we have discussed microarchitectures that dis-
tribute the instruction window based on task or trace
boundaries. Dependence-based clustering is an interesting
alternative [14][15]. Similar to trace processors, the win-
dow and execution resources are distributed among multi-

ple smaller clusters. However, instructions are dispatched
to clusters based on dependences, not based on proximity
in the dynamic instruction stream as is the case with
traces. Instructions are steered to clusters so as to localize
dependences within a cluster, and minimize dependences
between clusters.

Early work [16] proposed the fill-unit for constructing
and reusing larger units of execution other than individual
instructions, a concept very relevant to next generation
processors. This and subsequent research [17][18] empha-
sizeatomicity, which allows for unconstrained instruction
preprocessing and code scheduling.

Recent work in value prediction and instruction col-
lapsing [6][7] address the limits of true data dependences
on ILP. These works propose exposing more ILP by pre-
dicting addresses and register values, as well as collapsing
instructions for execution in combined functional units.

1.3 Paper overview

In Section 2 we describe the microarchitecture in
detail, including the frontend, the value predictor, the pro-
cessing element, and the mechanisms for handling mis-
speculation. Section 3 describes the performance
evaluation method. Primary performance results, includ-
ing a comparison with superscalar, are presented in
Section 4, followed by results with value prediction in
Section 5 and a study of control flow in Section 6.

2. Microarchitecture of the trace processor

2.1 Instruction supply

A trace is uniquely identified by the addresses of all
its instructions. Of course this sequence of addresses can
be encoded in a more compact form, for example, starting
addresses of all basic blocks, or trace starting address plus
branch directions. Regardless of how a trace is identified,
trace ids and derivatives of these trace ids are used to
sequence through the program.

The shaded region in Figure 2 shows the fast-path of
instruction fetch: the next-trace predictor [3], the trace
cache, and sequencing logic to coordinate the datapath.
The trace predictor outputs a primary trace id and one
alternate trace id prediction in case the primary one turns
out to be incorrect (one could use more alternates, but with
diminishing returns). The sequencer applies some hash
function on the bits of the predicted trace id to form an
index into the trace cache. The trace cache supplies the
trace id (equivalent of a cache tag) of the trace cached at
that location, which is compared against the full predicted
trace id to determine if there is a hit. In the best case, the
predicted trace is both cached and correct.

If the predicted trace misses in the cache, a trace is
constructed by the slow-path sequencer (non-shaded path

in Figure 2). The predicted trace id encodes the instruc-
tions to be fetched from the instruction cache, so the
sequencer uses the trace id directly instead of the conven-
tional branch predictor.

The execution engine returns actual branch outcomes.
If the predicted trace is partially or completely incorrect,
an alternate trace id that is consistent with the known
branch outcomes can be used to try a different trace (trace
cache hit) or build the trace remainder (trace cache miss).
If alternate ids prove insufficient, the slow-path sequencer
forms the trace using the conventional branch predictor
and actual branch outcomes.

Figure 2. Frontend of the trace processor.

2.1.1 Trace selection

An interesting aspect of trace construction is the algo-
rithm used to delineate traces, ortrace selection. The
obvious trace selection decisions involve either stopping at
or embedding various types of control instructions: call
directs, call indirects, jump indirects, and returns. Other
heuristics may stop at loop branches, ensure that traces
end on basic block boundaries, embed leaf functions,
embed unique call sites, or enhance control independence.
Trace selection decisions affect instruction fetch band-
width, PE utilization, load balance between PEs, trace
cache hit rate, and trace prediction accuracy - all of which
strongly influence overall performance. Often, targeting
trace selection for one factor negatively impacts another
factor. We have not studied this issue extensively. Unless
otherwise stated, the trace selection we use is: (1) stop at a
maximum of 16 instructions, or (2) stop at any call indi-
rect, jump indirect, or return instruction.

2.1.2 Trace preprocessing

Traces can be preprocessed prior to being stored in the
trace cache. Our processor model requires pre-renaming
information in the trace cache. Register operands are
marked as local or global, and locals are pre-renamed to
the local register file [4]. Although not done here, prepro-
cessing might also include instruction scheduling [17],
storing information along with the trace to set up the reor-
der buffer quickly at dispatch time, or collapsing depen-
dent instructions across basic block boundaries [7].

2.1.3 Trace cache performance

In this section we present miss rates for different trace
cache configurations. The miss rates are measured by run-
ning through the dynamic instruction stream, dividing it
into traces based on the trace selection algorithm, and
looking up the successive trace ids in the cache. We only
include graphs forgo and gcc. Compress fits entirely
within a 16K direct mapped trace cache;jpeg and xlisp
show under 4% miss rates for a 32K direct mapped cache.

There are two sets of curves, for two different trace
selection algorithms. Each set shows miss rates for 1-way
through 8-way associativity, with total size in kilobytes
(instruction storage only) along the x-axis. The top four
curves are for the default trace selection (Section 2.1.1).
The bottom four curves, labeled with ‘S’ in the key, add
two more stopping constraints: stop at call directs and stop
at loop branches. Default trace selection gives average
trace lengths of 14.8 forgo and 13.9 forgcc. The more
constraining trace selection gives smaller average trace
lengths - 11.8 forgo and 10.9 forgcc - but the advantage is
much lower miss rates for both benchmarks. Forgo in
particular, the miss rate is 14% with constrained selection
and a 128kB trace cache, down from 34%.

Figure 3. Trace cache miss rates.

2.1.4 Trace predictor

The core of the trace predictor is a correlated predic-
tor that uses the history of previous traces. The previous
few trace ids are hashed down to fewer bits and placed in a
shift register, forming a path history. The path history is

used to form an index into a prediction table with 216

entries. Each table entry consists of the predicted trace id,

hit
logic

fast-path
sequencer

Trace
Next

sequencer
slow-path

Predictor
cached trace id

alternate
primary Function

Hash

predicted
trace id

CACHE

TRACE

T$ hit

trace

pred’s

branch
pred
BTB

control

targets,
branch Construct

Trace Trace

new trace, trace id

Preprocess

outcomes from execution
instr. block (optional path)

CACHE

INSTR

0

10

20

30

40

50

60

70
m

is
s

ra
te

 (
%

)

GCC

(S)

DM
2-way
4-way
8-way

DM (S)
2-way (S)
4-way (S)
8-way (S)

0

10

20

30

40

50

60

70

80

48 16 32 64 128

m
is

s
ra

te
 (

%
)

size (K-bytes)

GO

(S)

DM
2-way
4-way
8-way

DM (S)
2-way (S)
4-way (S)
8-way (S)

an alternate trace id, and a 2-bit saturating counter for
guiding replacement. The accuracy of the correlated pre-
dictor is aided by having areturn history stack. For each
call within a trace the path history register is copied and
pushed onto a hardware stack. When a trace ends in a
return, a path history value is popped from the stack and
used to replace all but the newest trace in the path history
register.

To reduce the impact of cold-starts and aliasing, the
correlated predictor is augmented with a second smaller
predictor that uses only the previous trace id, not the
whole path history. Each table entry in the correlated pre-
dictor is tagged with the last trace to use the entry. If the
tag matches then the correlated predictor is used, other-
wise the simpler predictor is used. If the counter of the
simpler predictor is saturated its prediction is automati-
cally used, regardless of the tag. A more detailed treat-
ment of the trace predictor can be found in [3].

2.1.5 Trace characteristics

Important trace characteristics are shown in Table 1.
Average trace length affects instruction supply bandwidth
and instruction buffer utilization - the larger the better. We
want a significant fraction of values to be locals, to reduce
global communication. Note that the ratio of locals to
live-outs tends to be higher for longer traces, as observed
in [4].

2.2 Value predictor

The value predictor is context-based and organized as
a two-level table. Context-based predictors learn values
that follow a particular sequence of previous values [19].
The first-level table is indexed by a uniqueprediction id,
derived from the trace id. A given trace has multiple pre-
diction ids, one per live-in or address in the trace. An
entry in the first-level table contains a pattern that is a
hashed version of the previous 4 data values of the item
being predicted. The pattern from the first-level table is
used to look up a 32-bit data prediction in the second-level
table. Replacement is guided by a 3-bit saturating counter
associated with each entry in the second-level table.

The predictor also assigns a confidence level to pre-
dictions [20][6]. Instructions issue with predicted values

only if the predictions have a high level of confidence.
The confidence mechanism is a 2-bit saturating counter
stored with each pattern in the first-level table.

The table sizes used in this study are very large in
order to explore the potential of such an approach:

218 entries in the first-level, 220 entries in the second-level.
Accuracy of context-based value prediction is affected by
timing of updates, which we accurately model. A detailed
treatment of the value predictor can be found in [19].

2.3 Distributed instruction window

2.3.1 Trace dispatch

The dispatch stage performs decode, renaming, and
value predictions. Live-in registers of the trace are
renamed by looking up physical registers in the global reg-
ister rename map. Independently, live-out registers
receive new names from the free-list of physical registers,
and the global register rename map is updated to reflect
these new names. The dispatch stage looks up value pre-
dictions for all live-in registers and all load/store addresses
in the trace.

The dispatch stage also performs functions related to
precise exceptions, similar to the mechanisms used in con-
ventional processors. First, a segment of the reorder buffer
(ROB) is reserved by the trace. Enough information is
placed in the segment to allow backing up rename map
state instruction by instruction. Second, a snapshot of the
register rename map is saved at trace boundaries, to allow
backing up state to the point of an exception quickly. The
processor first backs up to the snapshot corresponding to
the excepting trace, and then information in that trace’s
ROB segment is used to back up to the excepting instruc-
tion. The ROB is also used to free physical registers.

2.3.2 Freeing and allocating PEs

For precise interrupts, traces must be retired in-order,
requiring the ROB to maintain state for all outstanding
traces. The number of outstanding traces is therefore lim-
ited by the number of ROB segments (assuming there are
enough physical registers to match).

Because ROB state handles traceretirement, a PE can
be freed as soon as its trace hascompleted execution.
Unfortunately, knowing when a trace is “completed” is not
simple, due to our misspeculation model (a mechanism is
needed to determine when an instruction has issued for the
last time). Consequently, a PE is freed when its trace is
retired, because retirement guarantees instructions are
done. This is a lower performance solution because it
effectively arranges the PEs in a circular queue, just like
segments of the ROB. PEs are therefore allocated and
freed in a fifo fashion, even though they might in fact com-
plete out-of-order.

Table 1. Trace characteristics.
statistic comp gcc go jpeg xlisp
trace length (inst) 14.5 13.9 14.8 15.8 12.4
live-ins 5.2 4.3 5.0 6.8 4.1
live-outs 6.2 5.6 5.8 6.4 5.1
locals 5.6 3.8 5.9 7.1 2.6
loads 2.6 3.6 3.1 2.9 3.7
stores 0.9 1.9 1.0 1.2 2.2
cond. branches 2.1 2.1 1.8 1.0 1.9
control inst 2.9 2.8 2.2 1.3 2.9
trace misp. rate 17.1% 8.1% 15.7% 6.6% 6.9%

2.3.3 Processing element detail

The datapath for a processing element is shown in
Figure 4. There are enough instruction buffers to hold the
largest trace. For loads and stores, the address generation
part is treated as an instruction in these buffers. The mem-
ory access part of loads and stores, along with address pre-
dictions, are placed into load/store buffers. Included with
the load/store buffers is validation hardware for validating
predicted addresses against the result of address computa-
tions. A set of registers is provided to hold live-in predic-
tions, along with hardware for validating the predictions
against values received from other traces.

Figure 4. Processing element detail.

Instructions are ready to issue when all operands
become available. Live-in values may already be available
in the global register file. If not, live-ins may have been
predicted and the values are buffered with the instruction.
In any case, instructions continually monitor result buses
for the arrival of new values for its operands; memory
access operations continually monitor the arrival of new
computed addresses.

Associated with each functional unit is a queue for
holding completed results, so that instruction issue is not
blocked if results are held up waiting for a result bus. The
result may be a local value only, a live-out value only, or
both; in any case, local and global result buses are arbi-
trated separately. Global result buses correspond directly
with write ports to the global register file, and are charac-
terized by two numbers: the total number of buses and the
number of buses for which each PE can arbitrate in a
cycle. The memory buses correspond directly with cache
ports, and are characterized similarly.

2.4 Misspeculation

In Section 1.1.3 we introduced a model for handling
misspeculation. Instructions reissue when they detect
mispredictions; selectively reissuing dependent instruc-

tions follows naturally by the receipt of new values. This
section describes the mechanisms for detecting various
kinds of mispredictions.

2.4.1 Mispredicted live-ins

Live-in predictions are validated when the computed
values are seen on the global result buses. Instruction
buffers and store buffers monitor comparator outputs cor-
responding to live-in predictions they used. If the pre-
dicted and computed values match, instructions that used
the predicted live-in are not reissued. Otherwise they do
reissue, in which case the validation latency appears as a
misprediction penalty, because in the absence of specula-
tion the instructions may have issued sooner [6].

2.4.2 Memory dependence and address misspeculation

The memory system (Figure 5) is composed of a data
cache and a structure for buffering speculative store data,
distributed load/store buffers in the PEs, and memory
buses connecting them.

When a trace is dispatched, all of its loads and stores
are assignedsequence numbers. Sequence numbers indi-
cate the program order of all memory operations in the
window. The store buffer may be organized like a cache
[21], or integrated as part of the data cache itself [13]. The
important thing is that some mechanism must exist for
buffering speculative memory state and maintaining multi-
ple versions of memory locations [13].

Figure 5. Abstraction of the memory system.

Handling stores:

• When a store first issues to memory, it supplies its
address, sequence number, and data on one of the
memory buses. The store buffer creates a new version
for that memory address and buffers the data. Multiple
versions are ordered via store sequence numbers.

• If a store must reissue because it has received a new
computed address, it must first “undo” its state at the
old address, and then perform the store to the new
address. Both transactions are initiated by the store
sending its old address, new address, sequence number,
and data on one of the memory buses.

load/store buf

==

==

==

==

FU

FU

tags values

tags values

Local

Global

buffers
issue issue

File
Reg

File
Reg

local
result
buses

agen resultsstore
data

FU

FU

global
result
buses (D$ ports)

buses
addr/data

live-in
value
pred’s

D
IS

PA
T

C
H

T
R

A
C

E

. . . PEs . . .
ST LD ST LD ST LD

global memory buses

data1

(commit)
DATA CACHE

STORE BUFFER

dataNdata2address
multiple versions

• If a store must reissue because it has received new data,
it simply performs again to the same address.

Handling loads:

• A load sends its address and sequence number to the
memory system. If multiple versions of the location
exist, the memory system knows which version to
return by comparing sequence numbers. The load is
supplied both the data and the sequence number of the
store which created the version. Thus, loads maintain
two sequence numbers: its own and that of the data.

• If a load must reissue because it has received a new
computed address, it simply reissues to the memory
system as before with the new address.

• Loads snoop all store traffic (store address and
sequence number). A load must reissue if (1) the store
address matches the load address, (2) the store
sequence number is less than that of the load, and (3)
the store sequence number is greater than that of the
load data. This is a true memory dependence violation.
The load must also reissue if the store sequence num-
ber simply matches the sequence number of the load
data. This takes care of the store changing its address
(a false dependence had existed between the store and
load) or sending out new data.

2.4.3 Concerning control misprediction

In a conventional processor, a branch misprediction
causes all subsequent instructions to be squashed. How-
ever, only those instructions that are control-dependent on
the misprediction need to be squashed [22]. At least three
things must be done to exploit control independence in the
trace processor. First, only those instructions fetched from
the wrong path must be replaced. Second, although not all
instructions are necessarily replaced, those that remain
may still have to reissue because of changes in register
dependences. Third, stores on the wrong path must
“undo” their speculative state in the memory system.

Trace re-predict sequences are used for selective con-
trol squashes. After detecting a control misprediction
within a trace, traces in subsequent PEs are not automati-
cally squashed. Instead, the frontend re-predicts and re-
dispatches traces. The resident trace id is checked against
the re-predicted trace id; if there is a partial (i.e. common
prefix) or total match, only instructions beyond the match
need to be replaced. For those not replaced, register
dependences may have changed. So the global register
names of each instruction in the resident trace are checked
against those in the new trace; instructions that differ pick
up the new names. Reissuing will follow from the existing
issue mechanism. This approach treats instructions just
like data values in that they are individually “validated”.

If a store is removed from the window and it has
already performed, it must first issue to memory again, but
only an undo transaction is performed as described in the
previous section. Loads that were false-dependent on the
store will snoop the store and thus reissue. Removing or
adding loads/stores to the window does not cause
sequence number problems if sequence numbering is
based on {PE #, buffer #}.

3. Simulation environment

Detailed simulation is used to evaluate the perfor-
mance of trace processors. For comparison, superscalar
processors are also simulated. The simulator was devel-
oped using thesimplescalar simulation platform [23].
This platform uses a MIPS-like instruction set (no delayed
branches) and comes with a gcc-based compiler to create
binaries.

Table 2.Fixed parameters and benchmarks.

Our primary simulator uses a hybrid trace-driven and
execution-driven approach. The control flow of the simu-
lator is trace-driven. A functional simulator generates the
true dynamic instruction stream, and this stream feeds the
processor simulator. The processor does not explicitly
fetch instructions down the wrong path due to control mis-
speculation. The data flow of the simulator is completely

frontend latency 2 cycles (fetch + dispatch)
trace predictor see Section 2.1.4
value predictor see Section 2.2
trace cache size/assoc/repl = 128kB(instr only)/8-way/LRU

total traces = 2048
trace line size = 16 instructions

branch pred. predictor = 64k 2-bit sat counters
BTB = 16k entries, dir map, no tags, 1-bit hyst.

instr. cache size/assoc/repl = 64kB/4-way/LRU
line size = 16 instructions
2-way interleaved
miss penalty = 12 cycles

global phys regs unlimited
functional units n symmetric, fully-pipelined FUs (forn-way issue)
memory unlimited speculative store buffering

D$ size/assoc/repl = 64kB/4-way/LRU
D$ line size = 64 bytes
D$ miss penalty = 14 cycles
D$ MSHRs = unlimited outstanding misses

exec. latencies address generation = 1 cycle
memory access = 2 cycles (hit)
integer ALU operations = 1 cycle
complex operations = MIPS R10000 latencies
validation latency = 1 cycle

*Compress was modified to make only a single pass.

benchmark input dataset instr count
compress * 400000 e 2231 104 million
gcc -O3 genrecog.i 117 million
go 9 9 133 million
ijpeg vigo.ppm 166 million
xlisp queens 7 202 million

execution-driven. This is essential for accurately portray-
ing the data misspeculation model. For example, instruc-
tions reissue due to receiving new values, loads may
pollute the data cache (or prefetch) with wrong addresses,
extra bandwidth demand is observed on result buses, etc.

As stated above, the default control sequencing model
is that control mispredictions cause no new traces to be
brought into the processor until resolved. A more aggres-
sive control flow model is investigated in Section 6. To
accurately measure selective control squashing, a fully
execution-driven simulator was developed - it is consider-
ably slower than the hybrid approach and so is only
applied in Section 6.

The simulator faithfully models the frontend, PE, and
memory system depicted in Figures 2, 4, and 5, respec-
tively. Model parameters that are invariant for simulations
are shown in Table 2. The table also lists the five SPEC95
integer benchmarks used, along with input datasets and
dynamic instruction counts for the full runs.

4. Primary performance results

In this section, performance for both trace processors
and conventional superscalar processors is presented,
without data prediction. The only difference between the
superscalar simulator and the trace processor simulator is
that superscalar has a centralized execution engine. All
other hardware such as the frontend and memory system
are identical. Thus, superscalar has the benefit of the trace
predictor, trace cache, reduced rename complexity, and
selective reissuing due to memory dependence violations.

The experiments (Table 3) focus on three parameters:
window size, issue width, and global result bypass latency.
Trace processors with 4, 8, and 16 PEs are simulated.
Each PE can hold a trace of 16 instructions. Conventional
superscalar processors with window sizes ranging from 16
to 256 instructions are simulated. Curves are labeled with
the model name - T for trace and SS for superscalar - fol-
lowed by the total window size. Points on the same curve
represent varying issue widths; in the case of trace proces-
sors, this is the aggregate issue width. Trace processor
curves come in pairs - one assumes no extra latency (0) for
bypassing values between processing elements, and the
other assumes one extra cycle (1). Superscalar is not
penalized - all results are bypassed as if they are locals.
Fetch bandwidth, local and global result buses, and cache
buses are chosen to be commensurate with the configura-
tion’s issue width and window size. Note that the window
size refers to all in-flight instructions, including those that
have completed but not yet retired. The retire width equals
the issue width for superscalar; an entire trace can be
retired in the trace processor.

From the graphs in Figure 6, the first encouraging
result is that all benchmarks show ILP that increases

nicely with window size and issue bandwidth, for both
processor models. Except forcompress and go, which
exhibit poor control prediction accuracy, absolute IPC is
also encouraging. For example, large trace processors
average 3.0 to 3.7 instructions per cycle forgcc.

The extra cycle for transferring global values has a
noticeable performance impact, on the order of 5% to
10%. Also notice crossover points in the trace processor
curves. For example, “T-64 2-way per PE” performs bet-
ter than “T-128 1-way per PE”. At low issue widths, it is
better to augment issue capability than add more PEs.

Superscalar versus Trace Processors
One way to compare the two processors is to fix total

window size and total issue width. That is, if we have a
centralized instruction window, what happens when we
divide the window into equal partitions and dedicate an
equal slice of the issue bandwidth to each partition? This
question focuses on the effect of load balance. Because of
load balance, IPC for the trace processor can only
approach that of the superscalar processor. For example,
consider two points from thegcc, jpeg, andxlisp graphs:
“T-128 (0) 2-way per PE” and “SS-128 16-way”. The IPC
performance differs by 16% to 19% - the effect of load
balance. (Also, in the trace processor, instruction buffers
are underutilized due to small traces, and instruction buff-
ers are freed in discrete chunks.)

The above comparison is rather arbitrary because it
suggests an equivalence based on total issue width. In
reality, total issue width lacks meaning in the context of
trace processors. What we really need is a comparison
method based on equivalent complexity, i.e. equal clock
cycle. One measure of complexity is issue complexity,
which goes as the product of window size and issue width
[15]. With this equivalence measure, comparing the two
previous datapoints is invalid because the superscalar pro-
cessor is much more complex (128x16 versus 16x2).

Unfortunately, there is not one measure of processor
complexity. So instead we take an approach that demon-
strates the philosophy of next generation processors:

1. Take a small-scale superscalar processor and maximize
its performance.

2. Use this highly-optimized processor andreplicate it,
taking advantage of a hierarchical organization.

In other words, the goal is to increase IPC while keep-
ing clock cycle optimal and constant. The last graph in
Figure 6 interprets data forgcc with this philosophy. Sup-
pose we start with a superscalar processor with a 16
instruction window and 1, 2, or 4-way issue as a basic
building block, and successively add more copies to form
a trace processor. Assume that the only penalty for having
more than one PE is the extra cycle to bypass values
between PEs; this might account for global result bus

Figure 6. Trace processor and superscalar processor IPC. Note that the bottom-right graph is derived
from the adjacent graph, as indicated by the arrow; it interprets the same data in a different way.

Table 3. Experiments.
T-64 T-128 T-256 SS-16 SS-32 SS-64 SS-128 SS-256

PE window size -or- fetch/dispatch b/w 16 16 16 4 8 16 16 16
number of PEs 4 8 16 - - - - -
issue b/w per PE 1 2 4 8 1 2 4 8 1 2 4 - - - - -
total issue b/w 4 8 16 32 8 16 32 64 16 32 641 2 4 1 2 4 8 2 4 8 16 4 8 16 8 16
local result buses 1 2 4 8 1 2 4 8 1 2 4 - - - - -
global result buses 4 4 8 1 2 4 1 2 4 8 2 4 8 16 4 8 16 8 16
global buses that can be used by a PE1 2 4 4 1 2 4 4 1 2 4 - - - - -
cache buses 2 4 4 4 4 8 1 1 2 1 1 2 4 1 2 4 4 2 4 4 8
cache buses that can be used by a PE1 2 4 4 1 2 4 4 1 2 4 - - - -

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16 32 64

IP
C

total issue width

SS-16

SS-32

SS-64

SS-128

T-64 (0)
T-64 (1)

T-128 (0)
T-128 (1)

COMPRESS

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4 8 16 32 64

IP
C

total issue width

SS-16

SS-32

SS-64

SS-128
T-64 (0)
T-64 (1)

T-128 (0)
T-128 (1)

SS-256 T-256 (0)
T-256 (1)

GCC

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 4 8 16 32 64

IP
C

total issue width

SS-16

SS-32

SS-64

SS-128

T-64 (0)
T-64 (1)

T-128 (0)
T-128 (1)

GO

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64

IP
C

total issue width

SS-16SS-32

SS-64

SS-128
T-64 (0)
T-64 (1)

T-128 (0)
T-128 (1)

SS-256
T-256 (0)

T-256 (1)

JPEG

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 2 4 8 16 32 64

IP
C

total issue width

SS-16SS-32

SS-64

SS-128

T-64 (0)
T-64 (1)

T-128 (0)
T-128 (1)

SS-256 T-256 (0)

T-256 (1)

XLISP

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 8 16

IP
C

number of PEs

GCC

1-way issue
2-way issue
4-way issue

arbitration, global bypass latency, and extra wakeup logic
for snooping global result tag buses. One might then
roughly argue that complexity, i.e. cycle time, remains rel-
atively constant with successively more PEs. Forgcc, 4-
way issue per PE, IPC progressively improves by 58% (1
to 4 PEs), 19% (4 to 8 PEs), and 12% (8 to 16 PEs).

5. Adding structured value prediction

This section presents actual and potential perfor-
mance results for a trace processor configuration using
data prediction. We chose a configuration with 8 PEs,
each having 4-way issue, and 1 extra cycle for bypassing
values over the global result buses.

The experiments explore real and perfect value pre-
diction, confidence, and timing of value predictor updates.
There are 7 bars for each benchmark in Figure 7. The first
four bars are for real value prediction, and are labeled R/*/
*, the first R denoting real prediction. The second quali-
fier denotes the confidence model: R (real confidence)
says we use predictions that are marked confident by the
predictor, O (oracle confidence) says we only use a value
if it is correctly predicted. The third qualifier denotes slow
(S) or immediate (I) updates of the predictor. The last
three bars in the graph are for perfect value/no address pre-
diction (PV), perfect address/no value prediction (PA), and
perfect value and address prediction (P).

Figure 7. Performance with data prediction.

From the rightmost bar (perfect prediction), the poten-
tial performance improvement for data prediction is signif-
icant, around 45% for all of the benchmarks. Three of the
benchmarks benefit twice as much from address prediction
than from value prediction, as shown by the PA/PV bars.

Despite data prediction’s potential, only two of the
benchmarks -gcc and xlisp - show noticeable actual
improvement, about 10%. However, keep in mind that
data value prediction is at a stage where significant engi-
neering remains to be done. There is still much to be
explored in the predictor design space.

Althoughgcc andxlisp show good improvement, it is
less than a quarter of the potential improvement. Forgcc,
the confidence mechanism is not at fault; oracle confi-
dence only makes up for about 7% of the difference.Xlisp
on the other hand shows that with oracle confidence, over

half the potential improvement is achievable. Unfortu-
nately,xlisp performs poorly in terms of letting incorrect
predictions pass as confident.

The first graph in Figure 8 shows the number of
instruction squashes as a fraction of dynamic instruction
count. The first two bars are without value prediction, the
last two bars are with value prediction (denoted by V).
The first two bars show the number of loads squashed by
stores (dependence misspeculation) and the total number
of squashes that result due to a cascade of reissued instruc-
tions. Live-in and address misspeculation add to these
totals in the last two bars.Xlisp’s 30% reissue rate
explains why it shows less performance improvement than
gcc despite higher accuracy. The second graph shows the
distribution of the number of times an instruction issues
while it is in the window.

Figure 8. Statistics for selective reissuing.

6. Aggressive control flow

This section evaluates the performance of a trace pro-
cessor capable of exploiting control independence. Only
instructions that are control dependent on a branch mispre-
diction are squashed, and instructions whose register
dependences change are selectively reissued as described
in Section 2.4.3. Accurate measurement of this control
flow model requires fetching instructions down wrong
paths, primarily to capture data dependences that may
exist on such paths. For this reason we use a fully execu-
tion-driven simulator in this section.

For a trace processor with 16 PEs, 4-way issue per
PE, two of the benchmarks show a significant improve-
ment in IPC: compress (13%) and jpeg (9%). These
benchmarks frequently traverse small loops containing
simple, reconvergent control flow. Also important are
small loops with a few and fixed number of iterations,
allowing the processor to capture traces beyond the loop.

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

compress gcc go jpeg xlisp

%
 im

pr
ov

em
en

t o
ve

r
ba

se
 IP

C

R/R/S
R/R/I
R/O/S
R/O/I
PV
PA
P

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

1 2 3
number of times issued

fr
ac

ti
o

n
 o

f
d

yn
am

ic
 in

st
r

jpeg
compress
go
gcc
xlisp

0%

5%

10%

15%

20%

25%

30%

comp gcc go jpeg xlispin
st

ru
ct

io
n

 s
q

u
as

h
 r

at
e load squash

total
load squash (V)
total (V)

7. Conclusion

Trace processors exploit the characteristics of traces
to efficiently issue many instructions per cycle. Trace data
characteristics - local versus global values - suggest dis-
tributing execution resources at the trace level as a way to
overcome complexity limitations. They also suggest an
interesting application of value prediction, namely predic-
tion of inter-trace dependences. Further, treating traces as
the unit of control prediction results in an efficient, high
accuracy control prediction model.

An initial evaluation of trace processors without value
prediction shows encouraging absolute IPC values - e.g.
gcc between 3 and 4 - reaffirming that ILP can be
exploited in large programs with complex control flow.
We have isolated the performance impact of distributing
execution resources based on trace boundaries, and dem-
onstrated theoverall performance value of replicating fast,
small-scale ILP processors in a hierarchy.

Trace processors with structured value prediction
show promise. Although only two of the benchmarks
show noticeable performance improvement, the potential
improvement is substantial for all benchmarks, and we
feel good engineering of value prediction and confidence
mechanisms will increase the gains.

With the pervasiveness of speculation in next genera-
tion processors, misspeculation handling becomes an
important issue. Rather than treating mispredictions as an
afterthought of speculation, we discussed how data mis-
speculation can be incorporated into the existing issue
mechanism. We also discussed mechanisms for exploiting
control independence, and showed that sequential pro-
grams may benefit.

Acknowledgments
This work was supported in part by NSF Grant MIP-

9505853 and by the U.S. Army Intelligence Center and
Fort Huachuca under Contract DABT63-95-C-0127 and
ARPA order no. D346. The views and conclusions con-
tained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either express or implied, of the U.S.
Army Intelligence Center and Fort Huachuca, or the U.S.
Government. This work is also supported by a Graduate
Fellowship from IBM.

References
[1] E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache: A low

latency approach to high bandwidth instruction fetching.29th
Intl. Symp. on Microarchitecture, pages 24–34, Dec 1996.

[2] S. Patel, D. Friendly, and Y. Patt. Critical issues regarding the
trace cache fetch mechanism. Technical Report CSE-TR-335-
97, University of Michigan, EECS Department, 1997.

[3] Q. Jacobson, E. Rotenberg, and J. Smith. Path-based next
trace prediction.30th Intl. Symp. on Microarchitecture, Dec
1997.

[4] S. Vajapeyam and T. Mitra. Improving superscalar instruc-
tion dispatch and issue by exploiting dynamic code sequenc-
es.24th Intl. Symp. on Computer Architecture, pages 1–12,
June 1997.

[5] E. Sprangle and Y. Patt. Facilitating superscalar processing
via a combined static/dynamic register renaming scheme.
27th Intl. Symp. on Microarchitecture, pages 143–147, Dec
1994.

[6] M. Lipasti. Value Locality and Speculative Execution. PhD
thesis, Carnegie Mellon University, April 1997.

[7] Y. Sazeides, S. Vassiliadis, and J. E. Smith. The performance
potential of data dependence speculation and collapsing.29th
Intl. Symp. on Microarchitecture, pages 238–247, Dec 1996.

[8] M. Franklin. The Multiscalar Architecture. PhD thesis, Uni-
versity of Wisconsin, Nov 1993.

[9] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar pro-
cessors.22nd Intl. Symp. on Computer Architecture, pages
414–425, June 1995.

[10] Q. Jacobson, S. Bennett, N. Sharma, and J. E. Smith. Control
flow speculation in multiscalar processors.3rd Intl. Symp. on
High Perf. Computer Architecture, pages 218–229, Feb 1997.

[11] A. Moshovos, S. Breach, T. Vijaykumar, and G. Sohi. Dy-
namic speculation and synchronization of data dependences.
24th Intl. Symp. on Computer Architecture, pages 181–193,
June 1997.

[12] S. Breach, T. Vijaykumar, and G. Sohi. The anatomy of the
register file in a multiscalar processor.27th Intl. Symp. on Mi-
croarchitecture, pages 181–190, Nov 1994.

[13] S. Breach, T. Vijaykumar, S. Gopal, J. Smith, and G. Sohi.
Data memory alternatives for multiscalar processors. Techni-
cal Report CS-TR-97-1344, University of Wisconsin, CS De-
partment, Nov 1996.

[14] J. Keller. The 21264: A superscalar alpha processor with out-
of-order execution.9th Microprocessor Forum, Oct 1996.

[15] S. Palacharla, N. Jouppi, and J. Smith. Complexity-effective
superscalar processors.24th Intl. Symp. on Computer Archi-
tecture, pages 206–218, June 1997.

[16] S. Melvin, M. Shebanow, and Y. Patt. Hardware support for
large atomic units in dynamically scheduled machines.21st
Workshop on Microprogramming and Microarchitecture,
pages 60–63, Nov 1988.

[17] R. Nair and M. Hopkins. Exploiting instruction level parallel-
ism in processors by caching scheduled groups.24th Intl.
Symp. on Computer Architecture, pages 13–25, June 1997.

[18] E. Hao, P.-Y. Chang, M. Evers, and Y. Patt. Increasing the
instruction fetch rate via block-structured instruction set ar-
chitectures.29th Intl. Symp. on Microarchitecture, pages
191–200, Dec 1996.

[19] Y. Sazeides and J. Smith. The predictability of data values.
30th Intl. Symp. on Microarchitecture, Dec 1997.

[20] E. Jacobsen, E. Rotenberg, and J. Smith. Assigning confi-
dence to conditional branch predictions.29th Intl. Symp. on
Microarchitecture, pages 142–152, Dec 1996.

[21] M. Franklin and G. S. Sohi. ARB: A hardware mechanism for
dynamic reordering of memory references.IEEE Transac-
tions on Computers, 45(5):552–571, May 1996.

[22] M. S. Lam and R. P. Wilson. Limits of control flow on paral-
lelism.19th Intl. Symp. on Computer Architecture, pages 46–
57, May 1992.

[23] D. Burger, T. Austin, and S. Bennett. Evaluating future mi-
croprocessors: The simplescalar toolset. Technical Report
CS-TR-96-1308, Univ. of Wisconsin, CS Dept., July 1996.

